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Abstract
The development and use of fisheries bioeconomic optimisation models is well established. 
However, the use of these models has been restricted in fisheries where there are a large 
number of non-linear interactions. In most cases, the use of linear approximations or 
simplification of the model has been necessary in order to derive a solution. An alternative to 
traditional optimisation models is the use of genetic algorithms. These solve in a manner quite 
different from the traditional approach, and hence can overcome some of the problems 
associated with traditional solution systems. In this paper, the basic features, advantages and 
disadvantages of the use of genetic algorithms in fisheries bioeconomic modelling are 
discussed. A large non-linear model of the UK component of the English channel fisheries is 
developed using a genetic algorithm. The results were compared to those estimated using a 
linearised versions of the model solved using traditional linear programming techniques. The 
results suggest that genetic algorithms may be a suitable way for solving large non-linear 
bioeconomic models that cannot be solved using traditional techniques.
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1. Introduction

Fisheries resources have the potential to yield substantial benefits to the community when 
managed effectively (Arnason 1993), and management measures are designed to attempt to 
capture some, if not all, of these potential benefits. Bioeconomic models have been developed 
for a number of fisheries as a means of estimating the optimal level of exploitation of the 
resource and assessing the effectiveness of various management plans.

Given the relationships between catch and effort, prices and costs of fishing, a profit maximising 
level of effort can be determined for the fishery. Problems of this type are generally modelled as 
non-linear (possibly multi-objective) mathematical programming problems. However, if the 
model is large in size and/or significantly non-linear (i.e. non-smooth non-linear functions), then 
traditional solution methods are often unable to achieve the global optimum. In this case, linear 
approximations are typically included into the model in order to make solution possible.

Genetic algorithms (GA) do not suffer from these deficiencies, and have been shown to be 
highly applicable to examples of large non-linear models. Genetic algorithms are an 
evolutionary optimisation approach, probabilistic in nature, which are an alternative to traditional 
optimisation methods. GA are most appropriate for complex non-linear models where location of 
the global optimum is a difficult task, as due to the probabilistic development of solutions, GA is 
not restricted by local optima. Given the large number of non-linearities that can exist in 
fisheries bioeconomic models, GA appears to be a potentially useful approach.

Hence, the use of GA for optimisation problems offers an alternative approach to the traditional 
solution methods. GA follow the concept of solution evolution, by stochastically developing 
generations of solution populations using a given fitness statistic, for example the objective 
function in mathematical programmes. They are particularly applicable to problems which are 
large, non-linear and possibly discrete in nature, features that traditionally add to the degree of 
complexity of solution. Due to the probabilistic development of populations, GA do not 
guarantee optimality even when it may be reached. For the same reason they are not contained 
by local optima.



The list of topics to which genetic algorithms have been applied is extensive. These include job 
shop scheduling, time-tabling, the travelling salesman problem, portfolio selection, agriculture 
etc. However, in the field of fisheries there are relatively few examples, and of these none 
consider bioeconomic model optimisation. In the field of agriculture, Mayer et al. (1996) 
developed a bioeconomic dairy model in order to compare alternative solution methods. The 
four methods compared were that of GA, where a general GA tool (GENESIS - Grefenstette 
1984) was used, the simplex method, a gradient method and simulated annealing. It was 
concluded that the GA performed well, with optimal values reported averaging 99.7% of the 
global optimal.

In this paper, a GA model is developed for the UK part of the Channel fishery. The model 
described in this paper is based on a bioeconomic model of the fishery developed as a linear 
programming (LP) problem (Pascoe 1997). Comparisons between the GA approach and 
traditional solution methods are made, in order to measure their relative effectiveness. General 
observations of the use of GA in fisheries bioeconomic models, and other similar models, are 
discussed.

2. Genetic Algorithms

The introduction of GA in modern form is attributed to Holland (1975), which he termed adaptive 
systems. Since the early 1980s, and particularly in the last ten years, substantial research effort 
has been applied to the investigation and development of genetic algorithms (see, for example, 
Goldberg 1989, Michalewicz 1996 and Koza 1992).

A genetic algorithm is an optimisation procedure which finds an optimal solution from a 
developing ‘population’ of alternative solutions. The initial population is comprised of ‘individuals’ 
each with a given randomly-assigned combination of values for each of the control (or 
probabilistic) variables1. These combinations of values are contained within a series of binary 
strings that form the ‘genetic code’ of the individual. Also associated with each individual is a 
‘fitness statistic’ which typically represents the value of the objective function. The algorithm 
identifies the individuals with the optimising fitness values. Thus by using alternative selection 
schemes the fittest individuals are chosen to produce the next generation of individuals. Those 
with lower fitness will naturally get discarded from the population.

The end result of this process is (in theory) the estimation of a set of variables that optimises the 
objective function being considered. As a result, the GA technique has advantages over 
traditional non-linear solution techniques that cannot always achieve an optimal solution2. A 
simplified comparison of the GA and the traditional solution techniques is illustrated in Figure 1. 
Non-linear programming solvers generally use some form of gradient search technique to move 
along the steepest gradient until the highest point (maximisation) is reached. In the case of 
linear programming, a global optimum will always be attained. However, non-linear 
programming models may be subject to problems of convergence to local optima, or in some 
cases, may be unable to find a feasible solution. This largely depends on the starting point of 
the solver. A starting point outside the feasible region may result in no feasible solution being 
found, even though feasible solutions may exist. Other starting points may lead to an optimal 
solution, but it is not possible to determine if it is a local of global optimum. Hence, the modeller 
can never be sure that the optimal solution produced using the model is the “true” optimum.

For the genetic algorithm, the population encompasses a range of possible outcomes. Local 
optima are not identified per se as their ‘fitness’ (or objective value) will be inferior to the higher 
values closer to the global optimum. With an appropriately sized population, the set of variables 
at or near the global optimum are, in the case of non-linear programming, identified as that with 
the highest objective function value. Successive generations improve the fitness of individuals in 
the population until the optimisation convergence criteria is met. Due to this probabilistic nature, 
GA tends to the global optimum.

1 T hese random  variab les can also be generated  a round  given  starting  values.
2 L inear p rogram m ing  techniques, such  as th e  sim plex  m ethod  and  the  in te rio r p o in t m ethod, w ill a lw ays resu lt in an  optim al 
solution, p rov ided  such a  so lu tion  exists and  assum ing  convex ity  in  th e  m o d e l’s constraints. L inear p rogram m ing  m odels do not 
incur th e  sam e prob lem s o f  local op tim a as non-linear p rogram m ing  m odels.



The procedure of genetic breeding is based on the Darwinian principle of survival of the fittest. 
Ideas and principles of reproduction (crossover) of the selected individuals at each generation 
are incorporated, with a (small) mutation factor. The result of this ‘mating’ is another set of 
individuals that contain the modified ‘genes’ (representing the variable values) based on the 
original subjects with better (min. or max.) fitness. ‘Mutations’ to the ‘chromosomes’ of the 
genes are probabilistically undertaken with low probability, enabling random modification to the 
individual during the reproduction process.

Objective function G rad ien t technique
value optim um

loca l optim a

S tarting  p oin t
S tarting  p o in t

Variable set

Objective function Genetic algorithm
value

Variable set

Figure 1. Comparison of gradient search technique and genetic algorithm approach.

The genetic algorithm follows an iterative procedure that involves four stages:

Evaluate fitness - each individual solution in a population is evaluated and thus assigned a 
measure of fitness. Typically in a non-linear programming scenario, this measure will reflect 
the objective value of the given model.
Selection - Individuals of the current population are selected as suitable subjects for 
development of the next generation based on their fitness. Various selection alternatives have 
been proposed. This follows the principles of Darwinian natural selection where the fittest have 
a greater probability of survival.
Crossover - Two selected individuals are combined by using a crossover point to create two 
new individuals. Simple (asexual) reproduction can also occur which replicates an individual in 
the new population.
Mutation - Given a small mutation probability factor, a new individual may be probabilistically 
modified to a small degree.

The optimisation is terminated if the solution level is attained, or if the maximum number of 
generations is reached, or if a given number of generations without fitness improvement is 
performed. Generally, the last of these criteria applies as convergence slows to the optimal 
solution.

Population size selection is probably the most important parameter. Generally this parameter 
must reflect the size and complexity of the problem. The trade-off between extra computational 
effort with respect to increased population size is a problem specific decision to be ascertained 
by the modeller, as doubling the population size will approximately double the solution time. 
Other parameters include the maximum number of generations to be performed, a crossover 
probability, a mutation probability, a selection method and possibly an elitist strategy, where the



best is retained in the next generation. The most common type of fitness function is the 
error/distance shortfall functions (Koza 1992).

GA solvers such as GENESIS (Grefenstette 1984), GENOCOP (Michalewicz 1996 and 
FORTGA (Carroll 1997) are publicly available for non-commercial use. Many modifications and 
enhancements are typically incorporated into these algorithms in order to improve performance, 
including alternative selection processes and more complex utilities to maintain feasibility when 
dealing with constraints. GA solvers are particularly applicable to unconstrained problems, as 
constraints, of the traditional linear programming style, are difficult to
incorporate into the model. The obvious approach is to penalise a sum of infeasibilities more 
than the objective value. However, such a weighted sum may give rise to very slow 
convergence to optimality. GENOCOP III (Michalewicz 1996) has been designed to cater for 
non-linear constraints applying techniques to maintain feasibility of individual solutions.

3. Fisheries Bioeconomic Models

The foundations of fisheries bioeconomic modelling comes from the economic theory of the 
open-access or common-property fishery developed by Gordon (1954) and Schaefer (1954). A 
concise development of this and subsequent theory is given by Clark (1976). These models are 
based on a logistic population growth model. The sustainable yield is equivalent to the level of 
growth in the population, which varies with the size of the population. From this, a parabolic long 
run catch-effort relationship can be developed. Other non-linearities can be incorporated into the 
traditional models.

The simplest of bioeconomic models are based on non-linear catch-effort relationships for single 
species. In recent years, models of this kind have been applied successfully to a number of 
predominantly independent fish stocks. However, they are often generalised as many 
interactions are ignored. Nevertheless, they can be useful from a management perspective.

Significant research on multi-species models has also been undertaken. Due to the more 
complex nature of such models, with species interaction and typically larger fisheries, such 
models are larger and more difficult to solve.

Many of these models have been developed as mathematical programmes. Linear 
programming models have been developed for prawn fisheries (Clark and Kirkwood 1979, 
Haynes and Pascoe 1988), lobster fisheries (Cheng and Townsend 1993), multi-species finfish 
fisheries (Brown et al. 1978, Siegel et al. 1979, Sinclair 1985, Murawski and Finn 1985, Geen et 
al. 1991, Frost et al. 1993). Non-linear programming models have also been developed for a 
range of fisheries, including prawn fisheries (Christensen and Vestergaard 1993, Reid et al. 
1993, Dann and Pascoe 1994), shark fisheries (Pascoe et al. 1992), and finfish fisheries 
(Placenti et al. 1992, Mardle et al. 1997).

Most of the linear and non-linear programming models noted above were used to examine the 
optimal equilibrium level of effort in a fishery. However, dynamic (non-linear) programming 
models have also been developed. For example, the model developed by Pascoe et al. (1992) 
estimated the optimal harvesting strategy over time for the Australian southern shark fishery 
based on a dynamic age structured model. Diaby (1996) also developed a dynamic age 
structured model of the Ivorian sardinella fishery to examine the effects of the current 
management on economic profits compared with those from an “optimally” managed fishery.

Currently, multi-species fisheries bioeconomic models are a vital aid for management to perform 
effective decision analysis. The fact that many fisheries are over-fished has placed a significant 
importance on developing accurate predictive models. However, due to the complexities 
inherent in many problems, traditional optimisation methods may require approximation of the 
model to achieve solution.

Few attempts have been undertaken to develop GA models of fisheries. Pascoe (1996) 
developed a simple fisheries bioeconomic model using a commercial GA solver in order to 
compare the package with a traditional non-linear programming package. Mardle et al. (1998) 
developed a multi-objective GA model of the North Sea fishery to examine optimal fleet levels.



4. Bioeconomic Model Of The English Channel Fisheries

Both the linear programming and genetic algorithm versions of the bioeconomic model of the 
UK component of the English Channel fisheries share many similar characteristics. The general 
components of the models are illustrated in Figure 2. The mathematical description of the linear 
programming model, data sources and validation are given in Pascoe (1997). The genetic 
algorithm model uses similar equations to those presented in Pascoe (1997).

capital costs

Total running

Discards o f  key 
quota species by

days fished in each

p ro fit

size classes, 
gear types

Species catch 
catch o f  26 species (+ 3 

“other”), 4  seasons

Landings

Figure 2. The Channel fisheries bioeconomic model.

In the original linear programming model, the fleet is subdivided into 6 size classes in each of 
the 5 administrative regions along the coast. These boats can use combinations of 6 gear types 
(beam trawl, otter trawl, dredge, lines, nets and pots) to operate in 21 métiers. The boats can 
change gear and métier each season although boats are restricted to using either static gear or 
mobile gear.

In the genetic algorithm model, the fleet was subdivided into only 3 size classes. Gear use was 
limited to 2 generic gear types: static gear (pots, nets and line) and mobile gear (otter trawl, 
beam trawl and dredge). While the model can theoretically incorporate the same data structure 
as the LP model, it was necessary at this investigative stage to reduce the size structure of the 
GA model in order to effectively implement the GA.

For the purposes of the analysis, it was considered acceptable to use a simpler version of the 
model which still maintained the key elements of the problem. A simplified form of the LP was 
also developed with the same regional, size class and gear type groups as the GA model in 
order to allow a direct comparison of the model results.

Catches of each of the 29 species included in the model are estimated based on the level of 
fishing activity in each métier in each season. The catch effort relationships are non-linear, 
based on the Coppola (1995) production function. Initial attempts at solving a non-linear 
programming version of the model were unsuccessful due to the large number of non-linearities. 
As a result, the non-linear catch effort relationships were incorporated into the linear 
programming model using the separable programming technique (Williams 1994). The non­
linear functions, however, were incorporated directly into the genetic algorithm version of the 
model.



Landings of some species were limited by total allowable catches (TAC), with the difference 
between landings and catch being implicitly discarded. Revenue was estimated based on the 
level of landings and the price. Running costs were determined as a function of revenue and the 
level of effort while fixed and capital costs were determined by the fleet size and structure. 
Revenues and costs determine the level of economic profits in the fishery, which affect the level 
and distribution of effort.

The models are largely based on individual boat catch and effort data relating to 1992. The 
model has a short run perspective only as information on stock dynamics for nearly all key 
species is not currently available. Cost data were derived from the economic survey of the 
fishery (Pascoe et al. 1996). Market information (such as prices) was derived from total value of 
landings statistics for the UK (MAFF 1996, and earlier issues) as well as value of landings by 
port information provided by MAFF. All economic data are indexed to represent values in 1994- 
95 prices.

5. The Solution Process

The different models’ variable dependencies are shown in Table 1, with the index definitions 
given in Table 2. For the simplified LP model and the GA model, the data were aggregated or 
averaged over the new groupings. In total, the reduced LP and GA models include 876 
probabilistic variables (i.e. landings, boats and days). Each probabilistic (or control) variable is 
assigned lower and upper bounds for the optimisation, and contain the main information 
required for the model. The deterministic variables, managed by the fitness function, are each 
dependent on the values of the control variables.

Table 1. GA structure of the Channel fisheries model.
Variable Type Dependencies
landingssta probabilistic
boatstrzg probabilistic
daysmtrzg probabilistic
boatsizerz deterministic boatstrzg
revenue deterministic landingssta, Pricest
net_revenue deterministic revenue,

daysmtrzg,
Daycostgz

rent deterministic net_revenue,
COStSz
Crewshare,
boatsizerz

effortmt deterministic daysmtrzg,
FishingPowermrz

total_catchmt deterministic effortmt
catchsa deterministic total catch mt,

CPUEmts
total_crewr deterministic boatsizerz,

CrewNOz



Table 2. Index structure of the model.
Index Code Length

L P full L P red, GA
Species s 29 29
Season t 4 4
Area a 3 3
Region r 5 1
Gear g 6 2
Size z 6 3
Métier m 21 21

The LP model was developed and solved using the GAMS (General Algebraic Modelling 
System) package (Brooke at al. 1988). GENOCOP III (Genetic algorithm for numerical 
optimisation of constrained problems, Michalewicz 1996) was used as the primary optimisation 
algorithm for the model implementation. The fitness function is based on the profit maximisation 
objective.

An arithmetic crossover technique is implemented in GENOCOP III, which is capable of 
maintaining feasibility with defined constraints. However, this operation requires feasibility of 
individuals before optimisation. Therefore, two stages were developed for the GA optimisation. 
The first ignored the defined constraints and managed them explicitly in the fitness function to 
attain feasibility by means of a simple sum of infeasibilities technique. The second stage then 
used the solution attained to restart the optimisation with the defined constraints. The 123 
defined inequality constraints describe the maximum number of boats of a given size class 
available in a season (12 constraints), a landings limit based on TACs for species defined in 
fishing areas (87 constraints) and the maximum number of days fishing per season by a boat 
class (24 constraints).

The principle optimisation parameter settings of the model are set to minimisation, population 
size 50, and maximum number of feasible generations 100. These settings were developed 
from a number of optimisation test cases. For the size of model, the chosen population size is 
small. However in tests the convergence characteristics of the smaller population with a greater 
number of generations, was more computationally efficient than that of a larger population.

6. Results

Results for three optimisation models and 1995 summary statistics for the key economic 
indicators are presented in Table 3. The LP model (LPFUll) uses the complete data structure 
defined in Table 2. The GA model and reduced LP model (LPREd) use the reduced data 
structure (Table 2). In all models, the objective is the maximisation of economic profits.

Table 3. LP and GA model results._____________________________
1995a Profit maximising fleet

_______________________ L P full L P red GA
Revenue
(£m)
Economic

69.3 63.9 61.0 60.8

profits (£m) 1.7 
Fleet size

31.3 25.8 25.9

<10m 1673 604 1163 1134
10m-20m 392 44 57 57
>20m 101 4 1 1
Employme 4853 1312 2491 2432

_nt_______________________
a) Estimated from survey data (Pascoe et al. 1997)



Reducing the information contained within the LP model makes a significant difference to the 
results (Table 3). The approximations of size class and gear type in L P REd have affected the 
optimal fleet structure and consequently the level of economic profit achievable.

Due to the size and complexity of the LP models, the catch-effort functions were included as 
piecewise linear approximations (see Section 4). Consequently, the total catch reported for 
métier m in season t  is an underestimate of the true function value3. In contrast, the GA model 
uses the specific non-linear representation of the catch-effort functions, and therefore should 
arrive at a superior optimal solution. Given this, the information from the optimal solution of 
L P r e d  was used to start the GA model with an advanced solution. Thus, the individuals of the 
GA’s initial population were developed to approximate this result. Hence, feasibility in the GA is 
given, and then maintained in the fitness function where necessary through management of the 
probabilistic variables.

The effect of the linear approximation on the optimal level of profits and optimal fleet size can be 
seen by comparing the results for the GA model with those of the L P REd model. The economic 
profits estimated using the GA model were approximately £0.06m greater than those estimated 
using the L P REd model, a difference of less than 1 per cent. The optimal fleet size were also 
similar, with the optimal number of small boats estimated using the GA model being slightly less 
than that estimated using the L P REd model. The similarities in the results suggest that the linear 
approximations used in the LP models were fairly accurate. A total of 40 segments were used in 
the estimation of the linearised catch-effort curves.

From Table 3, it can be seen that the maximum economic profits estimated using the models 
were substantially higher than those estimated for 1995 from survey data (Pascoe et al. 1997). 
As would be expected, a substantial reduction in boat numbers would be required to achieve the 
maximum level of profits. However, the optimal fleet size was sensitive to the level of 
aggregation in the model. The optimal number of small boats estimated using the most 
disaggregated form of the model was almost half that estimated using the reduced form of the 
LP and the GA models. While this is not the subject of investigation in this paper, the result is 
interesting nevertheless.

As GA is a stochastic search technique, no two solutions will generally follow exactly the same 
path even though status at termination would be expected to be very similar. Hence, three runs 
of the GA model were performed in order to evaluate the convergence effects. The models all 
converged to the same level of economic profits.

The difference in time taken to solve the model types WAS significant, with the GA taking over 
10 minutes to show convergence to ‘optimality’. In contrast, the LP models solved in less than a 
minute. Improvements in model performance, however, are expected with continued 
development of the GA model.

The GA approach has an advantage over the LP solution process when variables must take 
integer values. The GA model can be solved equally as fast with either integer or continuous 
variables. In contrast, the LP models were solved with continuous variables, with integer 
approximations taken from the continuous results. While integer programming techniques exist 
(e.g. branch and bound), these are generally time consuming. Where integer values for the 
control variables are important, GA models may be considerably faster than traditional 
approaches.

7. Discussion and Conclusions

As models have become increasingly more detailed, the types of questions which fisheries 
managers hope to find answers to have also become more complex. The development of 
detailed multi-species multi-gear models to answer these questions is limited by the available 
solution techniques. New techniques can expand the range and relevance of fisheries models in 
solving real-world issues.

3 The accuracy  reflects  the  num ber o f  data  po in ts u sed  to  fo rm  the  p iecew ise  linear approxim ation.



The model of the UK part of the Channel fishery has been used to investigate the potential 
usefulness of genetic algorithms for the solution of large-scale, non-linear problems. This paper 
compares a known solution, found by a traditional optimisation approach, to solutions attained 
by a genetic algorithm. It is clear that GA offer a potential alternative to the traditional 
optimisation approaches.

Fisheries bioeconomic models are not unique in the fact that generally simplifying assumptions 
must be made to find a solution using many optimisation techniques. This is due to the models’ 
natural size and complexity. Where solution is not possible by traditional approaches, GA may 
be able to offer a viable alternative. As in this case, it would not be expected for a constrained 
mathematical programming problem to be solved faster by GA, which is a probabilistic search 
method, than by a traditional optimisation approach, which is a guided search method and has 
been developed and successfully applied to many models of this type.

There are a number of factors which must be taken into consideration when developing a GA 
model; there are typically many standard parameters which can be modified to affect the 
performance of the optimisation (see section 2), variable specification (probabilistic or 
deterministic), tight variable bounds, weighting strategies and constraints. Unconstrained 
problems are particularly suitable for GA consideration as constraints require the management 
of possible infeasibility, which may slow down the optimisation process considerably. Generally, 
a standard genetic algorithm is taken for specific development of the problem under 
investigation where the modeller should take advantage of model structure for effective 
implementation.

Constraints are difficult to incorporate into a GA code, as generally it is left to the fitness function 
to manage and quantify possible infeasibility. For problems where a large feasible set of 
solutions exist, constraints do not pose the same problem as for a small feasible set. This is 
because the fitness function must generally determine the level of infeasibility and optimality as 
one fitness statistic. If feasible solutions are easily determined, then fitness is easily described.

The majority of existing GA tools are written in C/C++ and developed on UNIX workstations, and 
are available free for non-commercial activity. The modeller typically implements the model 
directly into the code of the computer program. Although, C/C++ is a robust programming 
language for algorithmic software development, this adds to the expertise required by the 
modeller. Typically, facilities such as a user-friendly interface are not available to the novice 
user. This is definitely a disadvantage over the usability and history of traditional modelling 
approaches. General commercial GA solvers do exist, although their applicability to specific 
large-scale constrained is unclear.

This paper has investigated the potential applicability of genetic algorithms for the application to 
fisheries bioeconomic models. Further development of a specialised solver will improve the 
speed and number of variables that can be practically considered in a range of problems. The 
ultimate aim is to encourage the development of broader and more comprehensive fisheries 
models for use in management decision making. Such a tool will both contribute to the 
methodological development of bioeconomic modelling as well as having immediate practical 
benefits in terms of increasing the range of management questions that can be addressed by 
such models.
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