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The m orphom etric characteristics o f 96 sublacustrine landslide com plexes were m easured on dense grids o f 
h igh -re so lu tion  seism ic re flec tion  data from  several lakes w o rld w id e  and w ere s ta tis tica lly  analyzed. This 
analysis reveals th a t the m orphology o f the sublacustrine slopes exerts a strong con tro l on the size o f slope 
fa ilu res th a t occur on them , as the location o f the headscarp and fro n ta l ram p o f these landslides are m a in ly 
de term ined by changes in  the slope grad ien t. O ur dataset also shows th a t the he igh t drop o f the fa ilin g  slope 
section and the subsurface depth o f the basal shear surface are the m ain param eters th a t determ ine w hether a 
landslide w ill propagate in  a fro n ta lly  confined o r fro n ta lly  em ergent m anner. These param eters respective ly 
represent the g rav ita tion a l po ten tia l energy (d riv in g  force) o f the s lid ing  mass and the po ten tia l energy 
requ ired (a resisting force) fo r it  to  emerge a t its  fro n ta l ram p. These observations open perspectives fo r 
p red ic ting  the fro n ta l em placem ent style o f fu tu re  sublacustrine and subm arine landslides and th e ir 
associated na tu ra l hazards (e.g., tsunam is, dense flo w s). A lthough the investigated sublacustrine landslides 
have sm aller dim ensions than m ost subm arine landslides, our data reveal m ostly com parable in te r-pa ram eter 
corre la tions and re la tionsh ips. H ow ever, fro n ta lly  em ergent landslides in  lakes (and fjo rds) genera lly have a 
larger m o b ility  and underw ent a larger d is in teg ra tion  than w ha t w ou ld  have been expected by extrapo la tion  
o f em pirica l re la tionsh ips derived fo r ocean m argin landslide datasets. This can be expla ined by the h ig h ly - 
unconsolidated m a te ria l usually invo lved in  the sha llow ly excavated slope fa ilu res in  lakes and fjo rds.

© 2011 E lsevier B.V. A ll righ ts  reserved.

1. Introduction

Sublacustrine landslide deposits and the ir associated turbidites are 
im portant components o f the sedimentary in fill o f many lakes and are 
increasingly used as proxy for past earthquake activity (e.g., Karlin et 
al., 2004; Strasser et al., 2006; Moernaut et al., 2007). Most o f what is 
known today about subaqueous landslide processes has been 
obtained through a vast number o f marine studies and modeling 
(e.g., Canals et al., 2004; Masson et al., 2006 and references therein). 
The use o f 3D seismic datasets has allowed imaging and mapping of 
large-scale landslide complexes w ith  unprecedented, data coverage 
and detail, and has helped revealing various types o f kinematic 
indicators o f mass-transport (Gee et al., 2005; Bull et al., 2009). For 
example, impressive fold-and-thrust systems in a landslide toe region 
were analyzed by Frey-Martinez et al. (2006) and allowed the 
construction o f a 2-end-member model for the frontal emplacement 
style o f submarine landslides (Fig. 1). This includes i) frontally 
confined landslides, in which the frontal part is buttressed against
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undisturbed slope strata, and ii) frontally emergent landslides, which 
are able to ramp up from the ir original stratigraphie position and 
translate in an unconfined way over the sea bottom. Frontally 
confined landslides are now beginning to be reported worldw ide 
(e.g., Gafeira et al., 2007; Callot et al., 2008; Tripsanas et al., 2008; 
Lawrence and Cartwright, 2009; Gamberi et al., 2011), although the 
mechanisms and kinematics involved in the ir frontal emplacement 
are still poorly understood. For example, it  has not yet been 
conclusively established w hy some submarine landslides stay 
confined while others do not, and i f  these different frontal behaviors 
produce dissimilar associated hazards (e.g., tsunami and high-velocity 
flows).

Hampton et al. (1996) compiled morphometric data o f several 
submarine landslides known at that time and pointed out that they 
generally exhibit a larger m obility than subaerial landslides. Driven by 
advances in marine observation techniques, a vast amount o f 
submarine landslide complexes have been discovered since then, 
which has allowed the ir morphometric parameters to be analyzed 
statistically (McAdoo et al., 2000; Hühnerbach et al., 2004; Green and 
Uken, 2008). Strong correlations were found between several area- 
and volume-related parameters, which can help in estimating the 
expected volume (and associated hazards) o f a landslide given the 
subsurface depth o f a potential failure plane. Sublacustrine landslides 
are on average smaller than submarine ones, but a comprehensive

http://www.elsevier.com/locate/margeo
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Fig. 1. Schematic illustration o f frontally emergent and confined landslides w ith  indication o f the various morphometric parameters that were measured in this study. Note the 
difference between total height drop H (between headscarp and toe) and height drop H* (between headscarp and frontal ramp). Dark gray: landslide deposit (deformed and/or 
displaced sediment sequences); ligh t gray: unfailed sediment sequences (w ith  possible in-situ deforma fions/fractures near the landslide toe).

morphometric study o f sublacustrine landslides has not yet been 
performed. Therefore, it  is not known yet whether sim ilar relation­
ships exist and thus whether sim ilar processes control the dimensions 
and geometry o f sublacustrine landslides.

The aim o f our study is therefore two-fold:

i) establishing which parameters determine whether a landslide 
develops a confined or emergent frontal emplacement style (in 
lacustrine environments);

ii) establishing the relationships between the morphometric param­
eters o f sublacustrine landslides and the ir position w ith  respect to 
submarine landslides.

Our study is based on the seismostratigraphic and morphometric 
analysis o f sublacustrine landslides imaged on high to very-high 
resolution seismic-reflection data from lakes o f various sizes and from 
various environments. We first present two selected case studies in 
order to illustrate the different features related to the frontal 
emplacement style o f sublacustrine landslides. In the second part o f 
the paper, we present the statistical analysis o f the morphometric 
parameters o f our landslide catalog. This combined approach allows 
testing the applicability o f the hypotheses made in a particular case 
study on a broader scale.

2. Methods

Over the past 15 years, the Renard Centre o f Marine Geology 
(RCMG; Ghent University) has collected high and very-high resolu­
tion seismic-reflection data in the framework o f several national and 
international lake research projects (SI Table 1). These data were 
acquired using different acoustic sources, such as sparkers, boomers 
and pingers (SI Table 2), which were towed behind a GPS-positioned 
survey vessel. A ll seismic data were digita lly recorded on a TR1TON- 
EL1CS Delph-2 acquisition system. Depending on data quality and user 
needs, post-acquisition data processing -  including bandpass filtering, 
scaling and deconvolution -  was carried out on a LANDMARK ProMax 
system. Seismostratigraphic interpretation was performed using 
Seismic Micro-Technology's Kingdom Suite package (version 7.5). 
An acoustic velocity o f 1500 m/s was used for tim e-to-depth 
conversions in the water column and the upper sediments, which is 
in agreement w ith  acoustic velocities derived from  lacustrine 
refraction seismic data (e.g., Finckh et al., 1984), core logging data 
(e.g., Waldmann et al., 2008) and multi-channel seismic-reflection 
data (e.g., Scholz et al., 2002).

In this paper, we w ill only use the general terms “ landslides" and 
“ landslide deposits" as i) seismic data on the ir own are not sufficient 
to establish the exact mass-transport process behind the imaged
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landslide deposits (Tripsanas et al., 2008), ii) landslides can evolve 
from one type into another (M ulder and Alexander, 2001a) and iii) 
various static and dynamic classification schemes, subdivisions and 
terminologies exist (e.g., Nardin et al., 1979; Mulder and Cochonat, 
1996; Mulder and Alexander, 2001a; Tripsanas et al., 2008). We 
cataloged landslide complexes that originated from translational 
failure o f subaqueous sedimentary slope sequences, thereby exclud­
ing deposits resulting from rotational landslides, rock falls, debris 
avalanches and tu rb id ity  currents (e.g., Hampton et al., 1996;

Normark et al., 2004; Schnellmann et al., 2006). The scar region o f 
translational landslides can be easily discriminated by the presence o f 
a clear slide scarp and a bedding-parallel sliding surface. Translational 
landslide deposits typically show a chaotic-to-transparent seismic 
facies and can have a lens-shaped intercalating geometry (e.g., 
Schnellmann et al., 2002). Of the 26 lakes examined, only 12 
contained a useful landslide record w ith  i) good seismic data quality, 
and ii) sufficiently dense seismic coverage o f the landslide deposits 
and slide scar region (SI Table 1; SI Fig. 1). The shallower lakes
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Fig. 2. A) Overview seismic profile o f Lake Challa w ith  landslide deposits at stratigraphie levels A, B and C. Two stratigraphie levels (BSS 1 and 2) were used as basal shear surface 
(BSS). Yellow: frontally confined landslides; Red: frontally emergent landslides. Inset figure at top: bathymetric map (isobaths every 10 m) and seismic survey lines. B) 
Paleobathymetric map o f BSS 2 w ith  level B and C landslides, which shared the same stratigraphie level as BSS (BSS 2). C) Paleobathymetric map o f BSS 1 w ith  level A landslides, 
which shared the same stratigraphie level as BSS (BSS 1).
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(<~30 m water depth) do not contain any suitable landslide deposits, 
as the influence o f wave action on the shallower lake bottom produces 
sediment focusing towards the deeper basin parts (Crusius and 
Anderson, 1995). This can prevent the build-up o f sedimentary slope 
sequences prone to failure. Likewise, the fault-controlled lateral 
borders o f the tectonic lakes in our database are often too steep for 
translational slope failure, as sediments generally do not accumulate 
in significant amounts on slopes steeper than about 14° (Hâkanson 
and Jansson, 2002).

In this study, landslides are classified based on the ir frontal 
emplacement style as this characteristic can easily and objectively be 
determined on seismic-reflection profiles (Fig. 1). Frontally emergent 
landslides exhib it a larger downslope translation than frontally 
confined landslides, because the landslide has been able to ramp up 
from its original basal shear surface, abandon its scar surface and 
continue over the contemporaneous seafloor. On seismic sections, 
frontally confined landslides show frontal thrust structures in the toe 
region, separating uplifted, rotated and/or folded blocks o f coherent 
strata from undeformed foreland sediments (e.g., Schnellmann et al., 
2005). ln downslope direction, buried frontally emergent landslides 
wedge out in between parallel-stratified reflections, which represent 
undisturbed units o f pre- and postfailure sediments. Upslope, abrupt 
and steep transitions ( “ lateral margins") occur between the chaotic- 
to-transparent facies o f the (confined and emergent) landslide 
deposits and the parallel-layered facies o f the background sediments. 
For emergent landslides, a “ frontal ramp" structure is located at the 
transition between the landslide scar and the main depositional area.

Up to 96 sublacustrine landslides fitting this two end-member 
model were identified and included in the database. Of these, 79 were 
classified as frontally emergent and 17 as frontally confined (SI Table 
5). Dimensional measurements and slope calculations were carried 
out on seismic profiles and on maps to determine the morphometric 
parameters o f the evacuational, translational and depositional area o f 
each sublacustrine landslide, however w ith  an emphasis on the 
depositional area (Fig. 1), where features are better visualized on the 
seismic data. The deposit volume was calculated using Golden 
Software SURFER software by subtracting the calculated grids for 
the landslide deposit bottom and top. This calculated deposit value 
m ight also provide a rough estimate o f the failed sediment volume, 
assuming tha t on ly a m inor fraction o f the mass-movement 
transformed into tu rb id ity  currents. Several ratios between morpho­
metric parameters were calculated and included in the statistical 
analysis.

3. Case study 1: Lake Challa

Lake Challa (4.2 km2, 880 m a.s.L, maximum depth: 92 m) is a 
volcanic crater lake on the lower east slope o f Mt. Kilimanjaro, on the 
border o f Kenya and Tanzania. The sedimentary in fill mostly has a 
uniform  draping geometry, but detailed isopach mapping showed 
that certain seismic units display a partially basin-focused deposi­
tional pattern (Verschuren et al., 2009; Moernaut et al., 2010). 
M ultiple landslide deposits were found at several stratigraphie levels 
(Fig. 2): e.g., A1-A5 at stratigraphie level A, B1-B3 at level B and C l-  
C4 at level C. The basal shear surfaces o f level B and C landslides are 
located at a single stratigraphie level (BSS 2; Fig. 2). Level B landslides 
involved failure o f a 0.7 m thick slope sequence, while this is 2.5 m 
thick for level C landslides. All landslides at level C are frontally 
confined, while these at the lower level B all show a frontally 
emergent geometry. Both types o f landslides originated along the SE 
and E margin o f the basin where slope profiles are quite similar to 
each other. The different emplacement style o f level B and level C 
landslides suggests that the sub-surface depth o f the basal shear 
surface (i.e., the thickness o f the failed mass) plays an im portant role 
in controlling the ability o f lacustrine slope failures to ramp out o f 
their stratigraphie confinement (see Section 6).

On stratigraphie level A, two landslides are classified as frontally 
emergent while three landslides are frontally confined, but they all 
use the same stratigraphie level as basal shear surface (BSS 1). This 
indicates that factors other than the failed mass thickness control the 
frontal emplacement style. The values for the height drop between 
headscarp and frontal ramp (H*) (9 m; 10 m) and maximum slope 
angle o f mass-transport (1.9°; 2.5°) for confined landslides A Í and A2 
are considerably lower than for the emergent landslides A4 and A5 
(20 m and 22 m; 4.9° and 3.4°). Landslide A3 is not evaluated due to 
the scarcity and direction o f seismic lines at this location. These results 
seem to indicate that the height drop H* and slope angle could be 
primary parameters controlling the frontal emplacement style of 
sublacustrine landslides.

The seismic characteristics o f an acoustically well-resolved 
frontally confined landslide (C2) were studied in high detail (Fig. 3). 
In the upslope region, a 2.6 m high headscarp is located on a 
downslope-steepening slope break (0° to 5°). This scarp is evidenced 
by a discontinuity in seismic reflections, diffraction hyperbola (in both 
directions) and more steeply dipping reflections above the scarp than 
beneath it. The landslide's basal shear surface is tied to one continuous 
reflector. The landslide deposit surface shows a smooth morphology 
in the upslope part and a rugged morphology in its toe region. A 
transition zone is located in between the chaotic-to-transparent facies 
o f the landslide deposit and the horizontally laminated seismic facies 
o f the undisturbed basin-plain sediments. This transition zone shows 
parallel reflections that correlate w ith  the basin-plain units, but 
narrow, steeply west-ward dipping, low-amplitude zones disrupt the 
reflection continuity. In the most distal part, such acoustic w ipe-out 
zones are restricted to the upper ha lf o f the transition zone and are 
more fragmented. The transition zone is considerably thicker (3.6 m 
thick) than the stratigraphically adjacent basin-plain un it (2.5 m 
thick). The rugged morphology at the toe o f the confined landslide 
may be explained by the presence o f a series o f frontal thrusts (not 
visible on the profile) that developed where the foreland progres­
sively failed under the gravitational downslope stress o f the failing 
mass. These stresses also induced slope-parallel compression features 
(i.e., thickened unit, small fractures) in the transition zone, albeit 
w ithou t full failure o f the sedimentary sequence. The confined-type 
frontal emplacement and the fact that the landslide deposit is located 
immediately at the foot o f its headscarp indicate that only a lim ited 
downslope translation o f the failed mass took place.

Thickness measurements for characterizing each confined land­
slide (Fig. 4) encompassed i) the undisturbed basin-plain sequence in 
front o f the landslide, ii) the transition zone w ith  compression 
features w ithou t full failure, and iii) the landslide's toe region where 
sediment packages are highly disturbed by frontal thrusting (failed 
zone). Compared to landslides at the same level, landslide A3 and C4 
( Figs. 2 and4) exhib it the least thickening in the transition zone ( 107% 
and 129%), while having the most thickened toe region (180% and 
221%). Conversely, landslides A Í and C l, which have the largest 
transition zone thickening (129% and 152%), exhibit relatively less 
failed zone thickening (167% and 184%). Furthermore, A3 and C4 
exhib it higher values o f height drop (H =  H*) and mean slope angle 
compared to landslides at the same level (Fig. 4). These results 
indicate tha t height drop and slope angle could be prim ary 
parameters in controlling the magnitude o f frontal thrusting com­
pared to thickening o f the transition zone for confined landslides. 
Other parameters, such as the slope angle at toe or the length o f the 
landslide did not correlate.

4. Case study 2: Lake le Bourget

Lake Le Bourget (1 8 x 2 -3  km; 231 m a.s.L; maximum depth: 
145 m) is a glacigenic lake in the French NW Alps, the sedimentary 
in fill o f which has been extensively explored by means o f high- 
reso lu tion 2D seismics, side-scan sonar imaging, m ultibeam
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Fig. 3. Uninterpreted (A) and interpreted (B) seismic profile in Lake Challa (location on Fig. 2A) showing the detailed seismic features o f a confined slide (landslide C2). The 
“ transition zone” is located in between the frontal thrusts o f the failed zone and the undisturbed basin-floor, and its thickness decreases downslope. Dashed lines: assumed frontal 
thrusts. Dotted lines: acoustic w ipe-out zones and fractures.

bathymetry and sediment cores (e.g., Chapron et al„ 1996; Chapron, 
1999; Chapron et al„ 2004; Ledoux et al„ 2010). This case study 
focuses on the “Hautecombe Disturbed Unit" (HDU), which has been 
explained in earlier studies as a complex amalgamation o f a large 
sublacustrine landslide (hereafter named “main lateral landslide") 
from the western basin slope and less voluminous landslides from the 
east and north o f the lake basin (Chapron et al„ 1996). New seismic 
data were obtained during a seismic equipment test survey in the 
w in ter o f 2009 and allowed mapping the main lateral landslide in 
unprecedented detail (Fig. 5). A t the western basin slopes, the 
headscarp o f the main lateral landslide cross-cuts a -1 2  m thick 
sedimentary sequence where the rock basement forms a discrete high 
and slope break. A t these slopes, the lower boundary (BSS) is located 
at the top o f the rock basement and locally w ith in  the lacustrine slope 
sediments. Near the basin plain periphery, the basal shear surface 
obliquely cross-cuts a -1 0  m thick lacustrine sequence, creating a 
wedge-like geometry o f BSS step-ups. On the basin plain, the BSS is 
located at m ultiple levels w ith  a complex pattern o f step-downs and 
step-ups (Fig. 5B-D). In the northern part o f the main lateral landslide, 
the BSS progressively used shallower (younger) stratigraphie hori­
zons as basal shear surface. In the southern part o f the main lateral

landslide, a BSS step-down towards an older and deeper horizon took 
place. The lateral continuation o f the BSS levels in the undisturbed 
basin-plain is formed by discrete acoustic reflectors w ith  high 
reflection amplitudes, which are located w ith in  the top part o f 
Seismic Unit 5 o f the seismic stratigraphy o f Chapron et al. (1996). 
This seismic un it is probably composed o f “ rythmites" from the 
Sierroz prodelta and Rhone fan (see also Van Rensbergen etal., 1999).

Estimates o f the pre-failure paleo-lake bottom (based on the 
thickness o f adjacent unfailed sequences) allowed calculation o f 
simple volume-balances (per un it w id th) on west-east seismic 
profiles for the main lateral landslide. Pre- and post-failure volumes 
are more or less in equilibrium  for the area in between the headscarp 
and distal frontal ramp, indicating that most o f the landslide mass 
remained in its stratigraphie confinement. Moreover, the length o f the 
tota lly evacuated slope (max. 300 m) (Fig. 5C) was relatively low 
compared to the main lateral landslide's run-out (max. 1800 m). In its 
frontal part, several reflections from the undisturbed basin-plain can 
be tracked into the disturbed mass o f the main lateral landslide (inset 
o f Fig. 6), which indicates that these sediment packages were thrusted 
(and folded) but did not ramp out o f the ir stratigraphie confinement. 
Recognition o f such features allowed the discrim ination between a
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compression zone, characterized by thrusts and topographic bulges, 
and a translation zone, characterized by few thrust faults and a rather 
smooth upper deposit boundary (Fig. 5C). Peculiar small-scale 
fractures, w ithou t vertical off-set, are present at the transition 
between the frontal compression zone o f the main lateral landslide 
and the undisturbed basin-plain sediments (inset o f Fig. 6). This 
“transition zone" can be regarded as representing the in itia l stage 
towards failure o f the foreland sediments (see Section 3).

The frontal compression structures and transition zone, the small 
degree o f landslide scar evacuation, and the volume-balances all 
indicate that the main lateral landslide is in effect a frontally confined 
landslide. It is covered by the unconfined parts o f several frontally 
emergent landslides that originated on the northern and eastern 
slopes o f the basin (Fig. 5B). The largest o f these landslides ( “axial 
emergent landslide" on Fig. 6) originated at the paleo-Rhône fan delta 
(stratigraphie interpretation: Van Rensbergen et al„ 1999), where it

excavated a -2 0  m thick sediment sequence and ran out over the 
main lateral landslide deposit and the basin floor.

5. Morphometry and statistics of 96 sublacustrine landslides

_ 5.1. Median and distribution o f landslide parameters

The main dimensional and morphometric parameters o f the 
landslides in our catalog (Table 1; Fig. 1; SI Table 5) were measured 
and their distributions were explored. The measured run-out distance 
(i.e., horizontal distance between headscarp and toe) does not 
represent the traveled distance o f individual sediment particles or 
blocks which -  in case o f confined landslides -  can be many orders o f 
magnitude smaller than the run-out distance (e.g., Frey-Martinez et 
al„ 2006). Several dimensional parameters are characterized by a very 
asymmetrical distribution (Fig. 7A/C/E) w ith  a few data points having 
very large values. These strongly influence the mean parameter value, 
which makes the median value more suited for characterizing the 
“typical" landslide (Table 1). Median length, w idth, area and run-out 
distance are larger for emergent types than for confined ones, which 
can be explained by the ir free propagation and spreading o f sediment 
mass over the lake bottom. Median volume is rather similar for 
emergent and confined types (306,500 m3 versus 285,000 m3) which 
suggests that the volume o f the sediment failure is not a crucial 
parameter in determining the frontal development o f sublacustrine 
landslides. Cumulative volume or run-out distributions on Log-Log 
plots (Fig. 7B/D) do not unambiguously f it w ith  a logarithmic or 
power-law  function, but rather fall in between such distribution 
modes. However, inverse power-law  functions on reduced fractions 
o f our dataset give a better f it (higher R2 on Fig. 7B/D), especially 
when discrim inating the lowest -20% o f the parameter values which 
are delim ited by a slope-break in the cumulative distributions.

Median depth o f the basal shear zone is slightly shallower for 
emergent landslides (1.8 m) than for confined ones (2.5 m). The 
distributions o f the BSS depth (Fig. 7F) show that a similar range o f 
slope sequence thicknesses can become unstable in both landslide 
types. Total height drop ( H) for emergent landslides has a much larger 
median value (53 m) than that for confined types (9 m) and their 
distributions (Fig. 7E) show that most confined types (13 out o f 17 
cases) have a value o f less than 10 m, while most emergent types (77 
out o f 79 cases) underwent a total height drop larger than 10 m. Still, 
for comparing the in itia l potential energy conditions at failure (see 
Section 6), the height drop H* (to the frontal ramp) should be used 
instead o f the total height drop H (to the landslide toe).

The slope angle o f frontal thrust planes in confined landslides was 
measured (Fig. 8A) by tracing the lateral discontinuity and vertical 
offset o f internal reflections and by the location o f topographic bulges. 
The thrust faults have a median angle o f about 12.6° and most o f their 
distribution falls between 8° and 18°, which is somewhat less than 
slope-angle values for thrust planes (10°-25°) in large-scale subma­
rine landslide complexes revealed on 3D seismic volumes (Frey- 
Martinez et al., 2006). Median slope angle values for the unfailed slope 
(upslope o f the headscarp) and for the steepest part o f mass-transport 
are generally larger for emergent landslides (2.4°; 6.1°) than for 
confined landslides (1.5°; 2.5°). Emergent landslides also exhibit a 
w ider range o f maximum mass-transport slope values (0°-21°) than 
confined landslides (0°-9 °) (Fig. 8B). It thus seems that the 
evacuation area for emergent landslides is generally steeper. Slope

Fig. 5. A) Seismic survey lines in  the northern ha lf o f Lake Le Bourget B) Bathymetric map (isobaths every 10 m; Chapron, 1999) w ith  landslide features o f the HDU complex and the 
stratigraphie positions o f its basal shear surface. Gray lines indicate the position o f the seismic lines in part D and Fig. 6. Arrows indicate the transport direction o f the main lateral 
landslide (black) and several emergent landslides (gray). Compared to the LÍ level, the BSS at level 2, 3 and 4 is located respectively -1 .5 m, -2 .5 m and -8  m higher in the 
stratigraphy. The contemporaneous lake floor was located -12  m higher than L Í. C) Areas o f total evacuation, translation or compression w ith in  the main lateral landslide. D) W-E 
seismic profile (C2 sparker) showing the main lateral landslide. Compression features (thrusts, topographic bulges) are mostly located above BSS step-ups. Locally, the main lateral 
landslide deposit (yellow) is buried by emergent landslide deposits (red).
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angles at the landslide toe (Fig. 8C) are rather similar for both types 
(median o f 0.3° for emergent landslides versus 0.4° for confined ones) 
and generally fall in the range o f —0.2° (i.e., deposition on slightly 
uphill surface) and 1.6° (deposition on downhill surface).

Significant differences between the two landslide types were also 
found when considering some calculated ratios in between param­
eters. The median volum e/run-out ratio is lower for emergent 
landslides (378) than for confined ones (851). This results from the 
generally higher run-out values o f emergent landslides -  per volume 
un it -  due to the intrinsic ab ility o f (freely flowing) emergent 
landslides to develop a larger translation o f individual sedimentary 
elements. The median value for the total height drop/depth basal 
shear surface is much larger for emergent landslides (30.2) than for 
confined ones (4.0), which is due to the generally larger total height 
drop for emergent landslides. This ratio possibly characterizes the 
potential gravitational energy o f a landslide compared to the potential 
energy needed to emerge at the frontal ramp and m ight be o f key 
importance in the frontal development o f landslides (see Section 6). 
The total height drop/run-out ratio (Fig. 8D) is typically used to 
characterize the m obility o f a mass movement (Hampton et al., 1996; 
Locat and Lee, 2002). In general, the most mobile landslides are 
characterized by low  values o f this ratio. However, in our study, the 
median value for this ratio is higher for the emergent types (0.048) 
than for the confined ones (0.017) due to the generally much larger

total height drop involved w ith  emergent landslides. These median 
values would suggest that emergent types would have a lower 
m ob ility  than confined landslides. Contrarily, landslides w ith  a 
confined frontal emplacement intrinsically have a very low  m obility 
and, therefore, the ir m obility  must be assessed by measuring the 
height drop and run-out undergone by the center o f gravity (Legros, 
2002) instead o f the total height drop/run-out ratio o f the landslide 
complex.

These median values and distributions in our sublacustrine 
landslide catalog provide a first insight in to the differences between 
confined and emergent landslides.

5.2. Relationships between landslide parameters

Correlation coefficients were calculated in between all measured 
morphometric parameters and ratios in order to reveal some possible 
relationships between them. In this study, the commonly used 
Pearson correlation coefficient was not used, as this requires that 
the parameters be normally distributed (Davis, 1986). Instead, we 
opted to calculate the non-parametric Spearman's rank correlation 
coefficient (Spearman's rho) that does not require any specific 
frequency distribution o f the variables. The Spearman's rank corre­
lation coefficient indicates i f  parameters vary together, but these 
should not necessarily relate in a linear way. Some strong (>0.5) to
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Table 1
Median values for morphometric parameters and ratios o f frontally confined and 
emergent sublacustrine landslides. “N” is the number o f landslides included in the 
analysis.

Confined

Median N

Emergent

Median N

W ater depth o f headscarp (m) 108 17 89 78
W ater depth o f landslide toe (m) 118 17 128 79
Total height drop H (m ) 9 17 53 78
W ater depth o f frontal ramp (m) 118 17 116.5 61
Length o f landslide deposit (m) 280 17 410 79
W idth o f landslide deposit (m) 250 13 490 58
Thickness o f unconfined part (m ) X X 1.2 79
Length/width 1.17 13 1.27 58
Total height drop/run-out 0.017 17 0.048 68
Length/thickness unconfined X X 370 79
Area (m2) 70 000 13 223 000 58
Volume (m3) 285 000 12 306 500 54
Depth basal shear surface (m) 2.5 17 1.8 36
Slope angle o f frontal thrusts (°) 12.6 9 X X
Slope angle at toe (°) 0.40 15 0.30 77
Slope angle upslope headscarp (°) 1.5 16 2.4 36
Max. slope angle o f mass transport (°) 2.5 16 6.1 75
Slope angle o f snout (°) X X 1.8 71
Run-out (m ) 390 17 800 69
Headscarp height (m) 2.5 16 4.15 32
Volume/run-out (m2) 851 12 378 51
Total height drop/depth BSS 4.00 17 30.16 36

X: not applicable.

very strong correlations (>0.9) were found (SI Tables 3 and 4), o f 
which the underlying reason can be explained straightforwardly. For 
example, the large correlations between volume on the one hand, and 
length, w idth, area and unconfined thickness on the other hand are 
evident because all these parameters are inherent parts o f the general 
formula for the volume calculation o f a body. Correlations that could 
not be explained in this way were examined using scatter plots. The R2 
value was used to characterize the goodness o f f it o f a regression line 
to the empirical data values. Despite the rather small quantity of 
cataloged confined landslides (n = 1 7 ) ,  we still consider this a 
valuable dataset for making comparisons w ith  the emergent land­
slides as i) it  covers more or less the same dimensional range 
(Volume: ~104-1 0 8 m3), and ii) adding datapoints would not produce 
tota lly different relationship values, correlation coefficients or R2 
values. Obviously, more datapoints would strengthen the reliability 
(statistical power) o f the obtained relationships, especially for 
confined landslides w ith  volumes o f 106-1 0 7 m3 as these are not 
present in our catalog.

A relationship was found between deposit area and volume for 
both emergent and confined landslides (Fig. 9A). Both datasets show a 
very good f it  (R2 emergent: 0.939; confined: 0.942) to power 
functions VL =  0.0744Ai'241 (emergent) and Vl =  0.0727Al 33° (con­
fined). Volume also relates to run-out distance ( Fig. 9B) w ith  a good fit 
(R2 emergent: 0.734; confined: 0.864) to power functions for both 
emergent and confined landslides. Rather moderate to poor fits 
(0.2<R2<0.6) to power functions exist between run-out distance on 
the one hand and total height drop (Fig. 9C), unconfined thickness 
(Fig. 9D) and headscarp height (Fig. 9E) on the other hand. This 
suggests that landslide run-out essentially depends on the failing 
slope volume and not as much on the total height drop. This also 
explains the very low correlation (low  R2 values) between run-out 
ratio (H/Run-out) and volume (Fig. 10A), as the total height drop 
parameter simply introduces scatter to the data (see Legros, 2002 for 
discussion). Confined landslides principally plot in the lower part of 
the data cloud were a high m obility is assumed, which contradicts 
the ir confined emplacement (Section 5.1).

Plots which include the height drop (H*; to the frontal ramp) 
parameter (Figs. 9C and 10B) expose the most striking differences 
between frontally emergent and frontally confined landslides. The

plot o f height drop H* compared to the depth o f the BSS (Fig. 10B) 
reveals distinctive chart areas were frontally emergent or confined 
landslides are present. For landslides w ith  a BSS shallower than 5 m, 
frontal emergence took place for height drops larger than approxi­
mately 15 m. For a BSS depth o f 10 m, frontally emergent landslides 
had a height drop o f more than 35 m.

Most headscarps are located at a downslope-steepening slope 
break in the stratigraphie level acting as BSS. These slope breaks range 
between 0° and 7° (Fig. 9F), w ith  most values in between 1° and 2° 
(median: 1.7°). This means that rather subtle changes in slope 
gradient can actually de lim it the evacuation zone from the zone in 
which the sedimentary sequence did not fail and remained in 
position. Furthermore, the unfailed slope values indicate that -  in 
our catalog -  slopes w ith  a gradient up to 3°-4.5° can remain stable 
even though the ir downslope basal support was suddenly removed by 
slope failure.

Although gravity is the driving force for landslide development 
and landslides are forced to travel downslope on the existing 
topography, absolute slope values correlate poorly w ith  most other 
parameters (SI Tables 3 and 4) and therefore do not noticeably 
influence the occurrence and dimensions o f sublacustrine landslides. 
A similar independency from slope angle was also found in submarine 
landslide catalogs (McAdoo et al., 2000; Hühnerbach et al., 2004) and 
suggests tha t other factors m ainly govern the in itia tio n  and 
propagation o f subaqueous landslides.

6. Factors controlling the frontal emplacement style of 
sublacustrine landslides

An im portant challenge is to reveal which mechanisms control 
why certain landslides propagate in a frontally confined manner while 
others are able to ramp out on to the contemporaneous lake/sea floor. 
Based on local case studies, several explanations have been put 
forward during the past decades. Trincardi and Argnani (1990) 
suggested that the frontal confinement o f the Gela landslide was 
controlled by the presence o f a morphostructural obstacle, which 
prevented further translation. Huvenne et al. (2002) identified a large, 
buried submarine confined landslide on a 3D seismic dataset, and 
hypothesized that its emplacement style was caused by a combination 
o f abrupt pore-pressure dissipation from the BSS and a rather low 
regional slope angle. Frey-Martinez etal. (2006) proposed that thicker 
landslides simply require more energy to emerge at the frontal ramp, 
and thus tend to remain locked in the ir frontal confinement.

In the present study, descriptive statistics on morphometric 
parameters o f sublacustrine landslides confirmed the discriminative 
patterns between frontally confined and emergent landslides that 
were found in the case study on Lake Challa (Case study 1). Height 
drop H* (in between headscarp and frontal ramp), depth o f basal 
shear surface and slope angle o f mass transport all seem to exert some 
control on the frontal emplacement style. The clearest discrim ination 
between the two end-members was provided by the scatter plot o f 
depth BSS against H* (Fig. 10B). The observed distribution can be 
explained by the following mechanical model, which is partially based 
on the hypotheses made by Frey-Martinez et al. (2006).

Failing slope masses can become emergent i f  the ir gravitational 
potential energy is high enough to overcome the potential energy 
requirements to ramp out o f the ir stratigraphie position. Thicker 
landslides are more likely to remain locked in the confined stage due 
to their lower center o f gravity (CoG) compared to the lake bottom 
and due to higher energy demands for fu ll fronta l ramping. 
Furthermore, H* essentially determines the gravitational potential 
energy o f the in itia l landslide mass and thus we can consider H* as the 
main driving parameter for the development o f frontal emergence 
and depth BSS as the main restricting parameter. Thus, for any given 
H*, the proportion between the parameters H* and depth BSS w ill 
mainly determine whether a landslide becomes emergent or not
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(Fig. 10B). In effect, both parameters principally determine the height 
o f the CoG o f the failed mass above (or below) the top o f the frontal 
ramp (Fig. 11B). The larger this height difference, the greater the 
landslide's ab ility to ramp out its frontal confinement (Fig. 11A). 
According to this model, frontal emergence is not possible i f  the CoG is 
below the frontal ramp top. Once a landslide is able to ramp out, most 
o f the slide scar gets evacuated as the unconfined propagation allows 
the upper parts o f the failing slope to accelerate and gain kinetic 
energy, creating an uninterrupted process o f frontal emergence.

During confined landsliding on a downslope-decreasing slope 
gradient, mass potential energy gets lost because o f the progressive 
lowering o f the CoG o f the landslide mass compared to the top o f the 
frontal ramp. Consequently, less potential energy is available to ramp 
out, and -  in spatially uniform  deposits -  the landslide w ill exclusively 
propagate further in a confined manner, progressively executing less 
lateral stress on the foreland. As shear strength generally increases 
w ith  burial depth (e.g., Bartetzko and Kopf, 2007), we speculate that 
this stress attenuation can lead to distal step-ups o f the BSS. This
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might explain the discrete BSS step-ups observed in the northern part 
o f the main lateral landslide in Lake Le Bourget (Case study 2; Fig. 5B) 
and the shallow “transition zone" at the front o f confined slides in 
Lake Challa (Case study 1; Fig. 3). Consequently, the orientation o f 
such BSS step-ups should be mostly located perpendicular to the main 
landslide direction (Fig. 5B). Development o f BSS ramp-and-flat 
geometries in submarine landslide complexes has been attributed to 
variability in the geotechnical properties o f the stratigraphie sequence 
(Frey-Martinez et al„ 2005; Solheim et al„ 2005; Bull et al„ 2009). 
Geotechnical studies showed that BSS's can either develop at the 
boundary between major sedimentary units w ith  different shear 
strength and/or pore pressure regimes (e.g., Storegga Slide: Leynaud 
et al., 2007; landslides in Lake Lucerne: Strasser et al., 2007), or at 
intercalated layers o f relatively coarse sediments which are prone to 
earthquake-induced liquefaction (e.g., coarse silt to sand: Dan et al., 
2009; sandy tephra: Harders et al., 2010). Consequently, the thickness 
o f the failed section is mainly controlled by these (stratigraphie) 
preconditioning factors, more than by the magnitude o f the ultimate 
triggering mechanism (e.g., strong earthquake). In the main lateral 
landslide in Lake Le Bourget, this lithological influence is reflected by 
the coincidence o f “ flat" BSS parts w ith  discrete reflectors w ith  high 
reflection amplitude. Strachan (2002) postulated that local down- 
cutting o f the BSS may indicate a change from easy slip along the BSS 
towards reduced slip. In the distal southern part o f the main lateral 
landslide in Lake Le Bourget, eastward driving stress would have been 
relatively low due to the large distance from the failed slope. Possibly,

the small-scale step-downs there m ight result from the additional 
buttressing effect executed by the slightly west-ward dipping basin- 
floor sediments as the deformation front was approaching the eastern 
lake basin flank (Fig. 5B).

The case study on Lake Challa (Case study 1) illustrates that 
downslope lateral stresses in the toe region o f confined landslides can 
be accommodated in a complementary way by either partial frontal 
ramping and/or compression (slope-parallel compaction) o f the 
foreland (Fig. 4). For the spatially uniform  deposits o f Lake Challa, it 
can be assumed that -  w ith in  the same stratigraphie section -  the 
intrinsic strength o f the nearly-flat foreland is sim ilar for different 
landslides. Therefore, the style o f confined emplacement must be 
prim arily controlled by the downslope driving force. For larger values 
o f height drop H*. propagation o f the failed mass becomes more 
emphasized on frontal ramping than on foreland compression 
(Fig. 11 A). As height drop increases above a critical value, the failed 
mass effectively ramps out creating an emergent-type landslide. As 
the foreland is no longer stressed then, we do not expect to have a 
prominent “ transition zone" associated to emergent landslides. Thus, 
a continuous spectrum o f landslide types -  characterized by their 
relative degree o f either frontal ramping or foreland compression -  
can be ascribed to the two end-member model o f Frey-Martinez et al. 
(2006).

Our landslide catalog shows that the occurrence o f confined 
landslides seems to be restricted to slopes angles lower than 8°-9° 
(Fig. 8B). Steeper slopes (w ith  considerable length) exclusively
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Fig. 9. Scatter plots o f morphometric parameters for sublacustrine landslides. Confined slides are indicated by triangles.

generated frontally emergent landslides, possibly due to a reduced 
static and kinetic friction along the BSS and hence more efficient 
potential energy transfer. Gradient changes o f the slope profile also 
seem to be o f critical importance as headscarps form at downslope- 
steepening slope breaks (Fig. 9F). Frontal ramps are generally located 
in the basin-plain, close to the lower slope break (decreasing slope 
gradient), which induces a buttressing effect (Mandl and Crans,

1981). Thus, changes in slope gradient strongly control the length of 
the slope section that was involved in slope failure and its height drop 
H*.

In summary, two principal parameters determine the frontal 
emplacement style o f landslides: i) the shape o f the slope profile 
which controls the location o f headscarp and frontal ramp (and thus 
H*), and ii) the geotechnical properties o f the sedimentary sequence
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which control the depth o f the BSS. This underlines the potential to 
effectively predict the frontal emplacement style o f future subaqueous 
landslides, which is o f high importance for natural-hazard assess­
ments, as the consequences o f frontally confined and emergent 
landslides likely differ significantly. For example, the unconfined part 
o f frontally emergent landslides is able to develop into high-speed 
turbulent sediment flows that can travel large distances and m ight 
cause large infrastructural impacts (e.g., Grand banks disaster; Piper 
et al., 1988), while confined landslides do not transform into other 
kinds o f gravitational mass movements. Also, confined landslides have 
a much smaller displacement o f mass (and thus water) and probably a 
much lower in itia l acceleration and maximum velocity, and therefore 
the ir tsunamogenic potential (Harbitz et al., 2006) is expected to be

significantly lower than for emergent landslides. A better knowledge 
about the kinematic factors o f confined landslides is however needed 
to effectively quantify the ir (reduced) tsunami hazard.

7. Dimensions, disintegration and mobility: comparison with 
submarine landslides

Comparison o f our sublacustrine landslide dataset w ith  statistical 
studies on submarine landslides is crucial for determining the value 
and significance o f the inferred relationships. Our lacustrine catalog 
principally emphasizes on the landslide deposits, while McAdoo et al. 
(2000) and Hühnerbach et al. (2004) cataloged the dimensions o f the 
entire submarine mass-transport complexes (i.e., the sum o f the
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landslide evacuation area and depositional area). Moreover, Chaytor 
et al. (2009) studied the size distribution o f the submarine excavation 
areas w ithou t taking into account the depositional area. Therefore, it 
is im portant to keep these methodological differences in m ind when 
comparing the different landslide catalogs.

Diverse size distribution models have been proposed for explain­
ing the occurrence o f submarine landslide features at ocean margins:
i) inverse power-law  distributions (Issler et al., 2005; ten Brink et al., 
2006; M icallefetal., 2007), ii) log-normal distributions (Chaytor etal., 
2009; ten Brink et al., 2009), and iii) logarithmic distributions (Issler 
et al., 2005). Distribution o f volume and run-out o f sublacustrine 
landslides showed best fits to inverse power laws (Fig. 7B and D) on 
truncated portions o f the data, a phenomenon that is usually 
explained by undersampling o f specific magnitude ranges (ten Brink 
et al., 2006). In this view, the relative absence o f small landslides 
m ight result from under-recording as these could be located in 
between the 2D seismic survey lines (depending on the survey grid 
spacing; typically 50-500 m) or fall below vertical seismic resolution 
(depending on the seismic system). Conversely, the relative absence 
o f small landslides m ight also be a real physical phenomenon 
characteristic for the subaqueous slope failure process. In effect, a 
certain critical mass (static load) above a potential failure plane is 
required to overcome the resisting forces for failure (e.g., Strasser et 
al., 2007) and therefore the development o f very small landslides 
(shallow failures) may be unlikely.

The regression line exponent for sublacustrine landslide volume 
(0.458; power f it 2 on Fig. 7B) is quite sim ilar to the exponent o f the 
power-law  function applied on debris lobe deposits w ith in  the 
Storegga Slide complex (0.44), as documented by ten Brink et al. 
(2006) based on data in Haflidason et al. (2005). This exponent value 
(<1) signifies that the few large landslides are relatively more 
im portant for transporting sediment to the deep basin than the 
large amount o f small landslides. It is considerably lower than for 
most other landslide catalogs, where exponents up to 1.3 were 
documented (e.g., Chaytor et al., 2009). For submarine carbonate rock 
failures and subaerial rockfalls, the inferred low  exponent was 
attributed to the ir high cohesion and/or friction coefficient (Dussauge 
et al., 2003; ten Brink et al., 2006). However, for subaqueous 
landslides in unconsolidated sediments, compositional variability 
cannot be invoked for explaining the exponent values at different 
segments along the US Atlantic Slope (Chaytor et al., 2009), or the low 
values o f the Storegga debris lobes and sublacustrine landslides. Ten 
Brink et al. (2009) proposed that maximum landslide size along the 
US Atlantic margin m ight be related to earthquake magnitude, the 
distribution o f which can be approximated by the Gutenberg-Richter 
frequency-magnitude relationship. This would mean that landslide 
size distributions along the US Atlantic margin prim arily reflect the 
slope failure triggering mechanism. In Chilean lakes, however, it  is 
inferred that some megathrust earthquakes produced extensive 
landslides, while other sim ilar shaking events did not (Moernaut et 
al., 2007; Moernaut et al., 2009). There, slope sediments on failed 
slope segments probably did not accumulate fast enough to reach the 
critical thickness for failure during the subsequent megathrust 
earthquake. For Lake Challa, it  has been suggested that landslide 
events were mainly generated when lake-level drops lowered the 
overall slope stab ility  by creating excess pore water pressure 
(Moernaut et al., 2010). Consequently, for most o f the cataloged 
sublacustrine landslides, failure size does not relate directly to 
earthquake strength, but is strongly controlled by conditions o f pore 
water pressure, the availability o f “weak layers" and the static load 
executed on them. Possibly, this static load control promotes the 
development o f large failures over small ones and is reflected in the 
low exponent values o f landslide size distributions in lakes.

Insights in scaling behavior o f subaqueous landslides can be 
im portant in terms o f submarine hazard management, as incomplete 
landslide catalogs can be extrapolated to estimate the frequency o f

large-scale hazardous landslide events. Power-law distributions may 
im ply spatial scale invariance, which could be explained by self­
organized critica lity in a geomorphic system (e.g., the Storegga Slide: 
M icallef et al., 2008). However, power-law  scaling o f landslide sets 
may also reflect the morphological characteristics o f the affected area 
(ten Brink et al., 2009). Accordingly, power-law  distributions in our 
lacustrine landslide dataset are best explained by the typical confined 
morphology o f lake basins and its influence on landslide size. It thus 
seems that size-distributions in lake basins are not suited for 
investigating the processes and in itia tion mechanisms o f subaqueous 
slope failure, and for making predictions about failure size probabil­
ities. Such information can be gained by investigating extensive areas 
o f uniform ly-dipping slopes that can be found in the submarine realm 
(e.g., ten Brink et al., 2009).

The area/volume relationships for the sublacustrine landslide 
deposits in the present study (emergent exp.: 1.241; confined exp.: 
1.330) show that the more extensive deposits are generally thicker. 
These values are considerably higher than the exponent (exp.: 1.032) 
derived from debris lobes w ith in  the Storegga Slide complex (ten 
Brink et al., 2006). This contrast m ight be explained by the typical 
morphological confinement -  and thus reduced landslide depositional 
area -  o f the lacustrine basins, promoting the accumulation of 
relatively thicker landslide deposits. It is not useful to compare w ith  
the reported exponent values derived from submarine carbonate rock 
failures o f Puerto Rico (exp.: 1.292) (ten Brink et al., 2006) and U.S. 
Atlantic margin failure zones (exp.: 1.099) (Chaytor et al., 2009) as 
these studies documented the landslide scar area instead o f the 
landslide deposits, and therefore providing information about failure 
parameters (depth o f slide plane, etc.) rather than o f depositional 
processes.

Several morphometric parameters (and ratios in between them) 
suggest that frontally emergent landslides in lakes (and fjords) tend 
to be characterized -  in general -  by a higher m obility  and larger 
disintegration than ocean margin landslides:

i) Lower ratios o f headscarp height to run-out distance. McAdoo 
et al. (2000) show values up to -0.1 for submarine landslides, 
while those o f emergent sublacustrine landslides have are 
maximum 0.0143 (Fig. 9E). Most values for “disintegrative" 
landslides in the catalog o f McAdoo et al. (2000) and the 
emergent sublacustrine landslides fall in the same range (0.01-
0.001).

ii) Higher run-out distance per volume (per un it w id th) (Fig. 12). 
Emergent sublacustrine landslides plot above the extrapolated 
regression lines found for debris lobes in the Storegga Slide or 
the data cloud o f submarine landslides in the COSTA-database 
(Issler et al., 2005).

iii) Lower run-out ratio per volume (Fig. 13). Emergent sublacus­
trine landslides plot below the upper bound for submarine 
landslides from Hampton et al. (1996) and several o f them plot 
below the lower bound for subaerial quick clay landslides 
(Edgers and Karlsrud, 1982). The power f it curve plots very 
close to the lower bound for submarine landslides proposed by 
Edgers and Karlsrud (1982). Although the significance o f the 
run-out ratio regarding landslide m obility  is questionable 
(Legros, 2002), this plot m ight still aid in comparing different 
landslide datasets.

iv) Larger reduction o f deposit thickness compared to the failed 
slope section (Fig. 14). Landslides on the Eastern Atlantic 
Margin (Hühnerbach et al., 2004) have small values (or even 
absence) o f deposit thickness reduction and p lot well above the 
power function o f emergent sublacustrine landslides and the 
data cloud o f fjord landslides.

Variation in sediment composition (i.e., sand-to-clay ratio) o f the 
failed mass has been put forward in explaining flow  behavior and 
m obility o f submarine debris flows (Elverhoi et al., 2010). Clay-rich
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Fig. 12. Run-out distance versus volume per un it w id th  for (emergent) sublacustrine 
landslides (black dots), and submarine landslides documented by Issler et al. (2005): 
COSTA project landslides (white squares) and Storegga debris flows (fu ll line: power 
fit; dashed line: upper and lower bounds). Note that (emergent) sublacustrine 
landslides p lo t above the values for the Storegga debris flows. As the Storegga and 
COSTA databases essentially consist o f emergent landslides, confined sublacustrine 
landslides are not plotted.

cohesive material may achieve long run-out distances on even very 
gentle slopes due to hydroplaning o f the head o f the flow, while sand- 
rich debris flows may evolve into a bipartite flow  due to particle 
segregation. However, a w ide range o f compositions have been found 
in the sediment sequences involved in failure at ocean margins, fjords 
and lakes (Weaver et al„ 2000; Cohen, 2003; Canals et al„ 2004), and 
therefore in itia l sediment composition does not explain the general 
differences in m obility and disintegration found in between these 
three settings.
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Fig. 13. Classical p lo t o f run-out ratio versus volume for landslide m obility studies. Black 
circles: Frontally emergent sublacustrine landslides. Red and green circles: Western 
and Eastern Atlantic submarine landslides (Flühnerbach et al., 2004). Blue circles and 
blue squares correspond to respectively non-volcanic and volcanic submarine 
landslides derived from Flampton et al. (1996). 1) Average value for subaerial 
landslides proposed by Scheidegger (1973). 2) Upper bound for submarine landslides 
proposed by Flampton et al. (1996). 3 and 4) Lower bound values for submarine 
landslides and subaerial quick clay slides proposed by Edgers and Karlsrud (1982). Note 
that the power f it  for sublacustrine landslides (5: fu ll line) plots close to the lower 
boundary for submarine landslides (3) proposed by Edgers and Karlsrud (1982).

Fig. 14. Comparison o f deposit thickness reduction in between (emergent) sublacus­
trine landslides (black dots), fjord landslides (blue triangles) and ocean margin 
landslides (green squares) (Flühnerbach et a l, 2004). Ocean margin landslides plot 
above the power f i t  o f sublacustrine and fjord landslides.

Landslides in fjords and lake basins take place on rather similar 
slope morphology. Both are characterized by relatively steep lateral or 
deltaic slopes and a abrupt slope break towards a nearly flat basin 
plain, indicated by the ir median slope angles for deposition and 
excavation areas (fjords: 0.625° and 5.5°; lakes: 0.4° and 6.1°). 
Submarine landslide catalogs showed a slightly negative correlation 
in between slope angle in the evacuation area and the run-out 
distance (McAdoo et al„ 2000; Hühnerbach et al„ 2004). Also, the 
abrupt slope reduction at the edge o f the basin-plain should provoke a 
deceleration o f dense flows originating upslope, causing enhanced 
deposition near the slope break (M ulder and Alexander, 2001b) and 
thus less material is available for achieving a long run-out distance. 
Therefore, the typical slope profile o f lakes and fjords does not 
contribute to (or even hampers) the ir high landslide mobility.

In general, sedimentation rates in fjords and lakes (typical­
ly >1 m m /yr) are higher than at most ocean margins (Cohen, 2003) 
because o f the direct sediment supply by inflowing river systems. 
Lacustrine and fjord sequences may therefore have a high water 
content and low consolidation values. The m ajority o f cataloged 
sublacustrine landslides took place in lakes that are dominated by the 
deposition o f diatom frustules (Lake Challa: Verschuren et al„ 2009; 
Chilean lakes: Bertrand et al„ 2008; Moernaut et al„ 2009), which are 
renowned for their low degree o f compaction (and thus high water 
content) during burial (Hamilton, 1976). As excavation depths in fjord 
and lacustrine landslides are relatively shallow (Table 1), the 
sediments involved in failure have a highly-unconsolidated nature. 
Contrarily, voluminous ocean margin landslides have a relatively deep 
excavation (McAdoo et al„ 2000; Canals et al„ 2004; Hühnerbach et 
al„ 2004) and thus m ight consist o f more consolidated sediments w ith  
larger shear strength. Thick ocean margin slope failures therefore 
require more energy to remold and transform (disintegrate) the 
in itia l sedimentary sequences and hence less potential energy can be 
transformed in kinetic energy, resulting in a relatively lower run-out 
and mobility.

It has to be noted that the discriminative patterns inferred in 
between landslides at ocean margins, fjords and lakes must be viewed 
from a general point. For example in some ocean margin landslide 
cases, very high landslide mobilities were found and were attributed 
to the highly-unconsolidated nature o f the local source sediments, e.g. 
repeated failures in rapidly deposited glacial t i l l  at the Svalbard/ 
Barents Sea margin (Dimakis et al„ 2000; De Blasio et al„ 2006).
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8. Conclusions

By combining seismostratigraphic case studies w ith  statistical 
analyses o f morphometric parameters o f sublacustrine landslides, this 
study has revealed valuable in form ation regarding the frontal 
development and m obility  o f sublacustrine and submarine landslides:

1. Both frontally emergent and frontally confined landslides can take 
place on sublacustrine slopes, showing a continuous spectrum o f 
frontal emplacement styles. Empirical data showed that the 
subsurface depth o f the basal shear surface and the height drop 
(H*) in between headscarp and frontal ramp are the main 
morphometric parameters determining the frontal emplacement 
style o f landslides. These parameters essentially determine the 
height o f the center o f gravity o f the failing mass w ith  respect to the 
top o f the fronta l ramp, and correspond to the potentia l 
gravitational energy o f the landslide versus the potential energy 
needed to ramp out o f its stratigraphie position. The absolute 
values for these parameters are predominantly controlled by the 
slope profile (length, gradient, slope breaks) and geotechnical 
properties o f the sedimentary sequence. This implies a predictive 
behavior for frontal emplacement style that is o f key importance in 
the assessment o f submarine landslide hazards, such as the 
development o f tsunamis or destructive high-velocity sediment 
flows.

2. It is indispensable to separate frontally confined and emergent 
landslides in statistical morphometric studies, as the ir respective 
mechanisms o f translation and emplacement are significantly 
different. Although sublacustrine landslides mostly have smaller 
dimensions than the ir submarine counterparts, comparable re­
lationships between morphometric parameters were revealed, 
albeit w ith  some significant exceptions. Obvious correlations 
emerged between volume-related parameters, while slope gradi­
ents show poor correlations w ith  most other parameters. Several 
lines o f evidence reveal that frontally emergent landslides in lakes 
(and fjords) generally exhib it a larger m obility and disintegration 
than expected by extrapolating the empirical relationships derived 
from  ocean margin landslides. This could result from  the ir 
shallower excavation, so that relatively less-consolidated sedi­
ments are involved in the mass-movement. Size distributions and 
the area/volume ratio o f sublacustrine landslide deposits strongly 
deflect from the expected values, which is likely due to a strong 
morphological control (i.e., the confinement o f lacustrine basins) 
on the size o f slope failures and the resulting landslide deposits.

The lacustrine environment can be regarded as an easily accessible 
natural laboratory in which landslide processes are subjected to less 
lithological boundary conditions, but to more morphological control 
than landslides on ocean margins. Therefore, in some cases, 
systematic morphometric analysis can help to better understand 
subaqueous landslide processes in general, and the frontal develop­
ment o f landslides in particular.

Supplementary materials related to this article can be found online 
at doi : 10.1016/j.margeo.2011.05.001.
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