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The origin o f regu lar spatia l p a tte rn s  in ecological system s has 
long fascina ted  researchers. Turing 's activ a to r-in h ib ito r principle 
is considered  th e  central paradigm  to  explain such p a tte rn s . 
According to  th is  principle, local activation  com bined w ith  long- 
ran g e  inhibition o f g ro w th  and  survival is an  essen tia l p rerequ isite  
fo r p a tte rn  fo rm ation . Here, w e  sh o w  th a t  th e  physical principle o f 
ph ase  sep a ra tio n , solely based  on  d e n sity -d ep en d en t m ovem en t 
by organism s, rep re sen ts  an  a lte rn a tiv e  class o f self-organized  
p a tte rn  fo rm atio n  in ecology. Using experim en ts  w ith  se lf-o rga­
nizing m ussel beds, w e  derive an  em pirical re la tion  b e tw ee n  th e  
sp eed  o f anim al m o v em en t an d  local anim al density . By incorpo­
rating  th is  re la tion  in a  partial d ifferen tia l e q u a tio n , w e  d em o n ­
s tra te  th a t  th is m odel co rresponds m athem atically  to  th e  well- 
know n  Cahn-Hilliard e q u a tio n  fo r ph ase  sep a ra tio n  in physics. 
Finally, w e  sh o w  th a t  th e  pred icted  p a tte rn s  m atch th o se  found  
b o th  in field obse rv a tio n s and  in ou r experim ents. Our resu lts re­
veal a  principle fo r ecological se lf-o rgan ization , w h e re  ph ase  sep ­
ara tio n  ra th e r  th a n  activation  and  inhibition processes drives 
spatia l p a tte rn  fo rm ation .

mussels | mathematical model | spatial self-organization | animal 
aggregation

The activator-inhibitor principle, originally conceived by Turing 
in 1952 (1), provides a potential theoretical mechanism for 

the occurrence of regular patterns in biology (2-6) and chemistry 
(7-9), although experimental evidence in particular for biological 
systems has remained scarce (3, 4, 10). In the past decades, this 
principle has been applied to a wide range of ecological systems, 
including arid bush lands (11-15), mussel beds (16,17), and boreal 
peat lands (18, 19). The principle, in which a local positive acti­
vating feedback interacts with large-scale inhibitory feedback to 
generate spatial differentiation in growth, birth, mortality, respi­
ration, or decay, explains the spontaneous emergence of regular 
spatial patterns in ecosystems even under near-homogeneous 
starting conditions. Physical theory offers an alternative mecha­
nism for pattern formation, proposed by Cahn and Hilliard in 
1958 (20). They identified that density-dependent rates of dis­
persal can lead to separation of a mixed fluid into two phases 
that are separated in distinct spatial regions, subsequently lead­
ing to pattern formation. The principle of density-dependent 
dispersal, switching between dispersion and aggregation as local 
density increases, has become a central mathematical explana­
tion for phase separation in many fields (21) such as multiphase 
fluid flow (22), mineral exsolution and growth (23), and bi­
ological applications (24-28). Although aggregation due to in­
dividual motion is a commonly observed phenomenon within 
ecology, application of the principles of phase separation to ex­
plain pattern formation in ecological systems is absent both in 
terms of theory and experiments (25, 26).

Here, we apply the concept of phase separation to the for­
mation of spatial patterns in the distribution of aggregating 
mussels. On intertidal flats, establishing mussel beds exhibit
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spatial self-organization by forming a pattern of regularly spaced 
clumps. By so doing, they balance optimal protection against pre­
dation with optimal access to food, as demonstrated in a field ex­
periment (29). This self-organization process has been attributed to 
the dependence of the speed of movement on local mussel density 
(29 ). Mussels move at high speed when they occur in low density and 
decrease their speed of movement once they are included in small 
clusters. However, when occurring in large and dense clusters, they 
tend to move faster again, due to food shortage. Mussel pattern 
formation is a fast process, giving rise to stable patterning within the 
course of a few hours, and clearly is independent from birth or death 
processes (Fig. 1 A  andB). Although mussel pattern formation at 
centimeter scale was successfully reproduced by an empirical in- 
dividual-based model (29), to date no satisfactory continuous model 
has been reported that can identify the underlying principle in 
a general theoretical context.

In this paper, we present the derivation and analysis of a partial 
differential equation model based on an empirical description of 
density-dependent movement in mussels, and demonstrate that it 
is mathematically equivalent to the original model of phase sep­
aration by Cahn and Hilliard (20). We then compare the pre­
dictions of this model with observations from real mussel beds and 
experiments with mussel pattern formation in the laboratory.

Results
Model Description. Mussel speed of movement was observed to 
initially decrease with increasing mussel density, but to increase 
when the density exceeded that typically observed in nature (Fig. 
1C). The movement speed data were fitted to the following 
equation:

V(M) = aM2 - b M  + c, [1]

with a = 2.30, ft = 2.19, and c = 0.62 (Fig. 1C, blue line). A linear 
model proved not significant (P = 0.449). The quadratic model 
was overall significant (P < 0.001), where the coefficient for the 
second-order term was highly significant (t = 5.717, P < 0.0001), 
and the Akaike information criterion test showed that the qua­
dratic model was highly preferable over the linear one (see Table 
SI for details). Note that we used a quadratic equation not be­
cause it provides the most optimal fit, but because it is the most 
simple polynomial function.
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Fig. 1. Pattern form ation in mussels and statistical properties of the  density-dependent movement of mussels under experimental laboratory conditions. 
(A and B) Mussels th a t w ere laid out evenly under controlled conditions on a hom ogeneous substrate developed spatial patterns similar to  "labyrinth-like" 
after 24 h (images represent a surface of 60 cm x 80 cm). (C) Relation betw een movement speed and density within a series of mussels clusters (mussel density 
is rescaled, w here 128 equals to  1). The blue line describes the  rescaled second-order polynomial fit with Eq. 1. The red line depicts th e  effective diffusion g(m) 
of mussels as a function of th e  local densities according to  the  diffusion-drift theory. The open circles show the  original experim ent data, and th e  solid squares 
represent the  average speed of each group. (D) The numerical simulation of Eq. 4 implemented with param eters fi = 1.89, Do = 1.0, and Ari =0.1, simulating the  
developm ent of spatial patterns from a near-uniform initial state.

Based on this formulation, we now derive an equation for the 
changes in local density M  of a population of mussels, in a 2D 
space. As the model describes pattern formation at timescales 
shorter than 24 h, growth and mortality (as factors affecting local 
mussel density) can be ignored. Local fluxes of mussels at any 
specific location can therefore be described by the generic con­
servation equation:

dM
-=  - V / . [2]

/ ,=
1

2t
v(v+M^~ V dM

VAf, [3]

term with a term that accounts for the long-distance movement 
by including nonlocal diffusion as I,t¡ = V(kAM)  with nonlocal 
diffusion coefficient k. The nonlocal diffusion process has a rel­
atively low intensity, and hence parameter k  is much smaller in 
magnitude than the local movement coefficient in Eq. 3. We can 
now gather both fluxes into the total net flux rate in Eq. 2, 
ƒ = / ,  +ƒ„/, to define the general rescaled conservation equation 
as follows (SI Text):

dm
—- = D 0V[g(m) -A'iV(Am)]. 
ot [4]

Here, /  is the net flux of mussels, and V = (A, dy) is the gradient 
in two dimensions.

To derive the net flux/, we assume that mussel movement can 
be described as a random, step-wise walk with a step size V  that is 
a function of mussel density, and a random, uncorrelated reor­
ientation. In the case of density-dependent movement, the net 
flux arising from the local gradient in mussel density can be 
expressed as follows (SI Text):

where r is the turning rate, following Schnitzer (30) (equation 
4.14 of ref. 30). The “drift” term M d V / d M  accounts for the 
effect of spatial variation in local mussel density on the spatial 
flux of mussels. This term does not appear in the case of density- 
independent movement, but its contribution is crucial when up- 
scaling the density-dependent movement of individuals to the 
population level.

Following earlier treatments of biological diffusion as a result 
of individual movement (2), we complement this local diffusion

Here, g(m) =v(m) \v(m)  where v ( m ) = m 2—ßm + 1
is a rescaled speed. D 0 is a rescaled diffusion coefficient that 
describes the average mussel movement, and k\  is the rescaled 
nonlocal diffusion coefficient. Rescaling at the basis of Eq. 4 
is given by the following relations: g(m) = (m 2 -  ßm + l)(3»z2 -  
2ßm + l)  with m  = \Ja/cM, Do =Ç, k\=^4-,  and ß = b/\/äc.  
Here, ß  captures the depression of diffusion at intermediate 
densities in a single parameter. In this model, spatial patterns 
develop once the inequalities ß > \/3 a n d ß < 2  are satisfied, lead­
ing to a negative effective diffusion (aggregation) g(m)  at inter­
mediate mussel densities. Thus, if mussel movement is significantly 
depressed at intermediate density, then effective diffusion g(m)  
becomes negative, mussels aggregate, and patterns emerge. If 
the depression of mussel movement speed at intermediate mussel 
density is weak, then g(m)  remains positive, and no aggregation 
occurs at intermediate biomass (Fig. SI). Under these conditions, 
no patterns emerge. The fitted values for a, b, and c reveal that the 
effective diffusion clearly can become negative (as ß  = 1.8339), as 
shown in Fig. 1C (red line). Eq. 4 predicts the formation of regular 
patterns (Fig. ID), in close agreem ent with the patterns as
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observed in our experiments (Fig. 15). Using the precise param ­
eter setting obtained from our experiments, we are able to dem­
onstrate that reduced mussel movement v(m) at intermediate 
mussel density results in an effective diffusion g{m) that can 
change sign, which leads to the observed formation of patterns.

A Physical Principle. We now show that Eq. 4 is mathematically 
equivalent to the well-known Cahn-Hilliard equation for phase 
separation in binary fluids (see SI Text for detailed discussion). 
The original Cahn-Hilliard equation describes the process by 
which a mixed fluid spontaneously separates to form two pure 
phases (20, 27). The Cahn-Hilliard equation follows the general 
mathematical structure:

ds
— = D V 2[P(s) - ÂrAs] = HV [P'(s)Vs-kV(As)},  [5]

where P(s) typically has the form of the cubic s3 -  5. In SI  Text, 
we show that density-dependent functions of g(m)  of Eq. 4 and 
its corresponding expression P'(s) in Eq. 5 have the same math­
ematical shape (concave upward) with two zero solutions, pro­
vided that movement speed V(M)  remains positive for all values 
of M,  which is inevitably valid for any animal. Hence, in a similar 
way as described in the Cahn-Hilliard equation, net aggregation 
of mussels at intermediate densities generates two phases, one 
being the mussel clump, the other having such a low density that 
it can be identified with open space, given the discrete nature of 
the mussels. This occurs due to a decrease in movement speed at 
intermediate density, leading to net aggregation when g{m) < 0, 
similar to what is predicted by the Cahn-Hilliard equation (Fig. 
S2). Hence, we find that pattern formation in mussel beds fol­
lows a process that is principally similar to phase separation, 
triggered by a behavioral response of mussels to encounters 
with conspecifics.

Comparison of Experimental Results and Model's Predictions. Eq. 4
yields a wide variety of spatial patterns with increasing mussel 
density, which are in close agreement with the patterning ob­
served in the field (Fig. 2), as well as in laboratory experiments 
(Fig. S3). Theoretical results demonstrate that, with the specific 
value of ß  determined in our experiment, four kinds of spatial 
patterns can emerge, depending on mussel density. When mussel 
numbers are increased from a low value, a succession of patterns 
develops from sparsely distributed dots (Fig. 2E) to a “labyrinth 
pattern” (Fig. 2F) and a “gapped pattern” (Fig. 2G), and finally 
the patterns weaken before disappearing (Fig. 2H).  Note that the 
theoretical results closely match the patterns observed in the 
field (Fig. 2A-D) .  Moreover, a similar succession of patterns has 
been found under controlled experimental conditions (29) when 
the number of mussels is increased (Fig. S3). The spatial cor­
relation function of the images obtained during the experiments 
generally agrees with that of the patterns predicted by Eq. 4, 
displaying a damped oscillation that is characteristic of regular 
patterns (Fig. S4 and SI Text).

A similar agreement was found in the emergence and disap­
pearance of spatial patterns with respect to changing mussel 
numbers when we compared a numerical analysis with an ex­
perimental bifurcation analysis. The mathematical simulation 
predicts that the amplitude of the aggregative pattern (i.e., the 
maximal density observed in the pattern) dramatically increases 
with increasing overall mussel densities, but decreases again 
when mussel density becomes high (Fig. 3A).  Most significantly, 
these predictions are qualitatively confirmed by our laboratory 
experiments, as shown in Fig. 3B. We observed an increase in the 
amplitude when the number of mussels in the arena was low, but 
a rapid decline of the amplitude with increasing overall mussel 
numbers when mussel numbers were high, in agreement with the 
general predictions of the model. It should be noted that,

Fig. 2. Pattern formation of mussels in the  field and numerical results for 
2D simulations with varying densities. (A-D ) Mussel patterns in the  field 
varying respectively from isolated clumps, "open labyrinth," "gapped pat­
terned" to  a dense, near-hom ogeneous bed. (E-H) Changes in simulated 
spatial patterning in response to  changing overall density, closely follow the  
field observed patterns. The color bar shows values of the  dimensionless 
density m of Eq. 4. Simulation param eters are th e  same as for Fig. 1D apart 
from th e  overall density of mussels.

although spatial homogeneity can easily be obtained in simulated 
patterns, the discrete nature of living mussels precludes this in 
our experiments, especially at low mussel density. Hence, the 
agreement should only be sought in qualitative terms.

As a final test of equivalence to the Cahn-Hilliard model, we 
investigated whether pattern formation in mussels exhibits a 
coarsening process referred to as the Lifshitz-Slyozov (LS) law 
(21, 31). Here, the spatial scale of the patterns, f(t), grows in a 
power-law manner as f(t) ex tr, where the growth exponent y = 1/3 
was found to be characteristic of the Cahn-Hilliard equation 
(31-33). Our experimental results reveal that this scaling law also 
holds remarkably well during early pattern formation in mussel
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Fig. 3. Bifurcation of th e  am plitude of patterns as a function of mussel density as predicted by th e  theoretical model (A) and found in th e  experimental 
patterns (ß). (A) Param eter values are fi = 1.89, Do = 1.0, and /ci =0.1, apart from mussel density; letters indicate position on th e  plot corresponding to  th e  four 
snapshots E, F, G, and H in Fig. 2. The mussel density represents values of th e  dimensionless density. (B) Laboratory m easurem ent of patterned amplitudes 
with different densities on surface of 30 cm x 50 cm, w here the  num ber of mussels ranges from 100 to  1,400 individuals. Amplitude versus th e  mean density is 
depicted as symbol lines with solid squares; the  red lines depict average density.

beds, where we found a scaling exponent very close to 1/3 during 
the first 6 h of self-organization, independent of mussel density 
(Fig. 4). Moreover, this behavior is independent of mussel den­
sity. However, the LS scaling law collapses at a later stage as the 
mussels settle and attach to each other with byssus threads. The 
theoretical model (Eq. 4) matches this result, displaying the 
same scaling exponent as our experiments, of course without the 
collapse of the scaling law, because the model does not take into 
account other long-term biological processes.

Discussion
The results reported here establish a general principle for spatial 
self-organization in ecological systems that is based on density-

10°

Time,  t  (min)
Fig. 4. Scaling properties of th e  coarsening processes. The relation betw een 
spatial scale versus temporal-increasing on th e  pattern  form ation in double- 
logarithmic scale. The colored solid lines indicate th e  experimental data for 
different mussel densities and th e  theoretical simulation. The dashed lines fit 
the  experimental data with a pow er law ((t) ccP a t early stages. We found 
only a slight deviation from th e  theoretically expected y = 1/3 growth. No 
dom inant wavelength em erges from th e  spectral analysis for th e  first 
minutes of th e  experiment, and hence no data could be plotted. Note that, 
as th e  simulation starts with a very fine-grained random distribution, pa t­
tern developm ent takes longer in th e  model.

dependent movement rather than scale-dependent activator- 
inhibitor feedback. This principle is akin to the physical process 
of phase separation, as described by the Cahn-Hilliard equation 
(20). Density-dependent movement has until now not been rec­
ognized as a general mechanism for pattern formation in ecology, 
despite aggregation by individual movement being a commonly 
described phenomenon in biology (28, 34—37). Recent theoreti­
cal studies highlight similar aggregative processes as a possible 
mechanism behind pattern formation in microbial systems (26, 
38, 39), insect migration (25), or passive movement as found in 
stream invertebrates (40). Furthermore, studies on ants and 
termites have shown that self-organization can result from indi­
viduals actively transporting particles, aggregating them onto 
existing aggregations to form spatial structures ranging from 
regularly spaced corps piles (41 ) to ant nests (42). Also, a number 
of studies highlight that, beyond food availability (43), behavioral 
aggregation in response to predator presence is an important 
determinant of the spatial distribution of birds (44). These 
studies indicate there may be a wide potential for application of 
the Cahn-Hilliard framework of phase separation in ecology and 
animal behavior that extends well beyond our mussel case study.

A  fundamental difference exists between pattern formation as 
predicted by Turing’s activator-inhibitor principle and that p re­
dicted by the Cahn-Hilliard principle for phase separation. 
Characteristic of Turing patterns is that a homogeneous “back­
ground state” becomes unstable with respect to small spatially 
periodic perturbations: this so-called Turing instability is the 
driving mechanism behind the generation of spatially periodic 
Turing patterns. Moreover, the fixed wavelength of these pat­
terns is determined by this instability. In the Cahn-Hilliard 
equation, there is no such “unstable background state” that can 
be seen as the core from which patterns grow. As we have seen 
(Fig. 4), the Cahn-Hilliard equation, as well as our model, exhibits 
a coarsening process: the wavelength slowly grows in time. Hence, 
Cahn-Hilliard dynamics have the nature of being forced to in­
terpolate between two stable states, or phases, whereas a Turing 
instability is “driven away from an unstable state.”

Strikingly, in mussels, both processes may occur at the same 
time. Mussels aggregate because they experience lower mortality 
due to dislodgement or predation in clumps (29). This explains 
why, on the short term, they aggregate in a process that, as we 
argue in this paper, can be described by Cahn and Hilliard’s 
model for phase separation. On the long term, however, they 
settle and attach to other mussels using byssal threads, a process 
that arrests pattern  formation, thereby disabling the coarsen­
ing nature of “pure” C ahn-H illiard dynamics by a biological
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mechanism that acts on interm ediate timescales and has not 
been taken into account in the present model that focuses on the 
first 6 h of the process (Fig. 4). Moreover, at an even longer 
timescale, mortality and individual growth further shapes the spatial 
structure of mussel beds, unless a disturbance leads to large-scale 
dislodgement, which is likely to reinitiate aggregative movement. 
Hence, on the long run, both demographic processes (16) and ag­
gregative movement (29) shape the patterns that are observed in 
real mussel beds.

Finally, our results demonstrate that, to understand complexity 
in ecological systems, we need to recognize the importance of 
movement as a process that can create coherent spatial structure 
in ecosystems, rather than just dissipate them. Unlike the growth/ 
mortality-based Turing mechanism, the movement-based Cahn- 
Hilliard mechanism has short timescales. It may thus allow for 
fast adaptation and generate transient spatial structures in eco­
systems. In natural ecosystems, both processes occur, sometimes 
even within the same ecosystems. How the interplay between 
these two mechanisms affects the complexity and resilience of 
natural ecosystems is an important topic for future research.

M aterials and M ethods
Laboratory Setup and Mussel Sampling. The laboratory setup followed th a t of 
a previous study by Van de  Koppei e t al. (29). Pattern form ation by mussels 
was studied in th e  laboratory within a 130 cm x 90 cm x 27 cm polyester 
container filled with seaw ater. Mussel samples w ere obtained from wooden 
wave-breaker poles on th e  beaches near Vlissingen, The Netherlands 
(51.458713N, 3.531643E). They w ere kept in containers and fed live cultures 
of Phaeodactylum tricornutum  daily. In th e  experiments, mussels w ere laid 
out evenly on a surface of either concrete tiles or a red PVC sheet. The 
container was illuminated using fluorescent lamps. Fresh, unfiltered sea­
w ater was supplied to  th e  container a t a rate  of ~1 L/min.

Imaging Procedures and Mussels' Tracking. The movement of individual mussels 
was recorded by taking an image every minute using a Canon PowerShot D10, 
which was positioned about 60 cm above th e  w ater surface, and attached to  
a laptop computer. Each image contained th e  entire experimental domain a t 
a 3,000 x 4,000 pixels resolution. We tested th e  effect of increasing mussel 
densities on movement speed. We set up a series of mussel clusters with 1 ,2 ,4 , 
6, 8, 16, 24, 32, 48, 64, 80, 104, and 128 mussels, respectively, on a red PVC 
sheet to  provide a contrast-rich surface for later analysis. The movement speed 
of individual mussels was obtained by measuring th e  movement distance 
along th e  trajectories during 1 mín. All image analysis and tracking programs 
are developed in MATLAB (R2012a; The Mathworks).

Field Photos of Mussel Patterns. Field photos of mussel patterns with different 
densities w ere taken on th e  tidal flats opposite to  Gallows Point (53.245238N, 
-4.104166E) near Menai Bridge, UK, in July 2006.

Pattern Amplitude Determination. The analysis of th e  am plitude of th e  mussel 
patterns was based on tw o experimental series. In th e  first series, 450, 750, 
1,200, and 1,850 mussels w ere evenly spread over a 60 cm x 80 cm red PVC 
sheet. In th e  second series, 100, 200, 400, 600, 1,100, and 1,400 mussels w ere 
evenly spread over a 30 cm x 50 cm sheet. W e analyzed small-scale variation 
in mussel density from th e  image recorded by th e  webcam afte r 24 h using 
a moving window  of 3 cm x 5 cm, in which th e  mussels w ere counted. The 
maximum density was used as th e  am plitude o f th e  pattern . Four typical 
images are shown in Fig. S2.

Calculation of the Scale of the Patterns. The spatial scale of th e  patterns w ere 
obtained quantitatively by determ ining th e  w avelength o f th e  patterns from 
th e  experimental images. We applied a 2D Fourier transform  to  obtain th e  
power spectrum within a square, moving window. Local w avelength was 
identified for each window, and th e  results w ere averaged for all windows. 
This straightforw ard technique is suitable for identifying th e  w avelength in 
noisy images with irregular patterning (45).

Numerical Implementation. The continuum  equation (Eq. 4) was simulated on 
a HP Z800 workstation with an NVidia Tesla C1060 graphics processor. For 
th e  2D spatial patterns, our com putation code was im plem ented in th e  
CUDA extension of th e  C language (www.nvidia.com/cuda). The spatial 
fourth-order kernel is im plem ented in 2D space using th e  numerical schemes 
shown in Fig. S5. Spatial patterns w ere obtained by Euler integration o f th e  
finite-difference equation with discretization of th e  diffusion (46). The 
model's predictions w ere examined for different grid sizes and physical 
lengths. We adopted  periodic boundary conditions for th e  rectangular 
spatial grid. Starting conditions consisted of a hom ogeneous distribution of 
mussels with a slight random  perturbation. All results w ere obtained by 
setting At =  0.001 and Ax =  0.15.
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