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Abstract
The cost  o f  parasitism often  d e p e n d s  o n  environm en ta l  condit ions an d  host  identity. Therefore, variation in th e  biotic and  
abiotic  e n v iro n m en t  can have repercussions on  bo th ,  species-level host-parasite  interaction pa tte rns  b u t  also o n  host 
genotype-specif ic  susceptibility to  disease. We exp o sed  seven  genetically  different b u t  c oncurren t  strains o f  th e  d ia tom  
Asterionella form osa  to  o n e  g e n o ty p e  of its naturally co-occurring chytrid parasite  Zygorhizidium  plankton icum  across five 
environm enta lly  re levant tem p era tu res .  We found  th a t  th e  therm al to le rance  range  of th e  te s te d  parasite  g e n o ty p e  was 
narrow er th an  th a t  of its host ,  providing th e  host  with a "cold" an d  "h o t"  therm al refuge o f  very low o r  no infection. 
Susceptibility to  d isease  was host  genotype-specif ic  a n d  varied with t e m p e ra tu re  level so  th a t  no g e n o ty p e  was m ost  or 
least resistant across all t em p era tu res .  This su g g e s ts  a role o f  therm al variation in th e  m ain ten an ce  o f  diversity in disease  
related traits in this phy top lank ton  host.  The dura tion  a n d  intensity o f  chytrid parasite  pressure  on  host  popu la t ions  is likely 
to  be  affected by th e  projec ted  c h an g e s  in t e m p e ra tu re  pa tte rns  d u e  to  climate w arm ing  b o th  th ro u g h  altering 
t em p e ra tu re  d e p e n d e n t  disease  susceptibility o f  th e  host  and, potentially, th ro u g h  en-  o r  disabling therm al host  refugia. 
This, in turn  m ay affect th e  selective s t ren g th  o f  th e  parasite  on  th e  g en e t ic  architec ture  o f  th e  host  population.
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interactions are diverse. D epending on parasite physiology, lower 
tem peratures can increase parasite  infectivity [10], decrease 
disease severity [11] o r halt infection altogether [12]. T he 
relationship betw een tem peratu re  an d  parasite  infectivity is o f 
specific interest in fungal diseases w hich have been  recognized an 
em erging infectious disease th rea t [13]. C hanging environm ental 
tem perature  patterns are thought to influence the infectivity and  
spread o f several fungal diseases in anim al and  p lant hosts, am ong 
w hich also im portan t food crops [14], T he fungal phylum  
C hytridiom ycota (commonly referred to as chytrids) has gained 
notoriety  as the chytrid Batrachochytriumdendrobatidis is the causative 
agent o f am phib ian  chytridiomycosis, one o f the m ain  drivers o f 
worldwide population  declines in am phibians [15]. Chytrids are 
cosm opolitan and  occur in  a  wide range o f habitats and  substrates, 
acting as saprophytes bu t also as parasites (and even hyper­
parasites) on  hosts as diverse as bacteria, phytoplankton, vascular 
plants, invertebrates and  vertebrates [16-20], W hile the chytrid 
species parasitizing am phibians seems to be a generalist, most 
chytrid  species parasitizing phytoplankton hosts are highly host 
specific [21,22]. A lthough chytrid  occurrence and  biomass is 
p robably  underreported  [23], a  few host-chytrid systems are 
relatively well described, in particular the spring-bloom  diatom  
Asterionella formosa Hassall and  its two chytrid  parasites: fygorhizi- 
dium planktonicum C an te r and  Rhizophydium planktonicum C an ter 
em end [24-26]. Asterionella often is a  p rom inen t con tribu tor to the 
d iatom  spring b loom  in lakes worldwide. Its bloom s are frequently 
followed by chytrid  epidem ics with prevalence o f infection

Introduction

Parasitism  is one o f the m ost com m on consum er strategies [1] 
and  can impose large fitness costs on host individuals and  
populations. How ever, the level o f host susceptibility to disease 
often depends on the biotic and  abiotic environm ental context [2]. 
This in terdependency betw een host, parasite  an d  their shared 
environm ent was first form ulated in the disease triangle concept 
[3]. E nvironm ental conditions affect the population  dynam ics o f 
hosts and  parasites, bu t also the strength and  nature  o f  the host- 
parasite in teraction  [4], V ariation  in the environm ental context 
such as nu trien t enrichm ent, can, for exam ple, shift the character 
o f  the interaction from  m utualism  to antagonism  in plants and  
their m ycorrhizal fungi [5]. Environm ental variability can also 
cause m ore subtle changes in the strength o f host-parasite 
interactions by slowing down or disrupting parasite  m ediated 
directional selection on the host population  [4], M oreover, 
environm ental variability can  also m aintain  genetic diversity in 
disease related traits o f  the host if  the disease resistance of a  host 
genotype varies w ith environm ental conditions so that no genotype 
is overall the m ost o r least susceptible to disease across all 
environm ents [6]. In  that case, no host genotype can out-com pete 
all others perm anently  as the fitness based ranking o rder o f 
genotypes varies across environm ental gradients in space a n d /o r  
tim e [7].

T em pera tu re  is p robably  the m ost pervasive environm ental 
variable and  influences the m etabolic rates o f all organism s [8,9]. 
Nevertheless, the specific tem peratu re  effects on  host-parasite
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exceeding 90% in m any cases [12,25]. Field observations showed 
th a t the developm ent o f Asterionella spring-blooms depends on 
w ater tem peratures in  early spring as Asterionella already rep ro ­
duces a t tem peratures below 3°C, while the parasite  is still inactive 
[26]. T his m ism atch in  therm al ranges provides the host w ith a 
low tem perature  w indow o f disease-free population  grow th which 
bears consequences for the size the diatom  spring-bloom  [12] and  
its genetic structure [27]. W arm er winters in w hich w ater 
tem peratu re  stays above 3° C rem ove this w indow  o f opportunity  
since the parasite rem ains active, denying the host the ability to 
build  up a  b loom  [12]. K now ledge on variation in therm al 
tolerance o f a  w ider set o f chytrid  parasites will help assessing the 
implications o f clim ate change on  host-chytrid interactions in 
general. W e add  to this by contributing  a case-study on therm al 
reaction norm s in a  chytrid-diatom  model-system.

Species- an d  genotype-level host-parasite interaction patterns 
are expected to depend  on their environm ental conditions, in 
particular on  their tem perature  environm ent. In  o rder to test 
therm al reaction norm s o f Asterionella formosa susceptibility to 
chytrid  infection, we perform ed an  infection experim ent using 
seven concurren t genotypes o f  the diatom  host exposed to a  single 
genotype o f its chytrid  parasite fygorhirjdium planktonicum  across a 
range o f environm entally relevant tem peratures. W e assessed host 
and  parasite therm al tolerance range an d  op tim a for activerepro- 
duction. Furtherm ore, we tested for host genotype (G) and  
tem peratu re  (T) m ain effects and  for host genotype-by-tem pera- 
ture (GxT) interactions in net p roduction  of host and  parasite. As 
the host genotypes also showed tem peratu re-dependent differences 
in cell-size, we checked the extent o f co-linearity o f host cell size 
and  genotype effects on host susceptibility to disease.

Materials and M ethods

Host-parasite system
Asterionella formosa is a  pennate  diatom  th a t forms uniclonal, 

stellate colonies. It is a  characteristic spring-bloom  diatom  of 
tem perate lakes [28] b u t can also bloom  in late sum m er. In  Lake 
M aarsseveen (The N etherlands, E 05° 05 ' 08", N  52° 08 ' 34"), 
Asterionella bloom s are often followed by chytrid  epidemics 
exceeding 90% prevalence o f infection [29]. Despite predom i- 
nandy  (or exclusively) asexual reproduction  o f Asterionella [30], the 
population  in Lake M aarsseveen is genetically highly diverse 
[27,31]. This diversity is also reflected in phenotypic variation in 
fitness traits across a  tem peratu re  gradient [32] and  in resistance to 
parasitism  [31].

T h e  chytrid parasite  fygorhirjdium planktonicum  is an  obligate and  
highly v irulent parasite o f the diatom s Asterionella formosa and  
Synedraacus K ützing [24]. C hytrid  epidem ics can  bring  Asterionella 
spring bloom s to a  swift end and  can therefore affect the 
phytoplankton succession in lakes [25,26]. E ach infection prohibits 
host reproduction  and  quickly kills the host [33]. Transm ission 
occurs by motile zoospores th a t actively search for host cells, 
guided by chem otaxis to photosynthetic exudates o f their host
[34], After attachm ent, the zoospores grow into epibiontic 
sporangia, w ithin w hich the next generation o f zoospores is 
form ed an d  eventually released by rup tu re  o f  the sporangium  wall
[35]. Sporangia developm ent tim e, zoospore p roduction  per 
sporangium , and  zoospore infective lifetime all depend on their 
cu rren t tem peratu re  environm ent [36]. After sexual reproduction  
and  a t tem peratures below 3°C, fygorhirjdium  forms thick-walled 
resting spores w hich are inactive and  allow the parasite to w eather 
adverse periods [26].

Isolation o f experimental strains
All Asterionella formosa genotypes used in the experim ent were 

isolated from  a  single w ater sample taken during  the 2008 
Asterionella spring-bloom  at 5 m  dep th  in Lake M aarsseveen. H ost 
culture establishm ent was fairly unbiased w ith a  larger th an  95% 
success rate . As all cells o f an  Asterionella colony are the asexual 
offspring o f a  founding cell, isolating single colonies is an  easy way 
to obtain  uniclonal cultures o f  this diatom . Individual isolates were 
grown in ba tch  culture on  C H U -10  m edium  [37] m odified with 2- 
fold concentrations o f P 0 4 and  FeC l3. For genetic fingerprinting, 
50m L of dense culture were centrifuged, and  the D N A  o f the 
rem aining pellet was extracted  by  a  m odified Q iagenD N easy Plant 
M ini K it (Q iagenN.V .jV enlo, the N etherlands) protocol (see 
file SI for D N A  extraction details). Genetic fingerprinting was 
done by am plified fragm ent length polym orphism  (AFLP), using 
four p rim er com binations: (i) Eco +  GA &Mse + A T, (ii) Eco +  GA 
&Mse + C C , (iii) Eco +  GA &Mse +  C G , and  (iv) Eco +  GC &Mse 
+  A C . T h e  A FLP fingerprinting o f the seven experim ental and  the 
parasite  baiting  genotypes o f  Asterionella formosa as well as o f one 
Fragilariacrotonensis genotype (functioning as out-group) was pe r­
form ed by Keygene® (Keygene N .V ., W ageningen, T he N ether­
lands), details o f the A FLP da ta  analysis are presented  in the 
file SI accom panying this paper.

Isolation o f uniclonal fygorhizjdium planktonicum  cultures from  the 
same b loom /ep idem ic  occurred  by  transfer o f infected Asterionella 
colonies carrying only one single sporangium  into a  uniclonal 
culture o f Asterionella S122 (Lake M aarsseveen, isolated 2008). 
Establishing parasite  cultures was less successful with only 20 
infected cultures ou t o f over 400 isolation attem pts. This lower 
success m ay suggest, that, by baiting  the parasite with a  uniclonal 
host culture, we actually screened for parasite genotypes able to 
infect this specific host genotype. H ence, our collection o f parasite 
isolates m ay well represent a  lim ited range o f the genetic variation 
present in Lake M aarsseveen. Since we used only one uniclonal 
isolate o f  the parasite, we did no t assess the genetic diversity o f our 
isolate collection. H ost an d  parasite cultures w ere m ain tained  in 
sem i-continuous batch  cultures in environm ent test cham bers 
(SANYO Electric, M origuchi, Japan) a t 18 °C ± 1 °C  an d  14: 10 h 
light:dark cycle a t 50 pm ol quan ta  s 1 m  2 provided by cool-white 
fluorescent lam ps (TL-D 30W /830 , Philips, A m sterdam , T he 
Netherlands). All cultures were uniclonal b u t had  slight bacterial 
con tam inations.

Experimental design and methodology
T h e  experim ent em ployed a  full-factorial design with seven 

Asterionella genotypes (S24, S26, S37, S38, S43, S49 an d  S53) 
exposed to one fygorhizidium  genotype (F I2) a t five different 
tem peratures (1°C, 6°C, 11°C, 16°C and  2 1 °C ± 0 .5 °C  ) in five 
replicates. This resulted in 35 experim ental com binations and  175 
experim ental units. T o  com pare the perform ance o f Asterionella in 
parasite  exposed and  non-exposed populations, non-exposed 
controls o f  the seven Asterionella genotypes were grown at the 
same experim ental tem peratures resulting in 35 control units (one 
pe r tem perature-host strain com bination).

For tem perature  acclim ation, parasite exposed and  non-exposed 
stock cultures o f each host genotype were split into five subcultures 
and  stepwise acclim ated in sem i-continuous ba tch  cultures in 
tem perature-contro lled  w ater baths for a t least five generations 
p rio r to the experim ent [38]. T he light was set to 160 ± 1 0  pm ol 
quan ta  m  2 s 1 provided by cool-white fluorescent lam ps (TL-D 
30W /830) a t a  14: 10 light: dark cycle. Photosynthesis-by- 
irradiance curves (PH Y T O -PA M , H einz W alz, Effeltrich, G er­
many) showed th a t this irradiance level was saturating b u t not 
inhibiting.
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T o start the experim ent, each  experim ental and  control unit 
was inoculated from  the corresponding non-exposed subculture to 
a  starting concentration  o f ca. 15 000 uninfected host cells m L 1 
into a  total volum e o f 60 m L C H U -10  m edium  [37]. Parasite 
exposure was achieved by inoculating ca. 5 000 live infection 
carrying host cells m L 1 from  a  nearly 100% infected, tem pera­
ture- and  host genotype-m atching exposed subculture. Based on 
results o f p re-experim ent trials, the host inoculum  of ca 15 000 
cells m L 1 was small enough to ensure th a t the culture m edium  
could support several generations o f unlim ited host grow th before 
light o r nu trien t availability could becom e lim iting in the ba tch  set 
up, bu t also large enough to support the infection. Similarly, the 
parasite inoculum  o f ca 5 000 live infection carrying cells m L 1 (i.e. 
a  starting prevalence of ca 25%) was large enough to follow both  
increase an d  decrease in  prevalence over tim e. All experim ental 
and  control units were started on  the same day. E ach unit was 
shaken m anually  twice and  their position w ithin the w ater ba th  
was random ized  once each day. Sam ples for m icroscopy 
enum eration  were taken every second day for the tem peratures 
6°C to 21°C and  every fifth day for tem perature  1°C. All samples 
were taken a t the same m om ent in the light cycle, fixed with a 
G lutaraldehyde-Form aldehyde m ixture (to a  final concentration  of 
0.01%) an d  stored cool an d  dark.

Counting protocol
A m inim um  o f 200 Asterionella cells or 20 fields o f view were 

counted  in a  1 m L sam ple under an  inverted m icroscope (Leica, 
D M I 4000B, W etzlar, G erm any) according to the Utermohli 
settling m ethod  [39]. E ach sam ple was counted  for abundance of: 
(i) living uninfected host cells m L 1 (uninf); (ii) infected host cells 
carrying one or m ore living infection(s) m L 1 (inf); (iii) infected host 
cells carrying only dehisced /  dead  infection(s) m L 1 ; (iv) sporangia 
m L , and  (v) resting spores m L . Infection prevalence, i.e. 
p roportion  o f cells carrying live infections in the live host 
population, was calculated as inf/(uninf+inf).Asterionella cells carry­
ing em pty o r dead  sporangia, i.e. class (iii), were excluded from  the 
calculation o f infection prevalence as they did no t contribute 
further to population  grow th o f the host o r the parasite.

Statistical analysis
T o assess the therm al ranges o f hosts and  parasites, the ra te  o f 

change day 1 for uninf, inf, the com bined uninf+inf an d  for parasite 
sporangia in the experim ental units, were averaged over all host 
genotypes and  plo tted  against tem perature. T h e  host genotype- 
specific ra te  o f change day 1 o f each variable was calculated as

d ( x )   +end t+start

d { t )  h o t

w hereby x  is the abundance o f either uninfected or infected host 
cells and  parasite sporangia on the last day o f the experim ent (xenf  
and  the first day of the experim ent (xstart) respectively. F u rther­
m ore, ttot is the total num ber o f experim ental days.

T o  work w ith com parable experim ental times and  include at 
least three  samples, the first ten  days for tem perature  treatm ents 
1°C to 16°C were used in the statistical analysis. For treatm ent 
21°C only the first six days w ere included as the infection had  
cleared an d  the host population  was approach ing  carrying 
capacity, hence analysing a  longer interval w ould have resulted 
in underestim ating host production . T h e  response variables were 
the ne t p roduction  of uninfected (P uninf) an d  infected (P  inf) host 
cells m L *, net p roduction  o f parasite sporangia m L 1 (P  spor), net 
increase/decrease  in infection prevalence (Pprev) and  the infection

related percentaged reduction  in p roduction  o f un in f cells (% 
reduction). T h e  net p roduction  (P x) variables were calculated as

P x  x ena -t’v,

A nd the % reduction o f the p roduction  o f uninfected cells was 
calculated as

0/ , P uninfcont unit -  P uninfexp unit -, AA% reauction= -----------------—------------- ------* 1ÜÜ
P Utlitljcojxt imit

w hereby P  un in f ont umt is the net p roduction  o f uninfected cells 
m L 1 in control units, an d  P  un in f xp is the net p roduction  of 
uninfected cells m L 1 in experim ental units.

W ithin  our wide experim ental tem peratu re  spectrum , all 
response variables showed non-linear relationships with the 
explanatory variable tem perature. T o  allow for these non-linear 
relationships a  generalised additive m odel (GAM) [40] was 
employed, using package “ m gcv” [41] in R  v.2.13.1 [42]. This 
additive m odel fits a  sm oothing curve th rough  the data, in  this case 
based on th in  p late regression splines. As overfitting can be a 
problem  in G A M  m odels [40], we selected the m ost parsim onious 
m odel based on F-tests betw een models o f increasing complexity, 
starting with the simplest m odel, including only the predictor 
“ tem perature  trea tm en t” . In  addition, the generalised cross- 
validation (GCV) scores (estim ating the optim al am o u n t o f 
smoother) were com pared: the lower the G C V  score o f a  m odel, 
the bette r the m odel fit. All variables were checked for norm ality  
and  heteroscedasticity o f variance p rio r to analyses. T h e  variable P  
in f  was sqrt-transform ed to rem ove heteroscedasticity; however its 
variances did no t co-vary with tem peratu re  (data no t shown). All 
statistical analyses and  plo t g raphing were carried  ou t in R  [42] 
and  Sigm aPlot 11.0 (Systat Software, San Jose, U.S.).

Results

AFLP fingerprinting
T h e  A FLP analysis o f uniclonal cultures o f eight Asterionella 

formosa and  one Fragilariacrotonensis yielded 113 m arker bands, o f 
w hich 69% were polym orph. E ach uniclonal culture showed a 
unique fingerprint p a tte rn  an d  therefore represented  a  unique 
genotype. T h e  U P G M A  dendrogram  (Fig. 1) showed Fragilariacro­
tonensis as a  clear out-group an d  clustered the Asterionella formosa 
genotypes in b roadly  two clusters o f  three an d  five genotypes. T he 
dendrogram  was a  good representation  o f the Ja c c a rd ’s similarity 
m atrix  as the cophenetic correlation coefficient was r = 0.98 
(M antel test P =  0.001). M ost o f the nodes were supported well as 
shown by bootstrap  resam pling (n = 5000) results (Fig. 1). Flow- 
ever, the distinction betw een S 122 and  S43 was no t well 
supported. Nevertheless, given the em pirical data, the presented  
dendrogram  is the best possible representation  o f the data.

Thermal tolerance ranges
T o show the general tem perature  effect on host an d  parasite 

productivity, the ra te  o f change pe r day in host abundance, 
(infected, uninfected and  total (uninf+inf) in  experim ental units) and  
parasite  sporangia abundance (in experim ental units) were 
averaged across host genotypes and  plo tted  against tem perature  
trea tm en t (Fig. 2). T o tal host and  parasite productivity showed a 
typical left skewed, unim odal relationship across tem peratu re  with 
the m axim al perform ance tem perature  n ear the upper tolerance
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S49

S24

100
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S26
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S37

F crotonensis
r i

1.0 0.8 0.6 0.4 0.2 0.0

Jaccard coefficient

Figure 1. Representation of the genetic d iversity of the  
experim ental Asterionellaformosa genotypes. The dendrogram 
representation is based on Jaccard similarity among the Asterionella­
formosa genotypes used for baiting the parasite (S122) and in the 
experiment (S24-S53), as well as one Fragilariacrotonensis genotype as 
out-group. Bootstrap resampling of the data (n = 5000) showed support 
o f most o f the nodes, the distinction between S122 and S43 was not 
supported well.
doi:10.1371/journal.pone.0071737.g001

limit. O p tim um  perform ance tem peratu re  o f the host in the 
experim ent was achieved a t 21 "Cl, that o f the parasite  a round  
UTCI. T he tested parasite genotype showed a  narrow er tolerance 
range th an  the host, and  the relationship betw een host and  
parasite changed w ith tem perature  level. A t the two lowest 
tem peratures, b o th  uninfected host and  parasite showed positive 
net production , bu t the uninfected host outperform ed the parasite. 
At tem perature  TCI, parasite p roduction  occurred  m ainly as 
resting spores, w hich stay inactive as long as the tem perature  
rem ains too low for parasite reproduction . A t interm ediate 
tem peratures (11 and  UTCI), the parasite  outperform ed the 
uninfected host perform ance, w hich was also reflected in  large 
increases in infection prevalence in these treatm ents. But a t the 
highest tem perature  the uninfected host outperform ed the parasite 
again as the lethal tem peratu re  lim it o f the tested parasite 
genotype was surpassed. H ence, in our experim ent, the host had  
two therm al refugia (a “ cold” an d  a “h o t” one) o f very low or no 
parasite pressure.

Main and interactive effects o f host genotype
T h e  m ost parsim onious G A M  m odel included m ain effects o f 

tem peratu re  (T) and  host genotype (G), as well as genotype-by- 
tem peratu re  interaction (GxT) effects (Table SI):

R e sp o n se v a r ia b le  = T + G  + ƒ  ( G x T )  +  si

w hereby we em ployed a  non-param etric  sm oothing function ƒ  
(based on th in  p late regression splines), a  G aussian erro r 
distribution si, and  a  link function by identity. M ain  and  
interaction effects were significant for each o f the four response 
variables: net p roduction  of uninfected (P uninf.; T ab le  la) and  
infected (P inf, T able  lb) host cells m L *, net increase/decrease  in 
infection prevalence (P prev; T ab le  le) an d  the infection related

percentage reduction  in p roduction  o f unin f cells (%  reduction', 
T able  Id). For all four response variables, the m odel fits were good 
with R 2adj betw een 0.936 and  0.981 (Table la -d ). T h e  observed 
therm al reaction norm s of genotype-specific host response 
variables were visualised in Figures 3A -D , w hich also show the 
changes in genotype perform ance ranking o rder changes across 
tem perature. M odel predictions w ere visualised for each o f the 
response variables as a  therm al reaction norm  per genotype 
(Fig. 4A -D ).

T h e  highest P  unin f occurred  a t 2 TCI probably  due to fast host 
population  grow th and  com plete loss o f  the parasite, while the 
lowest P  un in f occurred  a t UTCI due to high infection related losses 
(Figures 3A (observed data) an d  4A (GAM  predictions)). 
Conversely, the highest P  in f  occurred  at UTCI an d  the lowest at 
2 TCI (Figs. 3B an d  4B). In  general, infected host cells carried  
single infections, m ultiple infections pe r host cell only occurred 
w hen infection prevalence was extrem ely high and  the availability 
o f uninfected hosts becam e limiting. H ence, the P  spor showed also 
the highest p roduction  at UTCI and  the lowest a t TCI an d  2TCI 
(data no t shown). T h e  form ation of resting spores a t TCI resulted 
in a  loss o f prevalence (i.e. negative Pprev) over tim e a t T  CI, while 
the loss o f prevalence a t 2 TCI was caused by  the death  o f the 
parasite  population  (Figs. 3CI and  4CI). T h e  positive P  prev at 
interm ediate tem peratures (11 and  UTCI) suggested that parasite 
p roduction  rates surpassed those o f the host. This was also 
reflected in the%  reduction patterns (Figs. 3D and  4D). Im pact o f 
infection was highest a t the interm ediate tem peratures (positive 
values in %  reduction of uninfected cells) an d  lowest a t the two 
tem perature  extremes. Negative values in % reduction indicated that 
the p roduction  o f uninfected cells in the experim ental units 
surpassed that in the controls.

T o  exclude that we confounded genotype effects w ith host cell 
bio-volum e effects on  host susceptibility an d  parasite  productivity, 
we checked for the respective explanatory pow er o f predictors a) 
host cell bio-volum e and  b) genotype using A N O V A  m odels (see 
file S2 for m ethods and  results). T h e  m odel including genotype 
provided h igher predictive pow er for host and  parasite p roduc­
tivity m easures, therefore all results were in terpreted  in the light o f 
genotype effects.

Discussion

General temperature effects
Species-level host and  parasite  ra te  o f  change pe r day showed a 

typical left skewed, unim odal relationship across tem peratures with 
m axim al perform ance tem peratures near their upper tolerance 
limits [43]. T h e  net loss o f infection prevalence at bo th  
tem perature  extrem es showed that the therm al activity range of 
the tested parasite genotype was narrow er th an  that o f its host. 
H ow ever the m echanism  at work was different for either 
tem perature  extrem e. At TCI the parasite  was still able to 
reproduce bu t form ed m ostly resting spores w hich rem ain  inactive 
as long as the conditions a re  adverse for the parasite. H ere, the loss 
o f prevalence was caused by the host population  grow th rate 
exceeding the parasite population  grow th rate so that the 
p roportion  o f infected cells was constantly diluted by new, 
uninfected cells (Fig. 3CI). H ence, the disease was present, bu t 
showed such slow dynam ics th a t it was contained at very low levels 
in the host population. At 2 T  CI, the loss o f prevalence was caused 
by the parasite  dying w ithin a few days w hich freed the host 
population  from  parasite  pressure as reflected in the low % reduction 
o f exposed bu t uninfected host cells a t this tem perature  (see 
Figs. 3D and  4D). Also a t 2 T  CI, the p roduction  o f uninfected host 
cells in some experim ental units surpassed that o f controls which
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than that of the host as the parasite population shows low or no growth at both temperature extremes while the host population is still productive. 
doi:10.1371/journal.pone.0071737.g002

m ay be a result o f increased nu trien t recycling from  (few) infected, 
dying cells or an  indication o f unexpected high variance in host 
carrying capacity at th a t tem perature.

T he  narrow er therm al activity range o f the tested parasite 
genotype allowed the host two therm al refugia o f low or no disease 
pressure. W e tested only one parasite genotype, and  given that
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infected host cells mL-1, C) net change in prevalence of infection, and D) % reduction of the production of uninfected cells mIT1 in parasite exposed 
cultures, plotted as host genotype-specific thermal reaction norms. Note the changes in host genotype performance ranking order across 
temperatures. Such changes indicate the potential for genotype-by-temperature interactions. 
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parasite genetic diversity is likely also expressed in phenotypic 
diversity, the actual species-level reaction no rm  of the parasite m ay 
look slightly different. Nevertheless, the occurrence of the  “cold” 
therm al refuge for the  host has been described in earlier field 
studies [26] and  in a laboratory  study on a closely related parasite 
species, Rhizophydium planktonicum [36]. Similarly, therm al refugia 
have also been described in o ther species pairs such as Daphnia 
magna and  its bacterial parasite  Pasteuriaramosa w here disease 
severity decreased drastically with tem perature  [11]. O n e  o f the 
m ost striking exam ples o f therm al refugia is the induction of 
behavioural fever [44], A m phibians are able to clear chytrid 
infections by seeking high tem perature  environm ents [45,46], 
D esert locusts use behavioural fever to control fungal infections to 
survive long enough to produce offspring [46], Phytoplankton 
species such as the  diatom  Asterionella have, o f course, lim ited 
capacity to actively choose their tem peratu re  environm ent but 
show a similar respite from  fungal infection during cold winters 
and  at the height o f sum m er w hen surface w ater tem peratures 
favour the  host but not the parasite. Such therm al refugia m ay 
seem short-lived and  o f little consequence, but nevertheless have 
m easurable im pact, for instance in the Asterionella population 
dynamics in Lake M aarsseveen. T h e  occurrence and tim ing o f the

“cold” refugium  determ ines the occurrence and  size of the 
Asterionella spring-bloom  and therefore sets the stage for the 
seasonal phytoplankton succession and  food-web dynamics in the 
lake [12]. T h e  “h o t” refugium ” m ay facilitate the occurrence of 
high density su m m er/au tu m n  blooms of Asterionella, as epidemics 
o f the  chytrid reach only low infection prevalence despite high host 
density due the parasites lower therm al m axim um  [47], Such 
sum m er blooms, in tu rn , are a po o r food source for cladocerans as 
Asterionella is basically not ingestible for these zooplankters [48],

Genotype and genotype-by-environment interactions
O u r experim ent also showed that host genotypes differed in 

their overall susceptibility to disease, indicating that they possess 
variation in disease resistance traits. T herm al variation in the 
environm ent, however, is likely to h inder any directional selection 
against susceptible genotypes as the susceptibility ranking order of 
the tested host genotypes varied significantly w ith tem perature 
(Fig. 3A—D). T herefore, it is not possible to predict the strength 
and  exact direction of parasite selective pressure on any given host 
genotype from  one environm ent to another. T h e  influence o f the 
therm al environm ent on host genotype-specific susceptibility to 
disease has been shown in a num ber o f invertebrate-parasite
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T a b le  1 . Results o f the GAM fo r param etric effects (tem pera tu re  (7) and genotypes a-g (G) and sm oothed in te raction  (geno type  by 
tem pera tu re  (f(GxT))) on  net p roduc tion  o f un in fected and in fected host cells mL 1 in parasite exposed cultures, on ne t change in 
in fec tion  prevalence and on the  net reduction  o f p roduc tion  o f un in fected host cells mL-1.

a) P uninf = (T) + (G) + f(GxT) + s

Parametric coefficients: Estimate Std. Error t value Pr(>| t|)

(Intercept) -155909 4557 -34.217 < 2 e -1 6

T 20177 389 51.852 < 2 e -1 6

Ga 14067 3164 4.446 1.77e-05

Gb 21896 3164 6.920 1.48e-10

Gc 28388 3164 8.972 1.69e-15

Gd 30577 3164 9.664 < 2 e -1 6

Ge 32340 3164 10.221 < 2 e -1 6

Gf 16088 3164 5.084 1.16e-06

A pproxim ate significance of smooth terms f(GxT)i edf Ref.df F P

s(T):Ga 3.76 3.88 227.9 < 2 e -1 6

s(T):Gb 3.82 3.89 212.9 < 2 e -1 6

s(T):Gc 3.87 3.89 184.8 < 2 e -1 6

s(T):Gd 3.87 3.89 185.4 < 2 e -1 6

s(T):Ge 3.85 3.89 144.8 < 2 e -1 6

s(T):Gf 3.82 3.89 155.1 < 2 e -1 6

s(T):Gg 3.72 3.88 193.0 < 2 e -1 6

GCV score =3.0419e+08 n = 175 R2adj =0 .9 4

b) P in f  =(T) + (G) + f(GxT) + s

Parametric coefficients: Estimate Std. Error t value Pr(>| t|)

(Intercept) 411.2 7.10 57.922 < 2 e -1 6

T -20.1 0.61 -33.084 < 2 e -1 6

Gb -15.6 4.92 -3.170 0.002

Gc -18.0 4.92 -3.666 0.0003

Gd -16.3 4.92 -3.308 0.001

Ge -32.5 4.92 -6.609 7.50e-10

Gf -40.0 4.92 -8.129 2.06e-13

Gg -30.0 4.92 -6.105 9.55e-09

A pproxim ate significance of smooth terms f(GxT)i Edf Ref.df F P

s(T):Ga 3.86 3.89 458.7 < 2 e -1 6

s(T):Gb 3.88 3.89 481.1 < 2 e -1 6

s(T):Gc 3.89 3.89 522.0 < 2 e -1 6

s(T):Gd 3.88 3.89 357.9 < 2 e -1 6

s(T):Ge 3.88 3.89 467.6 < 2 e -1 6

s(T):Gf 3.87 3.89 509.4 < 2 e -1 6

s(T):Gg 3.87 3.89 484.1 < 2 e -1 6

GCV score =378 n = 175 R2adj =0 .9 8

c) P prev =(T) + (G) + f(GxT) +  s

Parametric coefficients: Estimate Std. Error t value Pr(>| t|)

Intercept -0.799 0.022 36.049 < 2 e -1 6

T -0.052 0.002 -27.513 < 2 e -1 6

Gb -0.078 0.015 -5.061 1.29e-06

Gc -0.107 0.015 -6.955 1.23e-10

Gd -0.075 0.015 -4.879 2.85e-06

Ge -0.130 0.015 -8.435 3.65e-14

Gf -0.152 0.015 -9.862 < 2 e -1 6
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T a b le  1. Cont.

c) P p r e v  =(T) + (G) + f(GxT) + e

Parametric coefficients: Estimate Std. Error t value Pr(>| 11)

A pproxim ate significance of smooth terms f(GxT)i edf Ref.df F P

s(T):Ga 3.86 3.89 319.5 < 2 e -1 6

s(T):Gb 3.87 3.89 314.3 < 2 e -1 6

s(T):Gc 3.89 3.89 299.7 < 2 e -1 6

s(T):Gd 3.88 3.89 250.4 < 2 e -1 6

s(T):Ge 3.87 3.89 234.2 < 2 e -1 6

s(T):Gf 3.81 3.89 216.5 < 2 e -1 6

s(T):Gg 3.77 3.88 304.7 < 2 e -1 6

GCV score =0.0037034 n = 175 R2adj = 0 .9 6

d) % reduction =(T) + (G) + f(GxT) + s

Parametric coefficients: Estimate Std. Error t value Pr(>| 11)

Intercept 106.56 2.55 41.733 < 2 e -1 6

T -4.31 0.29 -19.777 < 2 e -1 6

Gb -11.06 1.77 -6.240 4.86e-09

Gc -17.49 1.77 -9.867 < 2 e -1 6

Gd -15.49 1.77 -8.739 6.45e-15

Ge -17.59 1.77 -9.925 < 2 e -1 6

Gf -18.74 1.77 -10.575 < 2 e -1 6

Gg -21.40 1.77 -12.075 < 2 e -1 6

A pproxim ate significance of smooth terms f(Gx7'h edf Ref.df F P

s(T):Ga 3.84 3.89 182.3 < 2 e -1 6

s(T):Gb 3.85 3.89 263.3 < 2 e -1 6

s(T):Gc 3.88 3.89 297.0 < 2 e -1 6

s(T):Gd 3.88 3.89 227.0 < 2 e -1 6

s(T):Ge 3.85 3.89 181.7 < 2 e -1 6

s(T):Gf 3.86 3.89 173.4 < 2 e -1 6

s(T):Gg 3.84 3.89 447.7 < 2 e -1 6

GCV score =49.002 n = 17 R2adj = 0 .9 7

Bold faced values indicate p<0.01 significance. 
doi:10.1371 /journal.pone.0071737.t001

systems [6,10,11,49] and  in vascular plants [50], Context 
dependency o f the host genotype-specific response to infection 
(GxE interactions) m ay contribute to the observed high level o f 
genetic diversity in na tu ra l Asterionella populations [31] under the 
pre-condition that different host genotypes vary in their suscep­
tibility to infection under different environm ents (as found in this 
study). How ever, tem perature  is only one (although an  im portant 
one) o f  the regulating factors in a  com plex environm ent. Changes 
in light and  oxygen saturation  with w atercolum n depth, seasonal 
nu trien t and  p H  variation  or the presence o f com petitors and  
predators m ay all add  their own twist to host-parasite interactions.

Conclusions

H ost and  chytrid parasite therm al tolerance ranges do not 
necessarily overlap fully. I f  the therm al tolerance range o f the 
parasite is narrow er than  that o f its host, the host can benefit from 
therm al refugia o f low or no disease pressure. This seems to be  the 
case in chytrid -Asterionella system bu t also in the chytrid-am phibian 
systems. I f  changes in  tem peratu re  patterns due to clim ate 
w arm ing affect the duration  and  tim ing of such therm al refugia

for the host, this m ay have im portan t and  potentially unexpected 
consequences for parasite  and  host population  dynamics. W arm ­
ing m ay stimulate the spread o f disease by rem oving cold 
tem perature  refugia; a lthough the loss o f such host refugia m ay 
also result in the paradoxical subsequent loss o f host bloom s and  
parasite  epidem ics (see for exam ple [12]). H ence, the outcom e of 
clim ate w arm ing on the spread and  severity o f diseases is not 
always straightforw ard to predict. Furtherm ore, the m echanism s 
underlying the occurrence o f host refugia m ay vary from  reduced 
parasite  population  grow th to parasite  dorm ancy to extinction of 
the parasites. W hich of these processes are in operation  m ay have 
implications for disease re-occurrence or re-invasion from  resting 
stages and  for host p re-adap tation  to disease. Selection on the 
Asterionella genotypes can then  be driven by different factors 
(environm ent o r parasite), w hich m ay have consequences in the 
potential for host-parasite co-evolution. In  any therm al refugium , 
the host population  is freed o f parasite m ediated  selection bu t 
experiences abiotic selection pressures. If  host genotypes show 
different perform ance ranking orders under abiotic stress than  
under parasite pressure, then  selection in the therm al refugia m ay
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also favour a  different set o f host genotypes, disrupt any directional 
selection for increased parasite resistance in the host population, 
and  cause the host population  to lose, to some extent, any p re ­
adap tation  to the parasite. This w ould increase the infection 
success o f the parasite w hen re-invading from  resting stages. Such 
exam ples indicate th a t the m echanism s beh ind  (temporary) 
disappearance of disease need to be  taken into account in 
theoretical approaches as well as in the m anagem ent o f infectious 
diseases.

Supporting Information
File SI F in gerprin tin g  o f  A sterionellaform osa  iso la tes .
Description o f the A FLP fingerprinting and  the statistical analysis 
m ethods used for the assessment o f genetic diversity in the 
experim ental Asterionellaformosa genotypes.
(DO CX)

File S2 ANOVA m o d e ls  te s tin g  co -lin earity  b etw een  
p red ic to rs h o st gen otyp e and h o st ce ll-size . T o assess 
w hether genotype or host cell-size is the m ore appropria te  
p red ic to r for host an d  parasite productivity, two A N O V A  models 
were com pared including either tem perature  an d  host genotype
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