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Abstract

The utility o f species distribution m odels fo r applications in invasion and global change biology is critica lly dependent 
on the ir transferability  between regions or points in time, respectively. W e introduce two m ethods tha t aim to improve 
the transferability  o f presence-only models: density-based occurrence th inning and perform ance-based predictor 
selection. W e evaluate the effect o f these m ethods along w ith the im pact o f the choice o f model com plexity and 
geographic background on the transferability  o f a species distribution model between geographic regions. Our 
multifactoria l experim ent focuses on the notorious invasive seaweed Caulerpa cylindracea  (previously Caulerpa  
racem osa  var. cylindracea) and uses Maxent, a com m only used presence-only m odeling technique. W e show  that 
model transferab ility  is m arkedly im proved by appropriate predictor selection, w ith occurrence thinning, model 
com plexity and background choice having relatively m inor effects. The data shows that, if available, occurrence 
records from  the native and invaded regions should be com bined as th is leads to m odels w ith high predictive power 
while reducing the sensitiv ity to choices made in the m odeling process. The inferred distribution model o f Caulerpa  
cylindracea  shows the potential fo r th is species to further spread along the coasts o f W estern Europe, western Africa 
and the south coast o f Australia.
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Introduction

Species distribution models (SDMs) help us understand and 
map species’ distributions, play a key role in forecasting range 
expansion of introduced species and can help us predict the 
effects of climate change on species distributions [1-4], An 
SDM characterizes the species’ response to relevant 
environmental variables, using either physiological information 
from experimental work (mechanistic models) or by relating the 
presence and/or absence of the species to environmental 
information (correlative models) [5], This response is 
subsequently projected into geographic space using gridded 
environmental layers, resulting in a map showing the potential

distribution of the species. Because experimental physiological 
work has not been carried out for a great majority of species, 
correlative approaches dominate species distribution modeling. 
Furthermore, it is quite troublesome to assess the absence of 
species from an area while species occurrence data are 
abundant in museum databases and the literature. As a 
consequence, most SDMs rely on presence-only techniques 

[1]-
A crucial assumption in using SDMs to forecast the spread of 

introduced species or distribution changes in response to 
environmental change is that the model is transferable to the 
new conditions [6], In the case of introduced species, models 
trained primarily on distribution data from the species’ native
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range need to be transferred to the region where it has been 
introduced. This often implies projecting the species response 
to climatic conditions that are not present in the native (training) 
range, which is an innately difficult task. For such situations, it 
is valuable to visualize those areas where extrapolation beyond 
observed conditions was required and consider those 
distribution predictions as uncertain [7,8], In addition, the ability 
o f presence-only methods to capture a species’ ecological 
response is affected by the choice of background points [7], 
predictor variables [9], model complexity [10,11] and the 
geographic spread of occurrence records in relation to 
environmental gradients [12,13], Besides these problems, it is 
also possible that biotic interactions limit the utility of models 
based on abiotic predictors [14] and, of course, there is always 
the possibility that the fundamental niche of the introduced 
population has changed due to natural selection [15,16],

This study focuses on the choices made during the modeling 
process that affect the transferability and overall predictive 
performance of the resulting model. We introduce two new 
methods that have the potential to increase the transferability 
o f correlative SDMs: density-based occurrence thinning and 
performance-based predictor selection. As a case study, we 
apply these to the highly invasive seaweed species, Caulerpa 
cylindracea, in order to assist in assessing the risk of further 
spreading as well as predicting areas with suitable 
environmental conditions worldwide.

Methods

Experim ental Design
The overarching goal of the present study is to examine and 

improve the overall performance and the transferability 
between regions of maximum entropy (Maxent) presence-only 
models of introduced species. The experimental design centers 
on the impact of four important choices that have to be made 
during the modeling process: (1) the amount of geographic 
autocorrelation in occurrence records, (2) the choice of 
predictor variables, (3) the complexity of the model, and (4) the 
selection of background points.

Because most environmental variables show spatial 
autocorrelation, geographically biased sampling of occurrence 
records (e.g. heterogeneous accessibility and local expertise) 
naturally results in environmental biases in the data used to 
train the SDM, leading to model misspecification [12,17] and 
issues related to its evaluation [18], We introduce a method 
that thins occurrence records in densely sampled regions to 
obtain a more even geographic distribution (details given 
below). To examine the effect of this method, models with and 
without occurrence thinning are compared.

The choice of predictor variables is arguably one of the most 
studied elements affecting the transferability of SDMs, with 
several papers showing differences in transferability depending 
on which predictor set is used [9,19,20], This has also led to 
the recognition of predictor variables as more conserved or 
relaxed, depending on whether they match between native and 
invaded species occurrences or not [9,21], We introduce a 
method that surveys the performance of all possible predictor

sets (explained below) and evaluate the transferability between 
regions of models built with two different sets of predictors.

The complexity of an SDM is also known to impact on its 
predictive performance, with overfitting often leading to poor 
transferability [10,22,23], By default, Maxent determines the 
types of features it allows automatically, based on the number 
of samples available for model training [24], but this standard 
behavior has been reported to result in overfitted models [11], 
We compare models with automatically determined model 
complexity to models forced to be simple.

Finally, the selection of background points is known to affect 
the outcome of presence-only SDMs [7,25,26], To examine 
this, we compare SDMs built with global background points to 
models built with a regional background.

Using C. cylindracea as a case study, model transferability 
was assessed by training models on samples from either the 
native or the invaded range and measuring the overlap of the 
two models, as well as by calculating how well they predict 
presences in the other range. We also compare the overall 
predictive performance of SDMs trained with occurrences from 
either range to that of models combining occurrences from both 
ranges.

Study Species and Environm ental Data
This study focuses on the introduced and highly invasive 

seaweed species Caulerpa cylindracea Sonder [27], 
Specimens of the Caulerpa genus are well known for their 
rampant morphological plasticity that, due to the inconsistent 
use of varieties and forms amongst taxonomists, has resulted 
in a confusing nomenclature. Most o f this confusion has existed 
around the C. racemosa!peltata complex that has more than 30 
described varieties and forms [28], Until recently this included 
C. cylindracea, which, although originally described as an 
independent species, had long been considered a form of C. 
racemosa var. laetevirens until it was raised to varietal status 
[29] and it is now due to be reinstated as an independent 
species [28],

Since the early 1990s C. cylindracea has rapidly and 
aggressively spread in the Mediterranean Sea and Canary 
Islands, representing one of the most dramatic marine 
invasions in terms of establishment and ecological dominance 
[30,31], The species has been reported from all kinds of 
substrata and depths, as part of a variety of benthic 
assemblages, and thrives in disturbed habitats of the heavily 
urbanized Mediterranean coastlines [30,32], Invasive 
populations of C. cylindracea establish dense and compact 
monospecific stands, which easily overgrow and outcompete 
and/or negatively impact other seaweed [33,34], seagrass [35] 
and invertebrate species [36,37] leading to biotic 
homogenization [38] and an overall decrease of species 
diversity in affected areas [30], To date only partial recovery of 
the assemblages could be observed after eradication of C. 
cylindracea in Italy and France [33,39],

Unlike C. taxifolia, which was accidentally introduced from a 
public aquarium [40], the vector of introduction of C. 
cylindracea to the Mediterranean Sea is unknown. It was 
initially hypothesized to be a Lessepssian immigrant [41,42], or 
a hybrid between C. racemosa var. turbinata and an unknown
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tropical variety [43], until molecular investigations identified a 
potential source population in southwestern Australia [29], 
However, recent findings indicate that the native range of C. 
cylindracea is much larger than previously thought (extending 
from Western Australia around northern Australia into the Great 
Barrier Reef and New Caledonia), and that the source of the 
invasive C. cylindracea populations in the Mediterranean Sea 
is not known with certainty [44],

Whatever the vector and source population, C. cylindracea is 
spreading rapidly with reports of its presence in 12 
Mediterranean countries including all the large islands [29,45], 
and has more recently been reported from two locations on the 
southern coast of Australia (Adelaide, SA and Portland, VIC, 
e.g. references 46,47 and unpublished data GSB). As C. 
cylindracea is only found near shipping ports and had not been 
reported from this area prior to 2003 [48], it is most likely that 
this species is a recent introduction. The rapid spread of this 
species through the European invaded range makes it a 
suitable case study for the question at hand.

A total of 191 distribution records were assembled from the 
native range in and around Australia (65 records), the invaded 
range in Europe (111) and the recently invaded areas in 
southern Australia (15). The data sources for these records 
are: Australia Virtual Herbarium (http://chah.gov.au/avh/), new 
collections from Victoria by GSB deposited in the AD 
herbarium, the data gathered by FM for the ERC FP5 ALIENS 
project, and the literature [31,41,44,48-60], The absence of the 
species in various DNA bar coding surveys of Caulerpa from 
some other parts of the Indo-Pacific (Philippines, Japan, 
Tanzania, Red Sea) suggests that the native range may be 
limited to Australia and some closeby locations (unpublished 
data: Stefano Draisma, Thomas Sauvage, Heroen
Verbruggen).

We used the Bio-ORACLE dataset [61] as a source of 
marine environmental grids (90° N-90°S, real values). To make 
the distribution records compatible with the grids, occurrence 
coordinates situated on land according to the Bio-ORACLE 
grids were moved to the closest cell in the ocean. When 
multiple records were situated in the same Bio-ORACLE grid 
cell, a single record was retained and as a result, the dataset 
reduced to 95 distribution records.

O ccurrence Thinning
Geographical biases in the occurrence records were 

dampened by thinning the distribution points with 
OccurrenceThinner 1.03 [62], We developed this program to 
filter occurrence records using a probability-based procedure. 
The probability that any specific occurrence record is removed 
is proportional to the density of occurrence records in the area 
as defined by a kernel density grid. The two-dimensional 
binned kernel density grid used in this procedure was 
computed from the occurrence records with the bkde2D 
function in the R package KernSmooth v.2.23-7 [63,64], with a 
bandwidth of 3.0. The thinning procedure with thresholds ^=0.5 
and t2=1.0 was repeated 10 times, resulting in 10 occurrence- 
thinned datasets. These datasets had on average 25 records 
from the native range, 46 from the European invaded range, 
and three from the southern Australian invasive populations.

To evaluate whether occurrence thinning influences model 
transferability and performance, we compared Maxent models 
based on a thinned subset of samples with models using all 
occurrence records (but limited to one per cell as mentioned 
above).

Predictor Sets
The predictor variables were chosen in two steps. The first 

step consisted of a priori selection of a set of 8 predictors. This 
selection was based on knowledge of the physiological 
determinants of seaweed distributions [65], and takes the 
structure of the Bio-ORACLE dataset into account by not using 
multiple closely correlated predictors. The eight resulting 
predictors were mean sea surface temperature (SSTmean), the 
range in sea surface temperature (SSTrange) as a measure of 
seasonality, mean photosynthetically active radiation 
(PARmean), salinity, pH, mean diffuse attenuation (DAmean) 
as a measure of water transparency, dissolved oxygen (dissox) 
and the phosphate concentration. Nitrate concentration was not 
included because it is correlated with the phosphate 
concentration [61].

In the second step, the predictive ability of those eight 
variables was explored using Maxent Model Surveyor (MMS) 
version 1.03 [66], We developed this software to evaluate the 
performance of all possible subsets of variables (28 - 1 = 255 
for our eight predictors), using the test AUC (Area Under the 
receiver operating characteristic Curve) to measure model 
performance [67], The program was run multiple times: (1) on 
samples from native range with global background, (2) on 
samples from invaded range with global background, (3) on 
samples from both ranges with global background, (4) on 
samples from native range with background restricted to native 
range, and (5) on samples from invaded range with 
background restricted to invaded range. The program used 
50% of the samples for training and 50% for testing. It worked 
from the thinned set of occurrences and restricted the model 
complexity to linear and quadratic features. Each of the five 
runs listed above was repeated ten times (i.e., on each of the 
ten replicate sets of thinned occurrences). The training and test 
data were randomly drawn from the occurrence records and do 
not represent a subdivision into the native vs. invaded ranges. 
As a consequence, the model performance used to evaluate 
predictor combinations does not represent transferability 
between regions. From the MMS results, a consensus was 
derived as to which variables are most important across the 
different runs. We retained only those variables that were 
present in more than 60% of the top-scoring models for at least 
two out of three regions (native, Europe, combined, i.e. 
conditions 1, 2 and 3 described above). The 60% threshold 
criterion is essentially arbitrary -  we chose it because it halved 
the number of predictor variabes from eight to four (specified in 
results). Retaining variables important in at least two regions 
was done because it would prefer variables of global, rather 
than regional, relevance.

In order to evaluate whether this predictor selection 
approach can improve the transferability of models across 
regions, Maxent models were run with all eight variables listed
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above as well as the subset of four variables generated with 
the predictor selection procedure.

Model Com plexity
Model complexity was varied to verify its impact on the 

predictive power and transferability. The first condition used the 
default behavior of Maxent (auto-features), which determines 
which features are used based on the number of samples [24], 
The second condition forced the use of smooth response 
curves by allowing only linear and quadratic features to be 
fitted.

Background Selection
Data for background points was extracted from the Bio- 

ORACLE grids [61]. Three sets of 10,000 random background 
points were created: (1) from the entire globe, (2) from the 
native range defined as a box around Australia with latitude 
between 5° S and 45° S and longitude between 100° E and 175° 
E, and (3) from the invaded range defined as western Europe 
extending to Africa and the Mediterranean Sea, between 
latitude 20° N and 60° N and longitude 35° W  and 40° E. These 
boxes roughly correspond to the maps of the native and 
invaded ranges presented in the results. In each of these three 
cases, the background selection corrected for unequal areas at 
different latitudes (i.e. they correspond to random pixel draws 
from equal area grids).

To compare the effect of background selection on 
transferability, regional models with corresponding regional 
backgrounds were compared to regional models with global 
background. Models trained with combined samples from the 
native and invaded ranges always used the global background.

Niche Model Inference
Niche models were inferred with Maxent 3.3.3f [24,68,69], 

The analyses were automated via a Perl script and carried out 
on a multicore linux server. All analyses were run with 10,000 
random background points as specified above. The training, 
test and background points, were provided as SWD files and 
the resulting models were projected onto the Bio-ORACLE grid 
[61]. Maxent’s jackknife function was activated and samples 
were not added to the background to avoid complicating model 
comparisons. The models resulting from the ten replicate 
occurrence-thinned training sets were averaged for 
visualization but other interpretations were based on the 
individual models.

Dow nstream  Analyses
Models were compared to identify which choices lead to 

better-performing models. In order to evaluate the 
transferability of models, we compared models built on the 
native and invaded ranges in a pairwise fashion, using the 
Schoener’s D niche similarity measure [70] and reciprocal test 
AUC (i.e. native training samples with test samples in invaded 
range and vice versa). The overall predictive power of models 
was compared with the test AUC, taking care to only compare 
models built with identical geographic background datasets.

Results

Exploration o f new m ethods
We implemented two methods that tackle issues related to 

the overall quality and transferability of niche models. The first 
of these, occurrence thinning, clearly reduced the geographic 
sampling bias present in the occurrence points, as indicated by 
the kernel density plots before and after occurrence thinning 
(Figure 1). In this figure, the red blob with dense sampling 
along the French Riviera and nearby localities disappears 
entirely after the thinning procedure (Figure 1A-B). Geographic 
sampling bias was less of a problem in the native range (Figure 
1C-D).

The results of the second method, which surveyed all 
combinations of predictor combinations, is summarized in 
Figure 2. As could be anticipated from previous studies, the 
representation frequency of variables among the top-scoring 
models is sensitive to whether the analysis was done on the 
native range, the invaded range, or both combined. Using local 
or global background points resulted in qualitatively similar 
results (Figure S1). The consensus made across the three 
boxes in Figure 2, including only variables that are likely to be 
of global significance (present in at least 60% of the top-scoring 
models for at least 2 out of 3 regions), consisted of 4 
predictors: DAmean, phosphate, salinity and SSTmean.

The effect of these two methods on model performance was 
evaluated by including them as factors in our experimental 
design. So all Maxent analyses were run with all samples and 
thinned samples. Similarly, models were run with all eight 
variables included and with only the four consensus variables 
selected from the survey.

Transferability as a function o f m odeling choices
Our multifactorial experiment showed that reducing the 

number of predictors, based on our surveying method, yielded 
much better models with higher test AUCs (Figure 3A) and 
Schoener’s D (Figure 3B) than models with the full set of eight 
predictors. This is clearly visible in both figures: the leftmost 
two columns of both panels of the figure have warmer colors 
than the rightmost two columns. A Wilcoxon signed-rank test 
(WSRT) indicated that the difference in test AUC and 
Schoener’s D between matching models is significant (p = 
0.0078 in both cases, N = 8).

With test AUC as the measure of transferability (Figure 3A), 
the two upper rows had warmer colors than the lower two rows, 
suggesting better performance of models that use global 
background samples compared to models in which background 
samples are restricted to the region in which the model is 
trained. This pattern was not present in the Schoener’s D 
values (Figure 3B), where models with global background and 
auto-features had remarkably low values of D, and the WSRT 
outcomes conflicted strongly (p = 0.0078 for AUC, p = 0.9453 
for Schoener’s D, N = 8). The higher AUC with global 
backgrounds may thus be a consequence of the sensitivity of 
AUC to background choice rather than an actual increase in 
predictive power with global backgrounds.

Model complexity and occurrence thinning did not have a 
large effect on transferability between regions. Flowever, the
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Figure 1. Effect of occurrence thinning on geographical sample bias. The colors on the map represent the regional sampling 
density, warmer colors indicating higher sample densities. Occurrence thinning substantially reduces the geographic sampling bias, 
as illustrated by the disappearance of the red blob along the French Riviera and closeby localities (panel A —► B). There is less 
geographic sampling bias in the native range, so occurrence thinning does not have a big influence on the kernel density maps of 
that region (panel C —► D). Note that the slightly elevated density close to the Spanish-French border in the Bay of Biscay (panels A 
and B) is caused by samples in the Mediterranean of which the kernel extends across land; there are no occurrences of C. 
cylindracea known from that area, 
doi: 10.1371/journal, pone.0068337.g001

second row in Figure 3B shows substantially lower Schoener’s 
D for a set of models with auto-features compared to the same 
set of models with enforced simple models (the row above). 
This difference was not present for the regional background 
case (3rd vs. 4th row).

Overall predictive perform ance o f SDM s
Models built with occurrences from throughout the native and 

invaded ranges have considerably higher predictive power than 
models trained on one range and projected onto the other 
(WSRT, p = 0.0156 and 0.0078 for AUCglobal vs. AUCnative_ invaded 
and AUCglobal vs. AUCinvaded_ native respectively, N = 8, for pairs 
with global background only). These models’ test AUC values, 
calculated on 50% random test occurrences from throughout 
the range, are all close to 1 (Table 1), indicating strong overall 
predictive power. The predictive performance of models based 
on pooled occurrences from native and invaded regions barely 
differ between conditions, indicating that models built with 
occurrences from both ranges are less sensitive to choices 
made during the modeling process (Table 1).

An SDM for Caulerpa Cylindracea. The various SDMs with 
high predictive power were visually similar, and we present 
environmental suitability maps of one of the top-scoring models 
in Figure 4. The global map, which uses a threshold to indicate 
predicted suitable areas, clearly highlights large parts of the 
coasts of Australia (native region) and the Mediterranean Sea 
(invaded region) as having suitable macroecological conditions. 
In addition, the model predicts suitable environmental 
conditions along the East Coast of the USA, parts of the 
Caribbean region, the tropical to warm-temperate coast of 
Brazil, parts of the coasts of Madagascar and Southeast Africa, 
as well as Taiwan and the main Japanese islands.

Within the native region (Australia, Figure 4B), the model 
predicts suitable macroecological conditions along almost the 
entire coast of southern Australia, including northern Tasmania, 
the west and east Australian coasts except for a region in SE 
Queensland, and parts of the north coast, where some regions 
had intermediate predicted suitability. These predictions are a 
considerable extension of the presently known range of the 
species (Figure 1C), and high environmental suitability is 
predicted in the various embayments of southern Australia 
where the species has recently established and become a
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Figure 2. Results of the surveying procedure to identify the predictors present in top-scoring models. Each box contains 
the results of the survey for occurrence records from the native range, the invaded European range, or both ranges combined. Each 
column within a box represents a single survey carried out on one set of thinned coordinates. The circle diameter represents how 
often the variable in question occurred in the top 10 highest-scoring models (test AUC) for that set of thinned occurrences. The 
representation of each predictor in the top 10 is also summarized across columns (percentage indicates how many of the top 10 
models had the predictor), and the consensus predictor set across ranges is indicated in the box on the right, 
doi: 10.1371/journal, pone.0068337. g002
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Figure 3. Impact of modeling choices on the transferability of SDMs. The transferability of models is approximated by test 
AUC (panel A) and the global niche overlap (Schoener’s D, panel B). Columns and rows represent the combinations of the four 
factors that were varied in our experimental design and are identical in both panels. The values are also plotted as colors along a 
color gradient to permit rapid visual assessment of the important factors, with warmer colors indicating higher values. Each AUC 
value in panel A represent the s 
doi: 10.1371/journal, pone.0068337.g003

conspicuous member of the benthic community. The 
multivariate environmental similarity surface (MESS) map is 
positive in almost the entire range (Figure 4D, blue colors), 
which indicates that the conditions present in the region were 
observed in the training data and gives extra credibility to the

model prediction. Given that the MESS map is mostly positive 
the "most dissimilar" (MoD) variable map is nearly blank 
(Figure 4F).

In the invaded region (Figure 4C), the model also predicted 
beyond the known occurrences of the species (Figure 1A),
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Table 1. Predictive perform ance of m odels built with 
occurrences from  native and invaded ranges as a function 
o f choices made in the m odeling process.

occurrence

th inning

performance (test 

pred ictor selection model com plexity AUC)

yes no simple 0.975

yes no auto 0.990

yes yes simple 0.982

yes yes auto 0.988

no no simple 0.972

no no auto 0.991

no yes simple 0.974

no yes auto 0.992

The overall predictive performance, as measured by the test AUC, Is very high and 

the factors have only a minor Influence on the outcome. All models compared In 

this table use the same set of 10,000 background points (global, equal area).

including Portugal, the NW of Spain and the NW of Africa. In 
the East, suitable macroecological conditions were inferred for 
the northern Red Sea, although the MESS map indicates that 
there is extrapolation beyond observed environmental 
conditions (Figure 4E), with the MoD map highlighting the 
(high) salinity occurring in the northern Red Sea as the most 
dissimilar variable.

The entire Maxent run including input data and all outputs is 
available for examination on FigShare (http://dx.doi.org/ 
10.6084/m9.figshare.681723). Besides showing the main 
results presented here in more detail, this resource also allows 
examining limiting factors and exploring the components of the 
prediction for particular sites with Maxent’s explain tool.

Discussion

Our results have implications for the invasion biology of 
Caulerpa cylindracea as well as the more general question of 
how best to model the distribution of species introduced 
outside their native range. We will first highlight the effects of 
the different distribution modeling practices on model 
transferability and performance, as well as some limitations of 
the procedures described here. Then we will discuss the 
meaning of our SDMs for the spread of C. cylindracea in 
Europe and Australia.

Building m ore reliable SDM s o f introduced species
Niche conservatism is a central assumption when 

extrapolating correlative SDMs of introduced species to an 
area outside the bounds of training occurrences. The poor 
predictive power of SDMs trained in the native range and 
projected onto the invaded range that has been observed in 
many studies led to the conclusions that ecological niches can 
shift in association with introductions outside of the native 
range (e.g. [19,21,71-73], but see 6). In interpreting such niche 
shifts, it is important to realize that correlative models estimate 
a species’ realized niche and that, as a consequence, 
observed niche shifts do not necessarily reflect physiological

changes (i.e., modifications of the fundamental niche). In other 
words, the perceived niche shift can result from two different 
realizations of the same fundamental niche in different areas, 
and it has been argued that this scenario is more parsimonious 
than that in which the fundamental niche changes [9,74], 
Flowever, changes in the fundamental niche of introduced 
species are certainly possible [4,15],

Regardless of whether niche shifts observed in correlative 
SDMs are a consequence of changes in the realized or 
fundamental niche, it would certainly be useful to have a set of 
procedures that improve the predictive power of SDMs outside 
the training range in order to inform conservation planning and 
decision making. The methods used here were applied hoping 
they would improve the transferability of the SDMs of 
introduced species built using the popular presence-only 
method Maxent. We found that reducing the number of 
predictor variables drastically improved the transferability of our 
SDMs. Limiting the model complexity, reducing geographic 
sampling bias by occurrence thinning and choosing a global 
background had comparably small effects.

The effect of the choice of predictors has long been known to 
have a drastic effect on the transferability of SDMs of 
introduced species (e.g., [4,9,19,20,21]). The method used 
here, which surveys all combinations of variables for the native 
as well as the invaded region, attempts to identify variables that 
are likely to be of global rather than regional significance. 
Models based on the set of variables identified by this 
approach were more transferable than models with a more 
comprehensive set of variables, irrespective of whether 
reciprocal test AUC or Schoener’s D were used to measure 
transferability. Although the use of procedures to select 
predictors and model complexity in an automated manner is 
common practice in many types of modeling including niche 
modeling [75-77], to our knowledge such approaches have not 
been used commonly in combination with Maxent. Flowever, 
we do acknowledge that such predictor selection methods are 
no substitute for physiological knowledge of the organism [78], 
and here they were used to further refine a set of predictors 
that was already reduced from the full Bio-ORACLE dataset 
based on what we know are important factors determining algal 
growth.

Previous studies have also shown that reducing the 
complexity of models to fit smoother responses yields the best 
correspondence to physiological knowledge and as such, the 
models achieve better overall performance and have higher 
transferability [7,10,11,79], For these reasons, the use of 
simple environmental response surfaces to avoid overfitting 
has been recommended for SDMs of invasive species [4,7,11], 
Generally, the complexity of maximum entropy models is 
adjusted by using L, regularization [68], which varies along a 
continuous scale and has been used in other studies aimed at 
improving the performance of Maxent SDMs [10]. We chose to 
use a simple dichotomy between Maxent’s auto-features 
versus the use of only linear and quadratic features to keep the 
experimental setup simple. Our results did not show a 
meaningful difference between the transferability of models 
built under both conditions and thus we did not observe the 
improvement of predictions with simpler models that other
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Figure 4. Species distribution model for Caulerpa cylindracea. Panel A shows global areas predicted to have suitable 
macroecological conditions for the species. This map uses a threshold for Maxent’s logistic suitability corresponding to the 10% 
training presences (threshold = 0.053) and predictions are plotted only for coastal areas (less than 7 pixels from shore), with 
predictions in the open ocean masked. Panels B and C show the continuous logistic model output for the native and invaded 
ranges, respectively. The corresponding multivariate environmental similarity surface (MESS) maps are shown in panels D and E, 
and the most dissimilar (MoD) variables in those areas that require extrapolation are shown in panels F and G. 
doi: 10.1371/journal, pone.0068337.g004

studies have [7,10], This can probably be attributed to the fact 
that model complexity does not differ much between the two 
conditions in our experimental setup: the auto-features 
condition only differed in having hinge features in addition to 
the linear and quadratic features used in the "simple" condition. 
Nonetheless, we follow previous authors in their conclusion 
that correlative models with smooth responses will generally 
outperform those with complex responses. This is especially 
true if the number of occurrence points used to build models is 
large, because this increases the potential for overfitting. Since 
the identification of suitable predictors and an appropriate level 
of model complexity are related to one another, it may be 
advisable to integrate these two into a single procedure as 
commonly done in classical model selection procedures [75],

The use of thinned occurrences generally resulted in SDMs 
with better transferability, but the effect was not significant in a 
Wilcoxon signed-rank test and small compared to that obtained 
from predictor selection. Nonetheless, we anticipate that this 
approach may be useful in situations where the geographical 
bias is stronger than in our dataset and/or in situations with 
stronger spatial autocorrelation in the environmental grids. 
Other approaches that have been proposed to deal with 
geographic bias in occurrence records are to introduce the 
same sort of bias in the background points by specifying a 
target-group background, using bias grids in Maxent, or 
through application of trend surface analysis [7,25,26], Various 
statistical approaches to address spatial autocorrelation have 
also been used [13]. In our case study, the background
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selection had a rather limited effect on the transferability of 
SDMs and in this context, it is worth noting that there were 
differences between the transferability results depending on 
whether they were measured as test AUC or as Schoener’s D. 
The difference was most pronounced for models with global 
backgrounds and auto-features (compare second row in Figure 
3A with second row in Figure 3B). It is well known that AUC is 
sensitive to background choice, with larger backgrounds 
inflating AUC values while not yielding more informative 
models [26,80,81], Our observation of higher AUC values for 
global backgrounds compared to regional backgrounds, which 
was not paralleled in Schoener’s D, is completely in line with 
this. As such, for comparisons of the transferability of models 
built with different backgrounds, we suggest the use of 
Schoener’s D rather than test AUC. Regarding the 
transferability of models as a function of the background 
selection, a previous study concluded that using background in 
reachable areas provides a "less risky prediction space" [7], 
Our experiments did not confirm this conclusion but suggested 
that transferability (as measured by Schoener’s D) is indifferent 
to the choice of background.

From the results discussed above it is clear that the 
usefulness (i.e., the predictive power) of reciprocal niche 
models is quite variable and strongly depends on the choices 
made. While they barely outperform random models under 
some conditions (some test AUC < 0.6 in Figure 3A), making 
the right choices outlined above improves the predictive power 
of models trained in one range and projected onto the other 
(0.90 < test AUC < 0.93 for the best models, Figure 3A). 
Nevertheless, if distribution data are available from both the 
native and invaded ranges, it is advisable to build models from 
a combined set of occurrences. For our data, models based on 
combined occurrences outperformed reciprocal models (test 
AUC > 0.99 for best models). In this case, it is appropriate to 
use test AUC to compare performance, as all these models are 
built and evaluated using identical background points. Similar 
conclusions regarding the better predictive power of models 
using combined native-invaded datasets were reached in 
studies of other species (e.g., [4,82]). Our results also suggest 
that the combined data have the advantage of being more 
insensitive to the modeling choices that need to be made, but 
this generalization should be verified with other case studies.

Potential lim itations
Besides discussing the performance of the various methods 

applied, it is also useful to point out their assumptions and 
potential caveats.

Firstly, our case study had the advantage of having relatively 
large sets of occurrence records for the native as well as the 
invaded range. In many cases, however, one will want to build 
reliable predictive models for species that were recently 
introduced and for which only a few occurrences have been 
recorded in the invaded range. Flow could a suitable set of 
predictors be identified in this case? Our approach relied on 
having sufficient data to identify those variables with predictive 
power in both geographic regions separately and combined. As 
an alternative, one could first identify the predictors achieving 
predictive power in the native range and subsequently compare

the frequency distribution of those variables between samples 
from the native and invaded ranges with the aim of avoiding 
variables for which the invaded samples are outside of the 
range of values of native samples. It may also be beneficial to 
upweight the scarce samples from the invaded range in the 
model-building step. It is worth noting that we used an 
essentially arbitrary threshold to retain predictor variables, i.e. 
they had to be present in 60% or more of the top-scoring 
models for at least two out of three regions (Figure 2). This 
approach was chosen because variables important in multiple 
regions are more likely to be of global importance, and 
secondly because the 60% threshold resulted in a halving of 
the number of predictors. Flowever, this raises the question of 
how these criteria influence the results and whether more 
objective criteria could be used. The evaluation of all these 
ideas as well as other possible approaches is an attractive 
avenue for further research.

Our general approach towards increasing the transferability 
of SDM does not make explicit assumptions about whether or 
not a niche shift between ranges is present, or if it is, whether it 
is situated at the level of the fundamental or the realized niche. 
The ideal scenario is that there are no niche shifts between the 
populations and transferability is not an issue. Flowever, if a 
niche shift is present, our predictor reduction approach will 
eliminate those predictors that have poor predictive power in 
one or both ranges, regardless of whether any changes in 
predictive power between regions are due to differences in the 
realized or fundamental niche. While we expect that eliminating 
predictors that have regional rather than general relevance will 
be sound in a majority of cases, there are scenarios imaginable 
where this will not work. For example, if the correlation 
structure of predictor variables differs between regions, an 
indirect variable (i.e. one that does not affect the distribution 
but is correlated with another one that does affect it) may be 
identified as important in both regions but have very different 
response curves in both areas and thus lead to poor 
transferability. Similarly, variables that are directly relevant to 
the distribution may differ systematically between regions, 
decreasing the transferability of the SDMs built from them [74],

Even though it can be expected that the distance-based 
thinning will improve most models, this may not always be the 
case. In fact, this procedure may discard useful data when 
regions of dense sampling coincide with steep ecological 
gradients over short geographic distances. Also, if sampling 
reflects population densities, geographic autocorrelation of 
records can add a potentially desirable quantitative aspect to 
the model. This will, o f course depend on the specific goal and 
the dataset being studied.

Finally, our evaluation of methods is based on a single case 
study, and there are no guarantees that our results will 
extrapolate to other introduced species. A logical next step is to 
apply these methods to a range of suitable case studies. The 
time since the introduction and dispersal potential of the 
species should be prime criteria in selecting species to further 
test these methods. Species that were introduced a long time 
ago and have had the chance to disperse widely in the invaded 
range are more likely to have spread through their entire 
potential niche and thus make good case studies.
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An additional approach towards testing the degree to which 
these methods can be generalized, as well as to explore the 
various other questions raised in the discussion, is to carry out 
simulation experiments. Simulation is a powerful tool for testing 
the logical consistency of ideas as well as the efficiency and 
reliability of methods. They have not been widely used to 
evaluate presence-only SDM methods, although there appears 
to be a trend towards their increased use in recent years 
[17,74,79,83-87], Besides identifying the circumstances in 
which niche modeling algorithms perform well and those in 
which they are more likely to fail, simulation is a powerful tool 
to assess the effectiveness of procedures such as those 
described here. Such insights would obviously be beneficial to 
the whole SDM field.

Invasion and spread o f Caulerpa Cylindracea
The distribution model presented for C. cylindracea predicted 

potential expansions in the invaded range along East Atlantic 
coastlines of Europe and Africa as well as a substantial 
potential expansion along the southern coast of Australia 
(Figure 4A). Admittedly, the logistic values in Maxent lack a 
clear-cut interpretation [88] and determining thresholds for 
presence-only SDMs is not an exact science [89,90], Based on 
several thresholds tested (e.g. 10-percentile training presence, 
equal training sensitivity and specificity), the inferred range 
boundaries are quite far beyond the known occurrences of the 
species (Figure 1 vs. Figure 4A). This suggests that our current 
knowledge may underestimate the potential range of this 
species in these areas. In the Mediterranean and East Atlantic 
region, the species has only been present for only about 20 
years and, despite the species’ relatively rapid colonization rate 
[91], it is likely that it has not reached its distributional limits yet. 
In Australia, the native area of the species, it was known best 
from the Western Australian coast [48], Flowever, the recent 
observations of invasive populations of this species along the 
southern coast, where it did not previously occur (reference 
[46] and pers. obs.), prompted us to generate SDMs for this 
species in order to investigate whether the species could 
potentially colonize more of the coast. Our models do indeed 
suggest that the macroecological conditions are highly 
favorable and that C. cylindracea could colonize the entire 
southern coastline of Australia. Besides these potential 
expansions in regions where the species is present already, 
several other coastlines are predicted to be suitable 
environment where the species could establish if it were to be 
introduced (Figure 4A).

Needless to say our models only incorporate 
macroecological predictor variables. Besides this, the 
microhabitat, as well as possible biotic interactions, also need 
to be favorable for the species to establish itself in the areas 
that are predicted to be suitable. In its native range, C. 
cylindracea is usually found on rocky substrata close to the 
low-tide mark but in more tropical locations (NW Australia and 
the Great Barrier Reef) it is typically found growing on sand in 
lagoons and around reefs. In the Mediterranean Sea, it has 
been found between 1 and 60 meters depth, on all types of 
hard and soft substrata and in different communities, with the 
only exception being unstable sandy substrata [29], A number

of studies have studied the microhabitat preferences of the 
species in some detail in the Mediterranean, showing that it 
thrives on rocky substrata among other macroalgae as well as 
in dead seagrass beds [92-94], and that it tolerates near­
bottom orbital velocities below 15 cm s'1 [93], In summary, the 
species occurs in a wide range of common microhabitats, so it 
is likely that it could establish in the great majority of areas 
predicted by our SDM if there are no biotic interactions 
inhibiting its settlement and expansion.

The correlative model from this study can also be used to 
inform experimental studies on the physiological tolerances of 
C. cylindracea. Even though we have not shown or discussed 
detailed response curves in the main paper, these are available 
as supplementary materials on FigShare (http://dx.doi.org/ 
10.6084/m9.figshare.681723). Most correspond to our 
expectations based on physiological knowledge of other algae, 
including other Caulerpa species [95], but some do not. For 
example, the correlative model indicates that the species is 
mainly found in phosphate-poor waters with the response curve 
rapidly dropping at concentrations over 0.4 pmol L'1. Studies on 
other species indicate that macroalgae have an increasing 
response curve for macronutrients and that low rather than 
high concentrations may be limiting seaweed species in nature 
[96-99], This suggests that our correlative model may be 
misled in this case. It is also interesting to note that models 
built from occurrences in the native range predicted a much 
broader range of suitable temperatures than models from 
occurrences in the invaded range. More specifically, the model 
from invasive occurrences has a response curve that peaks at 
ca. 20°C, dropping off quickly at higher temperatures. The 
curve from a model with native occurrences also peaks at ca. 
20°C, but drops much more gently at higher temperatures. 
Whether this should simply be interpreted as an indication that 
warmer areas are yet to be colonized in the invaded range (i.e. 
that the model is biased towards colder temperature due to the 
current distribution), or that the introduced strain has a reduced 
range of temperature tolerance compared to the native 
population, remains to be investigated. To further characterize 
the most relevant features determining the species’ range, it 
would be informative to evaluate the gradients of predictors 
occurring across the inferred range boundaries, and put those 
to the test in physiological experiments.

Conclusions

In order for Maxent presence-only SDMs to be useful in 
predicting and managing introduced and invasive species, a 
number of problems related to their accuracy and transferability 
have to be overcome. The methods introduced, explored and 
evaluated here aim to improve the situation. Reducing the set 
of predictors to those anticipated to be of global significance 
resulted in a strong improvement of SDM transferability, with 
occurrence thinning, model complexity and background choice 
having relatively minor effects. If available, occurrences from 
the native and invaded regions should be combined, as this 
yields the best-performing models and apparently reduces their 
sensitivity to choices made in the modeling process. We also 
presented an SDM of Caulerpa cylindracea that achieves very
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high predictive power, illustrating the applicability of these 
methods in the marine realm for which comparably little niche 
modeling has been done [100], The procedures introduced 
here are available for further evaluation with other case and 
simulation studies, which should provide further insights into 
the degree to which our results can be generalized. We hope 
and anticipate that they will form a useful strategy to improve 
predictive SDMs and in turn, help to better inform
environmental decision makers.

Supporting Information

Figure S1. Model surveying results indicating qualitatively 
similar results when analyses are carried out with global or 
regional backgrounds.
(PDF)
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