ONYX AND DTPELTIS

NEW NEMATODE GENERA, WITH A NOTE ON DORYLATMUS.

By N. A. Cobb.

I.

Fixation and Preservation of Compressen Objects.

Many suh-microscopic objects require to he compressed in order to give the hest results at the final microscopical examination, and it is well known that compression cannot be accomplished conveniently (if at all) after hardening.

To illustrate by an example: the sub-cylindrical larve of dipterous insects if examined fresh are best seen in a compressorium, but much histalogical detail is thus seen with difficulty, or escapis observation altogether. If, however, it were possible to fix, stain and monnt the larva while compressecl, a diatinat advantage would be gained. To describe a simple way of doing this is the object of these preliminary lines.

The object, say a dipterous larva or a rotifer or a tavdigrade or nematode, is compressed hetween two small coverglasses of the same size. The amount of compression must be regulated by means of two hairs, or hetter hy two pieces of spun glass, placed parallel to each other between the caverglasses. It will be found that hairs from the head, eyebrows, and backs of the hamels are of different diameters, anil a preliminary experiment will indicate which it is best to use. Having laid the animal, together with two hairs or hits of spun glass, on ome of the covers in a drop of water which is too small to entirely fill the space between the covers 10
when they are finally planed together, luy the other cover on. The animal is compressed, and is unable to move. It will be found convenient to have laid the first cover oll a minnte drop of water on a glasi object slide; by this means it will be held firally in place on the slide, and the second cover can be laid squarely on ; furthermore, after the second cover is anjusted the slide can be placed on the atage of a microscope and the animal then examined to see if its position is the correct one, und, if not, the fault can be rectified by sliding the upper cover slightly on the inwer.

Supposing the ohject to be now correctly compressed and arranged, the next step is $t \mathrm{f}$ fix the covers in place. This is rlone hy moving the two covers to the edge of the slicle hy means of a needle and touching tirst one side of the pair and then the other side with the wick of a wax taper or candle which las deen just now extinguished. The melted wax from the wick serves to cement the covers together, and they may be afterwards handled with considerable impunity. It will be rememhered that directions were given to use less water than would fill the space hetween the covers; that was a precaution necessary to liringing loth covers into close contact with the hairs that were placed between them, this securing the requisite amount of compression, and also necessary to securing a firm cementing action of the wax. If there is space between the covers at the edge unfiled by the water, the wax enters it, and if melterl wax is then also painted in small quantity on the adjncent ontside edge of the covers, a firm union results.

Allow the covers thus united to lie until all or nearly all the water between them has evaporated. They

Fig, 1-Iwo Rorsp Corksglatses, ceminted toEuther with was at a en, and having compressed hetween them 20 object will then present the apprarance illustrated in the adjacent figure. Of course a small amount of water will sometimes remain immediately ahout the compresserl animal, and this is often desirable.

If now the animal conild he fixed, stained and mounted without being allowed to change its attitude, a result often highly desirable
would be attainerl. To do this, proceed as follows:-Take an elongated piece of quill or other similar elastic nom-metallic sullstance and make in it two cuts as shown at Fig $2 n$, lu. It will be

Fig. 2. -Twn Viene of a Fifcrag Qt ILL, split and opeliesl ac as to form a compressorium.

Fig. 3. . Two Roixn Coverfilasaps, cemented toyether and placed in a guill enmpressorium.
folund that the piece of quill can then be opened and converted into a compressing machine. The covers are to be placed in this compressorium as slown in Fig. 3. Of course the compressorinm of quill should be stiff enough to firmly hold the covers in place, but should be no stiffer than will serve this purpose well.

Our compressed animal is now ready for treatment, and may be handled like any other ohject. The quill will hold the covers firmly in place, even if the pratafin should liecome disanlved or melted. If no substance is to be used that will dissolve or melt the paration, then of course the compressorinm of quill is unnecessary, as for instance when only cold solutions of glycerine are to be used and the object is to be mounted in glycerine. lf, however, one wishes to fix in hot sublimate or to proceed at once to alcohols or otber liquids that would have a lnosening or solvent action on the paraffin, then of course the guill compressorium (or a different (cement) is necessary.

To fix the nlject, take hold of the quill and place one edge of the covers io the fixing fluid; the fluid runs in by capillary attraction, and fixation talees place. The fixing fluid may he replaced by fresh fluid or can be washerd out by the use of blotting paper in the ordinary way, i.e., place one edge of the covers in the Huid it is desired to draw in and place fresh hlotting paper in contact with the opposite edge of the covers.

An excellent way is to make the whole apparatus represented in Fig. 3 so small that it can be readily introduced into the object box of a differentiator. When the object returns from the differentiator the compressorium is carefully removed and the ohject will be found not to adhere to the covers, providing they were originally clean. It would be difficult to exceed the perfection of objects thius treated. The covers should not lie horizontal in the differentiator, otherwise the time occupied in treatment will be lengthened owing to the difficulty with which the fluids will enter the space between them.

II.

The New Genus Onyx.

In the worms constituting the genus Onyx the structure of the head and neck is very characteristic, but at the same time the kinship with the gemus Dorylaimus is at once evident. It will he presently seen, however, that the two genera are very distinct from each other.

As one would expent from the foregoing remark the pharynx in Onyx is armed with a spear. As in Dorylaimus, so here, the spear is axial and attached to the clorsal side of the pharynx. The uncertainty with regard to the length of the spear is however lessened in Onyr by the presence of a distinct pharyngend suelling or bulb, which is, as far as length is concerned, nearly co-extensive with the spear. This pharyngeal bulb is an elongatedellipsoidal, muscular swelling, several times wider than the spear which it encloses; its function is hy longitudinal contraction to protrude the spear. This latter organ is stout and tipped with a characteristic horny structure, from which the gemus takes its name. As seen under the microscope, this tip presents itself as an inverted V-shaperl, or more properly sagittnte, hody having an opalescent appearance. It is not quite symmetrical, for the ventral barb is unifnrmly slightly louger than the rlorsal. I hardly need remark that this deseription refers to the view usually ohtained, that is to say, the profile or lateral view, and that this body is in reality a hollow cone. The ring so constantly present in the throat of Dorylaimus is paralleled in Onya by a three-fold growth from the walls of the anterior part of the pharynx, whose
function is the same as that of the ring in Dorylaimus, namely, to serve as a guide and support to the spear. Because of its affinity for carmine this threefold structure is usually conspicuous in specimens treaterl with that reagent. Tlat partion of the cesophagus lying lehind the pharyngeal bull reininds one forcibly of the corresponding part in Dorylaimus, the narrow anterior half being surrounded near the middle of the neek hy the nerve-ring, and joined to a stouter, nearly cylindrical, muscular posterior half, two-thirds as wisle as the body.

Before rescribing the head it is necessary to premise that the cuticula is finely striated. The strixe in the single known species appear like plain transverse lines 8μ apart, so that the total number in the cuticula of an arlult worm is calculated at ahout twenty-seven thousand. The nearly cylindrical neck terminates anteriorly in a rounded head, which hears, fan forward, two large and conspicuous spiral lateral organs. These commonly lie opposite to, or a little in front of, the cap of the spear. The striations of the cutioula cease on the head to be transverse. One

Fiag. 4.-Lateral biew of the head of ה:rx Prafectle, with the mauth open and diaplaying lipe The phargngeal bulh and its contained syear aro clearly shown, as is one of the spiral lateral organs, and the gpear-guide. The left hand side of the figure is dareal. $\times 400$.

Fig. 5.-I.ateral View of taf Hfad of Ovy rlogeti. The hparl of the eppar is shown just hehind the spisal lateral organ. Under the cap of the spear are two cleveloping caps for future 118e, showitg neatly the mamer of dentitson. The games for the spear are partially hidden ly the apima organ. The right hand side of the fgiure is dorest. $\times 400$.
may olsserve them passing circularly around the lateral organs and on some parts of the head they are arranged longitudinally. This
latter fact larmonizes with the manner in which the cuticula at the head expands to allow of the protrusion of the lips, which are ordinarily so far withdrawn that only the tips of their papillæare visible. The peculiar action of the cuticula on the head may he compared tu the opering and shutting of an inverted umbrella. When the lips and other mouth parts are withdrawn, the cuticula is drawn together and disposes itself in longitudinal folcls. When the moutl parts are thrust forth, and they can be thrust forth to a vemarkable extent (see Figs. 4 and 5), the cuticula unfolds to permit the action, and the strize become less visible.

I rm not altogether clear ahout the muscles hy means of which the foregoing movements are accomplished. It is possilule that the mouth may be closed hy an orbienlar musele or even by the elasticity of the cuticle. Threads, doubtless muscular, pass ahliquely backward from the pharyngeal bulb and attach themselves to the body wall. These elements, if muscular, are of course retractile in function. The pharyngeal hulh is also supplied with intermal threarts, also contractile, which if followed in the direction of the lips are found to jass obliquely outward. There filaments serve to protrurle the spear. The action of the various organs of the head and neek cluring the process of feerling may, therefore, he thus described. The lips are thrust forth and applied to the organism whose juices are to he sucked. This operation is facilitated hy the papiliz which net as feelera and perhaps also hy other mouth parts acting as clutching organs. When the lips have been thiss applieul, they are made to athere by suction exerted in tle muscular posterine portion of the eesophagus. The spear is next braught inlo play, an operation effected hy the muscles inside the pharynx which act against the close adhesion of the lips as a resistance. Thms the spear is marle to glide forward through its guide and to pierce the surface held hy the lips. When the surface has been pierced, the liquid food heveath it is made accessible and is sucked in and swallowed loy means of the large muscular posterine msophageal swelling.

This method of using the spear is somewhat unique. In Dorylaimus, with which Onyx will naturally be compared as a
related genus, the manner of using the spear is quite different. The differences will he most clearly apprehencled if their consideration be precedel by a short discussion of the mechanics of the Nematode spear taken in a general sense. The office of the spear is to puncture memlaranes which enclose the food-materials of its possessor-in most cases the wells of cells. For this operation it is necessary to have an opposing pill or inertia greater than the force which moves the spear forward. The inertia of the animal is not a sufficient reaction hecanse of its small size and consequent lightness; therefore we find, for the production of a pull, in all cases where a spear is present, well-developied lips and a powerful sucking apparatus in the shape of a bighly muscular portion of the cesophagus specially adapted to producing a partial vacuum. The lips are applierl, suction is then exerteal, and the montl is thus made to firmly adhere to the membrane to be pierced. This force of suction is the mecharical " base of aperations" for the action of the spear, and the pull of the suction mist be greater than the force required to thrust the spear forward, otherwise the lips will let go their hold hefore the spear can ancomplish its work.

In all the genera possesserl of a spear, the action of the lips in obtaining a purchase is much the same, and in this respect, therefore, Onyx cannot be said to present markerl peculiarities. When we come, however, to the manner in which the spear is thrust forward, we find marked differences, and Onyx presents one of the most marked types. The most emphatic morplological expression of the difference existing hetween Onyx and its congeners is the possession hy the former of a distinct muscular pharyngeal bulb. There is no smoh bulb in any known species of Tylenchus, Aphelenchus, Dorylaimus, or other spear-carrying genus. In Tylenchus the spear is kelieved to he moved backward and forwaril ly means of muscles attached to the three chitinous bulhs which constitute its posterior extremity. I believe, however, that no surh muscles have been observed in Dorylaimus; in fact the sjuear in this genus appears to me often to be moved forward, not so much hy muscles attached to itself as by muscles attached solely

Fin. G.-Extexineti connition of the Hzad of DaryLainistatis. That portion heyonal the line marking a tranaverge constrictian can he retravted uithin the skin of the pesterior part. The srear is elightly protrucled, and the ring through which it slives is clenrly Ehown. $\times \$ 50$.

 Dotylainus latus, ${ }^{*}$
 parent skin of this interesting species is deetitute of hairs and is pnssessed of a distinct, finely striated sub-cuticula in which are tin be seen the atructures denominated "pares" by Bastian. The pores did not seem to me to perforate the outer cuticula. The neck is conoid to somewhat hehind the expanded lip-region, where it hecomes convex-conoid. Fach of the six lips is, as usual, supplied with two papillae. I could observe neither eyes nor lateral organs, unless, indeed, the latter be the extermal openings of the glands which I believed to be discernihle in the anterine part of the neck when the head was protruded. Under those circumstances these argans, each longer than the head, lay as far behind the fold in the cuticula as the latter was behind the lips. Each appeared like a unicellnlar gland with a short neck, indistinct ampulla and short chitinous lateral (?) outlet. The pharynx and apear are normal. The reanphagus expanda suddenly near the mildle, the anterior part being only one-fourth as wide as the neck, while the posterior part is twice that width. The brownish-green intestine is tworthirds as wide as the hody, and is aet off from the resophagus by a distinct constriction; the intestine is composed of large cells filled with emall granules. The pre-rectal portion of the intestine is twice as long as the adjacent body diameter, ite anterior end being lesa distinctly marked
represented in the accompanying cuts. The manner in which this peculiar arrangement is made of service to the animal may be thits reasoned out. The head liaving been thrust out and the lips having ohtained a purchase, the spear is moved forward by contracting the length of the hody by means of muscles attached to the body wall inside the head. This contraction results in an infolding of the skin of the head. This reasoning is exactly in harmony with the usual position of the spear in Dorylaimus, for it is well known to he situated well forward, heing in fact often nurmally a little exserted. Attention might also be called to the sinuous condition of the narrow anterior portion of the resophagus as being also in harmony with the ahove view. The apparent disproportion hetween the length of the neck and that of the cesoplagus might be this explained.

We return now to Onyx. Passing fron the osophagus the food enters the intestine through a narrow cardia. The connection between the nesoplagus and the intestine is unusually small, the diameter at the cardiac collum being not more than a sixth as great as that of the base of the neck. The thick wall of the intestine is built of a single layer of large cells, which are of such a size that half-a-dozen side by side make up a circumference. The width of the intestine where it is the sole occupant of the internal cavity is not far from four-fifths as great as the width of
off than its posterior. The distinct lateral fields are of a lively brown colnur and appear to terminate posteriorly in pores near the rounded terminus of the tail. Anteriorly they become narrower and apparently cease altogether in the neighbourhood of the nerve-ring. This latter is ohligue and as wide as the resnphagns at the point encircled. The short tail is conical to the blunt terminns and is traversed transversety by distinct ansl muscles. To the indistinct vulva succeeds a vagina Eupplied with a chitinous lining and the usual glands. The rellexed portions of the ovaries are uarrow and filled with double rows of developing ova, and extend as far back as the vulva. The eggs are one-balf as wide as the body and two to three times as long as wide, and are deposited before segmentation begins. The male is mankown.

Hab. Roots and stems of grass, Syriney, Australia, at sll seasons.
the hody. The rectum is of the usmal form. There is no prerectal portion as in Dorylaimus.

The female sexual apparatus is double and symmetrical, each ovary being reflexed. The vagina is well developed, and is supplied with a chitinous lining and the usual vaginal glands. The male sexual appratus is douhle and commonly directed forward throughout its extent, but sometimes having the ends of the testicles reflexerl. The ductus ejaculatorius extends along that portion of the helly occupied by the row of accessory organs, and appears to he composed of a double row of cells much flattenerl in the direction of the axis of the body. The free extremity of each testicle is filled with from fifty to one hundred elongated structures arranged radially, hut dirented ohliquely towards the axis of the organ. These horlies are gramular and stain in carmine. They increase rapidly in size posteriorly and become the mothercells of the spermatoooa, which they appear to do hy a condensation of the gramular matter contained in them into a distinct nucleus. The flattened mother-cells are packed in two or three rows after the manner of a string of dried figs, hat hegin so snon to hreak up that it is often impossible to count more tlan twentry of them. The spermatozo resulting from the breaking up of the mother-cells are distivetly nucleated, spheroidal, graunlar hodies whose diameter is one-fifth to one-fourth as great as that of the testicle. There are two spicula, and they are supplied with accessory pieces. On the ventral line a single row of jreanal accessnry organs is found, coextensive with the ductus ejaculatorius. Caudal glands are found in both sexes. The posterior part of the tail, or terminus, is larger than usual, conical aud destitute of strize.

Tn amolier journal* I have called atkonlion th the existence of stria in the cuticula of two species of Dorylaimus, and ventured

[^0]the remark that other species if carefully examined would perlaps prove to he also striated. Since making those ohservations I have contirmed the impression under which they were written, by the disoovery of etrite in a vomber of other species of Dirylatimus. These strice are generally mosi clearly visible near the posterior extremity of the animal. The occurrence of spiral markings on the hearl of Onys, and of fine transverse striæ in its cuticula, conpled with the general resemhlance to Dorylaimas, when taken in ennunction with the ohservation of fine striae on many specifs of the latter geons and oliscure spiral markings on two species, olovinusly give a new character to the group of Nematorles of which Onyan and Dorylrimats are representatives, and suggest new phylogenetic probabilities.

The worms belonging to the genus Onyr are readily recognised by the cylindrical neck and peculiar hearl. The single specics now first rescrihend is called on account of the perfection of its clevelopment
 traversed by twenty-seren thonsand transwerse strige and bears throughout the length of the loody very slender and rather long hairs These latter are, as usial, longer and more numerous near the head. where their length is about half as great as that of the diameter of the lindy. When the mouth is closed the anterior extremity is liemispherically rounded. The conspieunus lateral markings are sn curved that the right hand one appears as a left-hanclerl spiaal passing throngh alont 450° of angular space, wind the left hand one as a corresponding right-handed spiral When the worn is placed in profile the spirals appear to lo one-half as wirle as the pharyngeal bulb, the lattor lofing itself one-half as wide ass the head. There are no eyes. When the mouth is closed the summits of the twelve pointed papillie with which the lijs ate armed may be seen crowded together at the small orifice. When the mouth-parts are thrust forward, the points of the papilla? become sepurated from each othor and then sometimes have the appearance commonly presented by the lips and papille of
the body. The rectum is of the usual form. There is no prerectal portion as in Dorylaimus.

The female sexual apparatus is double and symmetrical, each ovary being reflexed. The vagina is well developed, and is supplied with a chitinous lining and the usual vaginal glands. The wale sexual apparatus is double and commonly directerl forward throughout its extent, but sometimes having the ends of the testicles reflexed. The ductus ejaculatorius exiends along that portion of the belly occupied by the row of accessory organs, and appears to be composed of a double row of cells much flattened in the direction of the axis of the body. The free extremity of pach testicle is filled with from fifty to one hundred elongated structures arranged radially, but directed obliquely towards the axis of the organ. These bodies are granular and stain in carmine. They increase rapidly in size posteriorly and become the mothercelly of the spermatoona, which they appear to do by a conden. sation of the granular matter contained in them into a distinct nucleus. The flattened mother-cells are packed in two or three rows after the manner of a string of dried figs, hot hegin so soon to hreak n p that it is often impossible to count more than twenty of them. The spermatozos resulting from the breaking up of the mother-cells are distinctly nucleated, spheroidal, granular bodies whose dinmeter is one-fifth to one-fourth as great as that of the testicle. There are two spicnla, and they are supplied with accessory pieces. On the ventral line a single row of preanal accessory organs is found, cosxtensive with the ductus ejaculatorius. Caudal glands are found in both sexes. The posterior part of the tail, or terminns, is larger than usual, conical and destitute of strix.

In another journal* I have called attention to the existence of strix in the cuticula of two species of Dorylaimus, and ventured

[^1]the remark that other species if carefully examined would perhaps prove to he also striated. Since making those ohservations I have contirmed the impression under which they were written, by the discovery of stria in a number of other species of Dorylaimus. These strixe are generally most clearly visilule near the posterior extremity of the animal. The nccurrence of spiral markings on the head of Onyx, and of fine transverse striæ in its cuticula, coupled with the general resemblance to Dorylaimus, when taken in conjunction with the observation of fine striz on many species of the latter genns and obscure spiral markings on two species, obviously give a new character to the gronp of Nematorles of which Onyx and Dorylaimats are representarives, and suggest new niylogenetic frohahilities.

The worms belonging to the genus Onyx are readily reangnised by the cylindrical neck and peculiar head. The single species now first described is called on account of the perfection of its development
 traversed by twenty-seven thoussnd transverse strite and bears throughout the length of the hody very slender and rather long hairs These latter are, as usual, longer and more numerous near the head. where their length is ahout half as great as that of the diameter of the hods. When the mouth is closerl the anterior extremity is hemispherically rouncled. The conspicuous lateral markings are so corved that the right hand one appears as a left-handed spiral passing throngh ahout 4.50° of angular space, and the left hand one as a corresponding right-handed spiral When the worm is placed in profile the spirals appear to lie one-half as wide as the pharyngeal lulb, the latter being itself one-half as wide as the head. There are no eyes. When the mouth is clnsed the summits of the twelve pointed papillee with which the lips are armed may he seen crowiled together at the small oritice. When the mouth-parts are thrust forward, the points of the papille hecome separated from each other and then sometimes have the appearance commonly presented by the lips and papilla of

Chromadora. The pharyngeal bulh is ahout one-fourth, the posterior or cardiac bulb about two-fifthe, and the intermerliate cannl about one-third as long as the neck. While the cylindroid cardiac swelling is three-fourths as wide as the neck, the pharyngeal swelling is only one-half and the intermediate canal only one-third as wide as the neck. The slightly oblique servering has ahout the same width as the cesnphageal canal it surrounds, and is accompanied by the usual groups of nerve-cells. The tail is slightly convex-conoid to the large conical temminus, which begins with a slight expansion. The widest portion of the terminus is one-third as wide as the base of the tail The caudal glands are situated in the anterior part of the tail, and are three in number. The reflexed portion of the ovaries reach one-third the distance to the vulva.
 the male closely resembles that of the female, the only difference being an arcuate form and the presence of an inconspicuous, low, broad, ventral, bristle-bearing papilla near the middle. The ventral series of twenty to twenty-eight equi-distant accessory organs lies immediately in front of the anus and occupies a distance a little more than twice as great as the length of the tail. The linear spicula, two-thirds as long as the tail, are cimetar-shaped, being of quite uniform diameter. They are rather strongly and uniformly arcuate in the distal four-fftbs. The proxime are cephaloid by unusually great expansion. The thin accessory pieces are onethird as long as the spicula.

This species is common in the Bay of Naples, living in sand in situations occupied by Amplioarus lanceolatus. The absence of large marine algæ in its habitat leads me to surmise that it is a carnivorous species.

III.

The New Gfeles Dipeltis.

Nearly thirty years ago Eberth described in his "TYntersuchungen uiber Nenatoden," under the name of Enoplus cirrtatus, a pecultar marine Nematode whose like has not since heen ohserved. I am interested, therefore, to find in my Ceylon collection a similar worm which enables me to confirm Bastian's statement that Eherth's species mentinnerl abnve was not an Enoplus. The ohservations I have marle on the Ceylon species, conpled witla observations on a new species taken in the Mediterranean, lead to the establishment of the new genus Dipeltis. The characteristics of this new genus are not numernus, lat they are well marked. The head was describrd hy Eberth as bearing on either side a peculiar oval plate. These "plates" are in reality an hitherto unknown form of the lateral organs. Fach is an ellipsoidal strncture nearly as wide as the head and having a thickened margin. Being rather more pointed anteriorly than posteriorly and extending to the very hase of the lips, they give to the head of the worm when seen in profile a peculiar eel-like or fish-like appearance. In other particulars Dipeltis is in nowise very remarkable.

The cuticula, which may or may not bear conspicuous hairs, is very finely striated. The month was said by Elierth to be furnished with tliree papillæ. It appears to me, however, that these "papillæ" are ratber to he denominated lips. One of them seems to be more pointed than the others - to lue, in fact, spearlike. The cesophagus is simply conoid. The ventrally arcuate tail is supplied with caudal glands. Ocelli are present in some species.

1. Dipeltis minor, n.sp. Female unknown.

 The neck is conoid to near the slightly nblique nerve-ring, hecaming thence more and more rlecidedly convex-conoid until it at last hecomes rather suddenly almost acute at the mouth. The length of the ellipsoidal lateral organs is one-fifth as great as the distance between the mouth and the nerve-ring, and they are ahout one-half as wide as long. Their thickened margins present a double contour. Posteriorly the resophagus hecomes threefifths as wide as the neck. The portion of the alimentary canal immediately behind the distinct carcliac collum is usually pressed to one side hy the large ventral gland, which is two-thirds as wide as the body and twice as long as wide. The position of the porus is unknown to me. The simple, arcuate, linear spicula are of nearly uniform size thronghnut and are about as long as the anal diameter. An accessory piece less than half as long as the spicula is seen to curve inward and bankward from the anus. The tail is conoid to the convex conical terminns, which is one thited as wide as the base of the tail aud is supplied with an outlet for the caudal glands similar to that commonly seen in species of Chromadora.

Habh. The single male specimen seen was taken from sand on the coast of Ceylon in the month of Marcl.
2. Dipeltiy cirrifatus, Eb. : cula is said to be smonth. Suhmedian rows of conspicuous hairs occur near the hearl, extending from the anterior extremity as far hack as the two eye spots. These latter are situated half way hetween the nerve-ring and the mouth. The neck is conoid to near the head, where it becomes convex-conoid. The mouth is said to loe surrounded hy three papille. The conoid manphagos is on the average one-tbird as wide as the neck. The cardiac collum, shallow but distinct, marks of the beginning of an intestine which is two-fifths as wide as the body. The rectum would seem to be longer than the anal diameter. The conoid tail is ventrally arcuate aud ends in a distinet outlet for the caudal glands.

[^0]: * Jenaische Zeitschrift fur Naturuissenschaft. xxiii. Idd.

[^1]: * Jenaische Zeitschrift fur Naturwissenschaft. xxiii. Bd.

