JRC Scientific and Technical Reports

Scientific, Technical and Economic Committee for Fisheries (STECF)

Evaluation of Fishing Effort Regimes Deep Sea and Western Waters(STECF-11-12)

Edited by Nick Bailey & Nikolaos Mitrakis

This report was reviewed by the STECF during its 38th plenary meeting held from 07 to 11 November, 2011 in Brussels, Belgium

EUR 25036 EN - 2011

The mission of the Institute for the Protection and Security of the Citizen (IPSC) is to provide research results and to support EU policy-makers in their effort towards global security and towards protection of European citizens from accidents, deliberate attacks, fraud and illegal actions against EU policies

The Scientific, Technical and Economic Committee for Fisheries (STECF) has been established by the European Commission. The STECF is being consulted at regular intervals on matters pertaining to the conservation and management of living aquatic resources, including biological, economic, environmental, social and technical considerations.

European Commission Joint Research Centre Institute for the Protection and Security of the Citizen

Contact information

Address: TP 051, 21027 Ispra (VA), Italy E-mail: stecf-secretariat@jrc.ec.europa.eu

Tel.: 0039 0332 789343 Fax: 0039 0332 789658

https://stecf.irc.ec.europa.eu/home http://ipsc.irc.ec.europa.eu/ http://www.irc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

This report does not necessarily reflect the view of the European Commission and in no way anticipates the Commission's future policy in this area.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC67718

EUR 25036 EN ISBN 978-92-79-22039-5 ISSN 1831-9424 (online) ISSN 1018-5593 (print) doi:10.2788/10803

Luxembourg: Publications Office of the European Union

© European Union, 2011

Reproduction is authorised provided the source is acknowledged

Printed in Italy

TABLE OF CONTENTS

Evaluat	tion of fishing effort regimes Part 3 Deep Sea and Western Waters (STECF-11-11)	4
STECF	observations	4
STECF	conclusions	5
Expert	Working Group report	6
1. Ex	ecutive Summary	7
2. Int	roduction	8
2.1.	Terms of Reference	8
2.2. I	Participants	10
	·	
2.3. I	Data Call	10
2.4. I	Data policy, formats and availability	10
2.4.1.	Data policy	10
2.4.2.	Nominal Deep Sea and Western Waters effort and catch data in 2000-2010	11
3. De	ep Sea Access Regime	12
3.1. I	Introduction	12
3.2.	Overview of spatial distribution of fishing effort data	14
3.3. I	Deep Sea effort, catch composition and catch by gear including discussion of trends	20
3.3.1.	Information presented in report	
3.3.2.	Deep Sea ICES Area I	
3.3.3.	Deep Sea ICES Area II	20
3.3.4.	Deep Sea ICES Area III	24
3.3.5.	Deep Sea ICES Area IV	
3.3.6.	Deep Sea ICES Area V	29
3.3.7.	Deep Sea ICES Area VI	34
3.3.8.	Deep Sea ICES Area VII	40
3.3.9.	Deep Sea ICES Area VIII	45
3.3.10	Deep Sea ICES Area IX	49
3.3.11	Deep Sea ICES Area X	53
3.3.12	. Deep Sea ICES Area XII	55
3.3.13	Deep Sea ICES Area XIV	58

3.3.14. D	eep Sea CECAF Area 34.1.1	60
3.3.15. D	eep Sea CECAF Area 34.1.2	62
3.3.16. D	eep Sea CECAF Area 34.1.3	66
3.3.17. D	eep Sea CECAF Area 34.2.0	66
4. Western	ı Waters	67
4.1. Backgro	ound	67
4.2. Fishing	effort and catch composition in Western Waters	67
4.2.1. Wes	tern waters Area V	67
4.2.1.1.	Area V EU	67
4.2.1.2.	Area V non EU	70
4.2.2. Wes	tern waters Area VI	72
4.2.2.1.	Area VI EU	72
4.2.2.2.	Area VI non EU	77
4.2.3. Wes	tern waters Area VII	79
4.2.3.1.	Area VII excluding VIId EU	79
4.2.3.2.	Area VII excluding VIId non EU	85
4.2.3.3.	Area VIId	85
4.2.4. Wes	tern waters Biologically Sensitive Area (BSA)	90
4.2.5. Wes	tern waters Area VIII	94
4.2.5.1.	Area VIII EU	94
4.2.5.2.	Area VIII non EU	98
4.2.6. Wes	tern waters Area IX	98
4.2.6.1.	Area IX EU	98
4.2.6.2.	Area IX non EU	102
4.2.7. Wes	tern waters Area X	104
4.2.7.1.	Area X EU	104
4.2.7.2.	Area X non EU	104
4.2.8. Wes	tern waters Area CECAF 34.1.1	106
4.2.8.1.	Area 34.1.1 EU	106
4.2.8.2.	Area 34.1.1 non EU	107
4.2.9. Wes	tern waters Area CECAF 34.1.2	109
4.2.9.1.	Area 34.1.2 EU	109
4.2.9.2.	Area 34.1.2 non EU	110
4.2.10. W	Vestern waters Area CECAF 34.1.3	111
4.2.10.1.	Area 34.1.3 EU	111
4.2.10.2.	Area 34.1.3 non EU	111
4.2.11. W	Vestern waters Area CECAF 34.2.0	111
4.2.11.1	Area 34.2.0 EU	111

4.2.11.2.	Area 34.2.0 non EU	111
Annex 1: Da	ata call from 23 February 2011	.113
Annex 2: Pa	rticipants	.139
Annex 3: Ex	pert declarations	.142

SCIENTIFIC, TECHNICAL AND ECONOMIC COMMITTEE FOR FISHERIES (STECF)

Evaluation of fishing effort regimes Part 3 Deep Sea and Western Waters (STECF-11-11)

THIS REPORT WAS REVIEWED DURING THE PLENARY MEETING HELD IN BRUSSELS 7-11 NOVEMBER 2011

Request to the STECF

STECF is requested to review the report of the **EWG-11-11** held from September 26-30, 2011 in Cadiz, evaluate the findings and make any appropriate comments and recommendations.

Introduction

The report of the Expert Working Group on Evaluation of fishing effort regimes in the Baltic (EWG-11-11) was reviewed by the STECF during its 38th plenary meeting held from 7 to 11 November, 2011, Belgium. The following observations, conclusions and recommendations represent the outcomes of that review.

STECF observations

General observations

The STECF expert working group on effort management EWG -11-06 met in Galway in June 2011 and in Cadiz in September 2011. The TOR for the meetings included conducting effort and catch reviews for the Baltic, Annex II A, B and C stocks, Celtic Sea, Bay of Biscay and Deep Sea/Western waters. The data call for this meeting was sent out in February 2011. A number of Member States submitted material in good time, several submitted data close to the effort meeting and some elements of the material were obtained in the first day of the meeting. Only Spain failed to provide any inputs in due time.

STECF notes that the procedures for automatic and manual checks introduced by the JRC have provided the group with more time to address the different ToRs.

Deep Sea fisheries

STECF notes that the TORs were only partially addressed due to time constraints.

Effort in a number of gears (particularly otter trawls) and countries has declined in recent years. Nevertheless increases in the effort of long liners have occurred in a number of areas.

STECF notes that there is a reduction in the landings of a number of species across the range of areas reported with the exception of landings of certain deep water sharks in the more southerly ICES areas.

The group was also requested to discuss whether additional data on fishing depth and VMS position could improve the analysis and interpretation of deep sea fisheries, and how these data could be called

from MS, processed and presented. STECF notes that additional data on fishing depth and VMS position could be useful to the deepwater data analysis and it would be highly valuable in improving the analysis and interpretation of deep sea fisheries through the identification of individual fisheries at a fine scale.

Western Waters

STECF notes that there were difficulties in preparing landings data and summaries for some Member States most notably Portugal, France and Spain are confusing. Since these MSs are key operators in the western waters overall effort figures remain unreliable.

STECF conclusions

STECF endorses the main findings and conclusions of the report of the EWG 11-11.

Western Waters

Given the poor quality and misleading effort information provided by some Member States, STECF considers that the fishery-dependent information is unreliable and not representative of the fisheries in the area and should not be used as a basis for management decisions.

REPORT TO THE STECF

EXPERT WORKING GROUP ON EVALUATION OF FISHING EFFORT REGIMES PART 3 DEEP SEA AND WESTERN WATERS (EWG-11-11)

Cadiz, Spain, 26-30 September 2011

This report does not necessarily reflect the view of the STECF and the European Commission and in no way anticipates the Commission's future policy in this area

1. EXECUTIVE SUMMARY

General remarks

- The work of the effort EWG is to collate and summarise data provided by member states. In this respect the output is dependent on timely submission of accurate material and STECF EWG is only able to provide an output which reflects the quality of these data. While every effort is made to accommodate updates and revisions from member states, it is not possible to capture all of these in the finalised reports.
- Deep sea data has been provided by a number of countries representing further development in the work of EWG. While improvements are evident from some countries involved, the deep sea and western waters effort data from others was either not supplied or was incomplete. Problems were most evident in the western waters summaries from France (pre 2009) and Portugal where it appears that failure to submit data correctly has resulted in negative effort values in some tables. Spain failed to supply any 2010 data and in the years prior to this data were incomplete. Given the prominence of these countries in the areas covered by both control Regulations, the aggregate data must be treated as uncertain.
- So far, the data available on deep sea species is mainly restricted to landings information. To gain a true perception of removals from these fisheries, catch data are required.
- The combination of questionable effort data and absence of catch information renders the calculation of CPUEs from deep sea and western waters data rather pointless for the present.

Review of Deep Sea and Western Waters effort Regimes

- STECF EWG provided a further evaluation of deep sea and western waters effort and catches. This continues to be a work in progress.
- TORs were partially achieved by EWG but there was insufficient time to address all requests as fully as might be possible in a more dedicated meeting.
- STECF SGMOS presented effort trends for each member state and gear by ICES (and CECAF) areas. The general position is that effort in a number of gears (particularly otter trawls) and countries has declined in recent years. This is most evident in the most northerly areas. Increases in the effort of longliners has occurred in a number of areas.
- SGMOS also presented information on catches and catch composition. This is very detailed but in general shows reductions in the landings of a number of species across the range of areas reported. One exception is the landings of certain deep water sharks in the more southerly ICES areas.
- Information on landings of the top 5 species in the western waters analysis was provided for demersal and pelagic species. Note that for information on herring was not extracted from the database into summary tables so could not be included in the analysis. This affects perceptions of importance of pelagic species, particularly in areas VI and VII. Data on scallops and crabs and the gear types catching them was also provided.

2. Introduction

2.1. Terms of Reference

Assessment of fishing effort and evaluation of management measures to be assessed in 2009 (Deep sea and Western Waters effort regime)

Terms of Reference:

- 1. To provide historical series, as far back in time as possible, according to each of the following fishing areas:
 - (i) ICES area I (EU waters; non EU waters), only linked to Deep Sea species
 - (ii) ICES area II (EU waters; non EU waters), only linked to Deep Sea species
 - (iii) ICES area III (EU waters; non EU waters), only linked to Deep Sea species
 - (iv) ICES area IV (EU waters; non EU waters), only linked to Deep Sea species
 - (v) ICES area V (EU waters; non EU waters)
 - (vi) ICES area VI (EU waters; non EU waters)
 - (vii) ICES area VII excluding VIId (EU waters; non EU waters)
 - (viii) ICES division VIId
 - (ix) the Biologically Sensitive Area as defined in Article 6 of Reg (EC) No 1954/2003
 - (x) ICES area VIII (EU waters; non EU waters)
 - (xi) ICES area IX (EU waters; non EU waters)
 - (xii) ICES area X (EU waters; non EU waters)
 - (xiii) ICES area XII (EU waters; non EU waters), only linked to Deep Sea species
 - (xiv) ICES area XIV (EU waters; non EU waters), only linked to Deep Sea species
 - (xv) CECAF area 34.1.1 (EU waters; non EU waters)
 - (xvi) CECAF area 34.1.2 (EU waters; non EU waters)
 - (xvii) CECAF area 34.1.3 (EU waters; non EU waters)
 - (xviii) CECAF area 34.2 (EU waters; non EU waters)

The data should also be broken down by

- Member State ;
- The following gear types:

regulated gear types

- Beam trawls
- o Bottom trawls & demersal seines
- o dredges
- o drifting longlines or set longlines (bottom)
- o driftnets or set gillnets
- o trammel nets
- o pots & traps

Unregulated gear types:

- o Pelagic trawls and pelagic seines:
- o longlines (surface)

for the following parameters:

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Catches (landings and discards provided separately) by weight of
- 5 most important (in weight landed) demersal species excluding scallops, edible crab, spider crab,
- Scallops
- Spider crab and edible crab
- 5 most important (in weight landed) Deep-sea species (according to Annex I and II of Reg 2347/2002), only related to fisheries which have been identified with special condition DEEP
- 4 most important (in weight landed) pelagic species, plus always tuna-like species (SKJ,ALB,YFT,BET,SWO).
- c. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) by Member State and gear, given by total catches of the gear divided by kW-days and GT-days.
- 2. If relevant data are available, to comment on the quality of estimations on total catches and discards.
- 3. When providing and explaining data in accordance with point (1), the following **specific question** should be answered as well

Discuss whether additional data on fishing depth and VMS position could improve the analysis and interpretation of deep sea fisheries, and how these data could be called from MS, processes and presented

- 4. To identify recent effort trends in pelagic fisheries where possible, in particular in areas XI, X and CECAF areas.
- 5. To highlight any unexpected evolutions shown by the data which are not in line with general trend.

2.2. Participants

Participants of the 2 meetings are grouped by STECF members, invited experts, JRC experts and EU-Commission representatives and are listed in Appendix 1.

In 2007, STECF and its subgroups adopted a new working style with the opportunity for stakeholders to participate as observers to improve transparency in scientific evaluations. No stakeholder participants attended in 2011

2.3. Data Call

On 23rd February 2011 the Commission DG Mare requested that Member States electronically submit fleet specific catch and effort data no later than 6th May 2011. A corrigendum was issued on 23rd March 2011 clarifying the data submission relating to FDF (fully documented fisheries). A reminder was sent to Member States with a final deadline of 20th May 2011(see. Appendix 2).

2.4. Data policy, formats and availability

Originally, the catch and effort data base structures used by STECF-SGRST were developed by the ICES Study Group on the Development of Fishery-based Forecasts (ICES CM 2004/ACFM:11, 41 pp.) with few amendments required for the review of fishery regulations. The format of the fleet specific data on catches including discards and effort is given in Annex 1 of Part II of the effort report. The format has been almost unchanged compared to the data bases compiled during earlier STECF subgroup meetings dealing with cod recovery or mixed fisheries reviews. Fields allowing for the attachment of special conditions have been adapted to accommodate the development of new management measures. To identify Deep Sea activity a specon was added to appropriate trips (see below).

2.4.1. Data policy

Experts reported a continued use of the data by STECF-SGRST but with the required permission for any use by other scientific or non-scientific groups. In the case of the Deep Sea and Western Waters data, the uncertainties surrounding some of the submissions and the fact that the process of effectively defining Deep Sea effort is still being developed means that these data are subject to significant change. This implies that national experts need to be contacted for their consent before granting access to the data. However, Denmark and Portugal reserves the right of the deletion of the national data on request.

JRC requests to be informed about applications of data access and their notifications.

2.4.2. Nominal Deep Sea and Western Waters effort and catch data in 2000-2010

The provision of information on effort and catches concerning Deep Sea and Western Waters was supplied to EWG in the context of the wider data call concerning the Baltic and Annex II effort evaluations.

The fleet aggregation according to the derogations (gear group, mesh size and management area) defined in Annexes IIA-C or aggregation according to the revised cod plan is within the competence of the Member States' institutes. While every attempt is made to encourage a consistent approach, some differences between countries due to availability of essential information, different interpretations and/or different expertise to manage the extensive databases is known to occur. A number of Member States invested additional time in improving their data submissions and the overall quality is believed to have improved. However, the new requirements to provide Deep Sea and Western Waters effort data have raised new issues and it is expected that these will take a while to resolve.

It is only recently that attempts have been made to collate Deep Sea and Western Waters effort and from the outset was seen as a first step towards providing comprehensive information. Conyinued progress was made but data provided by several countries remains questionable, incomplete or absent altogether. AS A CONSEQUENCE THE RESULTS PRESENTED HERE SHOULD AGAIN BE TREATED AS HIGHLY PROVISIONAL AND SUBJECT TO CONSIDERABLE FUTURE AMENDMENTS – PARTICULARLY THE WESTERN WATERS EFFORT INFORMATION.

Aspects of the database querying and extraction are also continuing to be refined and this year it was discovered that information on herring landings was not appearing in Western waters summaries in places where they would be expected to contribute significantly to pelagic landings – this will be corrected in 2012.

3. DEEP SEA ACCESS REGIME

3.1. Introduction

Details of the Deep Sea Regulations can be found in COUNCIL REGULATION (EC) No 2347/2002.

The format for presenting Deep Sea information was discussed during the July 2009 SGMOS meeting when experts with particular knowledge were present. It was agreed that the most useful presentation would be data summarised on a regional approach so as to identify geographic differences in effort distribution by key member states and important gears. It was decided that regions would be based on ICES areas. It may be the case that similarities between some of these areas would allow areas to be combined in future summaries. Where an ICES area contained waters within EU jurisdiction and waters outside of this, separate summaries are provided where data allow.

So as to provide a more complete and self contained picture of activities in each of the regions, it was also agreed that information on catches of different deep sea species would be presented alongside the effort data. It is hoped this will facilitate the reader in identifying key features and trends.

Data on catches are restricted to the Annex I and 2 species as shown in Table 3.1.1.

The Commission have specifically requested the following; "Discuss whether additional data on fishing depth and VMS position could improve the analysis and interpretation of deep sea fisheries, and how these data could be called from MS, processed and presented"

Additional data on fishing depth and VMS position could be useful to the deepwater data analysis. The Group feel that VMS data would be highly valuable in improving the analysis and interpretation of deep sea fisheries through the identification of individual fisheries at a fine scale.

Since fishing depth data may not be regularly recorded by vessel logbooks it could be possible to estimate depth from VMS data. If VMS were to be used it should be limited to aggregated data identified as fishing effort, such as a grid basis of 0.1×0.1 degree, and linked to logbooks for associated catches.

Data should be processed into grid format within member state to a predetermined standard methodology and submitted in a grid format for aggregation at an international level.

This aggregated data could subsequently be presented in map format.

ICES currently have a study group, SGVMS, looking at VMS issues. EWG believes that some guidance could be sought from them regarding methodology and processing this type of data and that in the future, a combined approach to accessing, collating and analysing these data would be beneficial and make better use of available scientific resources.

Table 3.1.1: Annex I and 2 species list

Code	Annex	Scientific name	Common name
ALF	1	Beryx spp	Alfonsinos
APQ	1	Apristurus laurussonii	Iceland catchark
ARU	1	Argentina silus	Greater silver smelt
BLI	1	Molva dypterygia	Blue ling
BSF	1	Aphanopus carbo	Black scabbard
CFB	1	Centroscyllium fabricii	Black dogfish
суо	1	Centroscymnus coelolepis	Portuguese dogfish
СҮР	1	Centroscymnus crepidater	Longnose velvet dogfish
DCA	1	Deania calcea	Birdbeak dogfish
ETR	1	Etmopterus princeps	Greater lantern shark
ETX	1	Etmopterus spinax	Velvet belly
FOX	1	Phycis blennoides	Forkbeards
GAM	1	Galeus murinus	Mouse catshark
GSK	1	Somniosus microcephalus	Greenland shark
GUP	1	Centrophorus granulosus	Gulper shark
GUQ	1	Centrophorus squamosus	Leafscale gulper shark
нхс	1	Chlamydoselachus anguineus	Frilled shark
ORY	1	Hoplostethus atlanticus	Orange roughy
OXN	1	Oxynotus paradoxus	Sharpback shark
RNG	1	Coryphaenoides rupestris	Roundnose grenadier
SBL	1	Hexanchus griseus	Six-gilled shark
SCK	1	Dalatias licha	Kitefin shark
SHO	1	Galeus melastomus	Blackmouth dogfish
SYR	1	Scymnodon ringens	Knifetooth dogfish
ALC	2	Alepocephalus bairdii	Baird's smoothhead
ANT	2	Antimora rostrata	Blue antimora
BRF	2	Helicolenus dactylopterus	Blue mouth redfish
смо	2	Chimaera monstrosa	Rabbitfish
COE	2	Conger conger	Conger eel
СҮН	2	Hydrolagus mirabilis	Large-eyed rabbitfish
ELZ	2	Lycodes esmarkii	Eelpout
EPI	2	Epigonus telescopus	Black cardinal fish
HPR	2	Hoplostethus mediterraneus	Silver roughy
JAD	2	Dipturus nidarosiensis	Norwegian skate
KEF	2	Chaceon affinis	Deep-water red crab
РНО	2	Alepocephalus rostratus	Risso's smoothhead
RCT	2	Rhinochimaera atlantica	Straightnose rabbitfish
RHG	2	Macrourus berglax	Roughhead grenadier
RIB	2	Mora moro	Common mora
RJG	2	Amblyraja hyperborea	Arctic skate
RJY	2	Rajella fyllae	Round skate
SBR	2	Pagellus bogaraveo	Red (blackspot) seabream
SFS	2	Lepidopus caudatus	Silver scabbard fish
SFV	2	Sebastes viviparus	Small redfish
XLT	2	Trachyscorpia cristulata	Spiny (deep sea) scorpionfish
WRF	2	Polyprion americanus	Wreckfish

3.2. Overview of spatial distribution of fishing effort data

Collation of data to address questions associated with deepwater fisheries, provided and opportunity to present spatial data across wide geographic areas giving a general picture of the distribution of fishing activity.

Figures 3.2.1 to 3.2.5 show respectively the distribution of effort for five of the categories of gear; bottom trawl, pelagic trawl, longline, gill nets and beam trawl specified in the Terms of Reference. Bottom trawl effort is concentrated in ICES Area IVa as well as the Continental shelf and slope to the west and southwest of Ireland and the UK. Up to 2010 bottom trawl effort is also found in the Cantabrian Sea and off the Portuguese coast. Pelagic trawling was concentrated to the west of Ireland, and to the west and north of Scotland in the mid 2000s. This effort decreased greatly between 2007 and 2009 but increased again in 2010. Longline effort was concentrated on the shelf and slope between Shetland and Portugal but has been in decline in recent years. In the mid 2000s gill net effort was concentrated in the Celtic sea and Porcupine Bank. Due to current restrictions in the use of deepwater gill nets much of this effort is now concentrated in the Celtic sea, with some effort in the North sea, west of Scotland and the Bay of Biscay. Beam trawling is concentrated in the Celtic sea and the western English Channel. While beam trawls are not a deepwater gear some of the species caught are classified under Annex 2.

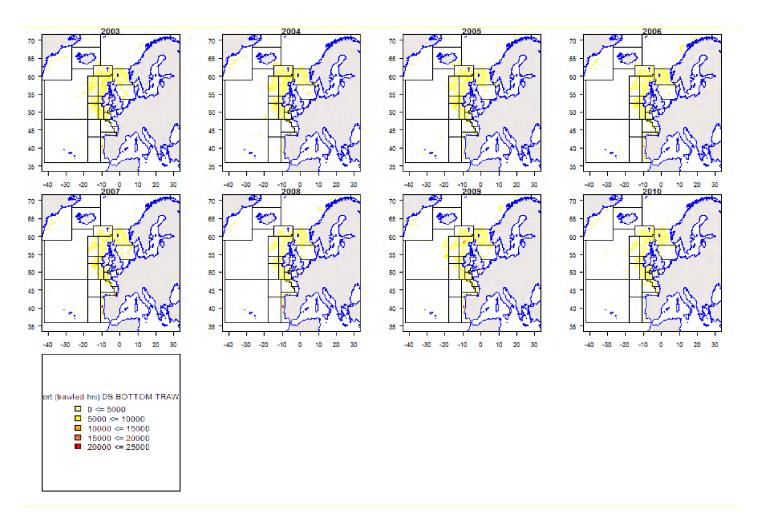


Fig. 3.2.1 Distribution of bottom trawl effort, 2003 - 2010

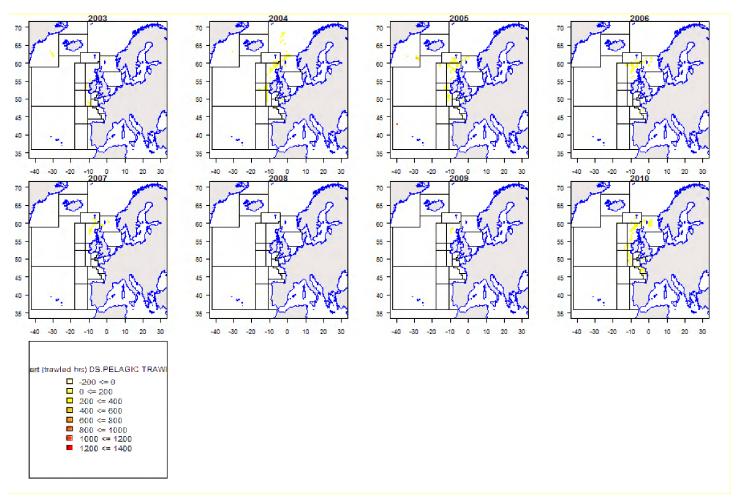


Fig. 3.2.2 Distribution of pelagic trawl effort, 2003 - 2010

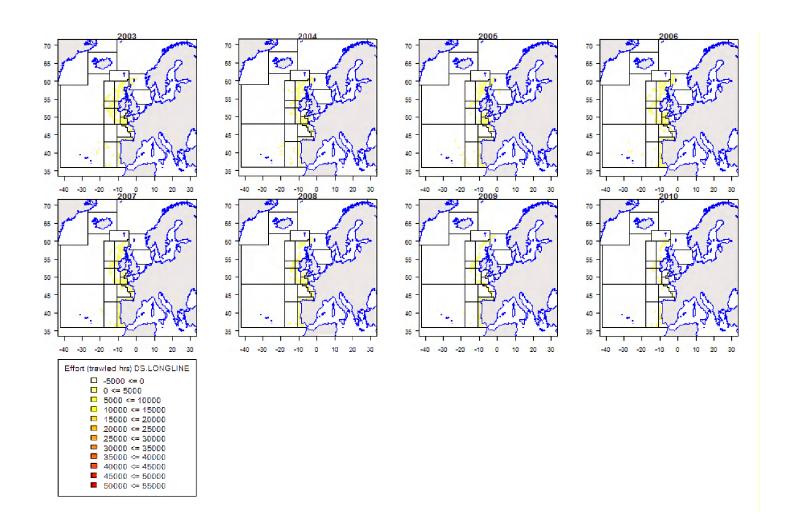


Fig. 3.2.3 Distribution of longline effort, 2003 - 2010

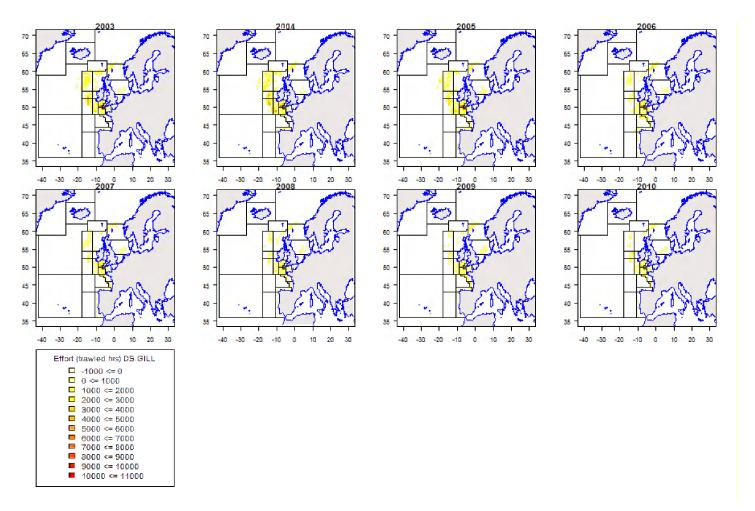


Fig. 3.2.4 Distribution of gill net effort, 2003 - 2010

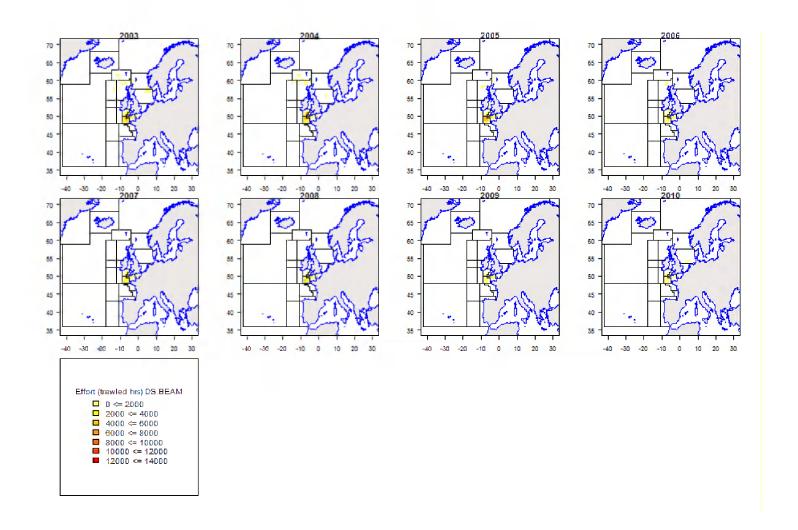


Fig. 3.2.5 Distribution of beam trawl effort, 2003 - 2010

3.3. Deep Sea effort, catch composition and catch by gear including discussion of trends

3.3.1. Information presented in report

For each ICES area, tables are included which show effort by country (and an overall effort for the area) and effort by gear. In addition, figures illustrating trends are included for the most important gears. Catches are shown for each species in bubble plots covering the years 2003 to 2010. For each gear, catch composition is illustrated by the relative sizes of bubble associated with each of the species in the Annex I&2 list, with shading used to give an indication of the absolute amount caught (white = smallest amounts, black = largest amounts)

Effort data are presented for Kwdays. Information on GT days is made available on the STECF/EWG-11-11 website:

https://stecf.jrc.ec.europa.eu/meetings/2011?p_p_id=62_INSTANCE_9gxN&p_p_lifecvcle=0&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-

2&p p col count=1& 62 INSTANCE 9gxN struts action=%2Fjournal articles%2Fview& 62 INSTANCE 9gxN groupId=43805& 62 INSTANCE 9gxN articleId=88491& 62 INSTANCE 9gxN version=1.0

3.3.2. Deep Sea ICES Area I

Effort

Only sparse effort by Germany is reported is from this area (Table 3.3.2.1). None of this is in EU waters.

Table 3.3.2.1 Deep Sea Effort (kwdays) by country ICES Area I (total)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1 non EU	GER							70600			2427	
Total								70600			2427	

Note: the entries reported by Germany in 2006 and 2009 comprised otter trawl effort only

Catch and Catch Composition

No information was provided from this area.

3.3.3. Deep Sea ICES Area II

Effort

Three countries, France, Netherlands and UK contributed most effort in this area with the pattern of each varying through time (Table 3.3.3.1); French effort showed a particularly noticeable drop in the mid 2000s. Netherlands pelagic trawl effort stopped in 2007. Germany contributed some effort in the mid 2000s. Effort in Area II (EU) shows no obvious trend, however effort in Area II (non EU) has been decreasing since 2004 (Table 3.3.3.1and 3.3.3.2).

The principal gear used in this area (Tables 3.3.3.3 and 3.3.3.4, and Figures 3.3.3.1 and 3.3.3.2) was the otter trawl (by France and UK). UK gill net effort fluctuated between 2002 and 2008 (albeit at a relatively low level), but had dropped to zero in 2010.

Table 3.3.3.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area II (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2 EU	DEN	24060		24221								
	FRA	208280	325607	623365	43886	29608	65124	210353	134456	248412	246993	144020
	GER				33516	87864		12000				
	NED	24265	22652		13200	158115						
	UK	165402	122393	114443	66870	26431	12017	200446	97363	79378	73683	71877
Total		422007	470652	762029	157472	302018	77141	422799	231819	327790	320676	215897

Table 3.3.3.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area II (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2 non EU	FRA											81836
	GER				94653	49420	43686	262923			266743	
	IRL			2940	1350							
	NED		86785		349335	781113	196020	216254				
	POR	764606	175049									
	UK	1288608	1113050	645077	701782	649580	817921	802633	613414	603521	380425	283442
Total		2053214	1374884	648017	1147120	1480113	1057627	1281810	613414	603521	647168	365278

Table 3.3.3.3 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area II (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2 EU	BOTTOM TRAWLS	FRA	208280	325607	623365	43886	29608	65124	210353	134456	248412	246993	144020
		GER					4410		12000				
		UK	145845	122393	113652	66870	17755	4661	178712	45144	24171	47637	69845
	GILL	GER				33516	53802						
		UK	19557		791		8676	7356	21734	39241	55207	26046	2032
	PELAGIC TRAWLS	DEN	24060		24221								
		GER					29652						
		NED	24265	22652		13200	158115						
		UK								12978			
Total			422007	470652	762029	1 57472	302018	77141	422799	231819	327790	320676	215897

Table 3.3.3.4 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area II (non EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2 non EU	BOTTOM TRAWLS	FRA											71532
		GER				94653		43686	262923			266743	
		POR	486524	175049									
		UK	1288608	1113050	645077	701782	649580	817921	802633	470655	603521	380425	283442
	DREDGE	FRA											10304
	LONGLINE	IRL				1350							
	PELAGIC TRAWLS	GER					49420						
		IRL			2940								
		NED		86785		349335	781113	196020	216254				
		POR	278082										
		UK								142759			
Total			2053214	1374884	648017	1147120	1480113	1057627	1281810	613414	603521	647168	365278

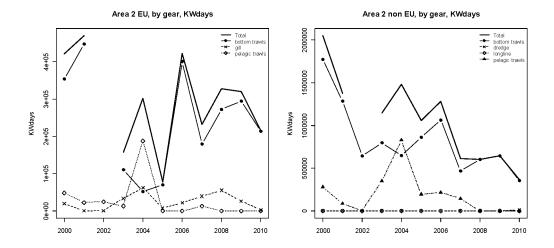


Figure 3.3.3.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area II (EU) and (non EU). Due to the uncertainty in French 2002 data this year has been removed from the figure.

Catch and catch composition

The largest landings were of greater argentine taken, in 2004, by pelagic trawls in a clean fishery operating in EU waters, (Figure 3.3.3.2, Table 3.3.3.5), probably in the region of the Norwegian slope. Otter trawl landings are the next most important and several species are taken in EU waters. From 2004 to 2009 the main species targeted was blue ling. Catches were increasing up to 2009 and the fishery appears to be targeted as catches are quite clean. In 2010 however blue ling trawl catches dropped considerably. Instead the fishery reported landings of greater argentine.

Gill nets record catches of greater forkbeard and Portuguese dogfish for 2007 and 2008, and catches of deep-water red crab, *Chaceon affinis*, in 2009 and 2010.

Tables 3.3.3.5 shows the top 5 deepwater species landed in Area II (EU). The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.3.5 Table of the Top 5 Deepwater species landed in ICES Area II (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
2 eu	ARU	2	430	NA	NA	NA	NA	NA	23
2 eu	BLI	1	1	3	4	8	20	18	5
2 eu	BRF	NA	NA	NA	NA	1	2	NA	NA
2 eu	FOX	NA	NA	NA	NA	1	1	NA	NA
2 eu	KEF	NA	NA	NA	NA	NA	NA	1	1

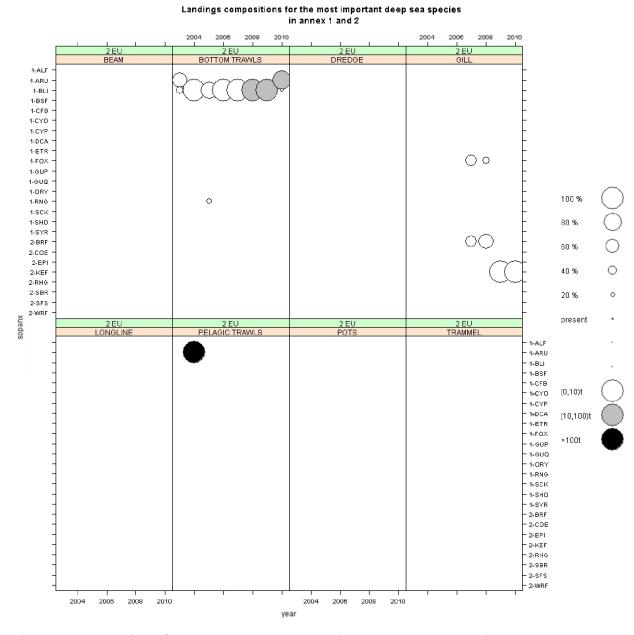


Figure 3.3.3.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area II (EU)

There was deepwater effort in ICES Area II (non EU) but no landings of the main Annex 1 or 2 species.

3.3.4. Deep Sea ICES Area III

Effort

All effort takes place in EU waters but is very limited and the majority of the records are for Danish vessels with German data reported for 2004 only.

Table 3.3.4.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area III (non Baltic)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
3 no Baltic	BOTTOM TRAWLS	DEN	132752	164649	155250	237134	517548	375444	153296			11370	2682
		GER					1470						
	GILL	DEN		85									
Total			132752	164734	155250	237134	519018	375444	153296			11370	2682

Note: the entry reported by Germany in 2004 comprised otter trawl effort only

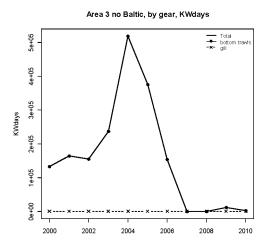
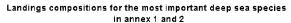


Figure 3.3.4.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area III (no Baltic)


Catch and catch composition

The main fishery was roundnose grenadier targeted by Danish bottom trawlers, up to 2006. No fishing took place in 2007 or 2008, but small amounts of grenadier were landed again in 2009 and 2010. There were small catches of greater argentine and blue ling between 2003 and 2006.

Tables 3.3.4.2 shows the top 4 deepwater species landed in Area III (no Baltic). The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.4.2 Table of the Top 4 Deepwater species landed in ICES Area III (no Baltic)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
3 no baltic	RNG	3333	5081	9975	2016	NA	NA	1	1
3 no baltic	ARU	929	990	547	366	NA	NA	NA	NA
3 no baltic	BLI	17	18	47	42	NA	NA	NA	NA
3 no baltic	ETX	NA	NA	NA	9	NA	NA	NA	NA

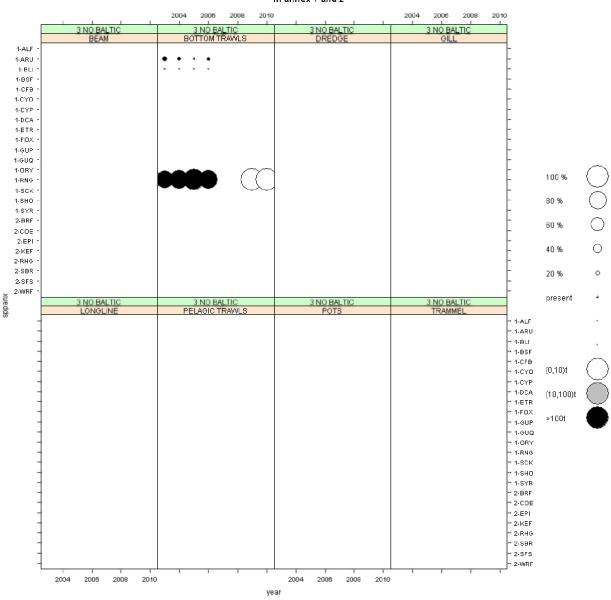


Figure 3.3.4.2 Catch composition of Annex 1&2 Deep Sea species 2003-2010 by gear ICES Area III (No Baltic)

3.3.5. Deep Sea ICES Area IV

Effort

All reported effort in this ICES area occurs in EU waters. Three countries, France, Netherlands and UK contributed most effort in this area (Tables 3.3.5.1 and 3.3.5.2). There is an obvious downward trend in overall effort up to 2008, with the 2008 figure only about 25% of the figure in 2000, but effort increased again in 2009 and 2010. French and UK effort showed marked declines up to 2008 but have shown an increase again in the latter two years. While Dutch effort peaked in the mid 2000s significant longlining was again carried out in 2010. Germany also contributed some effort in the mid 2000s.

Otter trawl was by far the most important gear used, mainly by France and the UK. The UK also used beam trawl, and gill nets in reasonable amounts with small amounts of longline. Downward trends are evident in all of these gears up to 2008 (Figure 3.3.5.1) when otter trawling showed an increase.

Table 3.3.5.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area IV

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
4	DEN	1326		8341		12997				6000		
	FRA	1017129	635135	1575689	277155	176632	261732	178577	289736	185516	173847	484416
	GER					206302	134099	195941	15600		123550	
	IRL	25800	35145	10500		4701						
	NED	7260	134640	128276	619530	537132	500354	195760	222638	40084		106630
	UK	2987253	3023864	3032377	1835877	1284533	1299055	1399548	1018323	993200	1371175	1402424
Total		4038768	3828784	4755183	2732562	2222297	2195240	1969826	1546297	1224800	1668572	1993470

Table 3.3.5.2 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area IV

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
4	BEAM	NED											8826
		UK	236790	198288	264316	52274	16008	14775	2045				
	BOTTOM TRAWLS	DEN	1326								6000		
		FRA	1017129	635135	1575689	277155	176632	261732	178577	289736	185516	173847	477056
		GER					39270	61113	108000			123550	
		IRL	25800	35145	10500								
		UK	2323564	2457315	2373676	1437532	905088	939566	952052	806117	797312	1104312	1191245
	DREDGE	FRA											7360
	GILL	GER						3798					
		UK	308720	332310	330460	253584	305389	259341	399015	136272	187454	225154	200327
	LONGLINE	UK	117747	28338	36410	63020	50987	85373	46397	11044	8434	41709	10672
	PELAGIC TRAWLS	DEN			8341		12997						
		GER					167032	69188	87941	15600			
		IRL					4701						
		NED	7260	134640	128276	619530	537132	500354	195760	222638	40084		97804
		UK		7613	27515	28560	7061			64890			
	POTS	UK	432			907			39				
	TRAMMEL	UK											180
Total	·		4038768	3828784	4755183	2732562	2222297	2195240	1969826	1546297	1224800	1668572	1993470

Area 4, by gear, KWdays Total beam bottom travis bottom travis consider the pelagic travis pots pots trammel

Figure 3.3.5.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area IV. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Catch and catch composition

The species are typical of the mixed trawl fishery in the North Sea with black scabbard and blue ling dominating. Blue ling catches decreased in the mid 2000s but have since started increasing again as have those for black scabbard. Roundnose grenadier catches have been low since 2007 although an increase was noticed in 2010. It is notable that few sharks are landed from the trawl fishery and that landings of sharks from gill nets are decreasing, probably reflecting the ban on Deep Sea gillnets. Conger eel catches started to rise in 2007. Deep-water red crab, *Chaceon affinis* are important in the gill net fishery but landings have been decreasing since 2008. The moderately large pelagic catches of greater silver smelt in the mid 2000s are to be expected.

Tables 3.3.5.3 shows the top 5 deepwater species landed in Area IV. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.5.3 Table of the Top 5 Deepwater species landed in ICES Area IV

area	species	2003	2004	2005	2006	2007	2008	2009	2010
4	BLI	26	34	12	9	4	10	16	52
4	BSF	NA	5	2	13	1	NA	NA	21
4	KEF	13	5	109	59	172	37	21	2
4	COE	7	8	8	6	9	6	15	13
4	ARU	20	52	NA	39	NA	NA	NA	10

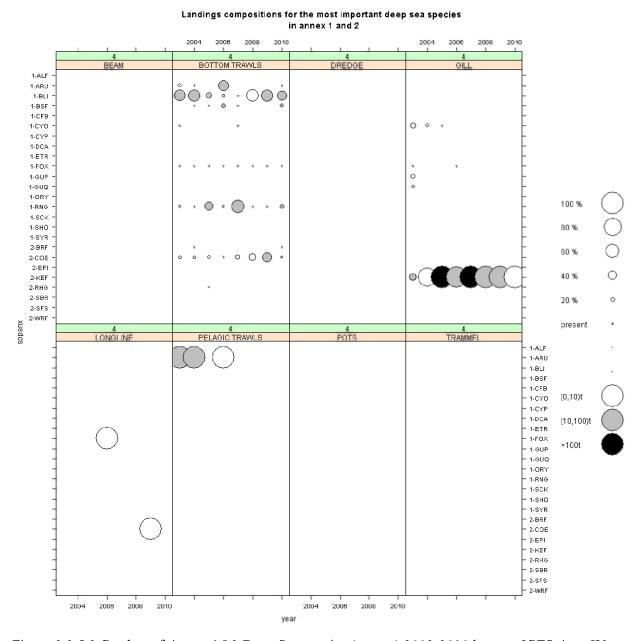


Figure 3.3.5.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area IV

3.3.6. Deep Sea ICES Area V

Effort

Four countries, France, Netherlands and UK and Germany contributed effort in this area (Tables 3.3.6.1 and 3.3.6.2 and Figures 3.3.6.1 and 3.3.6.2). In the EU portion, French effort has dominated throughout the series and remains high up to 2010 while UK and Netherlands effort showed marked declines throughout the time period. In the non EU section both France and the UK effort peaked in 2004 and has dropped slowly since. German effort dropped from the mid 2000s before rising again in 2009 and 2010.

In both sections of Area V the predominant gear used was otter trawl, with some gill net fishing and pelagic trawls (Tables 3.3.6.3 and 3.3.6.4). German effort in the early part of the time series was both otter and pelagic trawls, but in later years this was confined to bottom trawls and since 2008 this effort is increasing quite quickly. Dutch effort, which generally declined throughout the series, was confined to pelagic trawls.

Effort in Area V (EU) has been declining since 2007, while effort in Area V (non EU) which had been in decline since 2003 has started increasing again in 2009 and 2010.

Table 3.3.6.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area V (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5 EU	FRA	952552	991663	4018388	1231117	1203179	992021	981544	1177248	947792	947792	381100
	GER				4851	4942	60375	12742	2600			
	IRL		1800									
	NED		228862	14014	117600	175353	80010	31618	11453	33971		6600
	UK	218768	330610	170210	187245	250636	59416	23658	296	11228	20837	41132
Total		1171320	1552935	4202612	1540813	1634110	1191822	1049562	1191597	992991	968629	428832

Table 3.3.6.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area V (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5 non EU	FRA	113443	696775	1835624	664525	776742	381706	325531	294664	219992	219992	44400
	GER				256560	194758	446140	274286	23400	7281	103500	385062
	NED		7260		271601	15850	154495	26765	47559			7428
	UK	825086	977943	1067328	917320	1071860	885811	422340	272851	114920	128263	232011
Total		938529	1681978	2902952	2110006	2059210	1868152	1048922	638474	342193	451755	668901

Table 3.3.6.3 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area V (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5 EU	BEAM	FRA				1519	12288						
	BOTTOM TRAWLS	FRA	868648	959279	3653332	1195742	1102571	921365	927080	1111008	793232	793232	381100
		IRL		1800									
		UK	7416 5	96718	75712	57 191	84681	14667	15854	296	11228	20837	37747
	GILL	FRA	83904	32384	365056	33856	88320	70656	54464	66240	154560	154560	
		GER				4851							
		UK	140735	233104	86980	130054	106655	41530	7804				
	LONGLINE	UK	778	788				3219					3385
	PELAGIC TRAWLS	GER					4942	60375	12742	2600			
		NED		228862	14014	117600	175353	80010	31618	11453	33971		6600
		UK	3090		75 1 8		59300						
Total			1171320	1552935	4202612	1540813	1634110	1191822	1049562	1191597	992991	968629	428832

Table 3.3.6.4 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area V (non EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5 non EU	BEAM	FRA				6077	7400						
	BOTTOM TRAWLS	FRA	113443	696775	1835624	658448	769342	381706	325531	294664	219992	219992	44400
		GER				256560	174990	339900	249060		7281	103500	385062
		UK	825086	977943	1067328	917320	1071860	885811	422340	272851	114920	128263	232011
	PELAGIC TRAWLS	GER					19768	106240	25226	23400			
		NED		7260		271601	15850	154495	26765	47559			7428
Total		-	938529	1681978	2902952	2110006	2059210	1868152	1048922	638474	342193	451755	668901

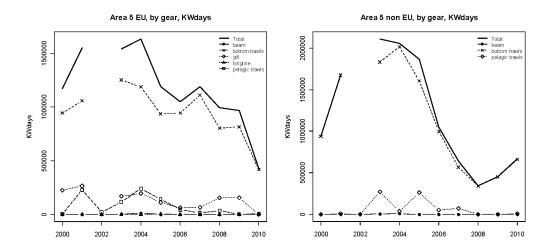


Figure 3.3.6.1 Deep Sea Effort (kwdays) 2000-2010 by gear for ICES Area V (EU) and V (non EU). Due to the uncertainty in French 2002 data this year has been removed from the figure.

Catch and catch composition

Area V (EU)

Bottom trawls provides the majority of catches from this area (Figure 3.3.6.2, Table 3.3.6.5). The main species targeted are roundnose grenadier and blue ling, with smaller catches of black scabbard, leafscale gulper sharks, and regular catches of roughhead grenadier and blue mouth redfish. In 2010 Scotland reported landings of greater silver smelt and France both Portuguese dogfish and black dogfish.

Gill nets catch small amounts, less than 10 tonnes, of blue ling, and in the early part of the time series caught deepwater red crab, *Chaceon affinis* but this ended in 2006. Netherland pelagic trawlers landed greater silver smelt in 2004 and 2005 but nothing since.

Beam trawl data from 2003 and 2004 may be misclassified bottom trawl data.

Area V (non EU)

Landings are solely provided by bottom trawls (Figure 3.3.6.3, Table 3.3.6.6). The main species landed are blue ling and roundnose grenadier. However since 2006 there has been a significant reduction in the grenadier landings and now the majority of the landings is blue ling. France also

records regular landings of black scabbard. Scottish landings of Portuguese dogfish ceased in 2005 but in 2010 France reported landings for both Portuguese dogfish and black dogfish.

Again there is a possible issue of misclassified beam trawl data.

Tables 3.3.6.5 and 3.3.6.6 show the top 5 deepwater species landed in Area VI. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.6.5 Table of the Top 5 Deepwater species landed in ICES Area V (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
5 eu	BLI	895	859	643	647	806	591	590	359
5 eu	RNG	657	682	706	747	769	404	404	309
5 eu	BSF	144	81	71	75	96	145	145	111
5 eu	ARU	1	42	27	NA	NA	NA	NA	40
5 eu	CFB	NA	38						

Table 3.3.6.6 Table of the Top 5 Deepwater species landed in ICES Area V (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
area	species	2000				2007	2000	2009	2010
5 non eu	BLI	345	370	257	240	478	365	434	304
5 non eu	RNG	385	380	226	128	93	44	45	22
5 non eu	BSF	35	82	55	17	20	14	15	41
5 non eu	CYO	1	7	8	NA	NA	NA	NA	18
5 non eu	CFB	NA	13						

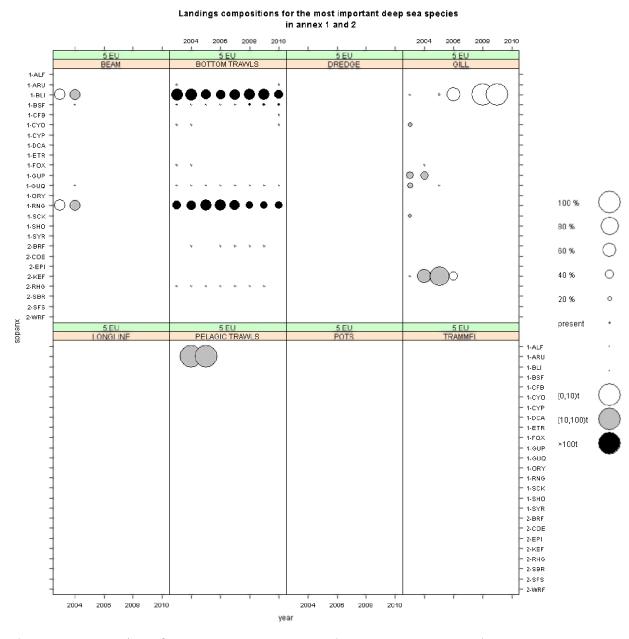


Figure 3.3.6.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area V (EU)

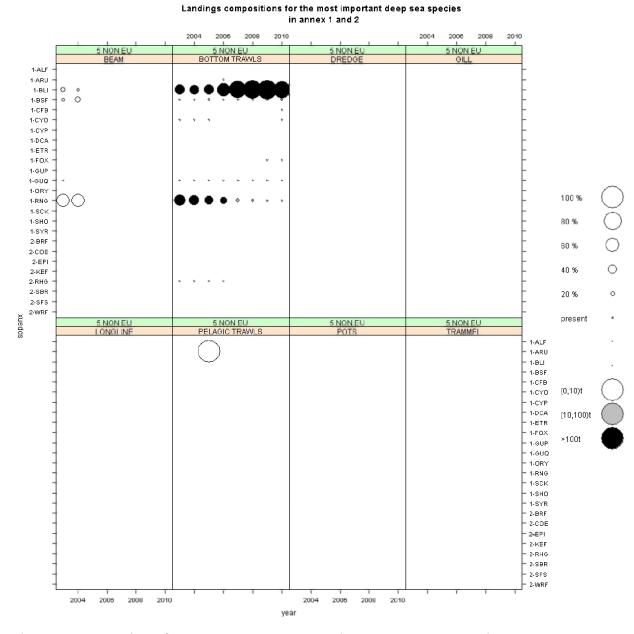


Figure 3.3.6.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area 5 (non EU)

3.3.7. Deep Sea ICES Area VI

Effort

Several countries, France, Netherlands, Ireland, UK and Germany fished in this area (Tables 3.3.7.1 to 3.3.7.4 and Figures 3.3.7.1 and 3.3.7.2). In the EU portion of Area VI French and UK effort dominated throughout the series. French effort peaked in 2001 but has stabilised in the last 4 years at about 40% of earlier values. UK effort also peaked in 2001 and has also stabilised in the last 4 years, but at a much lower level than French effort.

The effort in the non EU part of Area VI has been dominated by the UK, (Table 3.3.7.2), however this effort has dropped by more than 90% since its peak in 2004.

Otter trawl was the predominant gear used in area VI.

In the EU portion of Area VI this trawl effort was followed in importance by pelagic trawling and gill nets, (Table 3.3.7.3 and Figure 3.3.7.1) although effort has been in decline since 2002. Overall UK and Irish effort showed marked declines throughout the time period mainly through reducing otter trawl activity. In addition to otter trawl, UK effort comprises all the other gear types shown in Table 3.3.7.3. UK gill net activity has declined while longline is more stable. Dutch effort, which consisted entirely of pelagic trawls, fluctuated during the early 2000s, but has stabilised since 2006 even though no effort was recorded in 2009. In common with other areas, German effort was confined to the mid-2000s with gill nets and pelagic trawls being used.

In the non EU portion of Area VI effort was dominated by UK otter trawling. Effort peaked in 2004 but has stabilised in the last three years, (Table 3.3.7.4 and Figure 3.3.7.2). Gill net effort was the next most important although Portuguese effort stopped in 2001 and UK effort stopped in 2007.

Table 3.3.7.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VI (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
6 EU	DEN					25993						
	FRA	6300751	6720756	26462011	5332009	5605366	5279115	4105642	3912664	3795716	3795716	3097857
	GER				441	557611	335978	356344	215066		49400	34839
	IRL	584925	845204	554224	297228	220854	616687	63679	160602	132217	32991	80989
	NED	1574305	1573595	1380242	604027	2937769	1737822	1054019	1061055	1013096		988482
	SPN										199237	
	UK	6535912	7197253	6871134	5328226	4578573	2940914	1847751	1574183	925283	1362479	1221865
Total		14995893	16336808	35267611	11561931	13926166	10910516	7427435	6923570	5866312	5439823	5424032

Table 3.3.7.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VI (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
6 non EU	EST						12656	18080				
	NED				4398	139938						
	POR	342636	361300			72900						
	UK	405732	826752	833700	1222142	1398142	706837	529460	367291	170600	99545	135929
Total		748368	1188052	833700	1226540	1610980	719493	547540	367291	170600	99545	135929

Table 3.3.7.3 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area VI (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
6 EU	BEAM	FRA				54693	95526						
		UK	11278	9298	4214	19342	50267	29475	12955				
	BOTTOM TRAWLS	FRA	6041623	6316287	25605568	4967172	5355877	5116610	3995234	3543821	3594454	3594454	2997921
		GER					12530						
		IRL	449853	522150	216898	290028	192885	226687	63679	148902	132217	32991	80989
		SPN										142583	
		UK	4243119	5060104	4585180	3786808	2809204	1795699	1225018	942904	665644	1145465	959278
	DREDGE	UK				20227							
	GILL	FRA	255888	313683	807848	307424	111848	124528	100472	286283	161800	161800	99936
		GER				441	66848	29540	15192				34839
		IRL		8844									
		UK	1525030	1319042	1405224	1013475	841609	690287	147742	90561	105292	50425	69752
	LONGLINE	FRA							9936	82560	39462	39462	
		IRL	3693	45222	8100	7200	17000	1200		11700			
		SPN										56654	
		UK	644110	626778	514087	439338	561125	387085	462036	531317	149543	166589	192835
	PELAGIC TRAWLS	DEN					25993						
		FRA	3240	90786	48595	2720	42115	37977					
		GER					478233	306438	341152	215066		49400	
		IRL	131379	268988	329226		10969	388800					
		NED	1574305	1573595	1380242	604027	2937769	1737822	1054019	1061055	1013096		988482
		UK	112375	182031	298340	5120	297769	38368					
	POTS	UK			64089	43916	18599			9401	4804		
Total			14995893	16336808	35267611	11561931	13926166	10910516	7427435	6923570	5866312	5439823	5424032

Table 3.3.7.4 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area VI (non EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
6 non EU	BOTTOM TRAWLS	EST						12656	18080				
		UK	338514	730549	689955	871779	1024477	548210	451499	316165	151087	99545	135929
	GILL	POR	342636	361300									
		UK	67218	93623	143745	342362	373665	158627	77961	51126			
	LONGLINE	POR					72900						
		UK		2580		8001							
	PELAGIC TRAWLS	NED				4398	139938						
	POTS	UK									19513		
Total			748368	1188052	833700	1226540	1610980	719493	547540	367291	170600	99545	135929

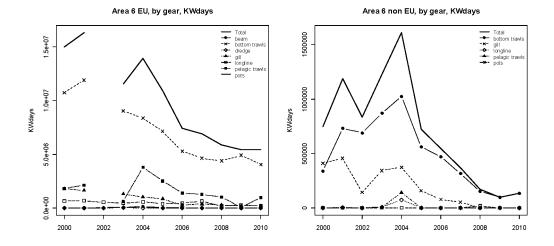


Figure 3.3.7.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area VI (EU) and VI (non EU). Due to the uncertainty in French 2002 data this year has been removed from the figure.

VI (EU)

Figure 3.3.7.2 shows aggregate catches in VI (EU) by gear. There is a mixed bottom trawl fishery targeting roundnose grenadier, blue ling and black scabbard. It is conducted mainly by France with small catches by Scotland. Of the other Annex 1 species Portuguese dogfish, leafscale gulper sharks and greater forkbeard are all landed consistently, albeit in small amounts. Of the Annex 2 species blue mouth redfish, conger eel and roughhead grenadier are also all landed regularly. Beam trawl landings of roundnose grenadier and blue ling, in 2003 and 2004, are probably misclassified.

Pelagic trawls, mainly Dutch, are targeting greater silver smelt although landings have started decreasing in recent years.

Longlines, in recent years, are primarily targeting greater forkbeard. Landings have increased in the last three years. There are also regular landings of blue mouth redfish and conger eel. Historically various species of shark were targeted but these landings have stopped since 2007.

In the early 2000s there were large landings of Portuguese dogfish by the UK using gill nets. Other sharks, such as leafscale gulper shark, were also targeted. These landings stopped in 2006. Scotland and England are currently using gill nets to target deep-water red crab, *Chaceon affinis*, with regular landings of 10 - 100 tonnes in the last few years. Landings were minimal for 2008 and 2009 but have increased in 2010. This species was also fished using pots up until 2008. In 2008 and 2009 landings of blue ling and roundnose grenadier were recorded.

VI (non EU)

Otter trawls in VI non EU are targeting blue ling, greater forkbeard and blue mouth redfish, but catches have been declining in recent years (Figure 3.3.7.3). Gill net landings, which were targeting deep-water red crab, Portuguese dogfish and greater forkbeard, ceased in 2007.

Tables 3.3.7.5 and 3.3.7.6 show the top 5 deepwater species landed in Area VI. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.7.5 Table of the Top 5 Deepwater species landed in ICES Area VI (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
6 eu	BSF	3107	2859	2614	1814	2052	2373	2427	1801
6 eu	BLI	2975	3287	2672	2565	2059	1717	1928	1450
6 eu	RNG	5102	4651	2977	1949	1579	1440	1447	1308
6 eu	FOX	547	313	179	155	176	120	286	183
6 eu	BRF	53	87	100	64	57	82	104	96

Table 3.3.7.6 Table of the Top 5 Deepwater species landed in ICES Area VI (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
6 non eu	KEF	47	372	80	1	73	56	NA	NA
6 non eu	FOX	26	24	23	33	52	20	5	6
6 non eu	BLI	48	80	74	20	33	9	3	1
6 non eu	BRF	32	44	39	36	15	3	NA	1
6 non eu	ALC	NA	NA	61	82	NA	NA	NA	NA

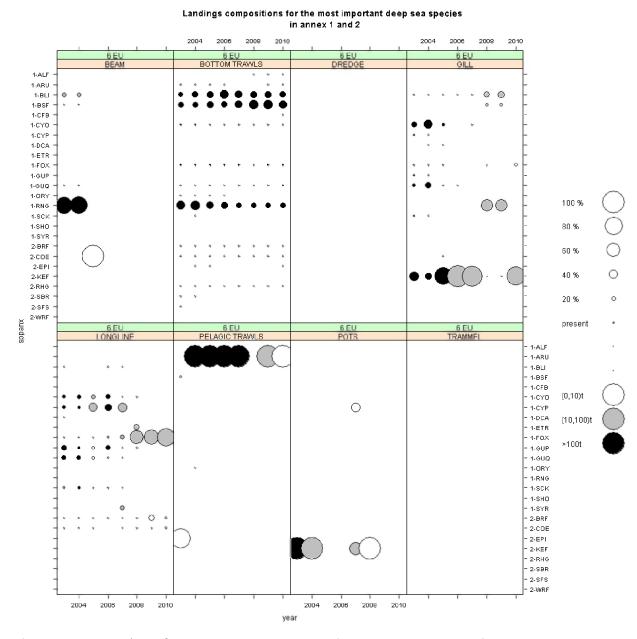


Figure 3.3.7.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area VI (EU)

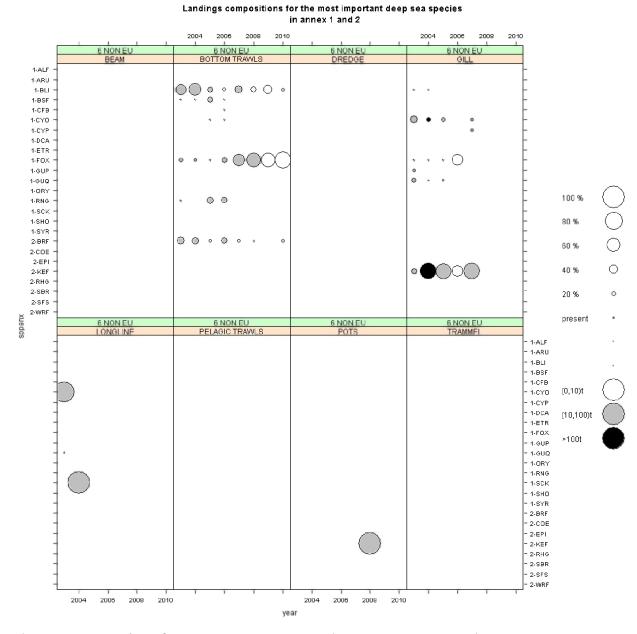


Figure 3.3.7.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area VI (non EU)

3.3.8. Deep Sea ICES Area VII

Effort

Six countries supplied data indicating activity in this area (Tables 3.3.8.1 to 3.3.8.4), however there was only information for one year from Spain. Almost all of this effort took place in the EU part of Area VII (Tables 3.3.8.1 and 3.3.8.2). UK, France and Ireland were the predominant countries with the Netherlands also deploying effort in this area throughout the time series. Germany used a small amount in the mid-2000s.

This area has been broken up into Area VII (EU no VIId), EU VIId, and non EU. EU VIId is the eastern English channel and is often associated with the North sea as much as the English channel.

Area VII EU no VIId effort is primarily UK otter trawl effort, followed by France and Ireland. With the exception of France, effort used by each of the countries has declined by over 50% in the time period and this is particularly striking for the UK which has dropped from over 10 million KWdays to just under 3 million. French effort dropped in 2008 but has been relatively stable since. Irish effort has dropped to 3.5% of its peak in 2003. Overall, effort in 2010 was just over 30% of the reported value in 2000.

Area VII EU VIId effort is from UK and France. Earlier effort from the Netherlands stopped in 2004. The effort fluctuates greatly from year to year. 2006 marks a change in effort from English beam to Scottish bottom trawl (Figure 3.3.8.2).

Area VII non EU effort was confined to the UK and stopped in 2004. It was made up of bottom trawling and gill netting.

Table 3.3.8.4 and Figure 3.3.8.1 and 3.3.8.2 shows trends in effort by country and by main gears illustrating that otter trawls, longlines and gill nets were the most frequently used gears. UK also recorded effort by beam trawls and trammel nets but both have declined considerably. In general the declines in effort reported above are evident in most gears, however longline effort by France has generally increased over the time period and that of the UK increased up to 2008 before decreasing again. Gill net effort in France and the UK has been declining since reaching a peak in 2004. The Netherlands was responsible for most of the pelagic trawling. This effort fluctuated between 2000 and 2005, and became intermittent at low levels after that. However the Netherlands has reported quite high effort again for 2010.

Table 3.3.8.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VII (EU no VIId)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
7 EU no 7d	FRA	2029867	2388719	7738371	1544420	1236669	1591217	1633554	1424224	992530	981979	965551
	GER				111935	318242	344403		8398			
	IRL	1576450	2867608	3033612	3113903	2326743	2157787	1128283	775290	602643	128419	108979
	NED	1146962	219372	535722	150544	636250	299936	22652		53536		482503
	SPN										374808	
	UK	10045990	8779217	8495761	7416387	7135728	6434736	4853687	5235798	4228708	2823796	2999309
Total		14799269	14254916	19803466	12337189	11653632	10828079	7638176	7443710	5877417	4309002	4556342

Table 3.3.8.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VII (VIId)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
7d	FRA	3274	230	66355	9090	27425	43790	5530	4517	1716	1716	12482
	NED		35596	13240	68230	141760						2708
	UK	16917	16191	18407	42719	14231	22041	1264	41192	127017	59626	19436
Total		20191	52017	98002	120039	183416	65831	6794	45709	128733	61342	34626

Table 3.3.8.3 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VII (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
7 non EU	UK		3768	3003	906	2519						
Total			3768	3003	906	2519						

Table 3.3.8.4 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area VII (EU no VIId)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
7 EU no 7d	BEAM	IRL		59082	5372			17507					
		UK	1724100	1849555	2042735	1780538	1655828	1630596	910940	974833	788631	434315	333813
	BOTTOM TRAWLS	FRA	1729990	1936562	5021776	1142499	944045	1027472	1228501	1011353	705892	695341	757599
		IRL	1326313	2468071	2536986	2871786	2304827	2109455	1097308	747910	598218	128419	108979
		NED											3385
		SPN										154898	
		UK	6087037	5025999	4293721	3186388	2846227	2725982	2650833	2908888	2035599	1785167	1871218
	DREDGE	FRA											110
		UK	2214										
	GILL	FRA	291082	439105	2708847	396953	261655	555657	351137	245631	219877	219877	129931
		GER				111935	185086	189137		8398			
		IRL	159080	144985	132049	153327	18916	11875	30975	24780	4425		
		SPN										8985	
		UK	1741337	1336472	1509766	1919589	2262210	1656905	623470	639964	638693	491055	592565
	LONGLINE	FRA	8795	9688			21409	1133	46139	167240	66761	66761	72518
		IRL	43647	69347	65700	73800	3000	18950		2600			
		SPN										210925	
		UK	396285	442577	546976	458307	305419	352092	615056	691143	746843	110627	172638
	none	IRL		1612									
	PELAGIC TRAWLS	FRA		3364	7748	4968	5912	3355	2479				1620
		GER					133156	155266					
		IRL	47410	124511	293505	14990							
		NED	1146962	219372	535722	150544	636250	299936	22652		53536		479118
		UK	40135	72061		34271	41484	50625					27309
	POTS	FRA					3648						3087
		UK	2230	2478	5886	545	8376				15155		654
	TRAMMEL	FRA						3600	5298				686
		UK	52652	50075	96677	36749	16184	18536	53388	20970	3787	2632	1112
Total			14799269	14254916	19803466	12337189	11653632	10828079	7638176	7443710	5877417	4309002	4556342

Effort data from VIId and VII (non EU) not significant enough to include gear by country tables

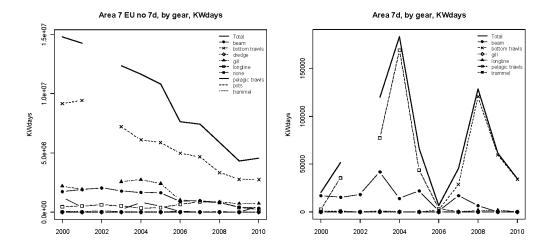


Figure 3.3.8.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area VII (EU no VIId) and (EU VIId). Due to the uncertainty in French 2002 data this year has been removed from the figure.

Area VII EU no VIId

Longlines were originally responsible for landing sharks but this stopped in 2007. The main landings for this fishery were conger eel but landings have decreased in the last few years. This has been replaced by an increase in landings of blue mouth redfish and greater forkbeard.

The bottom trawl fishery produced a wide variety of landings. France and Ireland were targeting roundnose grenadier and black scabbard. Landings of grenadier started to decrease after 2007 while black scabbard landings stayed higher until 2010. This fishery also reports catches for roughhead grenadier, Portuguese dogfish and cardinal fish. The cardinal fish catches were probably connected with the historic orange roughy fishery. Reported landings of orange roughy fishery ceased in 2005. Reported landings of Portuguese dogfish ceased after 2007 but were reported again in 2010. The trawl fishery conducted by Spain, England and Scotland reported catches mainly of conger eel, greater forkbeard and red seabream. While UK longline catches of conger eel have been decreasing in recent years, trawl catches have been on the increase. Greater forkbeard landings started to decrease in 2008 while catches of conger eel increased with 2010 producing the largest landings of the time series. Other species reported annually are blue ling, blue mouth redfish and alfonsinos, although landings are small.

The beam trawl fishery is conducted primarily by England. The main landings are conger eel but landings have begun to decrease in recent years. Small amounts of greater forkbeard are also landed.

Gill nets targeted sharks early on but the only shark species with reported landings after 2006 is Portuguese dogfish. Landings of deep-water red crab decreased after 2007 but have increased again in 2010. There was an increase in landings of blue ling, blue mouth redfish and wreckfish up to 2009 but these have since declined. Landings of greater forkbeard have been increasing since 2007.

Pelagic trawling for greater silver smelt stopped in 2005, although the Netherlands restarted the fishery in 2010.

Area VIId

The catch data provided are very sparse. In recent years ofter trawls were catching small amounts of red seabream, and 2 tonnes of kitefin shark was reported for 2010. Small catches of conger eel, less than 10 tonnes, were reported for longlines in 2008 and 2009.

Area VII non EU

No information reported after 2004

Tables 3.3.8.5 and 3.3.8.6 show the top 5 deepwater species landed in Area VII EU. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.8.5 Table of the Top 5 Deepwater species landed in ICES Area VII (EU no VIId)

area species	2003	2004	2005	2006	2007	2008	2009	2010
7 eu no 7d COE	678	572	497	380	295	217	147	146
7 eu no 7d BSF	342	375	198	359	199	124	125	84
7 eu no 7d FOX	669	543	487	304	196	142	107	67
7 eu no 7d RNG	eu no 7d RNG 358 261 178		326	167	84	83	36	
7 eu no 7d BRF	46	44	68	72	58	60	68	53

Table 3.3.8.6 Table of the Top 4 Deepwater species landed in ICES Area VIId

area	species	2003	2004	2005	2006	2007	2008	2009	2010
7d	SBR	NA	NA	NA	NA	1	10	10	4
7d	COE	NA	NA	NA	NA	NA	7	6	NA
7d	SCK	NA	2						
7d	BLI	NA							
7d	BSF	1	2	NA	NA	NA	NA	NA	NA

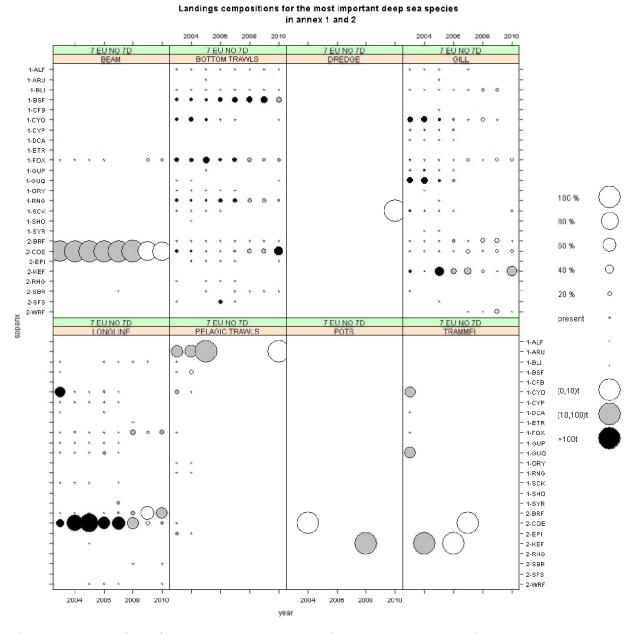


Figure 3.3.8.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area VII (EU no VIId)

3.3.9. Deep Sea ICES Area VIII

Effort

Most of the effort in this area was contributed by three countries as shown in Tables 3.3.9.1 and 3.3.9.2, (Spain only reported data for one year). Almost all of this effort took place in the EU part of Area VIII (Table 3.3.9.1). UK, France and Netherlands were the predominant countries with small amounts from Ireland and Germany. Netherlands effort declined to zero in 2007, but was restarted in 2010. UK and French effort increased to the mid 2000s but has since declined. Overall, effort in 2010 was 80% of the reported value in 2000.

Table 3.3.9.3 and Figure 3.3.9.1 shows trends in effort by country and by main gears illustrating that otter trawls were the most important followed by pelagic trawls, gill nets and longlines. In general the pattern of peak effort in the mid 2000s followed by decline is evident in all gears. There was a peak of effort in both bottom trawl and longlines in 2009 but this had decreased again in 2010.

Bottom trawl was the predominant gear used in this region, with 92% of the effort reported by France. Netherlands effort comprised the majority of the pelagic trawling. Gill net effort was initially confined to France but since 2004 the UK has been contributing 50%. Over the time series the majority of the longline effort came from the UK, but Spain reported large effort for 2009.

Fishing effort in Area VIII non EU was minimal.

Table 3.3.9.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VIII (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
8 EU	FRA	206775	198432	1221537	289751	287276	572978	563460	330069	330114	326333	296990
	GER					22626						
	IRL	23400		2500								
	NED	328154	200158	734687	49974	22284	26400	35596				67980
	POR			4069	9663	10329				1089		
	SPN										971345	
	UK	5971	20365	119176	87112	195594	131379	351815	108637	102356	29684	84663
Total		564300	418955	2081969	436500	538109	730757	950871	438706	433559	1327362	449633

Table 3.3.9.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area VIII (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
8 non EU	UK							34994		5376		
Total								34994		5376		

Table 3.3.9.3 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area VIII (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
8 EU	BEAM	UK									880		
	BOTTOM TRAWLS	FRA	141365	161208	999557	177729	229630	473093	424001	194049	280599	276818	173738
		POR									1089		
		SPN										285745	
		UK											6943
	GILL	FRA	53458	24366	88991	95204	53378	78282	117246	121418	20269	20269	28215
		SPN										129719	
		UK			2730		89612	67015	278374	57053	58969	29684	51073
	LONGLINE	FRA	5379	10849	2054			1417	2674	407	19486	19486	76154
		POR			4069	9663	10329						
		SPN										538568	
		UK	5971	20365	63052	87112	105982	64364	73441	51584	41960		12761
	none	SPN										11863	
	PELAGIC TRAWLS	FRA	3807		116371	8225		7442	10239	6521			13619
		GER					22626						
		IRL	23400		2500								
		NED	328154	200158	734687	49974	22284	26400	35596				67980
		SPN										5406	
		UK			53394								13886
	POTS	FRA						1596					2464
	TRAMMEL	FRA	2766	2009	14564	8593	4268	11148	9300	7674	9760	9760	2800
		SPN										44	
		UK									547		
Total			564300	418955	2081969	436500	538109	730757	950871	438706	433559	1327362	449633

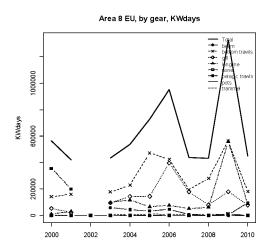


Figure 3.3.9.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area VIII (EU). Due to the uncertainty in French 2002 data this year has been removed from the figure.

Most catches are taken in ICES areas VIII (EU) (Figure 3.3.9.2) with only small amounts being landed from Area VIII non EU by Portuguese longliners.

Two different bottom trawl fisheries are carried out. The French trawl fishery mainly catches black scabbard with small amounts of roundnose grenadier. Blue mouth redfish is a bycatch species in this fishery. Spanish data hasn't been submitted yet but Spain is known to conduct a shallower trawl

fishery that takes deepwater shark, such as blackmouth dogfish, and greater forkbeard. Small amounts of conger eel and alfonsinos are also landed by bottom trawls in this area.

There is a small, but consistent, Spanish gill net fishery landing alfonsinos. Catches have been low but showed an increase in 2010. There is a Scottish fishery landing blue mouth redfish but apart from one large catch in 2008, landings have been small. Small amounts of conger eel and blue ling are also landed.

Conger eel provides the biggest component of the landings for the UK longline fishery. These landings have remained relatively constant throughout the time series until 2010. Spanish catches of Portuguese dogfish have decreased from their highest level in 2006. Spain landed large catches, > 100 tonnes, of blue mouth redfish in 2009. Low amounts of greater forkbeard are landed by both Spain and the UK although no landings were recorded for 2010. Other species landed historically include blackmouth dogfish, knifetooth dogfish and wreckfish.

French pelagic trawls land small amounts, less than 10 tonnes, of black scabbard and Spain landed blackmouth dogfish in 2008 and 2009.

Tables 3.3.9.4 shows the top 5 deepwater species landed in Area VIII EU. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.9.4 Table of the Top 5 Deepwater species landed in ICES Area VIII (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
8 eu	COE	98	143	82	75	71	90	168	29
8 eu	BRF	2	8	27	70	16	48	144	6
8 eu	SHO	37	27	16	19	34	43	69	NA
8 eu	FOX	22	31	19	9	14	20	75	NA
8 eu	BSF	33	37	23	47	26	43	51	15

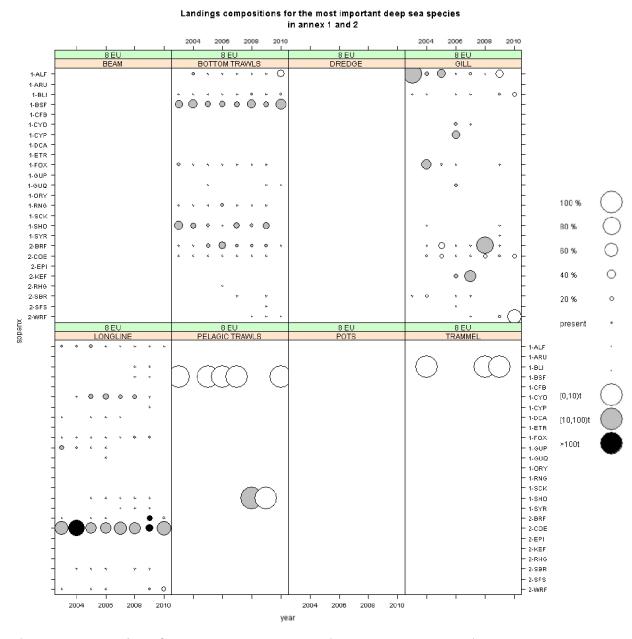


Figure 3.3.9.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area VIII (EU)

3.3.10. Deep Sea ICES Area IX

Effort

Most of the effort in area IX was contributed by Portugal as shown in Tables 3.3.10.1 and 3.3.10.2, (Spain only provided data for one year). Almost all of the effort took place in the EU part of Area IX (Table 3.3.10.1). Small amounts of effort were recorded by France and UK. Prior to 2003 recorded effort was quite low and the highest values occur recently. In the non EU part of Area IX effort peaked between 2003 and 2005 but has declined greatly since.

Tables 3.3.10.3 and 3.3.10.4, and Figure 3.3.10.1 show trends in effort by country and by main gears illustrating that Portuguese longline is the most important and that this gear is responsible for the overall trend.

Table 3.3.10.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area IX (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
9 EU	FRA									1472	1472	
	POR	40929	28032	15563	323445	254615	465091	820109	964352	859628	787838	628818
	SPN										100673	
	UK							138797	11906			
Total		40929	28032	15563	323445	254615	465091	958906	976258	861100	889983	628818

Table 3.3.10.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area IX (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
9 non EU	POR	39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401
Total		39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401

Table 3.3.10.3 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area IX (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
9 EU	BOTTOM TRAWLS	POR	9210		6122	6182	37237	63980	90887	133980	85031	103658	37393
		SPN										88673	
	DREDGE	POR						89	74				89
	GILL	FRA									1472	1472	
		POR	1477	5141	1859	3712		2956	4340	16061	12332	7604	2453
		UK							130733	11906			
	LONGLINE	POR	27976	22191	7582	309598	213345	393156	710169	787845	734259	667917	580377
		SPN										12000	
		UK							4928				
	PELAGIC TRAWLS	POR				201		71	60		142	137	
	POTS	POR		428			1865	354	1541	1331	3296	395	100
		UK							3136				
	TRAMMEL	POR	2266	272		3752	2168	4485	13038	25135	24568	8127	8406
Total			40929	28032	15563	323445	254615	465091	958906	976258	861100	889983	628818

Table 3.3.10.4 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area IX (non EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
9 non EU	GILL	POR	7832	4718	9565	229		1968					
	LONGLINE	POR	31559	59082	30155	162301	63968	159709	3356	13187	43272	11581	3401
	PELAGIC TRAWLS	POR						1250					
	TRAMMEL	POR	421		288	537		142					
Total			39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401

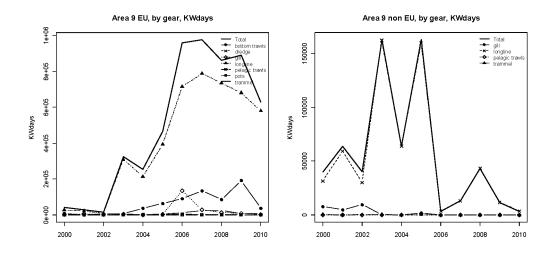


Figure 3.3.10.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area IX (EU) and IX (non EU)

Figures 3.3.10.2 and 3.3.10.3 show catch composition. Catches by longline dominate in ICES IX EU and black scabbard is the most important species. Landings for this species have remained constant since 2007. In the past Portuguese dogfish and leafscale gulper sharks were a major by catch of this fishery although landings have decreased in recent years, however since 2007 landings of knifetooth dogfish have increased significantly. There are also regular catches of conger eel.

The bottom trawl fishery, carried out by Spain and Portugal, mainly lands blackmouth dogfish although landings were very small in 2010.

Gill nets are a very minor fishery with small amounts of alfonsinos landed. In 2006 and 2007 large landings of deep-water red crab took place but these have not been repeated.

Catches from the non EU part of IX are all longline and comprise minor catches of conger eel and wreckfish. Early landings of gulper shark stopped by 2006. 12 tonnes of silver scabbard were landed in 2009. Blue mouth redfish and greater forkbeard are occasionally landed in small amounts.

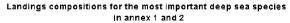

Tables 3.3.10.5 and 3.3.10.6 show the top 5 deepwater species landed in the EU and non EU areas. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.10.5 Table of the Top 5 Deepwater species landed in ICES Area IX (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
9 eu	BSF	423	43	1177	1937	2721	2856	2702	2680
9 eu	SYR	NA	NA	NA	NA	66	107	76	106
9 eu	SHO	35	20	23	30	48	42	50	2
9 eu	GUQ	134	74	196	319	161	61	16	1
9 eu	COE	13	7	23	47	50	43	22	12

Table 3.3.10.6 Table of the Top 5 Deepwater species landed in ICES Area IX (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
9 non eu	SFS	5	5	1	NA	NA	NA	12	NA
9 non eu	COE	1	12	9	4	9	10	12	6
9 non eu	WRF	3	15	4	1	9	12	6	1
9 non eu	BRF	NA	NA	NA	1	2	3	4	NA
9 non eu	FOX	NA	1	4	NA	NA	1	NA	1

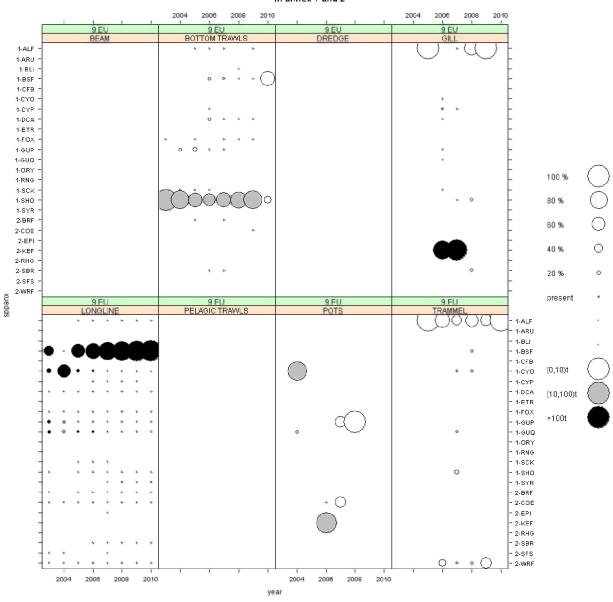


Figure 3.3.10.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area IX (EU)

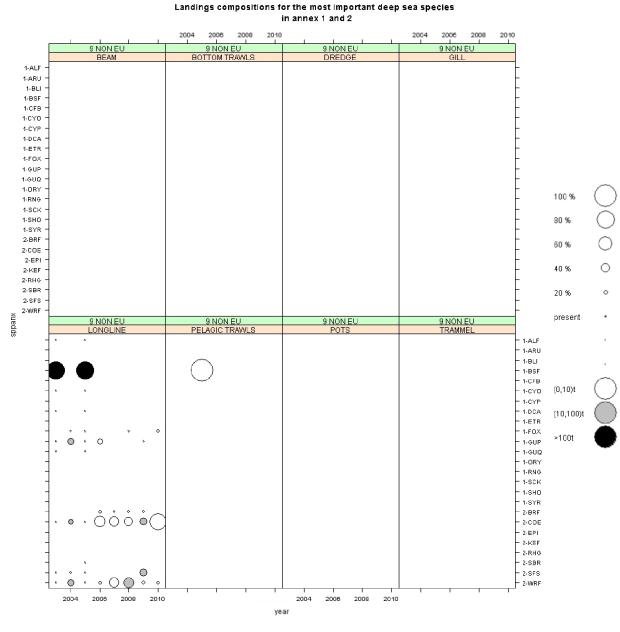


Figure 3.3.10.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area IX (non EU)

3.3.11. Deep Sea ICES Area X

Effort

Recordings of effort in ICES X are very small and more sporadic than other areas. Most of the effort in the non EU part of X is Portuguese longline, while Ireland and the UK record some effort from otter trawls (Table 3.3.11.1 and 3.3.11.2 and Figure 3.3.11.1). There has been no effort recorded in Area X EU since 2006.

Table 3.3.11.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area X (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
10 EU	POR				7517			15006				
	UK	12218										
Total		12218			7517			15006				<u> </u>

Table 3.3.11.2 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area X (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
10 non EU	IRL					31378	8656					
	POR		9929	6987	9188	26101	229555	8931	20388		2478	
	UK	18327										
Total		18327	9929	6987	9188	57479	238211	8931	20388		2478	

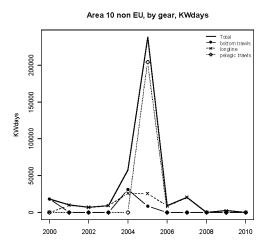


Figure 3.3.11.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area X (non EU)

Catch and catch composition

Figure 3.3.11.2 show catch composition. There is little of note in the catches from this region. Bottom trawl catches in 2004 were for orange roughy landed by Ireland. Longline catches were originally gulper shark with some black scabbard. The most recent landings are for conger eel in 2009. Portugal recorded on big catch of alfonsinos from pelagic trawls in 2005.

Table 3.3.11.3 shows the top 4 deepwater species landed. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.11.3 Table of the Top 4 Deepwater species landed in ICES Area X (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
10 non eu	COE	NA	NA	NA	NA	NA	NA	1	NA
10 non eu	ALF	NA	NA	334	NA	NA	NA	NA	NA
10 non eu	BRF	NA	NA	NA	NA	1	NA	NA	NA
10 non eu	BSF	NA	NA	1	9	NA	NA	NA	NA
10 non eu	CYO	NA							

Landings compositions for the most important deep sea species in annex 1 and 2

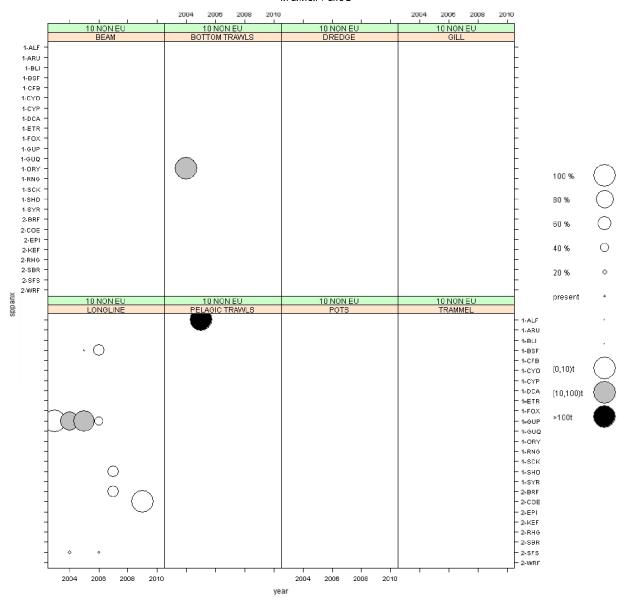


Figure 3.3.11.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area X (non EU)

3.3.12. Deep Sea ICES Area XII

Effort

Overall effort from ICES XII is shown in Table 3.3.12.1. The UK recorded most effort throughout the series (mainly using otter trawl and gill net – Table 3.3.12.2 and Figure 3.3.12.1) although this has dropped markedly from 2006 onwards. Other countries contributing effort included Germany, Netherlands and Ireland. Spain provided effort for 2009 only indicating major bottom trawl effort, followed by pelagic trawls and other unspecified gears.

Table 3.3.12.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area XII (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
12 non EU	EST						2712	28024	35328			
	FRA											5141
	GER				21000	22932	9708					
	IRL				29509							
	NED					14420	22944					
	POR					63180						
	SPN										2361476	
	UK	60837	115481	116025	102568	49670	113809	2356	4480	9359		
Total		60837	115481	116025	153077	150202	149173	30380	39808	9359	2361476	5141

Table 3.3.12.2 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area XII (total)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
12 non EU	BOTTOM TRAWLS	EST						2712	28024	35328			
		FRA											5141
		IRL				28159							
		SPN										1896092	
		UK	54686	79013	49648	12768	3310	9255					
	GILL	UK	6151	28073	64420	87514	46360	104554	2356				
	LONGLINE	IRL				1350							
		POR					63180						
		UK		8395	1957								
	none	SPN										241944	
	PELAGIC TRAWLS	GER				21000	22932	9708					
		NED					14420	22944					
		SPN										223440	
	POTS	UK				2286				4480	9359		
Total			60837	115481	116025	153077	150202	149173	30380	39808	9359	2361476	5141

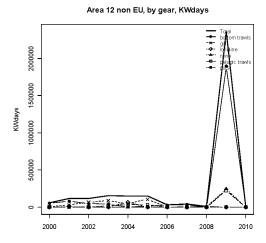


Figure 3.3.12.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area XII (non EU)

Figure 3.3.12.2 shows that trawl catches in the early years were mainly of roundnose grenadier with small amounts reported for 2010 by France. Orange roughy was landed by Ireland in 2003. Sporadic landings of blue ling and black scabbard were reported up to 2006, with France reporting a small catch of black scabbard for 2010.

Gill net catches of Portuguese dogfish, leafscale gulper shark and deep-water red crab by the UK ended in 2006.

Occasional pot landings of deep-water red crab ended in 2008.

Table 3.3.12.3 shows the top 5 deepwater species landed. The ranking is based according to the average of the landings of the last three years of the time series. The 2009 Spanish landing data has been excluded from Figure 3.3.12.2 as it is thought to be incomplete.

Table 3.3.12.3 Table of the Top 5 Deepwater species landed in ICES Area XII (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
12 non eu	RNG	NA	4	20	27	140	NA	2273	2
12 non eu	BLI	10	NA	21	1	7	NA	196	NA
12 non eu	BSF	1	1	NA	2	7	NA	86	2
12 non eu	KEF	187	27	164	21	7	16	NA	NA
12 non eu	CYO	76	94	60	1	NA	NA	10	NA

in annex 1 and 2 12 NON EU BOTTOM TRAWLS 12 NON EU DREDGE 12 NON EU BEAM 12 NON EU 1-ALF 1-ARU 1-BLI 0 1-BSF 1-CFB 1-CYO 1-CYP 1-DCA 1-ETR 1-FOX 1-GUP 1-GUQ 1-ORY 100 % 1-RNG 1-SCK 80 % 1-SH0 1-SYR 2-BRF 60 % 2-COE 2-EPI 40 % 2-KEF 2-RHG 2-SBR 20 % 2-SFS 2-WRF sppanx present 12 NON EU LONGLINE 12 NON EU PELAGIC TRAWLS 12 NON EU POTS 12 NON EU TRAMMEL 1-ARU 1-BLI 1-BSF 1-CFB [0,10)t 1-CYO 0 1-CYP 1=DCA [10,100)t 1-ETR 1-FOX >100t 1-GUP 1-GUQ 1-ORY 1-RNG 1-SCK 1-SHO 1-SYR 2-BRF 2-CDE 2-EPI 2-KEF 2-SBR 2-SFS 2-WRF 2006 2008 2010 2004 2006 year

Landings compositions for the most important deep sea species

Figure 3.3.12.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area XII (non EU)

3.3.13. Deep Sea ICES Area XIV

Effort

Effort in ICES Area XIV (shown in Tables 3.3.13.1 and 3.3.13.2 and Figure 3.3.13.1) is mainly expended outside EU waters by Germany and the UK using otter trawls. UK effort peaked in the mid 2000s but has since declined while German effort rose in the mid 2000s and remains at a relatively high level. Spain reported otter trawl effort for 2009. German pelagic trawling stopped in 2005.

Table 3.3.13.1 Deep Sea Effort (kwdays) 2000-2010 by country ICES Area XIV (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
14 non EU	GER				1067316	1975374	1349730	1248640	1427857	1719689	1960922	1694549
	POR						35100					
	SPN										194085	
	UK	289234	128310	179731	801239	609192	261337		143075	96501	250077	186300
Total		289234	128310	179731	1868555	2584566	1646167	1248640	1570932	1816190	2405084	1880849

Note: Effort by Germany and UK was all otter trawl

Table 3.3.13.2 Deep Sea Effort (kwdays) 2000-2010 by gear and country ICES Area XIV (non EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
14 non EU	BOTTOM TRAWLS	GER				1016316	1963026	1232628	1248640	1427857	1719689	1960922	1694549
		SPN										194085	
		UK	289234	128310	179731	801239	609192	261337		143075	96501	250077	186300
	LONGLINE	POR						35100					
	PELAGIC TRAWLS	GER				51000	12348	117102					
Total			289234	128310	179731	1868555	2584566	1646167	1248640	1570932	1816190	2405084	1880849

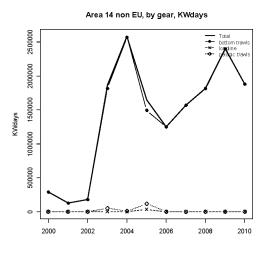
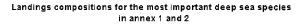


Figure 3.3.13.1 Deep Sea Effort (kwdays) 2000-2010 by gear ICES Area XIV (non EU)


Catch and catch composition

The main species landed by bottom trawl, by Germany, is roundnose grenadier followed by occasional, small, landings of blue ling. Grenadier landings have remained constant through the time series. Germany also recorded occasional catches of black scabbard and orange roughy.

Table 3.3.13.3 shows the top 4 deepwater species landed. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.13.3 Table of the Top 4 Deepwater species landed in ICES Area XIV (non EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
14 non eu	BLI	6	7	18	NA	NA	1	76	3
14 non eu	RNG	42	27	12	18	19	17	27	35
14 non eu	BSF	NA	NA	NA	NA	NA	NA	1	NA
14 non eu	ORY	NA	4	NA	NA	NA	NA	NA	1
14 non eu	ALC	NA							

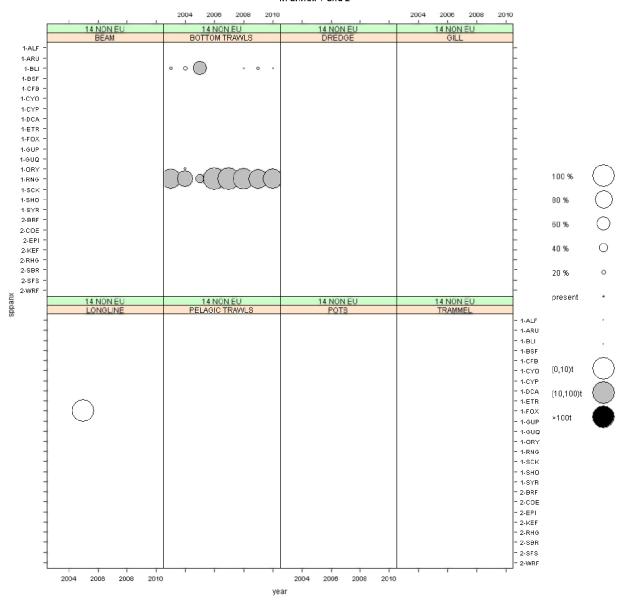


Figure 3.3.13.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear ICES Area XIV (non EU)

3.3.14. Deep Sea CECAF Area 34.1.1

Effort

A small amount of effort in CECAF 34.1.1 was recorded by Portugal (Tables 3.3.14.1 and 3.3.14.2 and Figure 3.3.14.1. Most of the effort in 2006 was in the EU part of the region although in the last few years more was recorded from other parts.

Table 3.3.14.1 Deep Sea Effort (kwdays) 2000-2010 by country CECAF Area 34.1.1 (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 EU	POR				2349	2327	9304	28137	9160	25508	26448	11077
Total					2349	2327	9304	28137	9160	25508	26448	11077

Table 3.3.14.2 Deep Sea Effort (kwdays) 2000-2010 by gear and country CECAF Area 34.1.1 (EU)

Area	Gear	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 EU	LONGLINE	POR				2349		9304	28137	9160	25508	26448	11077
	TRAMMEL	POR					2327						
Total						2349	2327	9304	28137	9160	25508	26448	11077

Note; 2004 effort figure for Portugal may be a longlines misreported as trammel

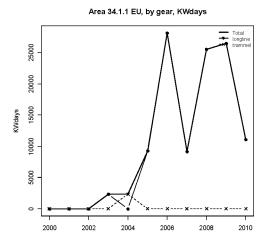


Figure 3.3.14.1 Deep Sea Effort (kwdays) 2000-2010 by gear CECAF Area 34.1.1

Catch and catch composition

Catches from this area were mainly conger eel with wreckfish becoming important in recent years, (Figure 3.3.14.2). Small amounts of greater forkbeard and silver scabbard are also landed. Portugal landed 24 tonnes of Portuguese dogfish in 2009.

Table 3.3.14.3 shows the top 5 deepwater species landed. The ranking is based according to the average of the landings of the last three years of the time series.

Table 3.3.14.3 Table of the Top 5 Deepwater species landed in CECAF Area 34.1.1 (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 eu	CYO	NA	NA	NA	NA	NA	NA	24	NA
34.1.1 eu	COE	2	NA	1	16	5	14	16	11
34.1.1 eu	WRF	NA	NA	1	16	6	15	11	3
34.1.1 eu	FOX	1	NA	NA	2	2	5	2	2
34.1.1 eu	SFS	NA	NA	NA	NA	NA	2	4	1

Landings compositions for the most important deep sea species in annex 1 and 2

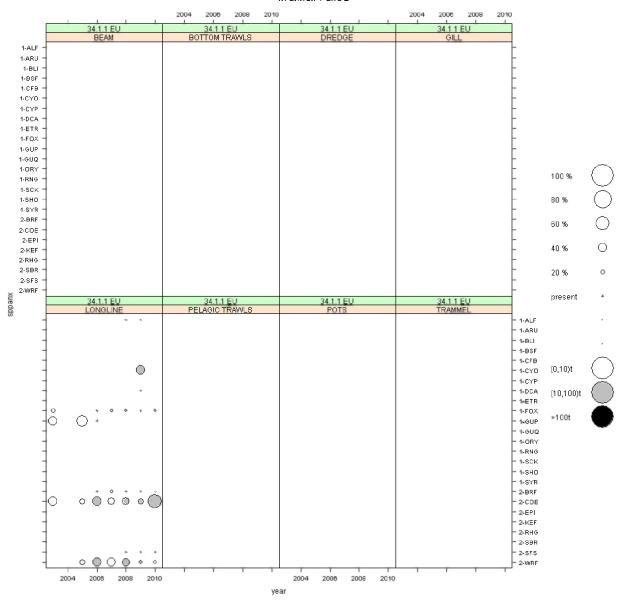


Figure 3.3.14.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear CECAF Area 34.1.1 (EU)

3.3.15. Deep Sea CECAF Area 34.1.2

Effort

Up to 2010 all effort in CECAF 34.1.2 was in EU waters and recorded by Portugal, (No data was submitted to the group by Spain), (Table 3.3.15.1). Prior to 2010 there had been an increasing trend in effort in the EU area. In 2010 Portugal recorded a large amount of effort in the non EU waters of the area. Effort is all by longline.

Table 3.3.15.1 Deep Sea Effort (kwdays) 2000-2010 by country CECAF Area 34.1.2 (EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
34.1.2 EU	POR					8771	12191	6808	14909	19293	24163	11727
Total						8771	12191	6808	14909	19293	24163	11727

Table 3.3.15.2 Deep Sea Effort (kwdays) 2000-2010 by country CECAF Area 34.1.2 (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
34.1.2 non EU	POR											619800
Total												619800

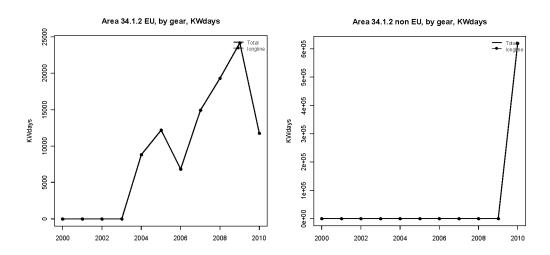


Figure 3.3.15.1 Deep Sea Effort (kwdays) 2000-2010 by gear CECAF Area 34.1.2 (EU) and 34.1.2 (non EU).

Catch and catch composition

The longline fishery in EU waters is landing small amounts of conger eel, wreckfish and greater forkbeard, Figure 3.3.15.2. In 2009 Portugal recorded a small landing of silver scabbard. In non EU waters Portugal reported landings for black scabbard, Figure 3.3.15.3.

Tables 3.3.15.3 and 3.3.15.4 show the top 5 deepwater species landed. The ranking is based according to the average of the landings of the last three years of the time series. NOTE: The 2010 Portuguese landing data for CECAF Area 34.1.2 (non EU) needs to be checked, there seems to be a scaling issue.

Table 3.3.15.3 Table of the Top 5 Deepwater species landed in CECAF Area 34.1.2 (EU)

area	species	2003	2004	2005	2006	2007	2008	2009	2010
34.1.2 eu	SFS	NA	NA	NA	NA	NA	NA	11	NA
34.1.2 eu	COE	NA	5	8	9	9	13	14	5
34.1.2 eu	WRF	NA	4	3	6	10	8	10	1
34.1.2 eu	FOX	NA	NA	NA	NA	2	3	2	2
34.1.2 eu	BRF	NA	NA	NA	1	3	2	2	1

Table 3.3.15.4 Table of the Top 5 Deepwater species landed in CECAF Area 34.1.2 (non EU). **NOTE 2010 data highly unreliable**

area	species	2003	2004	2005	2006	2007	2008	2009	2010
4.1.2 non e	BSF	NA	1860320						
4.1.2 non e	GUQ	NA	209267						
4.1.2 non e	EPI	NA	2940						
4.1.2 non e	RIB	NA	458						
4.1.2 non e	CYO	NA	260						

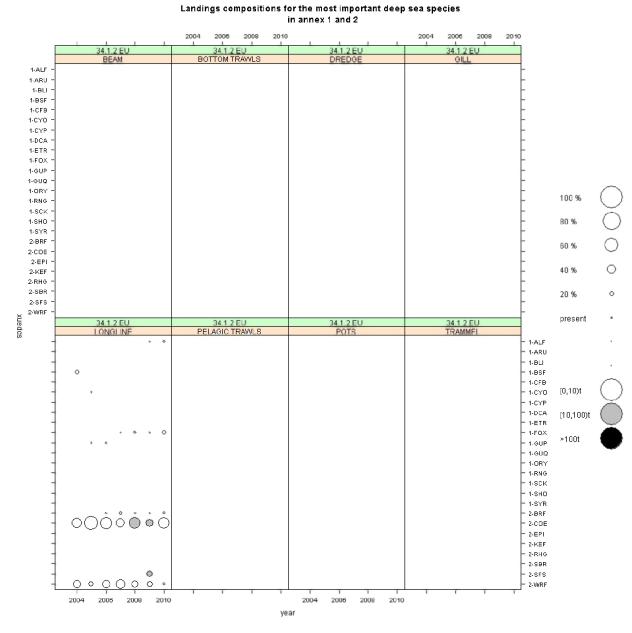


Figure 3.3.15.2 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear CECAF Area 34.1.2 (EU)

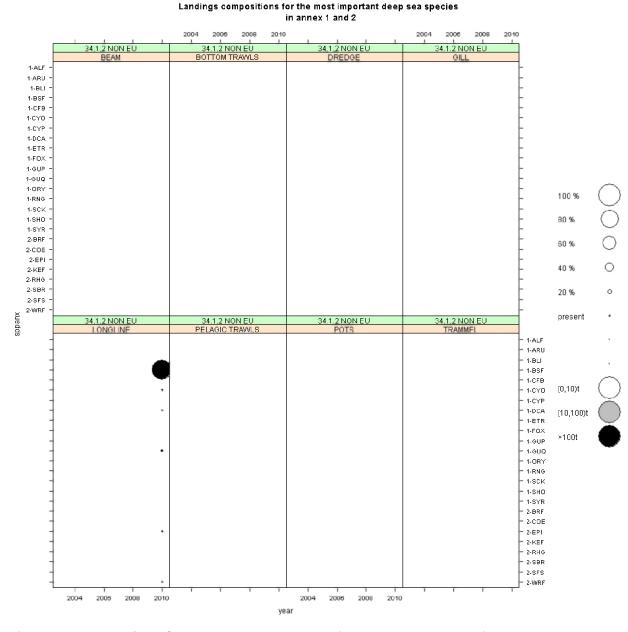


Figure 3.3.15.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2010 by gear CECAF Area 34.1.2 (non EU)

3.3.16. Deep Sea CECAF Area 34.1.3

Effort

Only a very small amount of deep sea effort was recorded in this area by the Netherlands and only in 2004. Netherlands effort was pelagic trawls. No data were submitted to the group by Spain.

Table 3.3.16.1 Deep Sea Effort (kwdays) 2000-2010 by country CECAF Area 34.1.3 (non EU)

AREA	ms	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
34.1.3 non EU	NED					22944						
Total						22944						

Catches were too sparse to merit comment.

3.3.17. Deep Sea CECAF Area 34.2.0

There was no effort or catches in this area.

4. WESTERN WATERS

4.1. Background

Details of the Western Waters regulations and its geographical extent can be found in the regulation COUNCIL REGULATION (EC) No 1415/2004.

The EWG experienced extreme difficulties in preparing these data and the interpretation of them is confounded by uncertainty in the western waters data summaries for some member states most notably Portugal, France and Spain. SINCE THESE COUNTRIES OPERATE EXTENSIVELY IN THE WESTERN WATERS AREAS AND ARE LIKELY TO CONTRIBUTE A SIGNIFICANT PROPORTION TO THE OVERALL EFFORT COVERED BY THIS REGULATION, THE DATA SHORTFALL IMPLIES THAT OVERALL EFFORT FIGURES REMAIN UNRELIABLE.

The EWG database records effort in the areas covered by the Western waters regulation including effort which becomes categorised as 'deep sea'. Since these two regulations are legislated to be non-overlapping, columns are included to show the western waters effort without the deep sea.

4.2. Fishing effort and catch composition in Western Waters

Effort and catch data under the Western Waters regulation is presented by a number of EU and non-EU areas. Where relevant these encompass breakdowns by country, gear and vessel length groups.

4.2.1. Western waters Area V

4.2.1.1. Area V EU

Effort

There is uncertainty relating to French effort. French effort in this region prior to 2009 appears to be seriously in error as negative values appear in the table. In addition effort values in 2002 are extremely high. Overall effort figures are therefore unreliable.

Overall effort within this area has declined over time, having previously been fished at relatively low levels by a number of nations utilising bottom and pelagic trawls, as well as a small amount of gillnet effort (Table 4.2.1.1.1. and Figure 4.2.1.1.1).

The majority of fishing effort within the area is directed toward fisheries not covered by the western waters regulation. In recent years, pelagic trawl effort has declined by around 80% from the highs of 2001-2004. Bottom trawling also occurs within the area, the majority of which targets deepwater fisheries. France has persisted as the dominant nation deploying effort, with more minor contributions from Scotland.

Catch composition

The majority of demersal species landings are associated with the deepwater fisheries taking place within the area.

The top five demersal species landed from V EU are detailed within Table 4.2.1.1.2 showing anglerfish (ANF) to have had the greatest landings in recent years. Anglerfish landings dropped dramatically from 270t in 2009 to just 3t in 2010. Landings of this species originate solely from France. Landings of all other species averaged across 2008 to 2010 are very low.

The primary pelagic species landed is blue whiting (WHB), with sporadic landings of mackerel (MAC) and horse mackerel (JAX) occurring (Table 4.2.1.1.3).

Small quantities of edible crab (CRE) were landed from this area prior to 2006 (Table 4.2.1.1.4).

Table 4.2.1.1.1. Effort (kWdays) by country, gear and vessel size group within Area V EU, 2004-2010.

				2004			2005			2006			2007			2008			2009			2010	
		Vessel		Deep	Excluding		Deep	Excluding		Deep	Excluding	l	Deep	Excluding									
Gear	country	length	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep									
beam	FRA	o15m	12288	12288		- 0	0		0	Ð		0	0		- 0	0		- 0			0	0	
	SCO	o15m	0		0	0		0	0		0	0		0	0		0	0			0		0
bottom tra	ENG	o15m	8405	8405	0	3135	3135	0	1522	1522	0	0	0	. 0	0	0	0	0			0	0	4
	FRA	o15m	3825	1102571	-1098746	2208	921365	-919157	3521	927080	-923559	6350	1111008	-1104658	0	793232	-793232	793232	793232	! !	381100	381100	. 0
	GER	o15m	0		0	0		9	5100		5100	0		9	0		9	9			0		0
	IRL	o15m	0	0		9	0		0	Ð		0	0		0	0		9			0	0	
	SCO	o15m	77938	76276	1662	13332	11532	1800	16313	14332	1981	2566	296	2270	8006	11228	-3222	21210	20837	37	38781	37747	1034
dredge	SCO	o15m	0		0	- 0		0	- 0		0	0		0	- 0		0	- 0			0		0
gill	ENG	o15m	106655	106655	0	42147	41530	61.7	7804	7804	0	0	0		0	0	0	0			0	0	. 0
	FRA	o15m	88320	88320	0	70656	70656	0	54464	54464	0	82432	66240	16192	154560	154560	0	154560	154560		0	0	. 0
	GER	o15m	5733	0	5733	0	0	9	0	0	0	0	0	. 0	0	0	0	9			0	0	. 0
	SCO	o15m	0		9	9		9	9		0	0		9	. 0		9	9			0		0
longline	ENG	o15m	0	0	0	3219	3219	0	0	0	0	0	0	. 0	0	0	0	0			0	0	. 0
	SCO	o15m		9	0	9	Ð	9	9	9	- 0	- 0	0	. 0	0	9	9	9			3681	3385	296
pelagic trav	DEN	o15m	7742		7742	0		0	0		0	16132		16132	2005		2005	0			0		0
	FRA	o15m	14720		14720	17664		17664	55936		55936	29440		29440	17664		17664	17664		1766	. 0		0
	GER	o15m	4942	4942	0	70965	60375	10590	28639	12742	15897	2600	2600	. 0	0	0	0	0			0	0	. 0
	IRL	o15m	29321		29321	27100		27100	0		0	5880		5880	0		0	0			0		0
	NED	o15m	341000	175353	165647	142740	80010	62730	83036	31618	51418	44686	11453	33233	48530	33971	14559	43560		43561	6600	6600	. 0
	SCO	o15m	94966	59300	35666	9	Ð	9	9	9	- 0	- 0	0	. 0	0	9	9				16120		16120
pots	ENG	o15m	744		744	- 0		0	0		0	0		0	0		0	9			0		0
	NIR	o15m	0		0	0		9	1744		1744	0		0	0		0	0			0		0
	SCO	o15m	0		0	0		0	0		0	0		0	0		0	0			231		231
trammel	FRA	o15m	0		0	0		0	0		0	0		0	0		0	0			0		0
5 EU Total			796599	1634110	-837511	393166	1191822	-798656	258079	1049562	-791483	190086	1191597	-1001511	230765	992991	-762226	1030226	968629	6159	446513	428832	17681

Table 4.2.1.1.2. Top demersal species landed (tonnes) (average 2008-2010) within Area V EU, 2003-2010.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
5 EU	ANF	L	44	242	297	196	157	255	270	3
5 EU	POK	L	36	28	28	21	15	NA	22	5
5 EU	COD	L	7	3	NA	NA	NA	4	NA	NA
5 EU	BRF	L	NA	NA	NA	NA	NA	NA	1	NA
5 EU	HAD	L	27	4	1	2	NA	NA	1	1

Table 4.2.1.1.3. Top pelagic species landed (tonnes) (average 2008-2010) within Area V EU, 2003-2010.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
5 EU	WHB	L	8939	3736	2309	1325	982	734	571	922
5 EU	MAC	L	1005	2416	NA	NA	NA	NA	NA	11
5 EU	JAX	L	12	NA	NA	NA	366	NA	NA	NA

Table 4.2.1.1.4. Scallop and crab species by gear landed within Area V EU, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
5 EU	DREDGE	SCE	0							
5 EU	GILL	CRE	5	3	4	8				
5 EU	POTS	CRE		2		12				

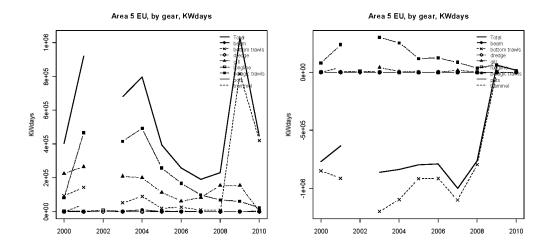


Figure 4.2.1.1.1. kWdays effort reported within Area V EU by gear type, 2000-2010, with (left) and without (right) reported deepwater effort.

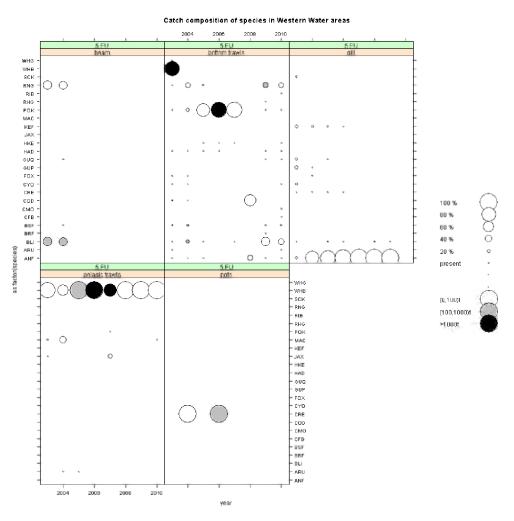


Figure 4.2.1.1.1. Landings composition by gear (countries combined) Western waters area V EU, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.1.2. Area V non EU

Effort

There is uncertainty relating to French effort. French effort in this region prior to 2009 appears to be seriously in error as negative values appear in the table. In addition effort values in 2002 are extremely high. Overall effort figures are unreliable.

Overall effort within this area has declined over time, having previously been fished by a number of nations utilising bottom and pelagic trawls (Table 4.2.1.2.1. and Figure 4.2.1.2.1).

The majority of fishing effort within the area is directed toward fisheries not covered by the western waters regulation. Bottom trawling is the primary gear within the area, much of which targets deepwater fisheries. Scotland has been the dominant nation deploying this effort. Pelagic trawl effort fluctuated between 2003-2005, since when effort has declined to nominal levels in 2009 and 2010, fishing was principally carried out by Denmark, the Netherlands, and Scotland.

Catch composition

The top five demersal species landed from V non EU are detailed within Table 4.2.1.2.2 showing saithe (POK) to contribute the biggest landings both as recent average and over the period available. Landings of this species had previously been declining prior to 2009 but have since begun to increase. Declining quantities of cod (COD) are also landed from this area, currently ranked second in importance. Anglerfish, haddock and whiting also occur in the current top five with variable landings. Haddock shows some signs of decline.

Blue whiting (WHB) is the sole pelagic species landed during the average (2008-2010) period used to rank the top five pelagic species (Table 4.2.1.2.3).

No landings of scallops or crabs were reported within this area.

Table 4.2.1.2.1. Effort (kWdays) by country, gear and vessel size group within Area V non EU, 2004-2010.

				2004			2005			2006			2007			2008			2009			2010	
		N'esse		Deep	Excluding		Deep	Excluding		Deep	Excluting		Deep	Excluding		Deep I	Excluding		Deep	Excluding		Deep I	Excluding
Gear	country	length	Effort I	ffort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort 8	Effort	Deep	Effort 8	Effort I	Deep	Effort I	Effort	Deep	Effort E	ffort I	Deep
beam	FRA	o15m		7400			0			0			0			0			0			0	
	SCO	o15m	0		0	9			0			0		(0		(0		(0		0
bottom tra	BEN	o15m	0		0	35292		35292	0		0	. 0		. 0	103067		103067	0		0	0		0
	ENG	o15m	652390	646050	6340	455353	455353	0	159462	159462	0	226963	226963	0	67258	67258	0	0	0	0	0	0	0
	FRA	o15m	29974	769342	-739368	7979	381706	-373727	12989	325531	-312542	23690	294664	-270974	1850	219992	-218142	1850	219992	-218142	60422	44400	16022
	GER	o15m	208425	174990	33435	342960	339900	3060	250260	249060	1200	137210	0	137210	7281	7281	0	130500	103500	27000	385062	385062	0
	SCO	o15m	840663	425810	41485E	931460	430458	501002	704552	262878	441674	342705	45888	296817	252446	47662	204784	414088	128263	285825	475549	232011	243538
gil	FRA	o15m	0		0	0		0	0		0	0		0	0		0	0		0	0		0
longline	sco	o15m	0		0	0		0	0		0	0		0	0		0	0		0	0		0
none	DEN	o15m	837		837	- 0		0	- 0		- 0	0		- 0	0		. 0	0		0	0		0
pelagic tra	DEN	o15m	108776		108776	215592		215592	172263		172263	170505		170505	14035		14035	. 0					.0
	FRA	o15m	41216		41216	52992		52992	23552		23552	17664		17664	. 0		0	0		0	0		0
	GER	o15m	19768	19769	0	106240	106240	0	57020	25226	31794	23400	23400	0	20800	0	20800	0	0		0	0	0
	NED	o15m	89936	15850	74086	385028	154495	230538	53530	26765	26765	81918	47559	34359	0	0	0	0	0		7428	7428	0
	sco	o15m	46080		46080	8353		8357	28980		28980	82287		82287	68337		68337	0		0	28120		28120
pots	ENG	o15m	0		0	0		0	0		0	0		0	0		0	0		0	0		0
crammel	FRA	o15m	0		0	- 0		0	- 0		0	- 0		0	0		0	0		0	0		0
5 non EU T	otal		2038065	2059210	-13745	2541249	1868152	673097	1462608	1048922	413686	1106342	638474	467868	535074	342193	192881	546438	451755	94683	956581	668901	287680

Table 4.2.1.2.2. Top demersal species landed (average 2008-2010) within Area V non EU, 2003-2010. Values are landings in tonnes.

area specie	es Type	2003	2004	2005	2006	2007	2008	2009	2010
5 NON EU POK	L	1259	1363	1556	1216	454	409	689	758
5 NON EU POK	D	273	83	497	27	NA	NA	NA	NA
5 NON EU COD	L	493	782	803	337	423	412	339	366
5 NON EU COD	D	NA	NA	5	150	NA	NA	NA	NA
5 NON EU ANF	L	104	174	265	244	123	73	174	108
5 NON EU HAD	L	183	195	128	109	51	65	91	74
5 NON EU WHG	L	21	21	17	42	17	7	33	41

Table 4.2.1.2.3. Top pelagic species landed (average 2008-2010) within Area V non EU, 2003-2010. Values are landings in tonnes.

area s	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
5 NON EU Y	WHB	L	6455	4961	13593	7537	6926	8520	NA	1628
5 NON EU I	MAC	L	NA	2	NA	NA	NA	NA	NA	NA

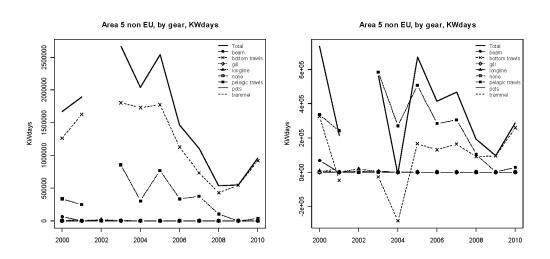


Figure 4.2.1.2.1. kWdays effort reported within Area V non EU by gear type, 2000-2010 with (left) and without (right) reported deepwater effort.

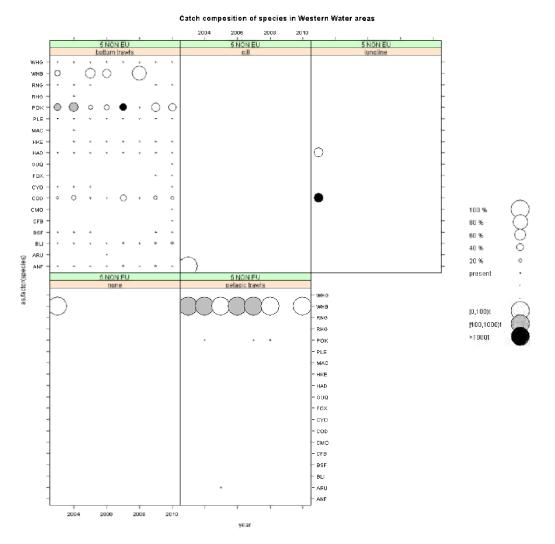


Figure 4.2.1.2.2 Landings composition by gear (countries combined) Western waters area V non EU, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.2. Western waters Area VI

4.2.2.1. Area VI EU

Effort

There is uncertainty relating to French effort. French effort in this region appears to be in error since negative values appear in the table. In addition effort values in 2002 are extremely high. Overall effort figures are unreliable.

There has been a gradual decline in effort within Area VI EU over the period (Table 4.2.2.1.1. and Figure 4.2.2.1.1.)

Bottom trawling and pelagic trawling are the primary gear categories within this area, along with smaller amounts of pots and traps. Bottom trawling effort has remained stable over the past six years declining slightly in 2009 and 2010. Pelagic trawl effort has shown a steadier decline throughout the period. The influence of deepwater fisheries in Area VI EU is less then in Area V, here the majority of annual effort is directed to non-deepwater fisheries. A variety of nations

operate within this area. Scotland dominates bottom trawl effort, with large contributions from France (directed toward deepwater fisheries), and to a lesser extent Ireland. Pelagic effort is dominated by the Netherlands, Scotland and Ireland.

A number of additional gear categories are used within this area, occurring at comparatively low levels. This includes pot, dredging, longlines and gillnets. Of these, pots have the highest effort. Much of this effort originates from Scottish vessels, although Irish, English and Northern Irish vessels also utilise this gear. Gillnetting previously showed higher levels of effort, the majority of which was associated with deepwater fisheries, which have subsequently declined since 2006 to low levels. Scotland, France and Germany carry out demersal gillnetting at lower levels.

Catch composition

There are a variety of different fisheries taking place within area VI EU by a number of different gears, as seen in Figure 4.2.2.1.2. The top five demersal species landed from VI EU are detailed within Table 4.2.2.1.2. Landings of all five species are far higher than those in area V. *Nephrops* (NEP) has both the greatest average landings and throughout the period, although a slight decline is seen in most recent years. Saithe (POK) and haddock (HAD) show fluctuations without trend. Hake (HKE) landings show a steady increase over the whole period, as do those of anglerfish until 2010 when landings were reduced.

There are three top pelagic species landed from VI EU (Table 4.2.2.1.3). Mackerel (MAC) rank first and have shown a declining trend until 2009 and 2010 when greater landings were ercorded. Blue whiting (WHB) has declined to lower levels than seen in the earlier period while horse mackerel landings have fluctuated.

Table 4.2.2.1.4 details landings of scallops and crabs in area VI EU. Large scallop (SCE) landings occur from dredging, and indicate a declining trend until 2007, halted by an increase in 2008, since which landings have begun to decline again. Relatively small amounts of scallops are landed from the 'none' category. Pots contribute large quantities of edible crabs (CRE), landings of which increased until 2007, with firther increases again in 2010. Only minor landings of spider crab (SCR) have occurred between 2007 and 2009, from pots and traps.

Table 4.2.2.1.1. Effort (kWdays) by country, gear and vessel size group within Area VI EU, 2004-2010.

				2004			2005			2006			2007			2008			2009			2010	
Gear	country	Vessel length			Excluding Deep			Excluding Deep			Excluding Deep			Excluding Deep			Excluding Deep			xcluding eep			Excluding Deep
beam	ENG	o10t15m	- 0		9	0		0	0		0	- 0		0	0		. 0	0		0	0		
	BEL ENG	o15m o15m	18103 12067		18103 12067	8566 1810		8566 1810	4415 0		4415	2356 0		2356	0		0	0		0	0		
	FRA	o15m	37257	95526	-58269	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	GBJ IRL	o15m	0 38963		0 38963	0 5068		0 5068	6335		0	0		0	0		0	0		0	0		
	IRL SCO	o15m	38963 251008	50267	38963 200741	144717	29475	5068 115242	101695	12955	6335 88740	1803	D	1803	0	D	0	0	D	0	0	D	
bottom tra	SPN	none		0			0			0			0		Ů	0	·		142583	Ť	Ľ	0	
	ENG	o10t15m	27096		27096	37472		37472	36827		36827	42813		42813	56881		56881	9421		9421	12314		1231
	FRA IOM	o10t15m o10t15m	0		9	0		3	0		0	0		0	0 649		649	0		0	0		
	IRL	o10t15m	61406		61406	31586		31586	18871		18871	13736		13736	16261		16261	6016		6016	16553		1655
	NIR	o10t15m	22471	0	22471	15635	0	15635	49208	Ð	49208	84096	0	84096	56871	0	56871	58295	531	57764	116005	0	11600
	SCO BEL	o10t15m	1811857	6994	1804863	1679973	0	1679973	1657586	0	1657586	1680443	0	1680443	1530090 0	0	1530090	1459171	0	1459171	1292875	0	129287
	DEN	o15m	91088		91088	0		ď	1766 11520		1766 11520	795 0		795 0	l ő		0	0		,	1176		117
	ENG	o15m	819392	734282	85110	683083	632562	50521	382087	319610	62477	270096	244116	25980	78276	35830	42446	61318	32930	28388	70815	68327	248
	FRA	o15m	4713492	5355877	-642385	5117917	5116610	1307	4263214	3995234	267980	3942141	3543821	398320	3963300	3594454	368846	3963300	3594454	368846	3095528	2997921	9760
	GER IOM	o15m o15m	12530 1172	12530	1172	35586 181	0	35586 181	22797 894	0	22797 894	23652 0	0	23652	3060	0	3060	4854 0	0	4854	6957 0	0	695
	IRL	o15m	1533957		1341072	1264268	226687	1037581	1410464		1346785	1391244	148902	1242342	1187165	132217	1054948	799928	32991	766937	995425	80989	91443
	NED	o15m	0		9	0		0	0		0	0		0	0		0	0		0	0		
	NIR SCO	o15m	501317 9215114	4099 2063829	497218 7151285	421825 6859420	480B 1158329	417017 5701091	434448 5799949	2813 902595	431635 4897354	710747 5703731	5420 693368	705327 5010363	637671 6212059	10312 619502	627359 5592557	512619 6744368	3187 1108817	509432 5635551	782639 5979647	7822 883129	77481 509651
dredge	SCO ENG	o15m o10t15m	9215114 19995	2063829	7151285 19995	6859420 9672	1158329	5701091 9672	5799949 20508	902595	4897354 20508	5703731 17860	693368	17860	6212059 23879	619502	23879	6744368 7068	1108817	5635551 7068	5979647	883129	509651
	FRA	o10t15m	1128		1128	0		0	0		0	0		0	0		0	0		0	0		
	IOM	o10t15m	0		0	0		0	2508		2508	2304		2304	13871		13871	6003		6003	1044		104
	IRL NIR	o10t15m o10t15m	397 13993		397 13993	397 22540		397 22540	556 10921		556 10921	884 3222		884 3222	10115		10115	13738		13738	10177		1017
	NIR SCO	o10t15m o10t15m	13993 241114		13993 241114	22540		22540	10921		10921	3222 108381		3222 108381	10115		10115	13738		13738	10177		15500
	ENG	o15m	8710		8710	31402		31402	36378		36378	18125		18125	3868		3868	17617		17617	7304		730
	GBJ	o15m	0		0	0		0	0		9	0		0	. 0		0	0		0	0		
	IDM IRL	o15m o15m	13229 5804		13229 5804	2722		2722	6625 0		6625	8981 19404		8981 19404	22011 7938		22011 7938	9981		9981	6966		696
	NIR	o15m	31729		31729	13754		13754	5332		5332	19744		19744	14763		14763	50258		50258	15643		1564
	5CO	o15m	1348167	0	1348167	1209839	0	1209839	931169	Ð	931169	712625	0	712625	857773	0	857773	834279	0	834279	806630	0	80663
gill	ENG	o10t15m	0		0	0		0	0		0	0		- 0	- 0		0	0		0	0		
	IRL NIR	o10t15m o10t15m	1711 0		1711	192 0		192	2379 0		2379	7351 0		7351	5421 3564		5421 3564	1140 0		1140	793 0		79
	SCO	o10t15m	246		246	2038		2038	1044		1044	553		553	5493		5493	0		0	0		
	ENG	o15m	651447	651447	0	525032	498085	26947	102666	102666	0	90561	90561	0	0	0	0	41885	41885	0	2540	2540	
	FRA GER	o15m o15m	159958 134492	111848 66848	48110 67644	268726 132800	124528 29540	144198 103260	276528 56548	100472 15192	176056 41356	228799 161064	286283 0	-57484 161064	649678 141492	161800 0	487878 141492	649678 91269	161800 0	487878 91269	375934 114683	99936 34839	27599 7984
	IRL	o15m	20402	0 00048	20402	132800	29540	103260	1175	15192	1175	5995	0	5995	4528	0	4528	2135	0	2135	114083	34839	/504
	500	o15m	190162	190162	9	252944	192202	60742	132772	45076	87696	65169	0	65169	186312	105292	81020	109053	8540	100513	190339	67212	12312
longline	SPN	none		0			0			Ð			0			0			56654			0	
	IRL NIR	o10t15m o10t15m	0		0	1574		1574	0		0	0			0		0	0		0	3272		327
	sco	o10t15m	ő		0	0		0	o o		0	0		0	0		0	0		0	0		
	ENG	o15m	461786	425223	36563	314209	264360	49849	312858	282970	29888	325325	308904	16421	28103	281 03	0	0	0	0	0	0	
	FRA IRL	o15m o15m	0 18400	17000	1400	3000	0 1200	1800	163130	9936 0	153194	445344 11700	82560 11700	362784	277750 0	39462 0	238288	277750 0	39462 0	238288	189072 0	0	18907
	SCO	o15m	148430	135902	12528	306947	122725	184222	371404	179066	192338	518887	222413	296474	378736	121440	257296	703396	166589	536807	719384	192835	52654
none	IRL	o10t15m	0		9	0		0	0		0	0		0	218		218	0		0	1542		154
	SCO	o10t15m	26746		26746	42054		42054	50920		50920	61281		61281	47721		47721	50969		50969	43058		4305
pelagic trav	IRL	o15m o10t15m	112		112	195 320		195 320	4320		4320	2223 2512		2223 2512	20908 2092		20908 2092	48410 640		48410 640	55669 2848		5566 284
beingir et at	SCO	o10t15m	157		157	320		320	4520		4520	2312		591.5	2092		2092	640		040	2048		284
	DEN	o15m	257143	25993	231150	166341	0	166341	704360	0	704360	119581	0	119581	91954	0	91954	0	0	0	0	0	
	ENG	o15m	411524	42115	411524	294900	37977	294900	890428	D	890428	845598	D	845598	653736	D	653736	721818	D	721818	425610	0	42561
	FRA GER	o15m	437400 762402	42115	395285 284169	197616 638384	37977 306438	159639 331946	305922	341152	305922 802619	324841 1161097	215066	324841 946031	257796 684150	0	257796 684150	257796 484479	49400	257796 435079	233392 367736	0	23339
	IRL	o15m	2680783	10969	2669814	1826733	388800	1437933	1693782	0	1693782	1328951	0	1328951	1506600	0	1506600	1281508	0	1281508	1501064	0	150106
	NED	o15m		2937769	3218623	5544240	1737822	3806418	4327834		3273815	4430203	1061055	3369148	3824546	1013096	2811450	2815153		2815153	1557718	988482	56923
	NIR SCO	o15m o15m	461786 5663711	5760 292009	456026 5371702	272866 4517350	0 38368	272866 4478982	287355 2316619	0	287355 2316619	249162 2185833	0	249162 2185833	124524 1458951	0	124524 1458951	64013 1798030	0	64013 1798030	178558 1559693	0	17855 155969
	LIT	015M 040m	3003711	292009	22/1/05	421/320	38308	+4/838Z	2316619	U	531001A	2185833	U	* TB2B33	7428221	U	1408901	29520		29520	7228893		100369
pots	ENG	o10t15m	0		0	8376		8376	9260		9260	11967		11967	3531		3531	45565		45565	135451		13545
	IRL	o10t15m	36838		36838	19007		19007	125179		125179	203121		203121	159380		159380	140637		140637	347854		34789
	NIR SCO	o10t15m	100776 1320474		100776	121866 1401767		121866 1401767	111442		111442	201613 1661758		201613	188029 1633405		188029 1633405	143821 1657069		143821 1657069	156515 1756987		15651
	ENG	o15m	145394	0	145394	220538	0	220538	228556	0	228556	500374	8960	491414	147114	0	147114	63725	0	63725	64031	- 0	6403
	GBJ	o15m	0		9	0		0	0		0	0		0	0		0	321		321	Ð		
	GER	o15m	49833		49833	55125		55125	98384		98384	92176		92176	34398		34398	46978		46978	75535		7553
	IRL NIR	o15m o15m	592180 92984		592180 92984	561812 91613		561812 91613	431122 60072		431122 60072	450532 110316		450532 110316	366358 82843		366358 82843	289818 11306		289818 11306	311570 25479		3115 254
	SCO	o15m	389057	18599	370458	325916	0	325916	374589	0	374589	423002	441	422561	400836	4804	396032	526615	0	526615	620965	0	62 091
trammel	FRA	o10t15m	0		0	0		0	0		0	0		0	0		0	0		0	0		
	IRL	o10t15m	0		0	0		0	448		448	0		0	0		0	0		0	0		
	500	o10t15m o15m	435 0		435	0		9	0		0	0		0	0		0	0		0	0		
	ENG							٥										,					
	ENG FRA	o15m	0		0	0		어	0		9	0								U	0		
EU Total			0		0	9 5410 35937555		9 5410	0		0	31006072		0	28187977		0	0 27045114		0	0	5424032	

Table 4.2.2.1.2. Top demersal species landed (average 2008-2010) within Area VI EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
6 EU	NEP	L	8951	8567	8703	11463	13990	13044	10732	10186
6 EU	POK	L	5147	4720	6487	9610	6688	6552	7352	5567
6 EU	POK	D	11165	1425	9520	6062	2089	3348	10	697
6 EU	HAD	L	6951	3748	3753	6221	5622	5254	5769	5125
6 EU	HAD	D	7924	6219	3186	6128	5606	2805	4113	25400
6 EU	HKE	L	636	1148	2011	2333	3480	3812	5230	6035
6 EU	HKE	D	4975	7880	4757	NA	1580	6608	4076	1165
6 EU	ANF	L	2650	2748	3509	3369	4170	4506	4919	3224
6 EU	ANF	D	877	1906	65	NA	369	171	179	17

Table 4.2.2.1.3. Top pelagic species landed (average 2008-2010) within Area VI EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
6 EU	MAC	L	155590	126775	115097	99501	100778	85139	138876	106866
6 EU	MAC	D	24255	257197	5597194	NA	1492	336	45	838
6 EU	WHB	L	39159	125221	122411	150756	57708	31467	33918	40723
6 EU	WHB	D	166	359	49	NA	4	23	4	233
6 EU	JAX	L	23276	17745	14297	11200	22452	23877	18736	20892
6 EU	JAX	D	8578	17775	1230	NA	184	24750	22	1026

Table 4.2.2.1.4. Scallop and crab species by gear landed within Area VI EU, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
6 EU	BEAM	SCE	25	0	0					
6 EU	BOTTOM TRAWLS	CRE	3	12	2	0	2	0	0	13
6 EU	BOTTOM TRAWLS	SCE	8	2	0					3
6 EU	BOTTOM TRAWLS	SCR				0				
6 EU	DREDGE	CRE	3	20	18		2	0		0
6 EU	DREDGE	SCE	5227	4642	3994	3014	2687	3558	3115	2998
6 EU	GILL	CRE	62	55	20	21	0	5	1	1
6 EU	none	CRE			1	0				1
6 EU	none	SCE	122	11	49	75	79	47	71	58
6 EU	POTS	CRE	7840	8117	8100	8636	9344	7986	7394	8935
6 EU	POTS	SCE		7			0			1
6 EU	POTS	SCR					5	2	4	0

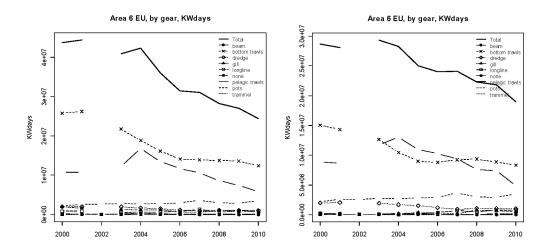


Figure 4.2.2.1.1. kWdays effort reported within Area VI EU by gear type, 2000-2010 with (left) and without (right) reported deepwater effort.

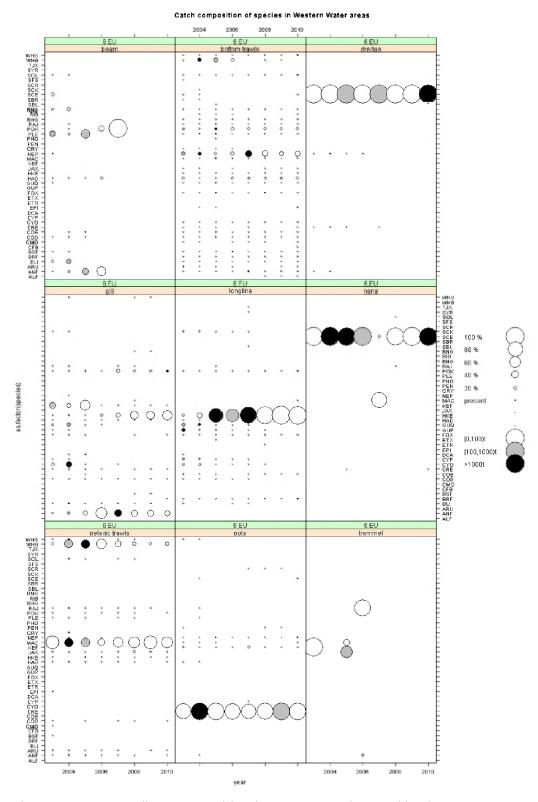


Figure 4.2.2.1.2 Landings composition by gear (countries combined) Western waters area VI EU, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.2.2. Area VI non EU

Effort

Effort has been declining within this area over time, having peaked in 2004. Effort has increased slightly in the last two years (Table 4.2.2.2.1. and Figure 4.2.2.2.1.).

Bottom trawling is the primary activity, carried out by English and Scottish vessels. Much of the effort had been directed towards deepwater fisheries, however, the increase in effort during 2009 and 2010, primarily by Scottish vessels, was not associated with this activity.

At the beginning of the time series, gillnetting also occurred, carried out by England, Scotland and Portugal, and much of this effort was directed toward deepwater fisheries. Since 2006 effort within this category has been minimal. A period of pelagic trawling peaked during the middle of the time series, is now at minimal levels.

Catch composition

The top five demersal species landed from VI non EU are detailed within Table 4.2.2.2.2 with more general composition given in Figure 4.2.2.2.2. The top five demersal species has changed over the last number of years. The fluctuating landings of anglerfish (ANF) would previously have been ranked first occurring as part of the deepwater fishery along with blue mouth (BRF; 4th). However, haddock is now the top demersal species, with small increasing landings of saithe (POK) reflecting the greater effort directed to demersal species within this area over the last two years.

This is not an area of activity for pelagic fishing, blue whiting (WHB) landings occurred in 2003 since which there have been no pelagic landings (Table 4.2.2.2.3).

Within area VI non EU minimal crab (CRE) landings occurred (2003-2004) and no scallop landings have occurred (Table 4.2.2.2.4).

Table 4.2.2.2.1. Effort (kWdays) by country, gear and vessel size group within Area VI non EU, 2004-2010.

				2004			2005			2006			2007			2008			2009			2010	
		Vessel	_	Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding
Gear	country	length	Effort I	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep
bottom tra	DEN	o15m	0		0	0		0	0		0	0		0	0		0)	0	0		0
	ENG	o15m	727273	698028	29245	528446	528446	9	434191	434191		307643	397643	9	65188	65188	0	3361	33612	0	19940	19940	9
	FRA	o15m	0		0	0		0	0		0	0		0	0		0)	0	2427		2427
	SCO	o15m	352587	326449	26138	24708	19764	4944	39808	17308	22500	57544	8522	49022	94472	85899	8573	18234	65933	116413	415654	115989	299665
	EST	o40m		0			12656			18080			0			9			0			0	
gill	ENG	o15m	47538	47538	0	12044	12044	0	0		. 0	58329	51126	7203	. 0	0	0		0	0	- 0	0	0
	POR	o15m	51136	0	51136	0	0	0	0		. 0	0	0	0	0	0	0		0	0	0	0	0
	SCO	o15m	326127	326127	0	151406	146583	4823	77961	77961		67248	0	67248	0	0	0	1531	7 0	15317	0	0	0
longline	ENG	o15m	0	0	0	0	0	0	0	. 0	. 0	- 0	0	0	0	0	0	1) 0	0	0	0	0
	POR	o15m	136080	72900	63180	0	0	9	9			- 0	0	9	0	0	0		9 9	0		0	9
	500	o15m	0	9	0	0	9	9	9	. 0		- 0	0	9	0	9	0		9 9	0		0	9
pelagic trav	DEN	o15m	0		0	0		0	0		0	0		0	- 0		0)	0	- 0		0
	GER	o15m	0		9	0		9	0		0	0		0	0		0)	0	0		0
	NED	o15m	254730	139938	114792	88605	0	88605	0	. 0	. 0	0	0	0	0	0	0		0	0	0	0	0
	SCO	o15m	0		0	0		0	0		0	- 0		0	0		0)	0	0		0
pots	ENG	o15m	0		0	- 0		0	- 0		0	35364		35364	- 0		- 0)	0	- 0		- 0
	GER	o15m	0		9	0		9	9		9	- 0		9	0		0)	0	39709		39709
	SCO	o15m	0	0		0	0		0			0	0		19513	19513			9 9		0	0	
6 non EU T	otal		1895471	1610980	284491	805209	719493	98372	551960	547540	22500	526128	367291	158837	179173	170600	8573	23127	99545	131730	477730	135929	341801

Table 4.2.2.2.2. Top demersal species landed (average 2008-2010) within Area VI non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
6 NON EU	HAD	L	281	18	4	4	67	21	333	849
6 NON EU	HAD	D	NA	NA	NA	NA	NA	NA	237	NA
6 NON EU	ANF	L	52	128	217	95	172	20	42	124
6 NON EU	POK	L	2	NA	NA	NA	2	1	5	15
6 NON EU	POK	D	NA	3						
6 NON EU	BRF	L	32	44	39	36	15	3	NA	1
6 NON EU	COD	L	1	NA	NA	1	NA	NA	NA	NA
6 NON EU	COD	D	NA	1						

Table 4.2.2.2.3. Top pelagic species landed (average 2008-2010) within Area VI non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
6 NON I	FU WHR	1	8198	NΑ						

Table 4.2.2.2.4. Scallop and crab species by gear landed within Area VI non EU, 2003-2010. Values are landings in tons.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
6 pop EII	CILL	CDE	1	5						

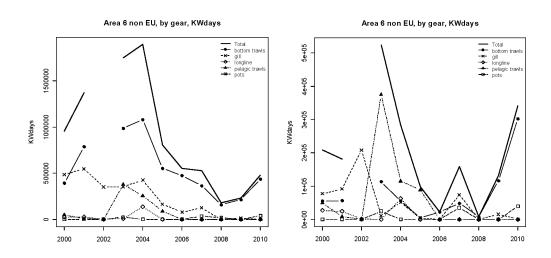


Figure 4.2.2.2.1. kWdays effort reported within Area VI non EU by gear type, 2000-2010 with (left) and without (right) reported deepwater effort.

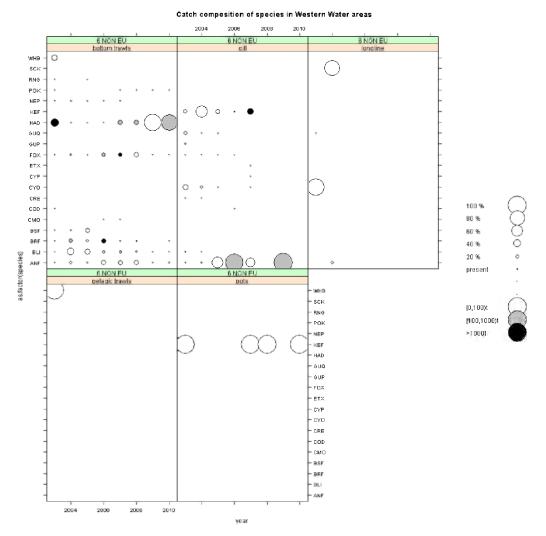


Figure 4.2.2.2.2 Landings composition by gear (countries combined) Western waters area VI non EU, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.3. Western waters Area VII

4.2.3.1. Area VII excluding VIId EU

Effort

There is uncertainty relating to French effort.

Within EU waters of Area VII, excluding VIId a wide variety of activity occurs incorporating a number of nations. Overall effort declined from 2004 until 2009, whereas an increase occurred in 2010. A relatively small proportion of effort is directed to deepwater fisheries (Table 4.2.3.1.1 and Figure 4.2.3.1.1).

The main gear in use is bottom trawl, with France the primary contributor followed by Ireland. England and Northern Ireland also participate at lower levels of activity. Pelagic trawling, dominated by the Netherlands and with smaller amounts by Ireland, has increased in 2010 owing to increased effort from Ireland in the last two years.

Beam trawling (by England, Belgium and Ireland) has declined over time, likely due to a number of decommissioning schemes removing vessels from the fleet. Over the last three years beam trawl effort amounts have been similar to dredging (by France, Scotland, England and Ireland). A small amount of effort is also directed toward pots and gillnets.

Catch composition

The top five demersal species landed from VI non EU are detailed within Table 4.2.3.1.2 with more general composition given in Figure 4.2.3.1.2. Within this area *Nephrops* (NEP) accounts for the greatest landings, followed closely by anglerfish (ANF) which would have previously been ranked first in the earlier part of the time series. Haddock (HAD) and whiting (WHG), also within the top five have shown increased landings in the last two years, while hake (HKE) landings doubled in 2010.

Horse mackerel (JAX) tops the pelagic species landings, having shown greatly increased landings in the last two years (Table 4.2.3.1.3). Mackerel shows a similar increased trend in the last two years, whilst blue whiting peaked between 2005 and 2006.

Crab and Scallop landings from the area are detailed in Table 4.2.3.1.4. This shows that the greatest landings of scallops (SCE) by far originate from dredges and that there has been a general increase until 2010. Beam trawls also land scallops, although at a much lower level. Edible crabs (CRE) are landed by a wide variety of gears. Pots yield the greatest landings (~6500t), with quantities also originating from for example, trammel nets (~300t), gill nets (~250) and bottom trawls (~100). Gill nets generate the largest spider crab (SCR) landings, around 1900t, with contributions also coming from trammel nets and pots.

Table 4.2.3.1.1 Effort (kWdays) by country, gear and vessel size group within Area VII EU excluding VIId, 2004-2010.

		Vessel		2004 Deep	Excluding		2005 Deep I	Excluding		2006 Deep	Excluding		2007 Deep	Excluding		2008 Reep	Excluding		2009 Deep I	Excluding	-	2010 Deep I	Excluding
Gear beam	country ENG	length o10t15m	Effort 81373		Deep 81373	Effort 83351		Deep 83351	Effort 61634		Deep 61634	Effort E 77449		Deep 77449	Effort E 95120		Deep 95120	Effort 49890		Deep 49890	Effort E 58997		Deep 58997
DC UIII	FRA IRL NIR	o10t15m o10t15m o10t15m	27252		27252	72001 0		72001 0	99790 D		99790	130720 748		130720	55970 0 3401		55970 0 3401	48196 0 82	·	48196 0	111460 0		111460
	SCO	o10t15m	0		0	0		0	D		0	0		C	1378		1378	0		0	0		Ċ
	BEL ENG	o15m o15m	6051749 5739694	1616438	6051749 4123256	5691268 5804604	1556059	5691268 4248545	4400152 5296966	910940	4400152 4386026	4308567 4980958	971167	4308567 4009791	2841633 4272013	788631	2841633 3483382	2596153 3829861	434315	2596153 3395546	3112466 3686937	333813	3112466 3353124
	FRA GBJ	o15m o15m	296461 409038	39390	296461 369648	244545 205771	74537	244545 131234	207818 0	0	207818 0	189856 0	0	189856	90473	0	90473 0	90473 0	0	90473 0	196958 0	0	196958
	IRL NED	o15m o15m	3551216 0	0	3551216 0	3459895 5884	17507	3442388 5884	2554625 D	0	2554625 0	2315734	0	2315734	1394546	0	1394546	1089510 0	0	1089510	1257598 1467	0	1257598
	NIR SCD	o15m o15m	0	n	0	0	0	0	0	0	0	0 4740	3666	1074	238	n	238 n	288 1396	D	288 1396	D D	n	0
	SPN ENG	none a10t15m	1564197	0 4602	1559595	1548480	0 3845	1544635	1575338	9768	1565570	1675567	18440	1657127	1616973	10101	1606872	1747105	154898 9759	1737346	1728527	1009	1727518
	FRA	o10t15m	1442682	4002	1442682	1330539		1330539	2045449	0	2045449	2477485	19440	2477485	1442715	0	1442715	1414733	0	1414733	1473669	2814	1470855
	GBG IOM	o10t15m o10t15m	0		0	730 2126		730 2126	6042 373		6042 373	11393 4973		11393 4973	5605 8235		5605 8235	3090 13692		3090 13692	7854 7308		7854 7300
	IRL NIR	o10t15m o10t15m	369305 452618	531	369305 452087	382876 442339	738	382876 441601	443210 458126	0	443210 458126	574988 427443	0	574988 427443	529956 481049	0	529956 481049	624626 483352	D	624626 483352	1032212 398116	82	1032212 398034
	SCO BEL	o10t15m o15m	78848 132868	0	78848 132868	74832 232400	1043	73789 232400	5860 458682	0	5860 458682	18385 541488	0	18385 541488	162 535010	D	162 535010	52193 498969		52193 498969	89992 439359	0	89992 439359
	DEN ENG	o15m o15m	233528 3615810	1660127	233528 1955683	75248 3088269	1375370	75248 1712899	120115 3084725	1680393	120115 1404332	73624 3035762	1956036	73624 1079726	54619 2005437	991998	54619 1013439	146213 1591713	873921	146213 717792	33000 1961283	916477	33000 1044806
	FRA GBG	o15m o15m	17806538 0	944045 0	16862493 0	18308670 0	1027472 0	17281198 0	17116070 336	1228501		16055918 0	1011353 0	15044565	12339845	705892 0	11633953 0	12298413 0	695341 D	11603072 0	15129220 0	754785 0	14374439
	GBJ IOM	o15m o15m	0 11188	0	11188	6745 25251	0	6745 25251	19360 5054	0	19360 5054	30580 25439	0	30580 25439	25740 7252	0	25740 7252	31020 9330	0	31020 9330	37620 16620	0	37620 16620
	IRL NED	o15m o15m	12201931 64393	2304827 D	9897104 64393	12406557 108566	2109455		10628824 162551	1097308	9531516 162551	11118324 113851		10370414	9267094 91281	598218 D	8668876 91281	7850513 216240	128419 D	7722094 216240	9883350 258516	108979 3385	9774371
	NIR	o15m	3873540	237891	3635649	3688605	189486	3499119	3331172	72490	3258682	3058837	84658	2974179	3507204	138948	3368256	3145284	189296	2955988	2896269	226403	2669866
dredge	SCO ENG	o15m o10t15m	1478467 415033	943076	535391 415033	1807435 606566	1155500	651935 606566	1197596 617534	888182	309414 617534	1070697 574463	849754	220943 574463	1434085 405279	894552	539533 405279	1475403 563748	712191	763212 563748	1847876 644091	727247	1120629 644093
	FRA IOM	o10t15m o10t15m	2954269 0	0	2954269 0	2755241 209	Ó	2755241 209	3279571 186	0	3279571 186	3330398 3412	0	3330398 3412	2518083 6605	0	2518083 6605	2478802 10835	D	2478802 10835	1680695 22565	110	1680585 22565
	IRL NIR	o10t15m o10t15m	16170 44290		16170 44290	2686 50615		2686 50615	21260 51904		21260 51904	37573 53353		37573 53353	61516 63394		61516 63394	71627 24881		71627 24881	155056 27353		155056 27353
	SCD BEL	o10t15m o15m	4196 0		4196 0	22366 0		22366 0	34863 0		34863 0	36187 0		36187 C	10087 76714		10087 76714	43352 72828		43352 72828	69546 109230		69546 109230
	ENG FRA	o15m o15m	928810 904367		928810 904367	1034158 644169		1034158 644169	1171472 719978		1171472 719978	1079311 852839		1079311 852839	760558 788184		760558 788184	801975 788405		801975 788405	957867 664555		957867 664555
	GBJ IOM	o15m o15m	5387		5387	0 4985		4985	33423		33423	0 12059		12059	0 12816		12816	0 21623		21623	440 29038		440 29038
	IRL	o15m	1104544 136772		1104544	583003		583003 198540	187827 130515		187827	325378		325378 179128	249862 146404		249862 146404	296326 213697		296326 213697	415819		415819 77210
	NED NIR	o15m o15m	93221	0	93221	198540 61077	0	61077	47758	0	130515 47758	179128 65029	0	65029	82416	0	82416	90015	0	90015	77210 106856	0	106856
gill	SCO SPN	o15m none	1326466	0	1326466	1595679	0	1595679	1254132	0	1254132	1378579	0	1378579	1749138	0	1749138	1778744	8985	1778744	1361824	0	1361824
	ENG FRA	o10t15m o10t15m	416116 1015940	151424 0	264692 1015940	329209 904288	141351 0	187858 904288	311725 951675	103130 0	208595 951675	277319 917344	76449 0	200870 917344	245683 704412	78641 0	167042 704412	272559 704349	68803 0	203756 704349	264668 442616	66165 4212	198503 438404
	IRL NED	o10t15m o10t15m	85866 0		85866 0	77196 0		77196 0	95549 161		95549 161	103537 0		103537	118991		118991 0	131330 0		131330 0	217920 0		217920
	NIR BEL	o10t15m o15m	222		222	0		0	0		0	0		0	2700		2700	2106 0		2106	1701 0		1701
	ENG FRA	o15m o15m	1805994 1069302	1588610 261655	217384 807647	1364180 1240907	1206139 555657	158041 685250	664922 996131	500364 351137	164558 644994	710381 1258557	562820 245631	147561 1012926	482738 1535687	375119 219877	107619 1315810	364708 1535360	240907 219877	123801 1315483	459376 1791358	265584 125719	193792 1665639
	GBJ GER	o15m o15m	0 452381	185086	0 267295	396914	189137	207777	0 32.794	0	0 32794	0 171880	8398	163482	229650	0	229650	93910	D	93910	716 114413	0	716 11441
	IRL NED	o15m	821952 0	18916	803036	613050	11875	601175	460083	30975	429108	489003	24780	464223	454828	4425	450403	428512 0	0	428512	455406	0	455408
	NIR	o15m o15m	0		0	0		0	0		0	0		0	0		0	2140		2140	0		
longline	SPN	o15m none	640666	522176	118490	499763	309415 0	190348	192066	19976	172090	193116	695 0	192421	355646	184933 0	170713	437451	181345 210925	256106	387259	260816 0	126443
	ENG FRA	o10t15m o10t15m	65028 153667	1314	63714 153667	58340 198527	1161	57179 198527	71515 350334	1106	70409 350334	81526 313997	526	81000 313997	63299 139114	684	62615 139114	42273 139114	1710	40563 139114	50388 170925	1394	48994 170929
	IRL SCO	o10t15m o10t15m	0		0	4074 221		4074 221	605 0		60s 0	8642 0		8642 C	15374 0		15374 0	23396 0		23396 0	55648 D		55648 0
	DEN ENG	o15m o15m	0 334140	297945	0 36195	0 359017	300599	0 58418	0 463285	428127	35158	587563	493801	93762	139650	111634	28016	0 5118	215	4903	0 6800	1180	5620
	FRA IRL	o15m o15m	184636 4400	21409 3000	163227 1400	206807 68722	1133 18950	205674 49772	360284 660	46139 0	314145 660	410608 18092	167240 2600	243368 15492	336703 8381	66761 0	269942 8381	336703 3956	66761 0	269942 3956	374256 17819	72518 0	301738 17819
none	SCO FRA	o15m o10t15m	6160 33746	6160	0 33746	50975 76396	50332	643 76396	249936 41748	185823	64113 41748	257928 6979	196816	61112 6979	811319 16784	634525	176794 16784	194403 16784	108702	85701 16784	232883 0	170064	62819
	IRL SCO	o10t15m o10t15m	0		0	0 2130		0 2130	0		0	383 0		383	371 0		371 0	0		0	104 D		104
	DEN FRA	o15m o15m	0		0	0 327		0 327	0 858		0 858	0 6401		6401	0 5849		0 5849	0 5849		0 5849	0		0
pelagic tra	IRL ENG	o15m o10t15m	19022	0	19022	13409	0	13409	21430	0	21430	55665	0	55665	83542	0	83542	76419	0	76419	0 81105	0	81109
	FRA GBG	o10t15m o10t15m	109005	0	109005	72864 0	0	72864	79681 0	0	79681	111755 201	0	111755	69017	0	69017	69017 191	0	69017 191	111331	0	111331
	IRL NIR	010t15m 010t15m 010t15m	5800 n		5800	3271 0		3271	9149 D		9149	6591 0		6591	7176		7176 859	2968 0		2968	17841 0		17841
	SCO	o10t15m	5066		5066	1341		1341	596		596	0		00	0		0	894		894	D		
	DEN ENG	o15m o15m	329954 909490	0	329954 909490	519088 601144	0	519088 601144	433696 1024722	0	433696	894249 1032729	0	894249 1032729	388076 1239855	0	388076 1239855	624347 1212908	0	624347 1212908	2201854 1479529	27309	1452220
	FRA GER	o15m o15m	1645559 1236846	5912 133156	1639647 1103690	1623092 936424	3355 155266	1619737 781158	1715749 856734	2479	1713270 856734	1830063 962635	0	1830063 962635	985998 1191573	0	985998 1191573	982443 1095622	0	982443 1095622	2030306 1827980	1620	2028686 1827980
	IRL NED	o15m o15m	2520295 5183074	0 636250	2520295 4546824	1917777 4516777	299936	1917777 4216841	1476721 4683381	0 22652	1476721 4660729	2179917 4252343	0	2179917 4252343	2190404 5963606	53536	2190404 5910070	3259813 4570498	0	3259813 4570498	4250029 5980349	0 479118	4250029 5501231
	NIR SCD	o15m o15m	257341 1092027	6400 35084	250941 1056943	287278 1107013	30242 20383	257036 1086630	153357 310332	0	153357 310332	191854 927221	0	191854 927221	118872 1033393	0	118872 1033393	126604 803582	0	126604 803582	123838 1135333	0	123838 1135333
pots	LIT ENG	o40m o10t15m	1084923	0	0 1084923	0 1177925	0	0 1177925	986043	0	986043	950711	0	950711	908744	0	908744	246000 1006055	0	246000 1006055	967275	654	966621
	FRA GBG	o10t15m o10t15m	1768450	0	1768450	1751646	0	1751646	2194275	0	2194275	1912615	0	1912615	417846 112	ō	417846 112	417846	0	417846	1034869 6632		1031782
	IOM IRL	o10t15m o10t15m	1395 68621		1395 68621	169720		169720	0 227697		227697	0 491252		491252	0 446816		446816	0 478836		0 478836	0		1171068
	NIR SCO	o10t15m o10t15m	30312		30312	26230 12627		26230 12627	42 22 D 31 25 7		42220 31257	41589 35190		491252 41589 35190	97055 33366		97055 33366	115821 94393		115821 94393	97325 84485		97325 84485
	ENG	a15m	537343	8376	528967	496013	0	496013	503029	0	503029	567335	0	567335	592420	0	592420	607630	0	607630	604519	0	604519
	FRA GBG	o15m o15m	310610 75868	3648	306962 75868	331470 56398	0	331470 56398	383133 39402	0	383133 39402	367272 67026	0	67026	150231 37307	D	150231 37307	150231 65089	D	150231 65089	372225 54663	0	372225 54663
	GBJ GER	o15m o15m	80150 22932		80150 22932	17726 67473		17726 67473	31959 37763		31959 37763	35952 49735		35952 49735	88658 33957		88658 33957	90251 45423		90251 45423	62274 41460		62274 41460
	IOM IRL	o15m o15m	0 58839		0 58839	0 90154		0 90154	328 81390		328 81390	0 57898		57898	30176 49382		30176 49382	9840 41122		9840 41122	0 38045		38049
	NIR SCO	o15m o15m	781 0	0	781 0	0	0	0	1206 0	0	1206 0	581 0	0	581 0	580 16073	15155	580 918	1597 918	0	1597 918	510 0	0	510
trammel	ENG FRA	o10t15m o10t15m	243 613504	0	243 613504	11051 763828	5706 0	5345 763828	7679 906651	3267 0	4412 906651	13686 1057950	8509 0	5177	18151 662533	2835 0	15316 662533	16870 662382	1435 0	15435 662382	3172 493742	0 466	3172 493276
	IRL ENG	o10t15m o15m	40645	2822	37823	16189	12830	3359	4737 63807	50121	4737	5471 16867	12461	5471 4406	10507	952	10507	15900 3249	1197	15900 2052	42065 13969	1112	42065
	FRA	o15m	358319	2822	358319	438016	3600	434416	465337	5298	460039	471663	12461	471663	381102	952	381102	381102	1197	381102	498932	220	498712
	IRL SCD	o15m o15m	172 13362	13362	172	16260 0	0	16260 0	13550 0	0	13550	18504	0	18504	34885	0	34885	22540	0	22540	38938 0	0	38938
7 Ellino 7d	Total		92886385	11653632	81232753	90149528	10828079	79321449	82861633	7638176	75223457	84671011	7443710	77227301	72008286	5877417	66130869	68603018	4309002	64668824	81898738	4556342	77342396

Table 4.2.3.1.2. Top demersal species landed (average 2008-2010) within Area VII EU excluding VIId, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
7 EU NO 7D	NEP	L	12121	12076	12926	12731	16219	17703	15041	15677
7 EU NO 7D	NEP	D	NA	1	NA	NA	NA	NA	2629	286
7 EU NO 7D	ANF	L	15081	16788	16704	16058	18035	15609	15889	11898
7 EU NO 7D	ANF	D	397	481	343	47	400	222	1413	795
7 EU NO 7D	HAD	L	6333	7096	5566	4712	6055	6380	7689	9725
7 EU NO 7D	HAD	D	8056	9130	9604	2621	4624	8063	8382	16763
7 EU NO 7D	WHG	L	10436	9397	12154	9122	8723	5498	6074	8758
7 EU NO 7D	WHG	D	2962	10373	11632	3234	11684	6803	4769	4632
7 EU NO 7D	HKE	L	4549	4733	4772	4511	4759	4470	4073	7710
7 EU NO 7D	HKE	D	4498	4783	12120	8473	7928	3189	5467	3193

Table 4.2.3.1.3. Top pelagic species landed (average 2008-2010) within Area VII EU excluding VIId, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
7 EU NO 7D	JAX	L	41415	41520	41482	37146	22677	30575	90274	120213
7 EU NO 7D	JAX	D	95	35845	106188	122350	253	127625	11501	457
7 EU NO 7D	MAC	L	43460	51000	41189	20747	37525	38656	65487	82065
7 EU NO 7D	MAC	D	5412	20105	5413	1857	2725	1010439	6047	14965
7 EU NO 7D	WHB	L	29290	24550	88081	82813	117275	73139	34644	33926
7 EU NO 7D	WHB	D	4691	200	1609	1530	20	306	86	2676

Table 4.2.3.1.4. Scallop and crab species by gear landed within Area VII EU excluding VIId, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
7 EU no 7d	BEAM	CRE	40	51	37	43	114	69	56	43
7 EU no 7d	BEAM	SCE	275	285	202	190	292	182	148	161
7 EU no 7d	BEAM	SCR	1	1	0	1	2	3	2	3
7 EU no 7d	BOTTOM TRAWLS	CRE	167	109	165	139	100	80	90	47
7 EU no 7d	BOTTOM TRAWLS	SCE	86	125	152	108	184	127	143	98
7 EU no 7d	BOTTOM TRAWLS	SCR	42	38	34	38	26	19	25	17
7 EU no 7d	DREDGE	CRE	3	7	11	2	2	2	2	1
7 EU no 7d	DREDGE	SCE	13963	19722	19290	17216	18623	18925	22207	17485
7 EU no 7d	DREDGE	SCR	41	22	27	22	20	12	12	22
7 EU no 7d	GILL	CRE	344	331	283	264	248	235	250	125
7 EU no 7d	GILL	SCE	6	8	10	13	7	47	47	29
7 EU no 7d	GILL	SCR	1699	2346	2032	1617	1953	1954	1957	1092
7 EU no 7d	LONGLINE	CRE	1	0	10	0	5	4	6	3
7 EU no 7d	LONGLINE	SCE	0	1	1	1		0	0	0
7 EU no 7d	LONGLINE	SCR			1	0	1	0	0	
7 EU no 7d	none	CRE	0	1	0	3		1	0	
7 EU no 7d	none	SCE	4	0	33	4	1	12	12	
7 EU no 7d	none	SCR	3	6	30	74	0	0	0	
7 EU no 7d	PELAGIC TRAWLS	CRE	1	7		0	0		0	0
7 EU no 7d	PELAGIC TRAWLS	SCE				0		1	1	
7 EU no 7d	PELAGIC TRAWLS	SCR	0		0			0	0	0
7 EU no 7d	POTS	CRE	6738	6406	5410	5384	7465	6223	6309	7796
7 EU no 7d	POTS	SCE	1	16	10	4	3	6	5	74
7 EU no 7d	POTS	SCR	487	577	528	505	518	339	312	408
7 EU no 7d	TRAMMEL	CRE	245	270	280	336	385	339	333	221
7 EU no 7d	TRAMMEL	SCE	0	0	4	2	5	2	2	5
7 EU no 7d	TRAMMEL	SCR	190	244	216	246	284	208	211	265

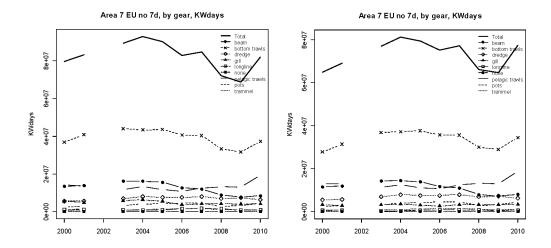


Figure 4.2.3.1.1. kWdays effort reported within Area VII EU excluding VIId by gear type, 2000-2010 with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

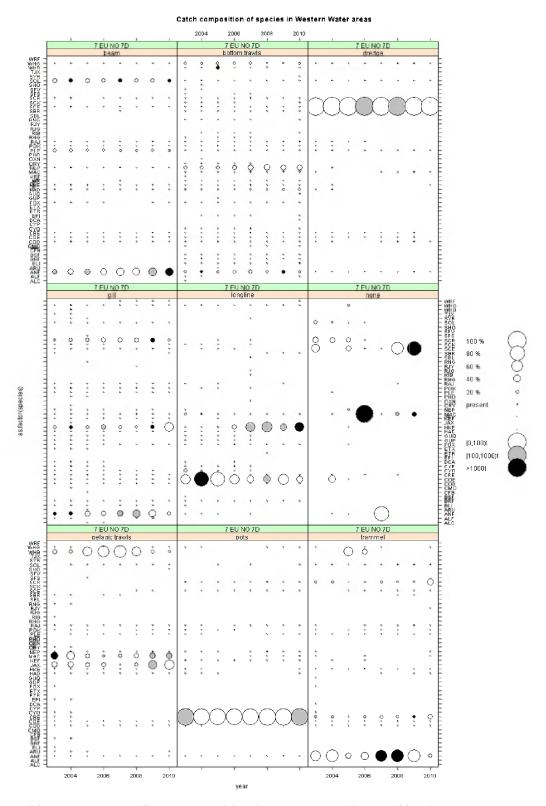


Table 4.2.3.1.2. Landings composition by gear (countries combined) Western waters area VII EU excluding VIId, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.3.2. Area VII excluding VIId non EU

Effort

Very little effort occurs within this area (Table 7.2.3.2.1). Pelagic trawling effort occurs sporadically, by the Netherlands. During 2010 there was some increase in effort, directed at longlines and to a lesser extent bottom trawls.

Catch Composition

Very few demersal species are landed from this area (Table 4.2.3.2.2), average 2008-2010 landings indicate only 1 tonne of hake (HKE) was reported and this originates from pelagic trawl gear.

Blue whiting (WHB) is the only pelagic species with reported landings from the area (Table 4.2.3.2.3). It should be noted that blue whiting landings (2003, 2009 and 2010) do not match the occurrence of pelagic trawl effort which also occurs in 2004 and 2005, indicating an issue in the submitted data.

There are no reported landings of scallops or crabs within this area.

Table 4.2.3.2.1 Effort (kWdays) by country, gear and vessel size group within Area VII non EU excluding VIId, 2004-2010.

				2004			2005		2	006		2	007		20	800		20	09			201	.0
		Vessel	De	ep Ex	cluding		Deep Excludir	g	Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Exc	luding		Deep	Excluding
Gear	country	length	Effort Eff	ort De	ер	Effort	Effort Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Dea	2p	Effort	Effort	Deep
bottom tra	FRA	o15m	0		0	0		0	0)	0	6	1	0	0		0		0	8232	2	8232
	SCO	o15m	308	0	308	. 0	0	0	0	0 ()	0	0 0		0	0 0	78	75	0	7875)	0 0
gill	ENG	o15m	0	0		0	0		0	0		0	0		0	0		0	0)	0
	SCO	o15m	2519	2519		0	0		0	0		0	0		0	0		0	0)	0
longline	FRA	o15m	0		0			0	0	(,	0	0		0	0		0		0	8722	2	8722
	POR	o15m	0		9	9		0	9)	9	0		0	0		0		9)	9
	SCO	o15m	0		0	0		0	0)	0			0	0		0		0	28329		28325
pelagic trav	FRA	o15m	0		0	0		0	0	()	0		1	0	0		0		0	57930)	57930
	GER	o15m	0		0	0		0	0	()	0			0	0		0		0	36000)	36000
	NED	o15m	43510		43510	222896	2221	96	9)	9	0		0	0	758	20		75820)	9
	SCO	o15m	0		0	. 0		Ð	0)	0			0	0		0		0)	0
7 non EU T	otal		46337	2519	43818	222896	0 222	96	0	0 ()	0	0 0		0	0 0	836	35	0	83695	139209	3	0 139209

Table 4.2.3.2.2. Top demersal species landed (average 2008-2010) within Area VII non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
7 NON EU	HKE	L	NA	1						
7 NON EU	COE	L	3	NA						

Table 4.2.3.2.3. Top pelagic species landed (average 2008-2010) within Area VII non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
7 NON EU	WHB	L	2515	NA	NA	NA	NA	NA	1712	689

4.2.3.3. Area VIId

Effort

There is uncertainty relating to 2002 French effort.

Effort within Area VIId had been increasing until 2006 after which effort has declined. France is the primary nation operating within this area, driving the overall trends. There is an issue with 2002 French data and should be discounted. There is essentially no effort associated with deepwater fisheries (Table 4.2.3.3.1 and Figure 4.2.3.3.1).

A wide variety of gears are utilised within this area, bottom trawling (France) and dredging (also France) show the greatest effort. While pelagic trawling (France and the Netherlands with some minor effort from other nations), beam trawling (Belgium, France, England), and trammel nets (France) are also used accounting for roughly 10% each.

Catch Composition

There are a number of different fisheries taking place in this area by a number of different gears showing varying species compositions as seen in Figure 4.2.3.3.2. In relation to the top demersal species (Table 4.2.3.3.2) whiting (WHG) contributes the greatest quantities and landings have increased over the last three years. Sole (SOL) and plaice (PLE) are currently landed in similar quantities following a decline in sole landings. Around 1000t of Cod (COD) is landed from the area, with a slight decline in most recent years. Conger eel (COE) ranks fifth with landings that halved in 2010.

Pelagic landings of horse mackerel (JAX) have increased greatly in 2009 and 2010, making this species the top landed pelagic species within VIId (Table 4.2.3.3.3). Mackerel (MAC) landings have declined, and nominal, sporadic blue whiting (WHB) landings are reported.

Table 4.2.3.3.4 details scallop and crab landings from the area, showing large and increasing landings volumes of scallops (SCE) made by dredgers. There is also a smaller pot fishery for edible crabs (CRE; 500-800t), and in recent years bottom trawling took ~200t of scallops.

Table 4.2.3.3.1 Effort (kWdays) by country, gear and vessel size group within Area VIId, 2004-2010.

				2004		2005		2006			2007			2008			2009			2010	
		Vessel		eep Excluding		Deep Excluding			excluding			Excluding			Excluding			Excluding		Deep	Excluding
Gear beam	country BEL	length o10t15m	Effort E	ffort Deep	Effort 0	Effort Deep	Effort	Effort E	Deep	Effort E	ffort	Deep	Effort E	ffort	Deep	Effort E	Effort I	Deep	Effort 0	Effort	Deep
beam	ENG	o10t15m	141022	141022	137624	137624	156183		156183	147478		147478	188710		188710	200039		200039	186880		18688
	FRA	o10t15m	447989	0 447989	319077	0 319077	562145	D	562145	588358	D		497791	0	497791	497791	0	497791	395548	0	
	BEL	o15m	2422541	2422541	2070380	2070380	2782454		2782454	3184292		3184292	2696039		2696039	2226560		2226560	1921946		192194
	ENG	o15m	530775	14032 516743	286106	22041 264065	203081	1264	201817	180704	7239	173465	179585	6524	173061	200765	9	200765	84353	9	
	FRA	o15m	950816	950816	668392	668392	747367		747367	574879		574879	656013		656013	656013		656013	184492		18440
	GBJ	o15m	14375	199 14176	10346	0 10346	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NED	o15m	5147	5147	0	0	4796		4796	0		0	0		0	1471		1471	0		
	SCO	o15m	0	0 0	0	0 0	0	0	- 0	9776	9776	0	3055	0	3055	6353	0	6353	0	0	
bottom tra	BEL	o10t15m	0	0	0	0	0		0	0		0	0		0	0		0	0		
	ENG FRA	o10t15m	271809 1984591	271809	251054	251054	172387	525	172387	149703 3174239		149703 3174239	144447		144447	142263 2256872		142263	148559		14855 175762
	SCO	o10t15m o10t15m	1984591	0 1984591	2014199	0 2014199	2963942	525	2963417 894	1788	U	1788	2260060	U	2260060	2256872	0	2256872	1757627	0	1/5/62
	BEL	015t15iii	27043	27043	10924	10924	23328		23328	13756		13756	15816		15816	46344		46344	142527		14252
	ENG	o15m	18641	18641	41318	41318	30864		30864	5084		5084	59054		59054	142816		142816	229208		22920
	FRA	o15m	11705268	0 11705268		0 10835136	11145296	1472	11143824	10474572	4517	10470055	8140065	0	8140065	7908201	0	7908201	5597093	11930	
	GBG	o15m	0	0	0	0	0		0	0		0	0		0	0		0	0		
	GBJ	o15m	20201	20201	23483	23483	10560		10560	13420		13420	9680		9680	7480		7480	0		
	IRL	o15m	9	0		0	9		0	0		0	0		0	0		0	0		
	NED	o15m	323486	0 323486		0 344814	287224	Ð	287224	434839	0	434839	625656	0	625656	608242	0	608242	728019	2708	
	SCO	o15m	0	0 0	0	0 0	115117	Ð	115117	207336	24177	183159	340147	120493	219654	327160	59626	267534	250268	19436	23083
dredge	ENG FRA	o10t15m	117699 1978038	117699 1978038	130483 2658944	130483 2658944	105802 3199963		105802 3199963	143027 2627561		143027 2627561	137115 2463234		137115 2463234	99235 2455520		99235 2455520	211743 1801763		21174 180176
	SCO	o10t15m o10t15m	1978038	19/8038	2658944	2658944	3199963		3199963	2627561		2627561	2463234		2463234	2455520		2455520	1801763 4251		180176
	BEL	o15m	0	0	0	0	0		0	3723		3723	18490		18490	85486		85486	75562		7556
	ENG	p15m	189389	189389	172479	172479	236687		236687	279007		279007	220826		220826	295786		295786	551378		55137
	FRA	o15m	4190146	4190146		5370590	5919406		5919406	5018197		5018197	4307266		4307266	4284322		4284322	2561916		256191
	GBJ	o15m	0	0	0	0	0		0	0		0	0		0	0		0	0		
	IOM	o15m	0	0		0	0		0	0		0	0		0	2316		2316	0		
	IRL	o15m	208062	208062	51300	51300	0		0	0		0	0		0	0		0	0		
	NED	o15m	88314	88314	59562	59562	119581		119581	97064		97064	146896		146896	130823		130823	93755		9375
	SCO	o15m	135367	135367	85179	85179	264240		264240	376741		376741	322229		322229	539144		539144	1445337		144533
gill	BEL	o10t15m	471	471	. 0	0	0		0			0	4710		4710	0		0	3685		368 2551
	ENG	010t15m	3373 230389	3373 230389		219 205371	2529		2529 237516	1699 350342		1699 350342	4957 132543		4957 132543	11818 132543		11818 132543	25516		2551 6393
	FRA BEL	o10t15m o15m	18120	230389 18120	205371 19026	19026	237516 23556		237516	906		906	5850		5850	19527		19527	63930 7200		720
	ENG	o15m	10120	0 0	13020	0 0	23330	0	23330	0	0		0	0	3830	13327	0	19927	7200	0	720
	FRA	o15m	111106	111106		37647	63609		63609	36151		36151	18452		18452	18452		18452	34731		3473
	GER	o15m	0	0	0	0	0		0	0		0	0		0	0		0	0		
	NED	o15m	0	0	0	0	442		442	0		0	0		0	0		0	0		
longline	ENG	o10t15m	31882	31882	39988	39988	40165		40165	37362		37362	39699		39699	38462		38462	45672		4567
	FRA	o10t15m	103303	0 103303	91082	0 91082	100220	0	100220	122800	0		103313	1716	101597	103313	1716	101597	105941	221	10572
	ENG	o15m	0	0 0		0 0	0	0	0	561	Ð		0	0	0	0	0	0	0	0	
	FRA	o15m	60067	60067	6229	6229	14522		14522	39773		39773	13367		13367	13367		13367	12273		1227
none	FRA	o10t15m	85409 87408	85409 87408	2468	2468	4036 28908		4936 28908	15289 4314		15289 4314	84558 157051		84558 157051	84558		84558 157051	0		
pelagic tra	ENG	o15m o10t15m	87408	87408	1218	1218	28908		28908 870	4314		4314	157051		197091	157051 0		12/021	0		
beingir (18)	FRA	o10t15m	265198	265198	411922	411922	368239		368239	504108		504108	317645		317645	317367		317367	180417		18041
	SCO	o10t15m	0	0	0	0	0		0	0		0	0		0	0		0	0		_00+2
l	ENG	o15m	486912	486912	449401	449401	278743		278743	481527		481527	263669		263669	306734		306734	218563		21856
	FRA	o15m	1874695	27425 1847270		43790 1937785	2134645	3533	2131112	1773861	0		1323773	0	1323773	1323773	0	1323773	898279	0	
l	GER	o15m	256061	256061	252645	252645	222395		222395	225990		225990	168359		168359	166693		166693	298994		29899
l	IRL	o15m	0	0	0	0	20000		20000	0		0	33000		33000	100940		100940	0		
l	NED	o15m	1965236	141760 1823476	1838845	0 1838845	1277534	0	1277534	1613832	0	1613832	1588572	0	1588572	1714632	0	1714632	1451892	0	145189
l	NIR	o15m	7680	7680		0	0		0	0		0	0		0	0		0	0		
l	SCO LIT	o15m o40m	0	0	0	0	9748 0		9748	0		0	0		0	19680		19680	D D		
pots	ENG	040m 010t15m	405275	405275	444340	444340	384311		384311	437980		437980	376464		376464	320261		320261	372153		37215
Pors	FRA	010t15m	79729	79729	132541	132541	314291		314291	226545		226545	91168		91168	91168		91168	704266		70426
l	ENG	o15m	63848	63848	101017	101017	90300		90300	111499		111499	104667		104667	78262		78262	64135		6413
l	FRA	o15m	36717	36717	77214	77214	75462		75462	90988		90988	53385		53385	53385		53385	12940		1294
l	GBG	o15m	0	0	0	0	17667		17667	12661		12661	0		0	3171		3171	2182		218
	GBJ	o15m	1512	1512		0	0		0	0		0	0		0	0		0	0		
	ENG	o10t15m	8742	8742	9183	9183	6081		6081	7798		7708	9580		9580	5786		5786	8012		801
trammel		o10t15m	2116989	0 2116989	2505884	0 2505884	2979380	Ð	2979380	2945844	0		2052319	Ð	2052319	2048565	9	2048565	1576941	331	
trammel	FRA																				
trammel	BEL	o15m	0		0	0	0		0	26676		26676	16200		16200	7416		7416	21600		2160
Trammel				515961 183416 34403386	802345	0 802345 65831 34885719	702341 38448827	4004	702341 38442033	26676 642980 37416940		26676 642980 37371231	559170	100000	16200 559170 30825912	7416 559170 30817096		7416 559170 30755754	21600 219436 24700893	21121	2160 21943 2466626

Table 4.2.3.3.2. Top demersal species landed (average 2008-2010) within Area VIId, 2003-2010. Values are landings in tonnes.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010
7D	WHG	L	6362	4825	4501	3510	3052	3892	3991	5491
7D	WHG	D	1740	190	13	24	79	283	283	18724
7D	SOL	L	5488	4877	4021	4141	4414	3949	4006	2698
7D	SOL	D	2	123	25	93	111	70	172	160
7D	PLE	L	3877	3611	3063	2786	3144	2987	2677	2849
7D	PLE	D	229	2469	128	329	146	343	278	168341
7D	COD	L	1513	768	889	1045	1551	1089	1038	1007
7D	COD	D	NA	10	2	19	29	91	8	55
7D	COE	L	386	416	296	219	372	311	317	157

Table 4.2.3.3.3. Top pelagic species landed (average 2008-2010) within Area VIId, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
7D	JAX	L	1324	3170	2933	1701	3988	1851	18929	21181
7D	MAC	L	9902	8980	6797	6965	4692	5462	5543	4045
7D	MAC	D	NA	2	NA	NA	2	NA	NA	24748
7D	WHB	L	NA	NA	5	NA	NA	NA	NA	NA

Table 4.2.3.3.4. Scallop and crab species by gear landed within Area VIId, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
7d	BEAM	CRE	4	4	2	1	3	6	4	1
7d	BEAM	SCE	41	23	18	49	48	42	48	24
7d	BEAM	SCR	6	3	1	1	1	0		0
7d	BOTTOM TRAWLS	CRE	2	2	2	2	4	3	3	2
7d	BOTTOM TRAWLS	SCE	68	46	101	101	70	208	208	163
7d	BOTTOM TRAWLS	SCR	3	1	1	2	1	1	1	1
7d	DREDGE	CRE	1	0	0	0	1	1	1	0
7d	DREDGE	SCE	10566	13382	16532	15172	14173	14016	18122	18864
7d	DREDGE	SCR	0	1	0	0	3	0	0	21
7d	GILL	CRE	1	2	8	0	2	1	0	2
7d	GILL	SCE	0				0	0		0
7d	GILL	SCR	0	3		1	1	2	2	81
7d	LONGLINE	CRE	11		1		0	0	0	0
7d	LONGLINE	SCE	8	2						
7d	LONGLINE	SCR			3					0
7d	none	CRE	1			0				
7d	none	SCE	2	21	1			13	13	
7d	none	SCR	4			0		0	0	
7d	PELAGIC TRAWLS	CRE						0	0	
7d	PELAGIC TRAWLS	SCE	2	3	2		1	12	12	2
7d	PELAGIC TRAWLS	SCR								0
7d	POTS	CRE	682	767	790	750	497	486	460	545
7d	POTS	SCE				1		7	7	1
7d	POTS	SCR	122	73	79	56	65	13	12	10
7d	TRAMMEL	CRE	7	12	17	22	13	11	11	14
7d	TRAMMEL	SCE				9	7	15	15	24
7d	TRAMMEL	SCR	1	8	17	10	4	1	1	8

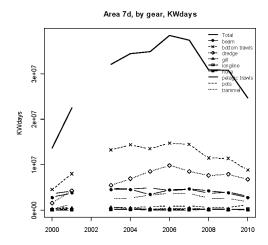


Figure 4.2.3.3.1. kWdays effort reported within Area VIId by gear type, 2000-2010. Note: Due to uncertainty in French 2002 data this year has been removed from the figure.

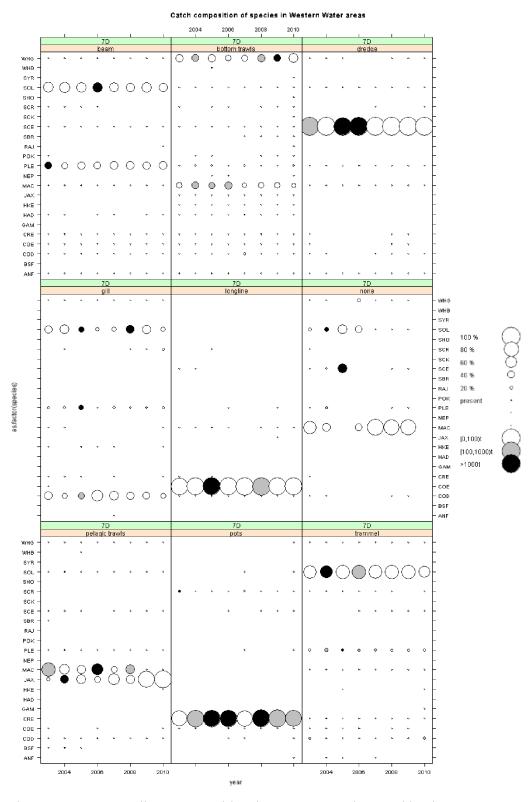


Figure 4.2.3.3.2 Landings composition by gear (countries combined) Western waters area VIId, 2003-2010. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.4. Western waters Biologically Sensitive Area (BSA)

Effort

There is uncertainty relating to 2002 French effort.

Current fishing effort within the BSA is lower than 2003 levels, showing a decline until 2006 after which effort has fluctuated, and is now increasing (Table 4.2.4.1 and Figure 4.2.4.1). Overall, bottom trawl effort predominates within the area in common with the picture for the wider EU waters of Area VII. The majority of this effort arises from two nations which showed similar amounts until 2009 but which diverged in 2010, Ireland increased while France decreased. Minimal levels of English and Scottish effort occur over the period.

A number of other gears are used within the BSA. This includes pelagic trawls, use of which has increased in recent years, predominantly by vessels from the Netherlands and Ireland. Gillnetting, by France, Ireland and England, shows a decline in effort following that of French trawl effort. Beam trawling carried out almost exclusively by Ireland shows a pronounced decline until 2008 after which effort has stabilised, similar to the picture in the wider EU waters of Area VII.

The use of pots and dredges in the area is low, however both gears show marked increases in most resent years. Both gears are used almost exclusively by Ireland.

Catch composition

As in the wider area VII, a variety of fisheries occur within the BSA through the use of different gears. Beam trawling occurs targeting anglerfish (ANF), gillnetting for hake (HKE), dredging for scallops (SCE) and potting for edible crab (CRE). The general species composition by gear is given in Figure 4.2.4.2.

In 2010 the top 5 demersal species based on 2008-2010 average landings are all similar in value, anglerfish (ANF), *Nephrops* (NEP), hake (HKE), haddock (HAD) and whiting (WHG). Both hake and haddock have fluctuated around relatively stable levels over the period while *Nephrops* declined sharply in 2010, and 2010 anglerfish landings having declined are currently slightly below than those seen in 2004. Whiting, the last of the top five increased in 2009 and 2010.

In relation to pelagic species, mackerel (MAC) tops the pelagic species ranking (Table 4.2.4.3) having increased in the last two years. Horse mackerel (JAX) had previously been relatively stable (~10000t) until extremely large landings occurred in 2009 (>40000t). Landings subsequently fell by roughly 30% in 2010, still far above previous levels. Blue whiting (WHB) is also landed from the BSA, although levels are comparatively low and variable.

Table 4.2.4.4 details scallop and crab landings from the BSA. In this area scallop and crab landings are far lower than the wider VII EU area. Scallops (SCE) from dredging showing an increasing trend in recent years to around 425t. Around the same quantity of edible crabs (CRE) is landed from pots and also shows an increasing trend. All other gears contribute minimal landings.

Table 4.2.4.1 Effort (kWdays) by country, gear and vessel size group within the BSA Area, 2004-2010.

				2004		2005		2006		2007		2008		2009		2010
Gear		Vessel length		Deep Excluding Effort Deep		eep Excluding Yort Deep	De Effort Eff									
	country FRA	o10t15m	Effort 1928	Effort Deep 1028	Effort	Effort Deep	Effort	Effort Deep	Effort 440	Effort Deep 440	Effort 0	Effort Deep	Effort E1	Tort Deep	2017	ort Deep 2017
Dealli	IRL	010t15m	1028	1026	1 .		ľő	ő	0		ľ	ő	ľ		2017	2017
	ENG	o15m	126299	126299	121301	121301	126605	126605	11012	11012	3848	3848	23408	23408	60723	60723
	FRA	o15m	0		0	0	657	657	831	831	. 0	0	0	0	1598	1598
	GBJ IRL	o15m o15m	0 1987752	1987752	3690 2339381	3690 2339381	1421651	0 1421651	0 1145248	0	695074	0	653053	653053	0 709102	0
bottom tra		019t15m	1987752	1987/52	2339381	2339381	1421651		326	1145248 326	468	695074 468	653U53 0	653053	709102	709102
	FRA	o10t15m	2469	2469	5779	5779	837	837	2594	2594	6991	6991	5961	5961	9246	9246
	IRL	o10t15m	335299	335299	303718	303718	332445	332445	426291	426291	428998	428998	520182	520182	881540	881540
	ENG	o15m	1112851	1112851	937084	937084	1217163	1217163	1180630	1180630	1017683	1017683	935825	935825	1010822	1010822
	FRA IRL	o15m o15m	6558503 5675850	6558503 5675850	5986029 5124440	5986029 5124440	5796059 4365002	5796059 4365002	5720768 4769246	5720768 4769246	4607029 4493036	4607029 4493036	4567101 4588996	4567101 4588996	2984866 5369742	2984866 5369742
	NED	015m	3073830	20/2020	3124440	3124440	4305002	+365002	762	762	4493036	4493036	1530	1530	708	708
	NIR	o15m	9742	9742	5628	5628	1092	1092	0	0	10324	10324	2423	2423	41172	41172
	500	o15m	400138	400138	358175	358175	244063	244063	271141	271141	493862	493862	528121	528121	792844	792844
	ENG	o10t15m	9	6	0	0	0		0	9	0	0	0	9	0	9
	FRA IRL	o10t15m o10t15m	2099 16170	2099 16170	7030 2686	7030 2686	965 5237	965 5237	12082 6625	12082 6625	7596 16726	7596 16726	7596 14091	7596 14091	17964 41705	17964 41705
	ENG	o15m	16170	191/0	2686	2686	5237		0	6625	3382	3382	14091	14091	41705	41709
	FRA	o15m	5618	5618	6993	6993	ő		5399	5399	5781	5781	5781	5781	16595	16595
	IRL	o15m	87392	87392	95470	95470	38072	38072	44672	44672	58134	58134	109653	109653	88607	88607
	500	015m	- 0		0	0	0	0	- 0	0	1997	1997	0	0	972	972
	ENG FRA	o10t15m o10t15m	26637 1206	26637 1206	16009	16009	21005		6134 0	6134	7015 6391	7015 6391	11998 6391	11998 6391	20617 0	20617
	IRL	o10t15m	59618	59618	56284	56284	72636		77548	77548	104672	104672	117443	117443	190889	190889
	ENG	o15m	350021	350021	218585	218585	215730		226793	226793	162279	162279	162354	162354	165994	165994
	FRA	o15m	947097	947097	1144216	1144216	963379	963379	1027582	1027582	707073	707073	707073	707073	404952	404952
	GER	o15m	38186	38186	18512	18512	0	0	4862	4862	0	0	0	0	0	0
	IRL 5CO	o15m	602849 115955	602845 115955	450569 13449	450569 13449	293403 598	293403 598	380223 0	380223	393563	393563	385007 30955	385007 30955	384523 2910	384523 2910
longline	ENG	019t15m	115955	115955	13449	13449	598		0		0		30955	30955	2910	2910
	FRA	o10t15m	0	Ġ		ō	- 0		0	ō		o	0	0	1345	1345
	IRL	o10t15m	0	(436	436	251	251	5757	5757	11421	11421	18358	18358	33537	33537
	ENG	o15m	32225	32229	32502	32502	28886	28886	69025	69025	4570	4570	215	215	885	885
	FRA IRL	o15m o15m	12698	12698	20472	20472 21511	84008	84008	11587 2330	11587 2330	104854 699	104854 699	104854 2856	104854 2856	19111 11819	19111 11819
	SCO	015m	1462	1462	20816	20816	53861	53861	39238	39238	200345	200345	11066	11066	5024	5024
	IRL	o10t15m	- 0		0	0	0	0	233	233	275	275	0	0	194	104
[FRA	o15m	0			0	0	0	2652	2652	. 0	0	0	0	0	9
pelagic trav	IRL	o15m	0		444	0 444	0	0	0	0	1064	0	0	1064	0 5465	9 5465
	IRL	o10t15m o10t15m	2650	2650	1	444	1 ,	ŏ	827	827	3788	1064 3788	1064 2357	2357	7497	7497
	ENG	o15m	271407	271407	269645	269645	254553	254553	97159	97159	102583	102583	318971	318971	706129	706129
	FRA	o15m	208006	208006	326643	326643	212989	212989	249834	249834	156242	156242	156242	156242	321813	321813
	GER	015m	461106	461106	203082	203082	59606	59606	95556	95556	221226	221226	607073	607073	336430	336430
	IRL NED	o15m o15m	1013771 1633095	1013771 1633099	718008 967750	718008 967750	616579 1211930	616579 1211930	1250139 1516373	1250139 1516373	1120785 1560452	1120785 1560452	1594955 1778313	1594955 1778313	2075091 1506957	2075091 1506957
	NIR	015m	31854	31854	52854	52854	11186		38964	38964	14170	14170	29242	29242	1506557	1306937
	SCO	o15m	787693	787693	196672	196672	0		193759	193759	366477	366477	511318	511318	586611	586611
	ENG	o10t15m	44	44	. 0	0	0		0	0	0	0	0	0	0	0
	FRA IRI	o10t15m o10t15m	220 23326	220 23326		0	62438	0 62438	1694 170786	1694 170786	148 155577	148 155577	148 163796	148	2031	2031
	ENG	010t15m	23326	23326	101937	101937	168	52438 168	1/0/86	1/0/86	1555//	1555//	163796	163796	397046 0	397046
	FRA	015m	21105	21109	3892	3892	5739	5739	410	410	441	441	441	441	2210	2210
	GER	o15m	441	441	. 0	0	6464	6464	1727	1727	0	0	0	0	0	0
	IRL	o15m	1581	1581	671	671	7945	7945	8842	8842	8993	8993	6637	6637	7453	7453
	ENG	o10t15m	0	0	2050	2050	1979	1979	1273	1273	410	410	1531	1531	1025	1025
	FRA IRL	o10t15m o10t15m	0		4374 D	4374	35684 4138	35684 4138	23449 5081	23449 5081	19152 9181	19152 9181	19152 13678	19152 13678	16751 41795	16751 41795
	ENG	015t15iii	9829	9829	6178	6178	11869	11869	4781	4781	1886	1886	2052	2052	4198	4198
	FRA	o15m	7864	7864	4994	4994	29880		18218	18218	20679	20679	20679	20679	8525	8525
	IRL	o15m	0	0		0	0	0	18504	18504	34885	34885	22540	22540	38385	38385
BSA Total	SCO	o15m	22983156	2200215	20169959	20169959	17816863	0 17816863	19149407	19149407	17352225	0 17352225	0 18772848	18772848	19337345	19337345
own road			-5303130	44 993 130	-0103333	50103323	**********	1,010003	AJATS407	19143401	1-1336663	11332223	-0//6000	10112040	20000	1933/343

Table 4.2.4.2. Top demersal species landed (average 2008-2010) within the BSA Area, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
BSA	ANF	L	5308	4622	4067	4214	5159	4617	5077	3962
BSA	NEP	L	4912	3718	3799	3675	4162	4812	4687	3067
BSA	HKE	L	3519	4154	3690	3790	4154	3474	3653	3511
BSA	HAD	L	3657	3147	2946	2559	3101	2862	3969	3464
BSA	WHG	L	5131	3101	2977	2394	2254	1631	2199	3274

Table 4.2.4.3. Top pelagic species landed (average 2008-2010) within the BSA Area, 2003-2010. Values are landings in tonnes.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010
BSA	MAC	L	17756	30768	22985	12602	25723	27851	42124	41025
BSA	MAC	D	NA	NA	NA	12	NA	NA	NA	306
BSA	JAX	L	8260	10169	10039	9347	6046	10866	40161	28112
BSA	WHB	L	1009	1210	998	25	279	953	970	1010
BSA	WHB	D	NA	NA	NA	NA	NA	NA	1	NA

Table 4.2.4.4. Scallop and crab species by gear landed within the BSA Area VIId, 2003-2010. Values are landings in tons.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
BSA	BEAM	CRE	2	2	1	4	6	0	1	0
BSA	BEAM	SCE	21	19	32	30	32	19	6	12
BSA	BEAM	SCR			0		0			
BSA	BOTTOM TRAWLS	CRE	89	44	118	30	28	17	26	17
BSA	BOTTOM TRAWLS	SCE	4	2	2	1	3	1	1	6
BSA	BOTTOM TRAWLS	SCR	0	5	0	1	1	0	1	0
BSA	DREDGE	CRE	1	5	6	0		0	0	
BSA	DREDGE	SCE	144	104	162	82	135	350	462	470
BSA	DREDGE	SCR			0					
BSA	GILL	CRE	93	9	11	17	12	17	40	12
BSA	GILL	SCE	3	0			0	0		
BSA	GILL	SCR	6	11	12	0	9	29	24	3
BSA	LONGLINE	CRE			0		2	4	6	0
BSA	PELAGIC TRAWLS	CRE	0	0		0				
BSA	POTS	CRE	258	201	588	161	329	362	346	569
BSA	POTS	SCE							0	1
BSA	POTS	SCR	0	3	0	3	15	46	42	29
BSA	TRAMMEL	CRE	2	0	0	4	2	2	3	9
BSA	TRAMMEL	SCE								0
BSA	TRAMMEL	SCR			0		0	0	1	1

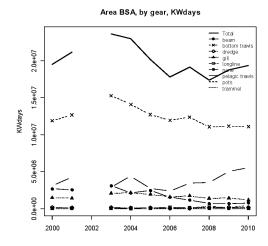


Figure 4.2.4.1. kWdays effort reported within the BSA Area by gear type, 2000-2010. Note: Due to uncertainty in French 2002 data this year has been removed from the figure.

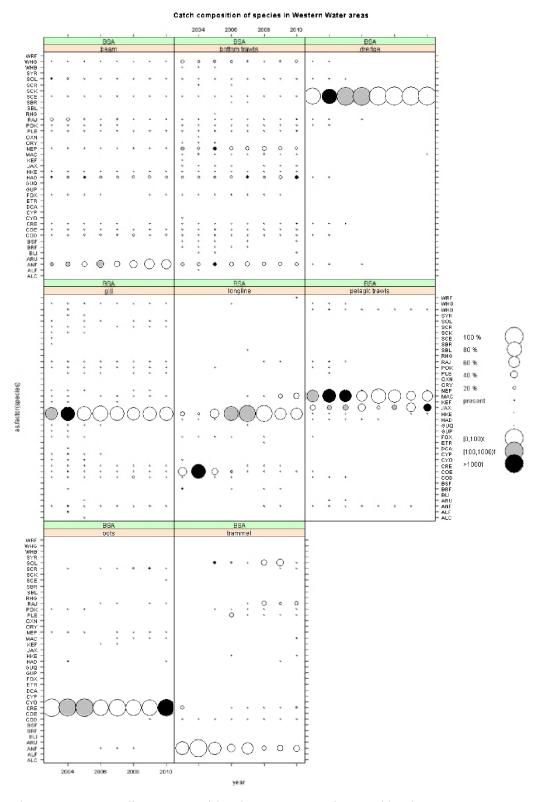


Figure 4.2.4.2 Landings composition by gear (countries combined) Western waters area BSA. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.5. Western waters Area VIII

4.2.5.1. Area VIII EU

Effort

Note: There is great uncertainty relating to effort descriptions of this area figures should only be considered between 2003 and 2009. Issues appear in French 2002 and there is uncertainty around 2010 data. Spain did not provide information for 2010.

The overall trend has fluctuated within this area with greatest effort around 2006/2007 following increased French effort. Little effort is associated with deepwater fisheries (Table 4.2.5.1 and Figure 4.2.5.1). Two nations primarily fish this area, France and Spain.

Most effort occurs with bottom trawling gear, dominated by France. The remainder of effort is Spanish. A small (1-2%) proportion of effort is contributed by Portugal. Pelagic trawling accounts for around 12-18% of effort within the area, again primarily by France and Spain.

Other gears are used within the area to lesser extents, with trammel and gillnetting accounting for around 10% each, both have shown an increase over the period. France is again the dominant nation using both gear classes, particularly within the trammel category.

Catch composition

Note: 2010 landings should not be considered due to a lack of Spanish landings information.

A number of different fisheries take place within area VIII EU using different gears as can be seen by the variable species compositions in Figure 4.2.5.1.2. Table 4.2.5.1.2 details the top 5 demersal species landed from the area. This includes hake (HKE), anglerfish (ANF), sole (SOL), *Nephrops* (NEP) and conger eels (COE). Hake, by far, dominates the demersal species landings and shows an increasing trend over the period. Anglerfish, sole and *Nephrops* landings have all remained relatively constant whilst conger eel landings built to a peak in 2007, followed by a slight declining trend.

Mackerel (MAC) tops the pelagic species ranking (Table 4.2.5.1.3) showing a gradual increase until 2008, followed by a sharp increase in 2009. Horse mackerel (JAX) and blue whiting (WHB) have both shown fluctuations in landings without trend over the period.

Details of scallop and crab landings from this area are given in Table 4.2.5.1.4. Within area VIII EU, landings are far lower than those in, for example, area VII EU. In addition, landings come from a variety of different gears with no clear predominant gear. Pots generally contribute to edible crab (CRE) landings, although none were landed in 2008 or 2009; large landings occurred in 2010. Scallops (SCE) landings from dredges declined in 2010. Trammel nets provide landings of spider crabs (SCR), as do gill nets although landings from these have shown a decline. Spider and edible crabs (CRE) are both landed from bottom trawls.

Table 4.2.5.1.1. Effort (kWdays) by country, gear and vessel size group within Area VIII EU, 2004-2010. Spanish 2010 effort is not included.

				2004			2005			2006			2007			2008			2009			2010	
		Vessel			Excluding			cluding			Excluding			Excluding			Excluding			Excluding			Excluding
Gear beam	country	length o10t15m		ffort	Deep		Effort D	eep	Effort 4104	Effort I	Deep 4104	Effort E	Effort	Deep 438	Effort 6	ffort	Deep	Effort		Deep		Effort I	De ep 98:
	FRA BEL	010t15m	16628 656093		16628 656093	35522 836309		35522 836309	942990		942990	980041		980041	776015		776015	924272		924272	981		98
	ENG	015m	0 0 0 0 0 0	0	000093	0 0	0	030309	0	0	0 0	980041	0	980041	880	880	776013	0 9242/2	0	924272		0	
	FRA	o15m	9728	-	9728		-	0	0	-	0	0	-	· ·			0	0	-	0	0	-	
	IRL	o15m	1492		1492	0		0	0		0	0			0		0	0		0	0		
	NED	o15m	0		0	0		0	0		0	0		0	0		0	0		0	0		
	5PN	none	11346357	0	11346357	8815762	0	8815762	8904063	Ð	8904063	8016774	0	8016774	6183515	0	6183515	6211119	285745	5925374	0	0	
	ENG	o10t15m	0		0			9	0		0	0			0		0	0		0	0		
	FRA	o10t15m	3820207	461	3819746	5430623	0	5430623	8384886	0	8384886	9142569	456	9142113	6819825	1799	6818026	6772216	1799	6770417	3050309	818	3049491
	DEN ENG	o15m o15m	129094	0	129094	80390	0	80390	0 104436	0	104436	11850 0	0	11850	0	0		78011 7920	0	78011 7920	13619	6943	667
	FRA	015m	9670496		9441327	13681228	473093 1		14574204		14150203	16077214		15883621	14723046		14444246	14639513	275019		4683314		
	IRL	015m	10663	223203	10663	0	173033 2	0	33917	-12-10-02	33917	6448	233333	6448	1800	270000	1800	2304	213023	2304	0	272320	452055
	NED	o15m	0		0	ő		0	0		0	00					0	12776		12776	8936		893
	NIR	o15m	0		0			0	ė.		ò	i i		Ċ			0	2707		2707	0		
	POR	o15m	2796	0	2796	2796	0	2796	108595	Ð	108595	569383	Ð	569383	598782	1089	597693	287116	0	287116	225946	0	225946
	SCO	o15m	0		9	0		0	0		0	0			0		0	1180		1180	0		
	SPN	none	0		0	0		0	0		0	49		49	0		0	588		588	0		
	ENG	o10t15m	0		0	0		0	0		0	0		0	0		0	0		0	0		
	FRA	o10t15m	424849 D		424849	475747 D		475747	598745 0		598745	505681 0		505681	411552 0		411552	400047 D		400047	118023 D		118023
	ENG FRA	o15m o15m	4130		4130	1722		1722	0			3117		3117	,			"			5860		5860
	IRL	015m	4130		4130	1/22		1/22	0			3117		3117				١ ٥		,	9 9 9		3860
	SCO	015m	ľ		0	هٔ ا		0			0	0					0	ľ		ő			
gill	SPN	none	1213582	0	1213582	1430508	0	1430508	1683385	0	1683385	1425842	0	1425842	1808366	0	1808366	1908846	129719	1779127	0	0	
	ENG	o10t15m	0	0		0	0		3096	3096		0	0		2050	2050		5351	5351		2255	2255	
	FRA	o10t15m	740538	0	740538	1514317	5614	1508703	1984675	1758	1982917	1658799	4902	1653897	1155945	3354	1152591	1146949	3354	1143595	422035	264	421771
	IRL	o10t15m	0		0	0		0	0		- 0	0			0			0		0	0		0
	ENG	o15m	49056	43008	6048	43734	16406	27328	199548	151232	48316	54377	53577	800	16679	16679	0	39065	18037	21028	78604	34280	44324
	FRA	o15m	1187019	53378	1133641	2058958	72668	1986290	2032257	115488	1916769	1695291	116516	1578779	2145942	16915	2129027	2129970	16915	2113055	1880438	27951	1852487
	IRL	o15m	1800 66082		1800	0		0	0		0	0			113018		0	- 0		0	0		
Location	SCO SPN	none	284009	46694 0	19478 284009	102765 247783	50609 0	52156 247783	172436 184225	124046 0	48390 184225	69676 265484	3476 0	66200 265484	315958	40240	72778 315958	39250 452625	6296 538568	32954 -85943	61280	14538	46742
	FRA	o10t15m	144520	0	144520	473380	0	473380	744255	1824	742431	653368	407	652961	510060	2029	508031	510060	2029	508031	746370	162	746208
	IRL	o10t15m	0		0	873		873	2473	1024	2473	033300	407	032301	0.000	2023	0	873	2023	873	0	102	740200
	ENG	o15m	111278	105982	5296	71646	64364	7282	69002	61704	7298	66303	48028	18275	40775	18300	22475	962	0	962	3958	0	3958
	FRA	o15m	165058	0	165058	138014	1417	136597	183189	850	182339	205807	Ð	205807	280569	17457	263112	280569	17457	263112	445853	75992	369861
	IRL	o15m	4275		4275	8879		8879	11367		11367	13432		13432	. 0		0	0		0	0		0
	POR	o15m		10329			0			0			0			0		l	0			0	
	SCO	o15m	0	0	0	1102	0	1102	12682	11737	945	6574	3556	3018	27684	23660	4024	0	0	0	25598	12761	12837
	SPN	попе	4482906	0	4482906		0	5520930	4449478	0	4449478	5208751	0		3783266	0		3032063	11863	3020200	0	0	
	FRA FRA	o10t15m	179275		179275	186043 6517		186043 6517	348466 3297		348466 3297	266967 11699		266967 11699	433638 16177		433638 16177	433638 16177		433638 16177	0		
	IDI	015m			0	25000		25000	3297		3237	11099		11002	101//		101//	101//		101//	0		
pelagic trav	SPN	none	5334468	D	5334468	4257594	D	4257594	3791866	D	3791866	4067360	D	4067360	3665276	D	3665276	6461572	5406	6456166	0	D	
,	FRA	o10t15m	267350	0	267350	569222	0	569222	746908	0	746908	753222	0	753222	311515	0	311515	304711	9	304711	666466	442	666024
	IRL	o10t15m	0		0	0		9	0		0	0			0		0	0		0	0		
	DEN	o15m	0		0	0		0	38027		38027	174671		174671	178275		178275	179083		179083	29240		29240
	ENG	o15m	224597	0		166621		166621	92445	0	92445	36288	0	36288	167200	0	167200	224055	0	224055	61 083	13886	47197
	FRA	o15m	1632314	0	1632314	4030865		4023423	5409869	10239	5399630	3929356	6521	3922835	1576063	0	1576063	1522637	0	1522637	1849723	13177	1836546
	GER	o15m	122593	22626	99967	298693	0	298693	183966	0	183966		0		85325	0	85325	47295	9	47295	41237	0	41237
	IRL NED	o15m o15m	369230 203153	22284	369230 180869	281708 536805	26400	281708 510405	137196 472316	9 35596	137196 436720	100377 106118	0	100377	22418 403896	0	22418 403896	21871 189568	0	21871 189568	44714 99986	67980	44714 32006
	NIR	015m	203133	22204	100000	330803	20400	310403	+/2316	33336	+30/20	100118		100112	403836		403830	2165		2165	33300	67380	32000
	SCO	o15m			0	ة ا		0	0			0					0	25396		25396	0		0
	SPN	none	684460		684460	539499		539499	463663		463663	585731		585731	497069		497069	410088		410088	0		
	FRA	o10t15m	190520	0	190520	57703	0	57703	75783	Ð	75783	64399	0	64399	10741	0	10741	10741	0	10741	391522	412	391110
	ENG	o15m	10185		10185	0		9	0		0	0		0	9856		9856	0		0	0		
	FRA	o15m	158381	0	158381	127796	1596	126200	145664	Ð	145664	103419	0	103419	14170	0	14170	14170	0	14170	340160	2052	
	GER	o15m	37485		37485	2646		2646	29507		29507	45482		45482	33957		33957	6174		6174	7272		727
	SPN	none	441945	0	441945	654742	0	654742	527309	Ð	527309	536042	0	536042	641249	0	641249	647739	44	647695	0	0	
	ENG	o10t15m	0	0	20141	0	0		0	0	22020	0	0	204.24	547	547	25520	0	0	25520	0	0	400==
	FRA FRA	o10t15m o15m	754404 865017	4268	754404 860749	1494444 2116251		1493496 2106051	2793823	9300	2793823	2913921 2390601	774 6900	2913147	2552035 2358160	9760	2552035	2552035 2356030	9760	2552035	434290 143910	516 2284	433774 141626
8 EU Total	rnA	ntem	865017 46018033		45490253	2116251 56325137	730757 5		62895757		2238344 61944886	62722921		62284215	2358160 52693294		2348400 52259735	2356030 54311497			143910		15433349
o cu Total			+0018033	238108	45490253	20325137	/30/57 5	oo84480	02895757	950871	01344986	02/22921	438/06	02284215	DZ693Z94	433559	04259735	54311497	132/362	DZ984135	T2885285	449633	15433

Table 4.2.5.1.2. Top demersal species landed (average 2008-2010) within Area VIII EU, 2003-2010. Values are landings in tonnes. Spanish 2010 landings are not included.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
		Type								
8 EU	HKE	L	5919	5846	9092	8560	10769	14104	14397	7107
8 EU	HKE	D	NA	236	678	2031	1003	1278	1500	751
8 EU	ANF	L	5352	6560	7291	7192	7033	6715	6669	877
8 EU	ANF	D	NA	NA	NA	NA	NA	NA	70	58
8 EU	SOL	L	2276	2545	3294	3470	3277	3339	3420	670
8 EU	SOL	D	NA	NA	NA	NA	NA	NA	9	6783
8 EU	NEP	L	2496	2600	3225	3012	2889	2745	2724	1244
8 EU	NEP	D	NA	NA	NA	NA	NA	NA	NA	12468
8 EU	COE	L	1193	1320	1230	1474	1723	1692	1627	1002
8 EU	COE	D	NA	NA	NA	NA	NA	NA	NA	316

Table 4.2.5.1.3. Top pelagic species landed (average 2008-2010) within Area VIII EU, 2003-2010. Values are landings in tonnes. Spanish 2010 landings are not included.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
8 EU	MAC	L	23023	34150	45785	47854	53237	56258	93622	6137
8 EU	MAC	D	154	NA	602	NA	NA	NA	NA	350
8 EU	JAX	L	24339	26499	31428	29315	26243	29401	24018	1660
8 EU	JAX	D	NA	5147						
8 EU	WHB	L	14024	16125	15232	13820	14982	13687	18174	36

Table 4.2.5.1.4. Scallop and crab species by gear landed within Area VIII EU, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
8 EU	BEAM	CRE	0	1	2	0				
8 EU	BEAM	SCE		0	0	0	1	0		
8 EU	BEAM	SCR	1	1	0	0				0
8 EU	BOTTOM TRAWLS	CRE	139	181	194	166	262	238	234	41
8 EU	BOTTOM TRAWLS	SCE	22	19	17	14	16	23	21	4
8 EU	BOTTOM TRAWLS	SCR	234	247	266	285	233	203	201	37
8 EU	DREDGE	CRE	0	0	0	0	0	0	0	0
8 EU	DREDGE	SCE	516	509	628	616	705	608	593	146
8 EU	DREDGE	SCR	1	1	1	1	1	3	2	1
8 EU	GILL	CRE	36	24	35	23	11	13	12	3
8 EU	GILL	SCE	0		7	0	3	0	0	
8 EU	GILL	SCR	112	175	193	176	87	56	50	22
8 EU	LONGLINE	CRE		0	2	1	0	0	0	0
8 EU	LONGLINE	SCE		1	0	1	0	0	0	
8 EU	LONGLINE	SCR	0	0	1	10	0	0	0	0
8 EU	none	CRE		1	1	1	0	0	0	
8 EU	none	SCE	2	4	7	0	2	3	3	
8 EU	none	SCR	0	0	1	5	0	0	0	
8 EU	PELAGIC TRAWLS	CRE	0	0	0	0	0	1	1	0
8 EU	PELAGIC TRAWLS	SCE	0					0	0	
8 EU	PELAGIC TRAWLS	SCR	1	0	0	0	1	1	1	
8 EU	POTS	CRE	885	1084	754	755	556	89	89	1232
8 EU	POTS	SCE								0
8 EU	POTS	SCR	36	61	3	16	50	2	2	82
8 EU	TRAMMEL	CRE	22	61	32	59	61	50	50	12
8 EU	TRAMMEL	SCE			0	2	1	1	1	2
8 EU	TRAMMEL	SCR	175	218	255	406	386	322	322	91

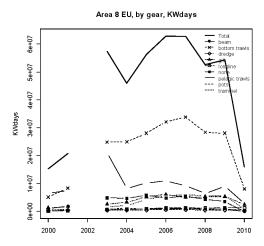


Figure 4.2.5.1.1. kWdays effort reported within Area VIII EU by gear type, 2000-2010. This figure should only be read from 2003 to 2009 due to uncertainty in French 2002 and 2010 data and the lack of Spanish data in 2010.

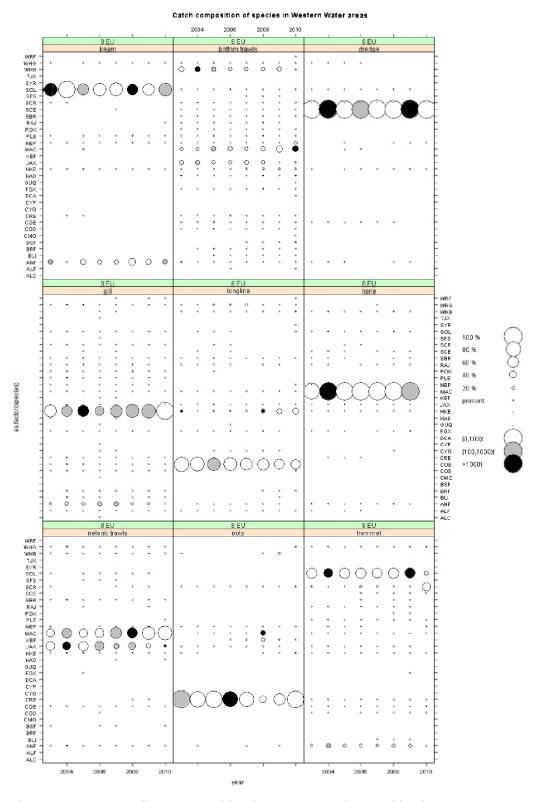


Figure 4.2.5.1.2. Landings composition by gear (countries combined) Western waters area VIII EU. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.5.2. Area VIII non EU

Effort

Minimal effort occurs sporadically within this area (Table 4.2.5.2.1).

Catch Composition

No demersal species landings were reported between 2008 and 2010.

Minimal pelagic landings (horse mackerel; JAX) occurred in 2006 (Table 4.2.5.2.2).

No scallops or crabs landings were reported.

Table 4.2.5.2.1. Effort (kWdays) by country, gear and vessel size group within Area VIII non EU, 2004-2010.

				20	04		20	05		2006			20	997		20	908		20	09		20	910
		Vessel		Deep	Excluding																		
Gear	country	length	Effort	Effort	Deep																		
bottom tra	FRA	o10t15m		0)	0		0		0		0			0	0		0		28	04	2804
	POR	o15m		0)	9		23762		23762		0			0	0		0)	0	9
gill	SCO	o15m		0	Ð		0	Ð	34994	34994			0	0		0	0		0	0		0	Ð
longline	FRA	o15m		0	6		0	6	0		0		0	6		0	0		0		303	01	30301
	SCO	o15m		0	0		9		0		9		9			0	0		0		737	54	73754
pelagic tra	FRA	o15m		0			9		0		0		0			0	0		0		521	18	52118
pots	SCO	o15m		0	0		0	0	0	0)		0	0	53	76 53	376		0	0		0	0
trammel	FRA	o10t15m		0)	0		0		0		0			0	0		0		5	73	573
8 non EU T	otal			9	0 0		0	0 0	58756	34994	23762		0	0 0	53	76 53	376 0		0	0 0	1595	50	0 159550

Table 4.2.5.2.2. Top pelagic species landed (average 2008-2010) within Area VIII non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
8 NON EU	JAX	L	NA	NA	NA	69	NA	NA	NA	NA

4.2.6. Western waters Area IX

4.2.6.1. Area IX EU

Effort

Two nations are active in this area, Portugal and Spain, although minor contributions from other nations do occur (Table 4.2.6.1 and Figure 4.2.6.1). Spanish data was provided in previous years covering the period 2002 to 2009. Since Spain operates extensively in this area, overall trends should not be considered outside this period.

Overall effort increased around 2006-2008, levelling off in most recent years. Comparatively little effort is directed toward deepwater fisheries, apart from Portuguese longlines. There is an issue with these data however, resulting in negative effort (ie lower effort submitted to the group for overall effort than was reported for deepwater effort). Spanish deepwater effort was only provided in this area for 2009, given the low effort assigned to deepwater fisheries in 2009, this may not have been significant over the period.

The main fishing activity is bottom trawling, and while this is carried out by both nations, Portuguese effort is much higher. Over the period, Portuguese effort increased until 2007, surpassing Spanish effort levels, although indicating a slight decline since. There has been little relative change in Spanish effort levels.

A number of other gears are used at lower levels, the greatest of which, pelagic trawls, is carried out solely by Spanish vessels. Low levels of trammel net, gillnet, pot, and longline effort occur. Increases have been seen in trammel, gillnet and potting effort in recent years. Spain does more

potting and non-deepwater longlining, while Portugal contributes a greater proportion of trammel and gillnetting effort. Spain also carries out a small amount of dredging in the area.

Catch composition

Note: 2010 landings should not be considered due to a lack of Spanish landings information.

A number of different fisheries take place within area IX EU using different gears as can be seen by the variable species compositions in Figure 4.2.6.1.2. As in area VIII EU hake is the top demersal species landed (Table 4.2.6.1.2) and has been increasing over the period. Anglerfish (ANF) landings peaked in 2007 and has since been declining. Landings of the remaining top demersal species (rays; RAJ, *Nephrops*; NEP, and conger eels; COE) are comparatively minor.

Horse mackerel (JAX) has by far the greatest pelagic landings from this area (Table 4.2.6.1.3). These landings have increased over the majority of the period, however landings declined in 2009. Blue whiting (WHB) and mackerel (MAC) are also landed both of which had reduced weights in 2009. While mackerel landings had slowly increased over the period, blue whiting showed more stability.

Minor landings of spider crab (SCR) occur from trammel nets within the area (Table 4.2.6.1.4). No other scallop or crab landings occurred.

Table 4.2.6.1.1. Effort (kWdays) by country, gear and vessel size group within Area IX EU, 2004-2010.

				2004			2005			2006			2007			2008			2009			2010	
		Vessel	C	eep	Excluding		De ep	Excluding		Deep	Excluding		Deep	Excluding		eep l	Excluding		eep E	xcluding			Excluding
Gear	country	length	Effort E	ffort	Deep	Effort	Effort I	Deep	Effort	Effort	Deep	Effort E	ffort	Deep	Effort E	ffort I	Эеер	Effort E	ffort [Эеер	Effort E	ffort [Deep
beam	5PN	none	25121		25121	25154		25154	25077		25077	28021		28021	18232		18232	16275		16275	D		0
bottom tra	SPN	none	3094901	0	3094901	2368758	0	2368758	2715222	0	2715222	2179643	0	2179643	1948330	0	1948330	1881415	88673	1792742	D	9	0
	IRL	o10t15m	9		0	9		0	9		0	0		0	0		9	0		0	164		164
	POR	o10t15m	0		0	0		0	0		0	89		89	0		0	0		0	0		0
	IRL	o15m	0		0	0		0	0		0	0		0	522		522	0		0	0		0
	POR	o15m	5071607	37237	5034370	4422899	63980	4358919	6029267	90887	5938380	8379491	133980	8245511	7701113	85031	7616082	7093202	103658	6989544	6267436	37393	6230043
dredge	SPN	none	23443		23443	24996		24996	26099		26099	30039		30039	33876		33876	58241		58241	0		0
	POR	o10t15m		0			89			74			0			0			0			89	
gill	SPN	none	249307		249307	328203		328203	287174		287174	334189		334189	371351		371351	598712		598712	D		0
	POR	o10t15m	- 0	0	0	25638	317	25321	47292	269	47023	108493	337	108156	112498	901	111597	97261	89	97172	81611	1056	80555
		o15m	0	0		0	0		130733	130733		11906	11906		0	0		0	0		0	0	
		o15m		0			0			0			0		l	1472			1472			0	
		o15m	32273	0	32273	119202	2639	116563	184177	4071	180106	718943	15724	703219	777508	11431	766077	668527	7515	661012	600022	1397	598625
longline	SPN	none	99463	0	99463	297488	0	297488	646323	0	646323	256878	0	256878	205655	0	205655	275977	12000	263977	0	0	0
	POR	o10t15m	- 0	0	0	37393	16086	21307	52976	39265	13711	51615	52013	-398	56083	45702	10381	43053	54347	-11294	51577	17713	33864
	ENG	o15m	0	0		0	0		4928	4928		0	0		0	0		0	0		0	0	
		o15m	77114	213345	-136231	19322	377070	-357748	47149	670904	-623755	118832	735832	-617000	122982	688557	-565575	93497	613570	-520073	78133	562664	-484531
	SPN	none	327183		327183	326040		326040	309026		309026	315969		315969	380804		380804	563673		563673	0		0
pelagic tra-		none	3483303		3483303	3067963		3067963	2802865		2802865	2872281		2872281	3041047		3041047	3346249		3346249	D		0
		o10t15m		0			71			60			0			142			0			0	
	POR	o15m		0			0			Ð			0			0			137			9	
	SPN	none	1168353		1168353	667483		667483	632260		632260	718759		718759	873801		873801	927395		927395	0		0
	POR	o10t15m	518	0	518	73475	0	73475	121213	835	120378	178316	497	177819	250634	139	250495	216433	267	216166	231522	100	231422
	ENG	o15m	9	0	0	9	Ð	0	3136	3136	0	26201	0	26201	0	0	9	0	9	0	0	9	0
		o15m	0		0	0		0	0		0	7272		7272	0		0	0		0	14544		14544
		o15m	4884	1865	3019	5363	354	5009	39918	706	39212	116636	834	115802	188751	3157	185594	178718	128	178590	138035	9	138035
trammel	SPN	none	298351		298351	314811		314811	275258		275258	276624		276624	352813		352813	359209		359209	0		- 0
		o10t15m	623	0	623	65923	1055	64868	135727	910	134817	340488	3545	336943	386146	2648	383498	397042	535	396507	474877	156	474721
	POR	o15m	44231	2168	42063	189840	3430	186410	389797	12128	377669	923884	21590	902294	643654	21920	621734	866971	7592	859379	962700	8250	954450
9 EU Total			14000675	254615	13746060	12379951	465091	11915020	14905617	958906	13946845	17994569	976258	17018311	17465800	861100	16606314	17681850	889983	16793476	8900621	628818	8271892

Table 4.2.6.1.2. Top demersal species landed (average 2008-2010) within Area IX EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
9 EU	HKE	L	757	610	985	1926	3076	3713	4682	1607
9 EU	HKE	D	NA	186	505	761	1455	1048	2251	572
9 EU	ANF	L	509	462	508	789	1088	685	550	179
9 EU	RAJ	L	37	53	68	137	312	340	486	518
9 EU	NEP	L	90	94	87	240	318	262	175	147
9 EU	COE	L	13	19	40	57	129	134	167	215

Table 4.2.6.1.3. Top pelagic species landed (average 2008-2010) within Area IX EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
9 EU	JAX	L	8980	11623	9325	12161	12737	16001	11812	6326
9 EU	WHB	L	3858	5149	4637	3485	5141	6106	4673	1330
9 EU	MAC	L	1878	1916	3496	3841	6044	6167	1231	290

Table 4.2.5.1.4. Scallop and crab species by gear landed within Area IX EU, 2003-2010. Values are landings in tonnes.

Area	Gear	Species	2003	2004	2005	2006	2007	2008	2009	2010
9 EU	BOTTOM TRAWLS	CRE				0		0		
9 EU	BOTTOM TRAWLS	SCE	0							
9 EU	BOTTOM TRAWLS	SCR	0					0		0
9 EU	GILL	CRE				0	0		0	0
9 EU	GILL	SCR	0				0		0	0
9 EU	LONGLINE	CRE			0		0			
9 EU	LONGLINE	SCR					0			
9 EU	POTS	CRE				0	0	0	0	0
9 EU	POTS	SCR	0		0	0	0	0	0	0
9 EU	TRAMMEL	CRE		0	0	0	0	0	0	0
9 EU	TRAMMEL	SCR	0	1	1	5	7	1	3	3

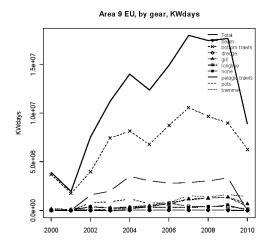


Figure 4.2.6.1.1. kWdays effort reported within Area IX EU by gear type, 2000-2010. N.B figure contains minor effort directed toward deepwater fisheries. Spanish data included only from 2002 to 2009.

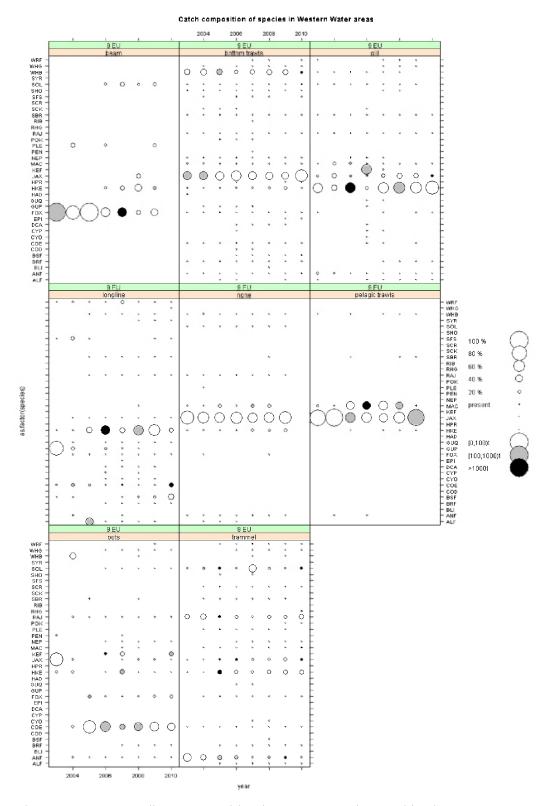


Figure 4.2.6.1.2. Landings composition by gear (countries combined) Western waters area IX EU. Size of circles represents relative contribution to landings, shading indicates quantity. Spanish 2010 landings not included.

4.2.6.2. Area IX non EU

Effort

Little effort is associated with this area. Prior to 2006 a variety of gears were used, all at low levels, all of which by Portugal (Table 4.2.6.2.1. and Figure 4.2.6.2.1.). Since 2006, effort declined and was focused in longlines. Some of the longline effort is associated with deepwater fisheries. There is an issue with these data however, resulting in negative effort (ie lower effort submitted to the group for overall effort than was reported as deepwater effort).

Catch composition

There are few landings of demersal species originating from this area (Table 4.2.6.2.2 and Figure 4.2.6.2.2). The greatest of which in recent years is conger eel (COE) and likely linked to the deepwater longline fishery.

In relation to pelagic species, minimal landings occurred in the earlier part of the time series, with only 1t of horse mackerel occurring since 2006 (Table 4.2.6.2.3).

No scallop or crab landings were reported for this area.

Table 4.2.6.2.1. Effort (kWdays) by country, gear and vessel size group within Area IX non EU, 2004-2010.

				2004			2005			2006			2	007		200	8		200	9		2010	
		Vessel	D	eep	Excluding		Deep	Excluding		Deep	Excluding												
Gear	country	length	Effort E1	ffort	Deep	Effort	Effort	Deep	Effort	Effort	Deep												
bottom tra	POR	o15m	27180		27180	72890		72890	_)		Í	0		0	0	0		0	(9		- 0
gill	POR	o10t15m	0	0		2471	0	2471		9 0			0	0	0	0	0 0		0	0 () 0	0	
	POR	o15m	805	0	809	32635	1968	30667) 0			0	0	0	0	0 0		0	0 (0	0	- 0
longline	POR	o10t15m	0	0		24403	11850	12553	-) (0	0	0	0	0 0		0	0 (0	0	- 0
	POR	o15m	35788	63968	-28180	167159	147859	19300	2714	4 3356	-642	40	65 13	187 -912	2 346	0 4327	72 -8612	4330	/5 1158	1 3172	8020	3401	4619
pelagic tra	POR	o15m		0			1250			0				0			0			0		0	
pots	POR	o10t15m	0			2961		2961)			0		0	0	0		0	-	0		- 0
	POR	o15m	0			590		590	-)			0		0	0	0		0		0		
trammel	POR	o10t15m	- 0			9438		9438)			0		9	0	0		0	(9		-
	POR	o15m	0	Ð		15314	142	15172) 0		į	0	Ð	0	0	0 0		0	0 () 0	0	
9 non EU 7	otal		63773	63968	-199	327861	163069	166042	2714	4 3356	-642	40	65 13	187 -912	2 346	0 4327	72 -8612	4330	5 1158	1 31724	8020	3401	4619

Table 4.2.6.2.2. Top demersal species landed (average 2008-2010) within Area IX non EU, 2003-2010. Values are landings in tonnes.

area		species	Type	2003	2004	2005	2006	2007	2008	2009	2010
9 NC	N EU	COE	L	20	10	28	5	2	15	39	9
9 NC	N EU	BRF	L	NA	NA	NA	1	1	5	9	1
9 NC	N EU	RAJ	L	NA	NA	3	NA	NA	1	1	1
9 NC	N EU	ANF	L	27	NA	12	NA	NA	NA	NA	NA

Table 4.2.6.2.3. Top pelagic species landed (average 2008-2010) within Area IX non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
9 NON EU	JAX	L	6	27	59	NA	NA	NA	1	NA
9 NON EU	MAC	L	5	NA	6	NA	NA	NA	NA	NA
9 NON EU	WHB	L	4	34	43	NA	NA	NA	NA	NA

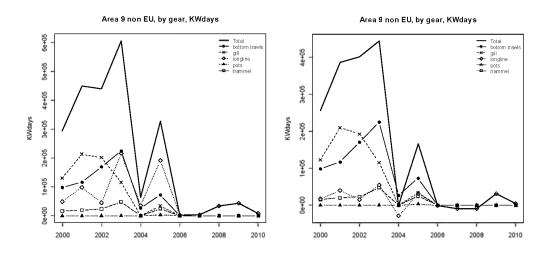


Figure 4.2.6.2.1. kWdays effort reported within Area IX non EU by gear type, 2000-2010 with (left) and without (right) effort directed toward deepwater fisheries.

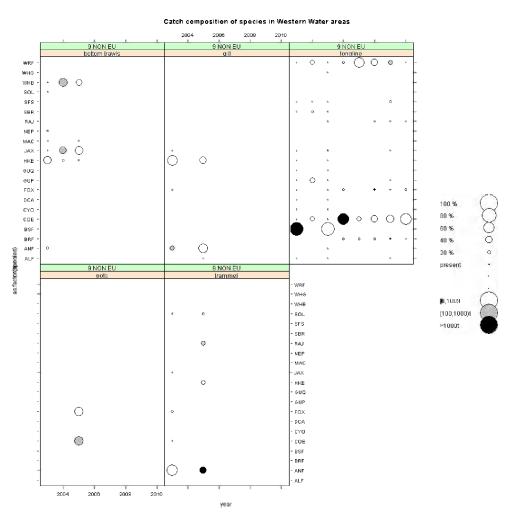


Figure 4.2.6.2.2. Landings composition by gear (countries combined) Western waters area IX non EU. Size of circles represents relative contribution to landings, shading indicates quantity.

4.2.7. Western waters Area X

4.2.7.1. Area X EU

Effort

Little effort is carried out within this area. The effort that does occur is with longlines by Portugal (Table 4.2.7.1.1 and Figure 4.2.7.1.1). This effort is primarily associated with deepwater fisheries. There is an issue with these data however, resulting in negative effort (ie lower effort submitted to the group for overall effort than was reported as deepwater effort).

Catch composition

There have been no demersal, pelagic, scallop, or crab species landed from this area in recent years.

Table 4.2.7.1.1. Effort (kWdays) by country, gear and vessel size group within Area X EU, 2004-2010.

				2004			20	05	2006					200	97		201	98		201	99		20	10
		Vessel		Deep	Excluding		Deep	Excluding		Deep	Exclu	uding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding
Gear	country	length	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	p E	ffort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep
bottom tra	ENG	o15m		0	0		0	0		0	0		0	,	0		0	0		0	0		0	0
	POR	o15m		0	0	ł	0		ł	0		0	750	•	750		0	0		0	0		0	0
longline	POR	o15m	355	i0	0 3550	421	1	0 4201		0 1	5006 -	15006	0	•	0 0		0	0 0	121	12	0 12112		0	0 0
10 FU Tota	1		350	0	0 3550	421	k1	0 4201		0 15	5006 -	15006	750		0 750		0	0 0	121	12	0 12112		0	0 0

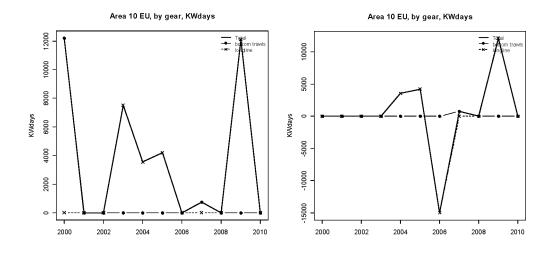


Figure 4.2.7.1.1. kWdays effort reported within Area X EU by gear type, 2000-2010 with (left) and without (right) effort directed toward deepwater fisheries.

4.2.7.2. Area X non EU

Effort

There is an issue with the data in this area, resulting in negative effort due to lower effort submitted to the group for overall effort than reported as deepwater effort.

Little effort is carried out within Area X non EU. Effort which does occur is primarily with longlines by Portugal, associated with deepwater fisheries (Table 4.2.7.2.1. and Figure 4.2.7.2.1.).

Occurrence of other gears and or nations is more sporadic and tending to relate to deepwater fisheries, including small amounts of bottom trawling in 2004/2005.

Catch composition

Very few landings of demersal species have occurred across the period. Those from recent years are detailed in Table 4.2.7.2.2.

In relation to pelagic species, where only 1t of mackerel has been landed (Table 4.2.7.2.3).

No scallop or crab landings have been reported for this area in recent years.

Table 4.2.7.2.1. Effort (kWdays) by country, gear and vessel size group within Area X non EU, 2004-2010.

				200	1	2005				2006				007		20	908			ort Deep Effort Effort Deep 0 1099 3 0 1099 0 1964 1 0 0 1964 1 0 0 1111 0 0 5668 5 2478 10908 0 0 0				
		Vessel	D	eep	Excluding		Deep	Excludin	g	Deep	Excludi	ng g	Deep	Excli	uding									
Gear	country	length	Effort E	ffort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effic	rt Effort	. Deer	:p									
bottom tra	FRA	o10t15m	0			0		0)		į	0)	9		0	0		9	1059		1059
	ENG	o15m	0)	- 0)	()	0		0	Ð		0	0		0	0		0	0	
	FRA	o15m	0			0		0)		4	0)	0		0	0		0	1964		1964
	IRL	o15m	31378	3137	3	8656	8656	,	()	0		0	0		0	0		0	0		0	0	
gill	FRA	o10t15m	0		0	. 0		0)		į	0)	9		0	0		9	111		111
longline	FRA	o10t15m	0		0	0		0	- ()	0		0	-	,	0		0	0		0	5698		5698
	POR	o15m	29859	2610	3758	39348	25533	13815	8931	893	31 (0 20	388 -2038	17	92	0 17	92 13	2786	2478 10	108	0	0	0
pelagic trav	FRA	o10t15m	0			0		0	_)		Í	0)	0		0	0		0	1575		1575
	FRA	o15m	0			0		0)		•	0)	0		0	0		0	2106		2106
	POR	o15m)		204022				0			Ð			0			Ð			Ð	
pots	POR	o15m	0		0			0)			0		99	29	99	29 :	2478	2	178	0		0
trammel	FRA	o10t15m	0			0		0)	(0)	0		0	0		0	1483		1483
	FRA	o15m	0			9		0)			0)	0		9	0		0	323		323
	POR	o15m	0			9		9)			0)	0		9	0		0	0		0
10 non EU	Total		61237	5747	3758	48004	238211	. 13815	8931	893	31 0		0 20	388 -2038	117	21	0 117	21 1	5264	2478 12	86	14319	0	14319

Table 4.2.7.2.2. Top demersal species landed (average 2008-2010) within Area X non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
10 NON EU	COE	L	NA	NA	NA	NA	NA	NA	5	16
10 NON EU	NEP	L	NA	1						
10 NON EU	RAJ	L	NA	NA	NA	NA	NA	NA	1	NA

Table 4.2.7.2.3. Top pelagic species landed (average 2008-2010) within Area X non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
10 NON ELL	MAC	1	NΔ	NΔ	NΙΔ	NΙΔ	NΙΔ	NΔ	NΙΔ	1

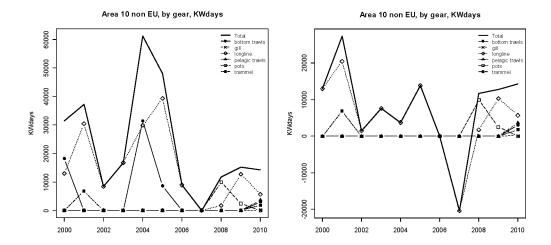


Figure 4.2.7.2.1. kWdays effort reported within Area X non EU by gear type, 2000-2010 with (left) and without (right) effort directed toward deepwater fisheries.

4.2.8. Western waters Area CECAF 34.1.1

4.2.8.1. Area 34.1.1 EU

Effort

There is an issue with the data for this area, resulting in negative (ie due to lower effort submitted to the group for overall effort than was reported as deepwater effort).

Effort is low within this area. Portugal is the sole nation with effort reported in this area and is associated with longlining (Table 4.2.8.1.1 and Figure 4.2.8.1.1). Much of this effort is used to target deepwater fisheries. In 2008 and 2009 greater effort became directed to other fisheries. A single year of Portuguese bottom trawling created an effort peak in 2007.

Catch composition

There have been very low landings of demersal species from this area over the period examined. Table 4.2.8.1.2 details the top five species from recent (2008-2010) years. Conger eel (COE) predominates and this is likely related to the deepwater longline fishery.

Pelagic species landings are detailed within Table 4.2.8.1.3, showing a single tonne of horse mackerel (JAX) in both 2009 and 2010.

No scallop or crab landings have been reported for this area in recent years.

Table 4.2.8.1.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.1.1 EU. 2004-2010.

			2004 20																			2010		
	П		Vessel		Deep	Excluding																		
Gear		country	length	Effort	Effort	Deep																		
bottom	tra	POR	o15m	- 0			- 0			0		0	30716		307168		0)	0			,	0
longline		POR	o10t15m	0		0 0	0	0	0	0	0	0	41		412		0	0 0	61	.32	0 6132	15906	3258	12648
		POR	o15m	7502		0 7502	5011	9304	-4293	10952	28137	-17185	1335	9160	4196	57-	440 25	508 31932	623	23 264	48 35879	38270	7819	30451
tramme	el i	POR	o15m		232	7		0			0			(0			0		0	
34.1.1	EU To	otal		75 02	232	7 7502	5011	9304	-4293	10952	28137	-17185	32093	9160	311776	57	440 25	508 31932	684	55 264	48 42007	54176	11077	43099

Table 4.2.8.1.2. Top demersal species landed (average 2008-2010) within CECAF Area 34.1.1 EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 EU	COE	L	5	11	6	16	7	38	66	46
34.1.1 EU	BRF	L	NA	NA	NA	3	2	9	6	2
34.1.1 EU	RAJ	L	NA	NA	NA	1	1	1	2	NA
34.1.1 EU	COD	L	NA	NA	NA	NA	20	NA	NA	NA

Table 4.2.8.1.3. Top pelagic species landed (average 2008-2010) within CECAF Area 34.1.1 EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 EU	JAX	L	NA	NA	NA	NA	NA	1	1	NA

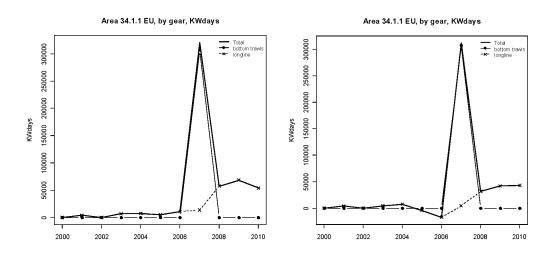


Figure 4.2.8.1.1. kWdays effort reported within CECAF Area 34.1.1 EU by gear type, 2000-2010 with (left) and without (right) effort directed toward deepwater fisheries.

4.2.8.2. Area 34.1.1 non EU

Effort

Effort is low within this area. Early in the available time series Portugal was the sole nation with effort reported. This effort was primarily bottom trawling (Table 4.2.8.2.1 and Figure 4.2.8.2.1). This was replaced by longlining from the middle of the period. There has been minor bottom trawling occurring again in the last two years. In 2010, effort from Lithuania was reported directed to pelagic trawling, surpassing that of Portuguese longline effort.

Little or no effort is associated with deepwater fisheries in this area.

Catch composition

There have been very low or no landings of demersal species from this area over the period examined. Although there has been some small increases since 2007. Table 4.2.8.2.2 details the top five from recent (2008-2010) years, primarily conger eel (COE) and hake (HKE).

Pelagic species landings are detailed within Table 4.2.8.2.3, showing a single tonne of horse mackerel (JAX) in 2009. Although effort from Lithuania was reported directed to pelagic trawling in 2010 no pelagic landings were reported for the area and year combination.

Table 4.2.8.2.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.1.1 non EU, 2004-2010.

				200	4		200	5		201	96		201	07		200	98		201	99		20:	10
		Vessel		Deep	Excluding																		
Gear	country	length	Effort	Effort	Deep																		
bottom tra	POR	o15m		0	0		0	0		9	0		0	0		9	0	1268	2	12682	223E	10	22380
longline	POR	o10t15m		0	0		0	0		0	0	135	03	13503	210	31	21081	1402	4	14024	1499	17	14997
	POR	o15m		0	0	921	3	9213		0	0	262	76	26276	590	59	59059	3831	9	38319	4549	16	45496
pelagic tra	LIT	o40m		0	0		0	0		0	- 0		0	- 0		0	0		0	- 0	36542	14	365424
34.1.1 non	EU Total			0	0	921	3	9213		0	0	397	79	39779	801	10	80140	6502	5	65025	44829	17	448297

Table 4.2.8.2.2. Top demersal species landed (average 2008-2010) within CECAF Area 34.1.1 non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.1.1 NON EU	COE	L	9	NA	4	NA	14	13	14	20
34.1.1 NON EU	HKE	L	NA	NA	NA	NA	NA	NA	4	25
34.1.1 NON EU	BRF	L	NA	NA	NA	NA	4	2	6	6
34.1.1 NON EU	RAJ	L	NA	NA	NA	NA	NA	5	2	1

Table 4.2.8.2.3. Top pelagic species landed (average 2008-2010) within CECAF Area 34.1.1 non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34 1 1 NON FU	JAX	1	NA	NA	NA	NA	NA	NA	1	NA

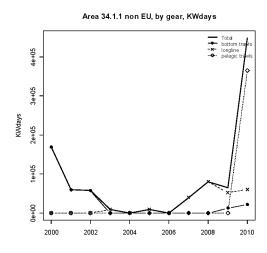


Figure 4.2.8.2.1. kWdays effort reported within CECAF Area 34.1.1 non EU by gear type, 2000-2010.

4.2.9. Western waters Area CECAF 34.1.2

4.2.9.1. Area 34.1.2 EU

Effort

There is an issue with the data in this area, resulting in negative effort (ie lower effort submitted to the group for overall effort than was reported as deepwater effort).

Effort is low within this area. Portugal is the sole nation with effort reported in this area and uses longlines (Table 4.2.9.1.1 and Figure 4.2.9.1.1). Some of this effort, since 2004, has been directed toward deepwater fisheries.

Catch composition

Demersal species landings from this area have been minimal over the period. Table 4.2.9.1.2 details the top demersal species from the area. This shows conger eel (COE) to contribute the most to landings which have fluctuated over time. Other demersal landings have been minimal.

Pelagic species landings are detailed within Table 4.2.9.1.3, showing 2t of horse mackerel (JAX) in 2009.

Table 4.2.9.1.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.1.2 EU, 2004-2010.

				2004	4		2005			200	6		2007	7		200	8		2009	9		2010	•
		Vessel		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding		Deep	Excluding
Gear	country	length	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep	Effort	Effort	Deep
longline	POR	o15m	19547	877	1 19776	14743	12191	2552	10737	680	8 3929	11494	4 14909	-3415	2463	38 1929	3 5345	4345	3 24163	19290	18584	11727	6857
trammel	POR	o15m	2327		2327	0		0	0		0)		Ī	0	0		0		9		0
34.1.2 EU	Total		21874	877	1 13103	14743	12191	2552	10737	680	8 3929	11494	14909	-3419	2463	38 1929	3 5345	4345	3 24163	19290	18584	11727	6857

Table 4.2.9.1.2. Top demersal species landed (average 2008-2010) within CECAF Area 34.1.2 EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.1.2 EU	COE	L	2	10	20	8	15	14	25	18
34.1.2 EU	BRF	L	NA	NA	NA	2	2	2	3	1
34.1.2 EU	RAJ	L	NA	NA	NA	NA	NA	NA	1	1

Table 4.2.9.1.3. Top pelagic species landed (average 2008-2010) within CECAF Area 34.1.2 EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34 1 2 FU	JAX	1	NA	NA	NA	NA	NA	NA	2	NA

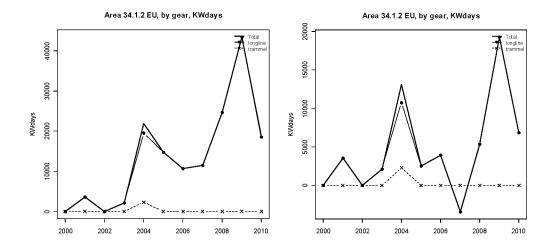


Figure 4.2.9.1.1. kWdays effort reported within CECAF Area 34.1.2 EU by gear type, 2000-2010, with (left) and without (right) effort directed toward deepwater fisheries.

4.2.9.2. Area 34.1.2 non EU

Effort

Effort within this area is minimal, effort only occurred during 2010 (Table 4.2.9.2.1) as longlines by Portugal (Madeira), therefore no further comment can be made.

Catch composition

In 2010, quantities of conger eel (COE), blackbelly rosefish (BRF) and *Nephrops* (NEP) were reported from this area (Table 4.2.9.2.2).

No pelagic species landings have been reported within this area.

Table 4.2.9.2.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.1.2 non EU, 2004-2010.

				200	94	2005			20	006		20	307		21	908		20	09		2010	1	
		Vessel		Deep	Excluding																		
Gear	country	length	Effort	Effort	Deep																		
longline	PTM	o10t15m		0	0 0		0	0 0		0	0 0		0	0 0		0	0 0		0	0 0	33869	532035	-498166
	PTM	o15m		0	0 0	_	0	D 0	_	0	0 0		0	0 0		0	0 0		0	0 0	6361	87769	-81404
34.1.2 nor	EU Total			0	0 0		0	D 0		0	0 0		0	0 0		0	0 0		0	0 0	40230	619800	-579570

Table 4.2.9.2.2. Top demersal species landed (average 2008-2010) within CECAF Area 34.1.2 non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.1.2 NON EU	COE	L	NA	1153						
34.1.2 NON EU	BRF	L	NA	374						
34.1.2 NON EU	NEP	L	NA	108						

4.2.10. Western waters Area CECAF 34.1.3

4.2.10.1. Area 34.1.3 EU

No effort data was submitted within this area.

4.2.10.2. Area 34.1.3 non EU

No western waters effort was submitted within this area (Table 4.2.10.2.1). The Netherlands, however, made a submission of deepwater effort in 2004, highlighting a data issue.

Table 4.2.10.2.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.1.3 non EU, 2004-2010.

				200	4		200	5		200	16		200	7		200	8		201	09		201	10
		Vessel		Deep	Excluding																		
Gear	country	length	Effort	Effort	Deep																		
pelagic tra	NED	o15m		2294	4			Đ			0			0			0			0			0
34.1.3 non	EU Total			2294	4			0			0			0			0			0			0

4.2.11. Western waters Area CECAF 34.2.0

4.2.11.1. Area 34.2.0 EU

No effort data was submitted within this area.

4.2.11.2. Area 34.2.0 non EU

Effort

Effort is low within this area. According to the data provided, a relatively small Portuguese longline fishery began in this area in 2005, which has subsequently declined (Table 4.2.11.2.1 and Figure 4.2.11.2.1). None of this effort is associated with deepwater fisheries.

Catch composition

Over the period of long-lining, small quantities of conger eel (COE) and blackbelly rosefish (BRF) occurred. Rays (RAJ) occurred in 2010, at which time quantities of the two other species increased (Table 4.2.9.2.2).

No pelagic landings were reported within this area.

Table 4.2.11.2.1. Effort (kWdays) by country, gear and vessel size group within CECAF Area 34.2.0 non EU, 2004-2010.

					200	14		2005			20	06		20	07		201	08		200	99		201	.0
		Vesse	d		Deep	Excluding																		
Gear	country	lengti	h E	Effort	Effort	Deep																		
bottom tr	a POR	o15m	_		0			0)	0)	0		0	0		0	0		0	0
longline	POR	o15m			0		6320	5	63205	29104	1	29104	1515	7	15157	135	384	13984		0	0	2369	6	23696
34.2.0 no	n EU Total	1			0		6320	6	63205	29104		29104	1515	7	15157	131	384	13984		0	0	2369	6	23696

Table 4.2.11.2.2. Top demersal species landed (average 2008-2010) within CECAF Area 34.2.0 non EU, 2003-2010. Values are landings in tonnes.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010
34.2.0 NON EU	COE	L	NA	NA	NA	7	9	3	NA	15
34.2.0 NON EU	RAJ	L	NA	4						
34.2.0 NON EU	BRF	L	NA	NA	NA	1	1	1	NA	6

Area 34.2.0 non EU, by gear, KWdays Total cottom trawls longline 90007

Figure 4.2.11.2.1. kWdays effort reported within CECAF Area 34.2.0 non EU by gear type, 2000-2010, excluding effort directed toward deepwater fisheries.

EUROPEAN COMMISSION

DIRECTORATE-GENERAL FOR MARITIME AFFAIRS AND FISHERIES

POLICY DEVELOPMENT AND CO-ORDINATION COMMON FISHERIES POLICY AND AQUACULTURE

Brussels, MARE A2/MT/dos D(2011)

	FAX			
To:	Permanent Representations of	Telephone:		
	EU Member States	Fax:		
Cc:	Ministries of EU Member States			
From:	Ernesto PENAS LADO	Telephone:	(32-2) 296 37 44	
		Fax:	(32-2) 299 48 02	
Number of pages:	3+21			
Subject:	Fishing effort management schemes related to recovery and management plans in the Baltic Sea, the North Sea, to the Western waters, to the deep sea fisheries and review of fisheries located in the Celtic Sea.			

Message:

Following a similar approach as has been implemented for the last six years, the Commission will consult the STECF 'Working Group on fishing effort regime evaluations' on a review of fisheries regulated through fishing effort management schemes adopted in application of

- \checkmark the long term plan for cod stocks [R(EC) No 1342/2008],
- ✓ the recovery plan for Southern hake and Norway lobster stocks in the Cantabrian Sea and Western Iberian peninsula [R(EC) No 2166/2005],
- ✓ the multi-annual plan for the North Sea plaice and sole stocks [R(EC) No 676/2007],
- ✓ the multi-annual plan of Western Channel sole stock [R(EC) No 509/2007],
- \checkmark the multi-annual plan for the cod stocks in the Baltic Sea [R(EC) No 1098/2007],
- ✓ the multi-annual plan for the sustainable exploitation of the stock of sole in the Bay of Biscay [R(EC) No 388/2006],

- ✓ R(EC) No 2347/2002 establishing specific access requirements and associated conditions applicable to fishing for deep sea stocks, and
- ✓ R(EC) No 1954/2003 on the management of the fishing effort relating to certain Community fishing areas and resources so called Western Waters regime.

The meetings of the STECF Working Group will take place from 06 to 10 June 2011 and from 26 to 30 September 2011. Similarly to last year, the Commission will consult the STECF Working Group on an analysis of fisheries located in the Celtic Sea which would be affected by a possible extension of effort management related to demersal stocks in that area.

These reviews and analysis will be based on data as collected according to R(EC) No 1639/2001 and to R(EC) No 199/2008 establishing a Community framework for the collection and management of the data needed to conduct the common fisheries policy, supplemented by Commission Decision 2010/93/EU of 18 December 2009 (which repealed Commission Decision 2008/949/EC), as well as other scientific information collected at national level which would allow Member States to fulfil their cooperation obligation laid down in article 4 (3) of the Treaty on European Union. They will include:

- ✓ A synopsis of the biological status of the relevant resources;
- ✓ Details of historic effort deployed by all fishing vessels, even those of less than 10 m. Loa included, in each fishery, segregated by gear type and by Member State, for the 2000-2010 time period;
- ✓ Details of historic catches (landings and discards) made by all fishing vessels, those of less than 10 m. Loa included, in each fishery, segregated by age, by gear type and by Member State, for the 2003-2010 time period.

These data should characterise landings and discards structured by age for the period 2003-2010 and effort for the period 2000-2010.

However, if a Member State considers that data already received by the JRC and handled by the STECF for the 2000-2009 or 2003-2009 time periods do not have to be updated, the Member State is invited to limit the answer to the data call to data for the year 2010. In case where the Member State had not or only partially submitted requested data for the period 2003-2009, the Member State will have to submit data covering the overall periods of time (2003-2010 for catches and 2000-2010 for effort). In addition, Member States will be requested to provide relevant information explaining the need for update and the discrepancies possibly observed between the set of data submitted as answer to the last call and the set of data to be sent as answer to the current call.

To enable the STECF Working Group on fishing effort regime evaluations both to review such fishing effort management schemes and to analyse the fishing effort deployed in the Celtic Sea fisheries, Member States are invited to provide, as soon as possible and no later than <u>06 May 2011</u>, data to the Commission and to the scientists who would attend the meeting.

The data format to be used, which has been discussed with the STECF secretariat, is described in annex II joined to this facsimile. Such completed data sets should be uploaded on the **JRC DCF data collection web site** and put at the disposition of the STECF working groups by the intermediation of scientists who will form part of it.

Requests for complementary information related to this upload process may be requested to Hans-Joachim Raetz and to Marco Traa through the following e-mail boxes:

Marco.traa@ec.europa.eu

hans-joachim.raetz@irc.ec.europa.eu

stecf-secretariat@irc.ec.europa.eu

Please note that STECF has repeatedly highlighted shortfalls in the data submitted by a number of Member States. Annex I shows a summary table of data not submitted by MS following the data call on effort and catches in 2010. These shortfalls continue to compromise the analysis and member States are asked to pay special attention to providing missing data.

In addition, STECF highlighted several times that it had been unable to comment on the quality of the fleet specific estimates of total catches and discards, mainly due to lack of requested data quality parameters, i.e. number of discards samples, fish measured and aged.

The Commission requests Member States to provide all available information on number of discards samples, fish measured and aged which were implemented during the time-series beforehand specified and either for each metier or for each stock covered by the current call for data. It is recommended that MS authorities liaise with their experts who are expected to attend the STECF meetings to ensure this task is fulfilled.

The Commission reminds Member States that according to Article 8(4) and 8(5) of Regulation (EC) No 199/2008, reductions and suspensions of European Union financial assistance may be applied by the Commission in case of lack of data transmission by the Member States to regional RFMO and scientific bodies. Therefore the Member States are encouraged to respect the above mentioned deadline and to provide all requested data.

Member States shall take note of the new Data Validation Tool (provided by DG-JRC and downloadable from the respective website) and are encourage to try it out in order to support the data submissions and enhance the data quality.

Ernesto PENAS LADO Director

Annex I.

Summary table of data not submitted by MS following the SG MOS data call on effort and catches 2010

Note 1: The data call concerned catch data by metier and ICES division disaggregated by age and length; nominal effort data by metier and ICES division; and effective fishing time by metier and statistical rectangle.

Note 2: the list does not concern the quality of data submitted, but only non-submission

Note 3: the data call 2010 only asked mandatorily for data concerning the year 2009, to be collected under the new DCF.

Member State	DCF data missing still at the STECF November Plenary (before finalisation of the SG MOS working group report)	DCF data missing by end of May 2010 (expiry of the data submission deadline)
Sweden		
Finland	Catch and nominal effort data not disaggregated by area, gear, quarter	Catch and nominal effort data not disaggregated by area, gear, quarter
	No fish lengths and age	No fish lengths and age
	No data on effective fishing time	No data on effective fishing time
Estonia	No catch and discard data on 120 (out of 122) species	No catch and discard data on 120 (out of 122) species
	No discard data	No discard data
	No fish lengths and age	No fish lengths and age
	No vessels u8m and no o10t12m	No vessels u8m and no o10t12m
Latvia	No vessels u8m and no o10t12m	No vessels u8m and no o10t12m
Lithuania	No data for vessels below 12m	No data for vessels below 12m
	No catch and discard data for 121 (out of 122) species	No catch and discard data for 121 (out of 122) species
		No data on nominal effort
		No data on effective fishing time
Poland	No catch and discard data for 121 (out of 122) species	No catch and discard data for 121 (out of 122) species No data on effective fishing time
Germany		
Denmark		
Netherlands	No discard data for 119 (out of 122) species	No discard data for 119 (out of 122) species
Belgium	No discard data for one metier	No data at all (see note 1)
United Kingdom		No data for England and Wales
France	No discard data.	No data at all (see note 1)
Ireland		
Spain	No data on vessel lengths	No data on vessel lengths
	No data (catches, effort and effective fishing time) for the non-coastal fleets, i.e. for areas outside ICES divisions VIIIc and IXa	No data (catches, effort and effective fishing time) for the non-coastal fleets, i.e. for areas outside ICES divisions VIIIc and IXa
		No data (catches, effort and effective fishing time) on

		deep sea metier
		No data on effective fishing time
Portugal	No discard data for 121 species (out of 122), no fish lengths and age data	No discard data for 121 species (out of 122), no fish lengths and age data

Annex II.

Format adapted from the latest fleet specific fishing effort and catch data call issued by the European Commission, DG Mare.

Data reports can be provided in simple comma separated text files, Microsoft EXCEL or ACCESS formats. All missing values (empty data cells) must be indicated by a -1.

In contrast to last year's data formats, which were sequential, you are kindly requested to stick this year to a simple table format which makes im- and exporting much more easily.

A. Catch data for 2010 (and the 2003-2009 time period if appropriate – see cover letter), aggregated (sum) by ID except for mean weight and length in landings and discards at age (arithmetic mean). Please ensure that data entries are fully consistent with coding given in Appendixes.

- 1. ID (this is a unique identifier; e.g. the combination of country, year, quarter, gear, mesh size range, fishery or metier, and area; this is free text with a maximum of 40 characters without space)
- 2. COUNTRY (this should be given according to the code list provided in Appendix 1)
- 3. YEAR (this should be given in four digits), like 2004
- 4. QUARTER (this should be given as one digit), like 1, 2, 3, or 4
- 5. VESSEL LENGTH (vessel length should be given according to the code list provided in Appendix 2)
- GEAR (gear should be given according to the code list provided in Appendix 3, which follows the EU data regulation 1639/2001)
- MESH_SIZE_RANGE (the mesh size range should be given according to the code list provided in Appendix 4, which largely follows the Council regulation 850/98)
- 8. FISHERY (species complex and gear) or métier (species complex, gear and vessel characteristics) (this is free text with a maximum of 40 characters without space; this specification may include e.g. target species, roundfish area or quarter) (a fishery can encompass, e.g. more than one mesh size range; in this case separate records have to be provided, e.g. one for each mesh size range, with the same fishery identification)
- 9. AREA (the ICES division or sub-area should be given according to the code list provided in Appendix 5
- 10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "-1" should be given. All landings, discards and other biological parameters falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes.
- 11. SPECIES (the species should be given according to the code list provided in Appendix 7, which follows the Council Regulation EC 2287/2003)
- 12. LANDINGS (estimated landings in tonnes should be given; if age based information is present, this quantity should correspond to the sum of products)
- 13. DISCARDS (estimated discards in tonnes should be given; if age based information is present, this quantity should correspond to the sum of products)
- 14. NO_SAMPLES_LANDINGS (the number of TRIPS should be given that relate to landings only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 15. NO_LENGTH_MEASUREMENTS_LANDINGS (the number of length measurements should be given that relate to landings only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 16. NO_AGE_MEASUREMENTS_LANDINGS (the number of age measurements should be given that relate to landings only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 17. NO_SAMPLES_DISCARDS (the number of TRIPS should be given that relate to discards only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 18. NO_LENGTH_MEASUREMENTS_DISCARDS (the number of length measurements should be given that relate to discards only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 19. NO_AGE_MEASUREMENTS_DISCARDS (the number of age measurements should be given that relate to discards only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 20. NO_SAMPLES_CATCH (the number of TRIPS should be given that relate to catches only; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)

- 21. NO_LENGTH_MEASUREMENTS_CATCH (a number of length measurements should be given here if it relates to catch, i.e. landings and discards; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 22. NO_AGE_MEASUREMENTS_CATCH (a number of age measurements should be given here if it relates to catch, i.e. landings and discards; a number should be given only if it relates to this fishery only; otherwise "-1" should be given)
- 23. MIN_AGE (this is the minimum age in the data section; if minimum age and maximum age are both "-1", no age based data are given; otherwise age data must follow in the data section for each age in the age range MIN_AGE to MAX_AGE; minimum age and maximum age must either both be "-1" or both be not "-1")
- 24. MAX_AGE (this is the true maximum age in the data section (no plus group is allowed); if minimum age and maximum age are both "-1", no age based data are given; otherwise age data must follow in the data section for each age in the age range MIN_AGE to MAX_AGE; minimum age and maximum age must either both be "-1" or both be not "-1")
- 25. Age 0 (years)=0
- 26. Age 0 No. Landed (thousands)
- 27. Age 0 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 28. Age 0 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 29. Age 0 No. Discard (thousands)
- 30. Age 0 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 31. Age 0 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 32. Age 1 (years)=1
- 33. Age 1 No. Landed (thousands)
- 34. Age 1 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 35. Age 1 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 36. Age 1 No. Discard (thousands)
- 37. Age 1 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 38. Age 1 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 39. Age 2 (years)=2
- 40. Age 2 No. Landed (thousands)
- 41. Age 2 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 42. Age 2 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 43. Age 2 No. Discard (thousands)
- 44. Age 2 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 45. Age 2 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 46. Age 3 (years)=3
- 47. Age 3 No. Landed (thousands)
- 48. Age 3 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 49. Age 3 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 50. Age 3 No. Discard (thousands)
- 51. Age 3 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 52. Age 3 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 53. Age 4 (years)=4
- 54. Age 4 No. Landed (thousands)
- 55. Age 4 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 56. Age 4 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 57. Age 4 No. Discard (thousands)
- 58. Age 4 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 59. Age 4 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 60. Age 5 (years)=5
- 61. Age 5 No. Landed (thousands)
- 62. Age 5 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 63. Age 5 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 64. Age 5 No. Discard (thousands)
- 65. Age 5 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 66. Age 5 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 67. Age 6 (years)=6
- 68. Age 6 No. Landed (thousands)
- 69. Age 6 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 70. Age 6 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 71. Age 6 No. Discard (thousands)

- 72. Age 6 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 73. Age 6 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 74. Age 7 (years)=7
- 75. Age 7 No. Landed (thousands)
- 76. Age 7 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 77. Age 7 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 78. Age 7 No. Discard (thousands)
- 79. Age 7 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 80. Age 7 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 81. Age 8 (years)=8
- 82. Age 8 No. Landed (thousands)
- 83. Age 8 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 84. Age 8 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 85. Age 8 No. Discard (thousands)
- 86. Age 8 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 87. Age 8 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 88. Age 9 (years)=9
- 89. Age 9 No. Landed (thousands)
- 90. Age 9 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 91. Age 9 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 92. Age 9 No. Discard (thousands)
- 93. Age 9 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 94. Age 9 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 95. Age 10 (years)=10
- 96. Age 10 No. Landed (thousands)
- 97. Age 10 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 98. Age 10 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 99. Age 10 No. Discard (thousands)
- 100. Age 10 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 101. Age 10 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 102.Age 11 (years)=11
- 103. Age 11 No. Landed (thousands)
- 104. Age 11 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 105. Age 11 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 106. Age 11 No. Discard (thousands)
- 107. Age 11 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 108.Age 11 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 109.Age 12 (years)=12
- 110.Age 12 No. Landed (thousands)
- 111. Age 12 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 112.Age 12 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 113.Age 12 No. Discard (thousands)
- 114. Age 12 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 115. Age 12 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 116.Age 13 (years)=13
- 117. Age 13 No. Landed (thousands)
- 118.Age 13 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 119. Age 13 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 120. Age 13 No. Discard (thousands)
- 121 Age 13 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 122. Age 13 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 123.Age 14 (years)=14
- 124. Age 14 No. Landed (thousands)
- 125. Age 14 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 126. Age 14 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 127. Age 14 No. Discard (thousands)
- 128. Age 14 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 129. Age 14 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 130.Age 15 (years)=15
- 131. Age 15 No. Landed (thousands)

```
132. Age 15 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
```

- 133. Age 15 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 134. Age 15 No. Discard (thousands)
- 135. Age 15 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 136. Age 15 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 137.Age 16 (years)=16
- 138. Age 16 No. Landed (thousands)
- 139. Age 16 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 140. Age 16 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 141. Age 16 No. Discard (thousands)
- 142. Age 16 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 143. Age 16 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 144.Age 17 (years)=17
- 145. Age 17 No. Landed (thousands)
- 146. Age 17 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 147. Age 17 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 148. Age 17 No. Discard (thousands)
- 149. Age 17 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 150. Age 17 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 151.Age 18 (years)=18
- 152. Age 18 No. Landed (thousands)
- 153. Age 18 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 154. Age 18 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 155. Age 18 No. Discard (thousands)
- 156. Age 18 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 157. Age 18 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 158.Age 19 (years)=19
- 159. Age 19 No. Landed (thousands)
- 160. Age 19 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 161. Age 19 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 162. Age 19 No. Discard (thousands)
- 163. Age 19 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 164. Age 19 MEAN Length Discard (cm, precision in mm=1 digits after the comma)
- 165.Age 20 (years)=20
- 166. Age 20 No. Landed (thousands)
- 167. Age 20 MEAN Weight Landed (kg, precision in gram=3 digits after the comma)
- 168.Age 20 MEAN Length Landed (cm, precision in mm=1 digits after the comma)
- 169. Age 20 No. Discard (thousands)
- 170.Age 20 MEAN Weight Discard (kg, precision in gram=3 digits after the comma)
- 171. Age 20 MEAN Length Discard (cm, precision in mm=1 digits after the comma)

B. Effort data for 2010 (and the 2000-2009 time period if appropriate – see cover letter), aggregated (sum) by ID

- 1. ID (this is a unique identifier; e.g. the combination of country, year, quarter, gear, mesh size range, fishery or metier, and area; this is free text with a maximum of 40 characters without space)
- 2. COUNTRY (this should be given according to the code list provided in Appendix 1)
- 3. YEAR (this should be given in four digits)
- 4. QUARTER (this should be given as one digit)
- 5. VESSEL LENGTH (vessel length should be given according to the code list provided in Appendix 2)
- 6. GEAR (this identifies gear, and should be given according to the code list provided in Appendix 3, which follows largely the EU data regulation 1639/2001)
- 7. MESH_SIZE_RANGE (the mesh size range should be given according to the code list provided in Appendix 4, which follows largely the Council regulation 850/98)
- FISHERY (species complex and gear) or métier (species complex, gear and vessel characteristics) (this is
 free text with a maximum of 40 characters without space; this specification may include e.g. target species,
 roundfish area or quarter)
- 9. AREA (the ICES division or sub-area should be given according to the code list provided in Appendix 5)

- 10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "-1" should be given. All landings, discards and other biological parameters falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes.
- 11. FISHING_ACTIVITY (mandatory only for effort belonging to the Baltic Sea cod plan, the Western Channel sole plan, and the Southern hake and *Nephrops* plan, for other plans e.g. North Sea sole and plaice plan or parameters this filed is optional; the nominal fishing activity should be given in days at sea or days absent from port in the specific case of the Baltic Sea cod plan; if nominal fishing activity is not available, "-1" should be given).
- 12. FISHING_CAPACITY (mandatory for effort belonging to the sole in the Bay of Biscay plan and the North Sea sole and plaice plan, for other plans or parameters this filed is optional; the nominal fishing capacity should be given in gross tonnage, except for the North Sea sole and plaice plan where the fishing capacity will have to be expressed in kW; if nominal fishing capacity is not available, "-1" should be given)
- 13. NOMINAL_EFFORT (effort should be given in kW.days, i.e. engine power in kW times days at sea; if nominal effort is not available, "-1" should be given)
- 14. GT_DAYS_AT_SEA (effort should be given in gross tonnage * days at sea; if the number is not available, "-1" should be given).
- 15. NO_VESSELS (not for Baltic Sea cod plan), simple integer value of vessels, if the number is not available, "-1" should be given.

C. Specific effort data by rectangle for 2010 (and the 2003-2009 time period if appropriate – see cover letter), in units of fishing hours

- 1. ID (this is a unique identifier; e.g. the combination of country, year, quarter, gear, mesh size range, fishery or metier, and area: this is free text with a maximum of 40 characters without space)
- 2. COUNTRY (this should be given according to the code list provided in Appendix 1)
- 3. YEAR (this should be given in four digits)
- 4. QUARTER (this should be given as one digit)
- 5. VESSEL LENGTH (vessel length should be given according to the code list provided in Appendix 2)
- 6. GEAR (this identifies gear, and should be given according to the code list provided in Appendix 3, which follows largely the EU data regulation 1639/2001).
- MESH_SIZE_RANGE (the mesh size range should be given according to the code list provided in Appendix 4, which follows largely the Council regulation 850/98)
- 8. FISHERY (species complex and gear) or métier (species complex, gear and vessel characteristics) (this is free text with a maximum of 40 characters without space; this specification may include e.g. target species, roundfish area or quarter)
- 9. AREA (the ICES division or sub-area should be given according to the code list provided in Appendix 5).
- 10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "1" should be given. All landings, discards and other biological parameters falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes.
- 11. RECTANGLE (text, 4 letters like 44F6)
- 12. EFFECTIVE EFFORT (hours fished, simple long numerical integer)

D. Fisheries capacity data of active fishing vessels in the Baltic Sea for the 2003-2010 time period, fully aggregated (counts or sums as defined). Please ensure that data entries are fully consistent with coding given in Appendixes. Note the different time, area and gear aggregations defined in this table D as compared with table B definitions.

- 16. COUNTRY (this should be given according to the code list provided in Appendix 1)
- 17. YEAR (this should be given in four digits)
- 18. VESSEL_LENGTH (vessel length should be given according to the code list provided in Appendix 2)
- 19. GEAR (use the code "REGGEAR" and aggregate all regulated gears as defined in **COUNCIL REGULATION (EC) No 1098/2007** in case such regulated gear was used once or repeatedly, use the code "NONGEAR" and aggregate all other gears in case regulated gears were never used).

- 20. AREA (in accordance with definitions of **COUNCIL REGULATION (EC) No 1098/2007** use the code "A" for the vessels which have operated exclusively in ICES subdivisions 22-24, use the code "B" for the vessels which have operated exclusively in ICES subdivisions 25-28, use the code "AB" for the vessels which have operated in both ICES subdivisions 22-24 and 25-28).
- 21. NO VESSELS (simple integer value of vessel counts, if the number is not available, "-1" should be given.
- 22. FISHING_CAPACITY_kW (to be summed in units of kW; if fishing capacity is not available, "-1" should be given)
- 23. FISHING_CAPACITY_GT (to be summed in units of gross tonnage; if fishing capacity is not available, "1" should be given)

¹) regulated gears coded "REGGEAR" comprise fishing with trawls, Danish seines or similar gear (Appendix 3: OTTER, DEM_SEINE, PEL_TRAWL, PEL_SEINE) of a mesh size equal to or larger than 90 mm, with gillnets (Appendix 3: GILL), entangling nets or trammel nets (Appendix 3: TRAMMEL) of a mesh size equal to or larger than 90 mm, with bottom set lines, longlines except drifting lines, handlines and jigging (Appendix 3: LONGLINE).

Country coding

•	
COUNTRY	CODE
Belgium	BEL
Denmark	DEN
Estonia	EST
Finland	FIN
France	FRA
Germany	GER
Ireland	IRL
Latvia	LAT
Lithuania	LIT
Netherlands	NED
Poland	POL
Portugal (mainland)	POR
Portugal (Azores)	PTA
Portugal (Madeira)	PTM
Spain (mainland)	SPN
Spain (Canaries islands)	SPC
Sweden	SWE
United Kingdom (Jersey)	GBJ
United Kingdom (Guernsey)	GBG
United Kingdom (Alderny/Sark/Herm)	GBC
United Kingdom (England and Wales)	ENG
United Kingdom (Isle of Man)	IOM
United Kingdom (Northern Ireland)	NIR
United Kingdom (Scotland)	SCO

Vessel length coding

According to the Data Collection Framework, Member States should be able to provide data characterising fisheries located in the Baltic Sea, the North Sea and the Western Waters and covering the year 2010 on the basis of the following segmentation of the fleet:

- (1)Length over all shorter than 10 m.
- (2)Length over all of 10 m. to shorter than 12 m.
- (3)Length over all of 12 m. to shorter than 18 m.
- (4)Length over all of 18 m. to shorter than 24 m.
- (5)Length over all of 24 m. to shorter than 40 m
- (6)Length over all of 40 m. or longer

However, to ensure consistency with the 2000-2009 or 2003-2009 time series already submitted last year and to ensure compliance with provisions adopted in legal texts supporting fishing effort regimes in the Baltic Sea, North Sea and Western Waters, Member States are requested to submit data according to the following segmentation:

Fishing efforts regimes of the Kattegat, Skagerrak, North Sea and the Western Waters

Vessel length over all classes	Code
Length over all shorter than 10 m.	u10m
Length over all of 10 m. to shorter than 15 m.	o10t15m
Length over all of 15 m. and over	o15m

Fishing efforts regimes of the Baltic Sea

Vessel length over all classes	Code
Length over all shorter than 8 m.	u8m
Length over all of 8 m. to shorter than 10 m.	o8t10m
(7) Length over all of 10 m. to shorter than 12 m.	o10t12m
(8) Length over all of 12 m. to shorter than 18 m.	o12t18m
(9) Length over all of 18 m. to shorter than 24 m.	o18t24m
(10) Length over all of 24 m. to shorter than 40 m	o24t40m
(11) Length over all of 40 m. or longer	o40m

Gear coding

TYPES OF F	ISHING TECHNIQUES		Gear code to be used when answering the data call	Gear code specified for métiers in App. IV of 2008//949/CE
Mobile gears	Beam trawls		BEAM	TBB
	Bottom trawls & demersal seines	Bottom otter trawls, Multi-rig otter trawls or Bottom pair trawls	OTTER	OTB, OTT, PTE
		Fly shooting seines, Anchored seines or Pair seines	DEM_SEINE	SSC, SDN, SPR
	Pelagic trawls & pelagic Seines	Midwater otter trawls or Midwater pair trawls	PEL_TRAWL	OTM, PTM
		Purse seines, Fly shooting seines or Anchored seines	PEL_SEINE	PS
	Dredges		DREDGE	DRB, HMD
Passive gears	Drifting longlines or Set longlines		LONGLINE	LHP, LHM, LTL, LLD, LLS
	Driftnets or Set gillnets (except Tramn	nel Nets)	GILL	GNS, GND
	Trammel Nets		TRAMMEL	GTR
	Pots & traps		POTS	FPO

Mesh size coding

Mesh sizes (and selective devices) to be taken into account when evaluating catches and effort made in relation to metiers described in Appendix IV of the Commission Decision update decision no should be as follows:

- in relation to R(EC) No 88/98 and R(EC) No 2187/2005 for metiers observed in the Baltic Sea;
- in relation to R(EEC) No 1888/85, R(EEC) No 1638/87, R(EC) No 850/98, R(EC) No 2056/2001, R(EC) No 494/2002 for metiers observed in the North Sea and Western Atlantic;
- in relation to R(EC) No 850/98, R(EC) No 2549/2000, R(EC) No 2056/2001, R(EC) No 494/2002, R(EC) No 1386/2007 for metiers observed in the Northern Atlantic.

Nevertheless, to ease the process of submission of data linked to the current call, the Commission would suggest following the mesh size ranges specified in the table below:

Gear type	Mesh size range	
Mobile gears	<16	
	16-31	
	32-54	
	55-69	
	70-79	
	80-89	
	90-99	
	100-119	
	>=105 ¹	
	>=120	
Passive gears	10-30	
	31-49	
	50-59	
	60-69	
	70-79	
	80-89	
	90-99	
	100-109	
	110-149	
	110-156 ²	
	150-219	
	157-219 ²	
	>=220	

[•] To be used for mobile gears in the context the fishing effort management scheme applied in the Baltic Sea

^{• 2} To be used for passive gears in the context the fishing effort management scheme applied in the Baltic Sea

Appendix 5

Area coding by WG, ICES statistical areas and IBSFC areas for Baltic

Baltic Sea

IBSFC areas for Baltic	Codes in bold to be used in relation a compulsory provisions of the Comm Decision 2008/949/EC	0
III.c.22	22	
III.c.23	23	
III.c.24	24	
III.c.25	25	
III.c.26	26	
III.c.27	27	
III.c.28	28 ³	
III.c.28.2		28.2
III.d.29	29	
III.d.30	30	
III.d.31	31	
III.d.32	32	

North Sea, Skagerrak, Kattegat and Eastern Channel

ICES statistical areas	Codes in bold to be used in relation a compulsory provisions of the Comm Decision 2008/949/EC	Codes to be used in relation to the gagreement reached between the DG and the Member States about the evof the fishing effort regimes
II EU waters	(2)	2 EU
III.a.N	(3a)	3an
III.a.S		3as
IV	4	
VII.d	7d	

Northern Shelf

ICES statistical areas		Codes to be used in relation to the g agreement reached between the DG and the Member States about the ev of the fishing effort regimes
I	(1)	1 COAST ⁷

[•] Area 28.2 included.

128

		1 RFMO ⁸
II non EU waters	(2)	2 COAST
		2 RFMO
V.a	5a	
V.b EU waters	(5b)	5b EU ⁹
V.b non EU waters		5b COAST
		5b RFMO
VI.a	6a	
VI.b EU waters	(6b)	6b EU
VI.b non EU waters		6b RFMO
VII.a	7a	
VII Biological Sensitive Area		BSA ¹⁰
VII.b	$7b^4$	
VII.c EC Waters	(7c)	7c EU
		7c RFMO
VII.e	7e	
VII.f	7f	
VII.g	7g ⁵	
VII.h	7h ⁶	
VII.j EU waters	(7j)	7j EU ¹¹
VII.j non EU waters		7j RFMO
VII.k EU waters	(7k)	7k EU
VII.k non EU waters		7k RFMO
XII	12	
XIV.a	14a	14a
XIV.b	(14b)	14b COAST
		14b RFMO
	The state of the s	1

^{• 4} ICES statistical rectangles of ICES division VIIb and corresponding to the BSA shall be included.

^{• 5} ICES statistical rectangles of ICES division VIIg and corresponding to the BSA shall be included.

[•] ICES statistical rectangles of ICES division VIIh and corresponding to the BSA shall be included.

[•] COAST will refer to waters under jurisdiction of a non-EU coastal state.

^{• 8} RFMO will refer to waters where fisheries are managed through RFMOs.

^{• 5}b EU will have to be considered as covering the following ICES statistical rectangles: 49D6, 49D7, 49D8, 49D9, 49E0, 49E1, 49E2, 49E3, 49E4, 50E5.

[•] BSA (Biological Sensitive Area) will have to be considered as covering the following ICES statistical rectangles: 35D8, 35D9, 35E0, 35E1, 34D8, 34D9, 34E0, 34E1, 33D8, 33D9, 33E0, 33E2, 32D8, 32D9, 32E0, 32E1, 32E2, 31D8, 31D9, 31E0, 31E1, 31E2, 30D9, 30E0, 30E1, 30E2, 29D9, 29E0, 29E1, 29E2, 28D9, 28E0, 28E1, 28E2.

[•] ILLES statistical rectangles of ICES division VIIj and corresponding to the BSA shall be included.

Southern Shelf

ICES statistical areas	Codes in bold to be used in relation a compulsory provisions of the Comm Decision 2008/949/EC	8
VIII.a	8a	
VIII.b	8b	
VIII.c	8c	
VIII.d EU waters	(8d)	8d EU
VIII.d non EU waters		8d RFMO
VIII.e EU waters	(8e)	8e EU
VIII.e non EU waters		8e RFMO
IX.a	9a	
IX.b EU waters	(9b)	9b EU
IX.b non EU waters		9b RFMO
X EU waters	(10)	10 EU
X non EU waters		10 RFMO

CECAF

FAO statistical areas	Codes to be used in relation to the compulsory provisions of the Comm Decision 2008/949/EC	Codes to be used in relation to the gagreement reached between the DG and the Member States about the evolt the fishing effort regimes
34.1.1 EU waters		34.1.1 EU
34.1.1 non EU waters		34.1.1 COAST
34.1.2 EU waters		34.1.2 EU
34.1.2 non EU waters		34.1.2 COAST
		34.1.2 RFMO
34.1.3		34.1.3 COAST
		34.1.3 RFMO
34.2.0 EU waters		34.2.0 EU
34.2.0 non EU waters		34.2.0 COAST
		34.2.0 RFMO

Coding of specific conditions related to the Cod Plan, to Annex IIB of R(EC) No 53/2010, to Deep Sea regulations, to Sole Bay of Biscay R(EC) No 388/2006, to fully documented fisheries and of Baltic Technical conditions in Council Regulation (EC) No 2187/2005

Specific conditions associated to fishing effort regimes

Condition	Code
Cod Plan R(EU) No 53	<u> </u> /2010
Effort deployed by those vessels granted the <1.5% derogation excluding them from the effort regime	CPart11
effort deployed by vessels operating in MS schemes under Article 13	CPart13
Annex IIB of R(EU) No 5	33/2010
Less than 5 tons of hake and 2,5 tons of Nephrops in the catches	IIB72ab
Baltic Technical Condi	tions
Gear equipped with a BACOMA	BACOMA
Gear equipped with a T90	T90
Effort Regime in Deep Sea	fisheries
Deep-water species	DEEP ¹²
Sole Bay of Biscay R(EC) No	388/2006
Special fishing permit (>2 tons of sole/A)	SBcIIIart5
Fully documented fisheries R(E	U) No 53/2010
Catch and effort data for 2010 for vessels participating in trials on fully documented fisheries in the annex IIA areas (art 2 R(EU) no 53/2010)	FDFIIA
Catch and effort data for 2010 for vessels participating in trials on fully documented fisheries in the Baltic Sea (art 38 R(EU) no 53/2010)	FDFBAL

¹² Where the deep-sea species related effort is not identified by an métier-sampling exclusively for deep sea species under DCF, the effort should be identified as follows:

⁽¹⁾ the gear is exclusively used in deep-sea fisheries;

⁽²⁾ catch of Deep Sea species retained > 100kg (as per the Regulation), or

⁽³⁾ catch of Deep Sea species retained <100kg but the percentage of Deep Sea species >=35%.

Appendix 7 Species coding according to Council Regulation (EC) No. 2298/2003

Common name	Alpha-3 code	Scientific name
1. Albacore	ALB	Thunnus alalunga
2. Alfonsinos	ALF	Beryx spp.
3. American plaice	PLA	Hippoglossoides platessoides
4. Anchovy	ANE	Engraulis encrasicolus
5. Anglerfish	ANF	Lophiidae
6. Antarctic icefish	ANI	Champsocephalus gunnari
7. Arctic skate	RJG	Raja hyperborea
8. Atlantic catfish	CAT	Anarhichas lupus
9. Atlantic halibut	HAL	Hippoglossus hippoglossus
10. Atlantic salmon	SAL	Salmo salar
11. Atlantic thornyhead	TJX	Trachyscorpia cristulata
12. Baird's slickhead	ALC	Alepocephalus bairdii
13. Basking shark	BSK	Cetorhinus maximus
14. Bigeye tuna	BET	Thunnus obesus
15. Birdbeak dogfish	DCA	Deania calcea
16. Blackbelly rosefish	BRF	Helicolenus dactylopterus
17. Black cardinal fish	EPI	Epigonus telescopus
18. Black dogfish	CFB	Centroscyllium fabricii
19. Black scabbardfish	BSF	Aphanopus carbo
20. Blackfin icefish	SSI	Chaenocephalus aceratus
21. Blackmouth catshark	SHO	Galeus melastomus
22. Blue antimora	ANT	Antimora rostrata
23. Blue ling	BLI	Molva dypterigia
24. Blue marlin	BUM	Makaira nigricans
25. Blue whiting	WHB	Micromesistius poutassou
26. Bluefin tuna	BFT	Thunnus thynnus
27. Blutnose sixgill shark	SBL	Hexanchus griseus
28. Capelin	CAP	Mallotus villosus
29. Cod	COD	Gadus morhua
30. Common mora	RIB	Mora moro
31. Common sole	SOL	Solea solea

32. Common shrimp	CSH	Crangon crangon
33. Crab	PAI	Paralomis spp.
34. Dab	DAB	Limanda limanda
35. Deep-sea red crab	KEF	Chaceon affinis
36. Edible Crab	CRE	Cancer pagurus
37. Eelpouts	ELZ	Lycodes spp.
38. European conger	COE	Conger conger
39. European pearch	FPE	Perca fluviatilis
40. Flatfish, flounder	FLX	Pleuronectiformes, Platichthys flesus
41. Forkbeards	FOX	Phycis spp.
42. Frilled shark	HXC	Chlamydoselachus anguineus
43. Greater silver smelt	ARU	Argentina silus
44. Greenland halibut	GHL	Reinhardtius hippoglossoides
45. Grenadier	GRV	Macrourus spp.
46. Great Atlantic Scallop	SCE	Pecten maximus
47. Great lantern shark	ETR	Etmopterus princeps
48. Greenland shark	GSK	Somniosus microcephalus
49. Grey rockcod	NOS	Lepidonotothen squamifrons
50. Gulper shark	GUP	Centrophorus granulosus
51. Haddock	HAD	Melanogrammus aeglefinus
52. Hake	HKE	Merluccius merluccius
53. Herring	HER	Clupea harengus
54. Horse mackerel	JAX	Trachurus spp.
55. Humped rockcod	NOG	Gobionotothen gibberifrons
56. Iceland catshark	APQ	Apristurus laurussonii
57. Kitefin shark	SCK	Dalatias licha
58. Knifetooth dogfish	SYR	Scymnodon rigens
59. Krill	KRI	Euphausia superba
60. Lantern fish	LAC	Lampanyctus achirus
61. Large-eyed rabbitfish	CYH	Hydrolagus mirabilis
62. Leafscale gulper shark	GUQ	Centrophorus squamosus
63. Lemon sole	LEM	Microstomus kitt
64. Ling	LIN	Molva molva
65. Lumpsucker	LUM	Cyclopterus lumpus
66. Longnose velvet dogfish	CYP	Centroscymnus crepidater

67. Mackerel	MAC	Scomber scombrus
68. Marbled rockcod	NOR	Notothenia rossii
69. Mediterranean slimehead	HPR	Hoplostethus mediterraneus
70. Megrims	LEZ	Lepidorhombus spp.
71. Mouse catshark	GAM	Galeus murinus
72. Northern prawn	PRA	Pandalus borealis
73. Norway lobster	NEP	Nephrops norvegicus
74. Norway pout	NOP	Trisopterus esmarki
75. Norway redfish	SFV	Sebastes viviparus
76. Norwegian skate	JAD	Raja nidarosiensis
77. Orange roughy	ORY	Hoplostethus atlanticus
78. 'Penaeus' shrimps	PEN	Penaeus spp
79. Pike	FPI	Esox lucius
80. Pike pearch	FPP	Sander lucioperca
81. Plaice	PLE	Pleuronectes platessa
82. Polar cod	POC	Boreogadus saida
83. Pollack	POL	Pollachius pollachius
84. Porbeagle	POR	Lamna nasus
85. Portuguese dogfish	CYO	Centroscymnus coelolepis
86. Rabit fish	CMO	Chimaera monstrosa
87. Rays	RAJ	Rajidae
88. Redfish	RED	Sebastes spp.
89. Red Seabream	SBR	Pagellus bogaraveo
90. Risso's smooth-head	РНО	Alepocephalus rostratus
91. Roughead grenadier	RHG	Macrourus berglax
92. Roundnose grenadier	RNG	Coryphaenoides rupestris
93. Round ray	RJY	Raja fyllae
94. Sailfin roughshark	OXN	Oxynotus paradoxus
95. Saithe	POK	Pollachius virens
96. Sandeel	SAN	Ammodytidae
97. Scallop	KMV	Chlamys livida
98. Seabass	BSS	Dicentrarchus labrax
99. Short fin squid	SQI	Illex illecebrosus
100. Silver scabbardfish	SFS	Lepidopus caudatus
101. Skates	SRX	Rajidae

102.	Smooth lantern shark	ETP	Etmopterus pusillus
103.	Snow crab	PCR	Chionoecetes spp.
104.	South Georgian icefish	SGI	Pseudochaenichthys georgianus
105.	Spanish ling	SLI	Molva macrophthalmus
106.	Spinous spider crab	SCR	Maja squinado
107.	Sprat	SPR	Sprattus sprattus
108.	Spurdog	DGS	Squalus acanthias
109.	Straightnose rabbitfish	RCT	Rhinochimaera atlantica
110.	Swordfish	SWO	Xiphias gladius
111.	Toothfish	TOP	Dissostichus eleginoides
112.	Tope shark	GAG	Galeorhinus galeus
113.	Turbot	TUR	Psetta maxima
114.	Tusk	USK	Brosme brosme
115.	Unicorn icefish	LIC	Channichthys rhinoceratus
116.	Velvet belly	ETX	Etmopterus spinax
117.	White marlin	WHM	Tetrapturus alba
118.	Whiting	WHG	Merlangius merlangus
119.	Witch flounder	WIT	Glyptocephalus cynoglossus
120.	Wreckfish	WRF	Polyprion americanus
121.	Yellowfin tuna	YFT	Thunnus albacores
122.	Yellowtail flounder	YEL	Limanda ferruginea

EUROPEAN COMMISSION

DIRECTORATE-GENERAL FOR MARITIME AFFAIRS AND FISHERIES

POLICY DEVELOPMENT AND CO-ORDINATION
COMMON FISHERIES POLICY AND AQUACULTURE

Brussels, MARE A2/MT/ D(2011)

FAX To: Permanent Representations of **Telephone: EU Member States** Fax: Cc: Ministries of EU Member States From: Ernesto PENAS LADO **Telephone:** (32-2) 296 37 44 Fax: (32-2) 299 48 02 Number of pages: 3 **CORRIGENDUM Subject:** Fishing effort management schemes related to recovery and management plans in the Baltic Sea, the North Sea, to the Western waters, to the deep sea fisheries and review of fisheries located in the Celtic Sea.

Message:

On Wednesday 23-02-2011 DG MARE sent a data call to all Member States' permanent representations regarding the preparation of the analytical work of the STECF 'Working Group on fishing effort regime evaluations' (reference Ares (2011)200418-23/02/2011).

With this CORRIGENDUM, we draw your attention to a change that needs to be made to the specifications given in the above mentioned data call. Another point of attention is a correction of the summary table of data not submitted by Member States (annex I of the data call).

It is important that the experts of the STECF are in a position to clearly identify the trips of vessels participating in trials on fully documented fisheries, as defined in appendix 6, in order to prevent confusion and discussion about the quality of the results. To make that possible, annex II part A (Catch data), part B (Effort data) and part C (Specific effort data by rectangle) of the data call need to be revised.

Correction of the Summary table (annex I)

Annex I of the data call incorrectly stated that Belgium had failed to submit discard data for one metier at the moment of the STECF November Plenary. The Belgium discard data were available at the STECF November meeting 2010.

Fully documented fisheries in Annex IIA areas and the Baltic sea

Fully documented fisheries trips FDFIIA and FDFBAL can fall under more than one special condition, i.e. FDFIIA in Annex IIA with the special conditions CPart11, CPart 13, and FDFBAL with special conditions BACOMA and T90. This would impede the data aggregation to be accurate.

In order to avoid such potential conflicts, it is necessary that the trips of special condition FDFIIA in Annex IIA areas and of special condition FDFBAL in the Baltic Sea are <u>aggregated separately</u> and <u>appended to the data submission</u>, exactly as it is done for the special condition DEEP.

For that reason point 10 of Annex II part A (Catch data), part B (Effort data) and part C (Specific effort data by rectangle) is substituted as follows:

For part A (Catch data), point 10:

10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "-1" should be given. All landings, discards and other biological parameters falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes. All landings, discards and other biological parameters of vessels participating in trials on fully documented fisheries in the Annex IIA areas (R(EU) no 53/2010) or in the Baltic Sea (R(EC) No 1098/2007) should be aggregated separately, indicated with SPECON=FDFIIA for the Annex IIA areas and SPECON=FDFBAL for the Baltic Sea and appended to the data base. This will allow separate analyses of data related to fully documented fisheries, without conflicts with other effort management schemes.

For part B (Effort data), point 10:

10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "-1" should be given. All effort parameters falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes. All effort parameters of vessels participating in trials on fully documented fisheries in the Annex IIA areas (R(EU) no 53/2010) or in the Baltic Sea (R(EC) No 1098/2007) should be aggregated separately, indicated with SPECON=FDFIIA for the Annex IIA areas and SPECON=FDFBAL for the Baltic Sea and appended to the data base. This will allow separate analyses of data related to fully documented fisheries, without conflicts with other effort management schemes.

For part C (Specific effort data by rectangle), point 10:

10. SPECON to be specified in accordance with Appendix 6, if SPECON is not available or not applicable, "-1" should be given. The effort parameter falling under the Deep Sea regulations should be aggregated separately, indicated with SPECON=DEEP and appended to the data base. This will allow separate analyses of Deep Sea effort, without conflicts with other effort management schemes. The effort parameter of vessels participating in trials on fully documented fisheries in the Annex IIA areas (R(EU) no 53/2010) or in the Baltic Sea (R(EC) No 1098/2007) should be aggregated separately, indicated with SPECON=FDFIIA for the Annex IIA areas and SPECON=FDFBAL for the Baltic Sea and appended to the data base. This will allow separate analyses of data related to fully documented fisheries, without conflicts with other effort management schemes.

I hope this clarification makes it possible to apply the categorizations mentioned in order to improve the usefulness of the data provided by the Member States.

Member States are invited to provide the requested data to the Commission and to the scientists who would attend the meeting no later than 6 May 2011.

Ernesto PENAS LADO Director

ANNEX 2: PARTICIPANTS

Name	Address	Telephone no.	Email	<u>EWG</u> 11-06	EWG 11-11
STECF memb	ers			11 00	11 11
Bailey, Nick	FRS Marine Lab. Victoria Road AB11 9DB Aberdeen, UK	+44(0)1224295398	baileyn@marlab.ac.uk	X	X
Vanhee, Willy	ILVO, Hospitaalstraat, 8400 Oostende, Belgium	+32(059)433083	wvanhee@pandora.be	X	X
Ulrich Rescan, Clara	DTU-Aqua Charlottenlund Castle, 2920 Charlottenlund, Denmark	+4533963395	clu@difres.dk	X	X
Invited expert	s				
Barratt, Katherine (Katy)	Scottish Executive Environment and Rural Affairs D, Robb's Loan, EH14 1TY, Edinburgh, UK	131-244-6437	katv.barratt@scotland.gsi. gov.uk	X	
Bell, Ewen	Cefas, Pakefield Road, NR33 0HT, Lowestoft, United Kingdom	+44 1502524238	ewen.bell@cefas.co.uk	X	
Carlshamre, Sofia	Swedish Board of Fisheries, Inst. Of Marine Research, P.O. Box 4, 453 21, Lysekil, Sweden	+46-(0)523-18700	sofia.carlshamre@fiskeriv erket.se	X	X
Davie, Sarah	Marine Institute Rinville, Oranmore, Ireland	+353(0)91387200	sarah.davie@marine.ie	X	X
Demaneche, Sebastien	IFREMER, 29280 Plouzané, France	+33 298224040	sdemanec@ifremer.fr	X	
Dolder, Paul	Cefas, Pakefield Road, NR33 0HT, Lowestoft, United Kingdom	+441502 524259	paul.dolder@cefas.co.uk		X
Holmes, Steven	Fisheries research services, Victoria road, Aberdeen, UK	+44(0)1224 295507	s.holmes@marlab.ac.uk	X	X
Jardim, Ernesto	INRB-L/IPIMAR,A V. de Brasília, 1449-006, Lisboa, Portugal	+351 213 027 093	ernesto@ipimar.pt	X	

Kempf, Alexander	Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany		alexander.kempf@vti.bun d.de	X	
Kovsars, Maxim	Fish Resources Research department (BIOR), Lejupes Street 3, LV- 1076, Riga, Latvia		Maksims.Kovsars@bior.g ov.lv	Х	X
Lövgren, Johan	FIV Sweden, PO Box 4, 45330, Lysekil, Sweden		iohan.lovgren@fiskeriver ket.se	X	Х
O'Hea, Brendan	Marine Institute Rinville, Oranmore, Ireland	+35391 387304	brendan.ohea@marine.ie		X
Radtke, Krzysztof	Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland		krzysztof.radtke@mir.gdy nia.pl	Х	X
Raid, Tiit	Estonian Marine Institute, University of Tartu, Tartu, Estonia		tiit.raid@gmail.com	Х	X
Silva, Cristina	INRB-L/IPIMAR,A V. de Brasília, 1449-006, Lisboa, Portugal	+351 213 026745	esilva@ipimar.pt		X
Van der Kamp, Peter	IMARES, Haringkade 1, 1976 CP, Ijmuiden, The Netherlans	+31317487176	peter.vanderkamp@wur.n 1	X	X
Vermand, Youen	IFREMER 150, quai Gambetta, 62321, Boulogne sur mer, France		Youen. Vermard@ifremer. fr	X	X
JRC Experts	•				'
Mitrakis, Nikolaos	Joint Research Centre (IPSC), Maritime Affairs Unit Via E. Fermi, 2749, 21027 Ispra (Varese), Italy	+390332786479	nikolaos.mitrakis@jrc.ec. europa.eu	X	X
European Cor	mmission				
Goldmanis, Edgars	DG Mare Unit E2, Office J-79 05/07 Rue Joseph II 79, 1049 Brussels, Belgium	+32-2-2964526	Edgars.GOLDMANIS@ec.europa.eu		X
Traa, Marco	DG Mare Unit A2, Office J-99 01/035 Rue Joseph II 99, 1049 Brussels, Belgium	+32 2 2968070	marco.traa@ec.europa.eu	Х	X

STECF Secretariat						
Mitrakis, Nikolaos	Joint Research Centre (IPSC), Maritime Affairs Unit Via E. Fermi, 2749, 21027 Ispra (Varese), Italy	+390332786479	nikolaos.mitrakis@jrc.ec. europa.eu	X	X	

ANNEX 3: EXPERT DECLARATIONS

Declarations of invited experts are published on the STECF web site on https://stecf.jrc.ec.europa.eu/home together with the final report.

European Commission

EUR 25036 EN – **Joint Research Centre** – **Institute for the Protection and Security of the Citizen** Title: Scientific, Technical and Economic Committee for Fisheries. Evaluation of Fishing Effort Regimes - Deep Sea and Western Waters (STECF-11-12).

EWG-11-11 members: Barratt, K., Bell, E., Carlshamre, S., Davie, S., Demaneche, S., Dolder, P., Holmes, S., Jardim, E., Kempf, A., Kovsars, M., Lövgren, J., O'Hea, B., Radtke, K., Raid, T., Silva, C., Van der Kamp, P., Vermand, Y., Mitrakis, N.

STECF members: Casey, J., Abella, J. A., Andersen, J., Bailey, N., Bertignac, M., Cardinale, M., Curtis, H., Daskalov, G., Delaney, A., Döring, R., Garcia Rodriguez, M., Gascuel, D., Graham, N., Gustavsson, T., Jennings, S., Kenny, A., Kirkegaard, E., Kraak, S., Kuikka, S., Malvarosa, L., Martin, P., Motova, A., Murua, H., Nowakowski, P., Prellezo, R., Sala, A., Somarakis, S., Stransky, C., Theret, F., Ulrich, C., Vanhee, W. & Van Oostenbrugge, H.

Luxembourg: Publications Office of the European Union 2011 – 142 pp. – 21 x 29.7 cm

EUR – Scientific and Technical Research series – ISSN 1831-9424 (online), ISSN 1018-5593 (print) ISBN 978-92-79-22039-5 doi:10.2788/10803

Abstract

EWG-11-11 meeting was held on 26-30 September 2011 in Cadiz (Spain). This Section of the report covers the Deep Sea and Western Waters and provides fleet specific trends in catch (including discards), nominal effort and catch (landings) per unit of effort in order to advise on fleet specific impacts on stocks under multiannual management plans. STECF reviewed the report during its November 2011 plenary meeting.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

The Scientific, Technical and Economic Committee for Fisheries (STECF) has been established by the European Commission. The STECF is being consulted at regular intervals on matters pertaining to the conservation and management of living aquatic resources, including biological, economic, environmental, social and technical considerations.

