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The p red ic tion  o f  su rface  drift o f  flo a tin g  ob jects  is an im p ortan t task , w ith  a p p lica tio n s  su c h  as m arine  
tran sport, p o llu tan t d isp ersion , an d  sea rch -a n d -rescu e  a ct iv it ie s . But fo reca stin g  e v e n  th e  drift o f  su rface  
w a ters  is very  ch a llen g in g , b eca u se  it d ep e n d s  on  co m p le x  in tera ctio n s o f  cu rren ts  d riven  b y  th e  w in d , 
th e  w a v e  fie ld  and  th e  gen era l p reva ilin g  c ircu la tion . F urtherm ore, a lth o u g h  each  o f  th o se  can be fore­
ca sted  by d e term in is t ic  m o d e ls , th e  latter all su ffer  from  lim ita tio n s , re su ltin g  in  im p er fect p red ic tion s, 
In th e  p resen t s tu d y , w e  try an d  p red ic t th e  drift o f  tw o  b u o y s  lau n ch ed  d urin g  th e  DART06 (D y n a m ics  
o f  th e  A driatic sea  in  R eal-T im e 2 0 0 6 )  and  MREA07 (M aritim e Rapid E n v iron m en ta l A sses sm en t 2 0 0 7 )  
sea  tria ls, u sin g  th e  so -ca lled  h y p e r -e n se m b le  tech n iq u e: d ifferen t m o d e ls  are co m b in ed  in ord er to  m in ­
im iz e  d ep artu re  from  in d ep en d en t o b se rv a tio n s  d urin g  a tra in ing  period; th e  o b ta in ed  c o m b in a tio n  is 
th en  u sed  in fo reca stin g  m od e. W e re v iew  and try ou t d ifferen t h y p e r -e n s e m b le  tech n iq u es , su c h  as  
th e  s im p le  e n s e m b le  m ean , le a st-sq u a r es  w e ig h te d  linear co m b in a tio n s , and  tech n iq u es  b ased  o n  data  
a ssim ila tio n , w h ic h  d y n a m ica lly  u p d a te  th e  m o d e l’s w e ig h ts  in th e  c o m b in a tio n  w h e n  n e w  o b se rv a tio n s  
b e c o m e  ava ilab le . W e  sh o w  th at th e  la tter m e th o d s  a lle v ia te  th e  n eed  o f  fix ing  th e  tra in ing  le n g th  a priori, 
as o ld er  in form ation  is a u to m a tica lly  d iscard ed .

W h en  th e  fo reca st p eriod  is re la tiv e ly  sh ort (1 2  h), th e  d isc u sse d  m e th o d s  lead  to  m u ch  sm a lle r  fore­
ca s t in g  errors co m p a red  w ith  in d iv id u a l m o d e ls  (a t le a st th ree  tim e s  sm a ller ), w ith  th e  d y n a m ic  m eth o d s  
le a d in g  to  th e  b est resu lts . W h en  m an y  m o d e ls  are  ava ilab le , errors can  b e  fu rth er red u ced  b y  rem o v in g  
c o lin ea r itie s  b e tw e e n  th em  by p erform in g  a p rincipal co m p o n e n t an a ly sis . At th e  s a m e  tim e , th is  red u ces  
th e  a m o u n t o f  w e ig h ts  to  b e  d eterm in ed .

In c o m p le x  en v ir o n m e n ts  w h e n  m eso - and  sm a lle r  s c a le  ed d y  a c tiv ity  is s tron g , su c h  as th e  Ligurian  
Sea. th e  sk ill o f  in d iv id u a l m o d e ls  m a y  vary  o v e r  t im e  p eriod s sm a lle r  th an  th e  fo reca stin g  p eriod  (e.g . 
w h e n  th e  la tter  is  3 6  h). In th e s e  ca se s , a s im p le r  m eth o d  su c h  a s  a fixed  lin ear  c o m b in a tio n  or a s im p le  
e n s e m b le  m ean  m ay lead  to  th e  s m a lle s t  forecast errors. In en v ir o n m e n ts  w h e r e  su rface  cu rren ts  h ave  
stro n g  m ea n -k in e tic  e n er g ie s  (e .g . th e  W estern  A driatic C urrent), d y n a m ic  m e th o d s  can  be p articu larly  
su c cess fu l in p red ic tin g  th e  drift o f  su r fa ce  w a ters . In a n y  ca se , th e  d y n a m ic  h y p e r -e n s e m b le  m e th o d s  
a llo w  to  e s t im a te  a ch arac ter istic  t im e  d u r in g  w h ich  th e  m o d e l w e ig h ts  are m o re  or le ss  s ta b le , w h ich  
a llo w s  p red ic tin g  h o w  lo n g  th e  o b ta in ed  co m b in a tio n  w ill be va lid  in fo rec a stin g  m o d e , and  h en c e  to  
c h o o s e  w h ich  h y p e r -e n se m b le  m eth o d  o n e  sh o u ld  use .

©  2 0 0 9  E lsev ier Ltd. All r igh ts  reserved .

1. Introduction

The prediction  of th e  d rift o f objects floating a t the  surface of the  
7 7  , ocean has various applications, for exam ple track ing  o f floating• Corresponding author.
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m arine transport, search and-rescue  ac tiv tie s , etc. However, due to  
m ultip le  reasons w hose effects add up, d rift prediction rem ains a 
very challenging task. Even sm all e -rors in estim ation  can drastically  
change th e  su b sequen t partie le trajectories (Griffa e t al„ 20041. Even 
w hen  one predic ts th e  drift of buoys configured to  closely track  the 
d rift o f suiface w aters, and hence only th e  ocean cu rren t should be 
taken  in to  account, it is still useful to also take surface w ind, waves, 
tid e s ,e tc  into consideration. Indeed, m ost ocean cu rren t m odels do 
no t include w ave-driven cu rren ts a t all, and w ind driven c u rren ts 
a re  no t fully accurate. However, all these  cu rren ts con tribu te  (in a 
com plex w ay) to  th e  real surface w a te r drift, and furtherm ore  in te r­
act w ith  one ano ther. Thus m issing dynam ics in ocean cu rren t m od­
els can be partially  accounted  for using em pirical m ethods w ith  
d irect m odel predic tions o f th e  forcing fields (w inds and w aves) 
for these  dynam ics. Finally, w hen  one tries to  pred ic t th e  drift o f var­
ious floating objects, o th er param eters should be considered, such as 
th e  spec the hydrodynam ic d n fte r  response,

Even though m ost o f these  con tribu tions can be forecast by 
determ in istic  m ode 's (albeit w ith  som e lim itations in h eren t to  
the  m odels), th ere  is no t yet a determ in istic  m ethod  to  com bine 
th em  in o rder to reproduce th e  floating o b |ect dn ft; com pletely- 
coupled determ in istic  m odels th a t  take all these  processes into 
consideration  are  ju s t  now  under developm ent In th e  p resent 
studv, w e instead use m ulti-m odel m ethods to  try  and em pirically  
com bine individual mode ls of differe n t processes th a t are all di 
rectly  or indirectly  related  to  su iface drift. Super ensem bles (SE), 
w hich  com bine d ifferent m odels of the  sam e Dhysical processes, 
w ere applied w ith in  th e  a tm ospheric  com m unity  by K nshnam uiti 
e t al. (1999) som e years before th e  oceanic com m unity  took on. 
O ther a tm ospheric  studies followed, see e.g. Shin and Krishnam urti 
(200 Ja.b); W illiford e t aí. (2003); Yun e t aí. (2003, 2005); M utem i 
e t  al. (2007). Now adays, o th e r com m unities also app ly  the  tech­
n ique (e.g oceanography, hydrology, paleoclim atology, etc.), as 
th ey  all realize its low  cost, b u t large benefit. G enerally speaking, 
th e  technique  could be applied to every field w here  d ifferent con 
cu rren t m odels aim  a t p red icting  the  sam e variable, or even w here  
different m odels pred ict different variables w hich  are  all som ehow  
related  to  th e  desired  o u tp u t variable In th e  la tte r case, th e  tech ­
n ique is ra th e r called hyper-ensem ble  (HE); it w as first in troduced 
in th e  oceanic com m unity  (Rixen and Ferreira-Coelho, 200"?).

In th e  p resen t study, w e forecast surface d rift using linear HF 
m ethods bo th  w ith  sta tic  and dynamic w eights, th e  la tte r allow ing 
th e  w eigh ts to  evolve sm oothlv  in tim e Section 2 is devoted to  the  
descrip tion  of the m odels and observational data  used in tw o 
experim ents; th e  PARTOH sea trial in th e  Adriatic Sea, and the  
MREA07 cam paign in th e  lig u rian  Sea. The HE m ethods are d e ­
scribed in Section 3. W e will then  focus on tw o  case studies, one 
w here  th e  d rifte r is p redom inate ly  influenced by a m ean-kinetic- 
energy en v iro n m en t (th e  W estern  Adriatic C urrent) and one w here  
th e  d rifter is p redom inate ly  influenced by an eddy-kinetic-energy 
env ironm en t (Ligurian Sea). The results are th en  show n in Section 
4 and a sum m ary  and th e  conclus’ons are given in Section 5.

2. M odels and data

Surface d rift of floating objects depends on various factors. It is 
strongly  de te rm ined  by th e  ocean surface currents. However, the  
hydrodynam ic m odels used to  forecast th e  curren ts have chaotic 
com ponents, have incom plete rep resen ta tions o f th e  underlying 
physics, and have uncerta in ties on forcing fields and m odel p aram ­
eters. For a com plete  discussion of erro r causes in hydrodvnam ic 
m odels, see e.g, Ie rm usiaux  e t  aí. (2006) The hydrodvnam ic m od 
els used in bo th  ex p en m en ts  have nigh resolu tions 'b e tw een  1/16° 
and 1/100°), and therefore  rep resen t m any sm aller scale processes 
th a t a re  difficult to  correctly  phase and forecast The fact th a t the

m odels nave energies a t such scales is u ltim ately  im p o rtan t for 
successful HE m odeling, bu t phase problem s can easily  lead to 
h igher forecast errors than  for low er resolu tion  m odels (no energy 
a t these  scales) if th e  h igher resolution  m odels are no t corrected in 
som e wav. On top  of this, even w ith  th is high resolution, m any 
phenom ena a t yet sm aller scales a re  no t represen ted , w hereas 
the  real su iface drift depends on every scale present.

Paldoi e t al. (2004) show s th a t in stan taneous w inds have m ore 
influence on surface d rift than  clim atic surfac e curren ts; Rixen and 
Ferreira-Coelho (2007) confirm  th is by show ing that in an a tm o ­
spheric oceanic hvper-ensem ble, th e  (w eigh ted) w ind m odel has 
m ore im portance; ocean advection has less im pact. However, the  
w ind-driven surface cu rren t is still poorly understood  Observa 
tions show, in addition  to  inertial oscillations, a d n ft  o f th e  o rder 
of 2-4%  o f th e  w ind speed w ith  d irections th a t varv from  0 ’ to 
30° to  *:he right of th e  w ind in th e  N orthern  H em isphere and to  
th e  left in th e  Southern H em isphere (Tsahalis, 1979). These vana  
tions m ay be understood  as th e  com bination  of a wave- induced 
Stokes drift, roughly aligned w ith  th e  w ind, and a d rift due  to  the  
w ind d riven  current. The m agnitude and deflection angle o f th is 
cu rren t depend strongly  on th e  veitical s tn ic tu re  o f turbulence. 
For exam ple, th e  classical Ekman (1905) theory  w ith  a constan t 
eddy viscosity give a 45° deflection angle, w hile  linear eddy viscos 
ity profiles give deflections of th e  o rder of 10° ( M adsen, 1977). Re­
cen t e v d e n c e  for s trong  m ixing in the  uppei ocean [e.g. (Agarwal 
e t al.. 1992)] suggest th a t th e  eddy viscosity profile may be piece- 
w ise-linear w ith  a strong surface value. This should produce a sur 
face cu rren t lim ited to  ab o u t 0.5% of th e  w ind speed in open ocean 
conditions w ith o u t s tia tihca tion , and abou t 1% w ith  a strong  s tra t­
ification. Given th ar th e  surface Stokes drift (see below ) is o f th e  or 
der of 1.2% of th e  w ind speed, th e  total surface drift explained bv 
m odels w ith  realistic m ixing is o f th e  o rder o f 2% of th e  w ind speed 
(Rascle e t al., 2006 Rascle and Ardhuin, 2009). This is generally  on 
th e  low side of th e  reported  values for surface drift. This difference 
m ay be due to  fetch varia tions (e.g. laboratory  com pared to  held 
conditions), convergence related  biases (such as caused by Lang 
m uir circulations) or ve t unknow n processes. As a " ru le-o f-th u m b ”, 
w e will consider th a t  th e  w ind  sets up  a surface cu rren t o f roughly 
3% of the  w ind speed, 15° to  th e  right of th e  dow nw ind  direction 
But sim ilarly  to th e  ocean m odels m entioned  hefore, the  a tm o ­
spheric m odels used to  forecast th e  w ind held suffer of th e ir ow n 
lim itations: they  are also chaotic, also have only an  incom plete 
represen ta tion  of th e  real a tm ospheric  physics, etc.

The w ave theory  leads to  th e  so-called Stokes drift, w hich in ­
duces a m ovem en t of w atei particles in th e  d irection  of th e  w aves 
The d isplacem ent veloi ltv d epends on th e  ra tio  of w ave heigh t and 
w avelength; it also strongly  decreases w ith  d ep th  and becom es 
negligible a t a dep th  equal to a fourth  of th e  w avelength. The Cori­
olis force induces yet an o th e r n e t transport, th e  so-called Hassel 
m ann dnft, w hich depends on the  tu rbu lence  and has a d irection 
opposed to  th e  Stokes drift The sum  of vertically -in tegrated  net 
transports of th e  Stokes and H asselm ann drifts is zero, leading to 
a zero  n e t w a te r transport However, the  d ifferent vertical profiles 
for Stokes and H asselm ann drifts indicate th a t th e  fo rm er is m ore 
im oortan t than  the  la tte r a t th e  surface, leading to a ne t surface 
tran sp o n  in th e  d irection  o f th e  waves (below  the surface, th ere  
is a tran sp o rt in th e  opposed direction).

Finally, surface d rift still depends on o th er phenom ena such as 
tides.

Most of th e  drifters used in th e  PARTOfi and MREA07 experi­
m ents w ere  CODE drifters m anufactured  bv Technocean (m odel 
Argodrifter). CODE designs w ere  developed by Davis (1985) to 
m easure  th e  cu rren ts in th e  first m ete r un d er th e  sea surface. M ore 
details abou t these  drifters can he found in Poulain (1 9 9 9 1  and 
IJrsella e t  al. (2006). M easurem ents w ith  dye (D Olsen Personal 
Com m unication) and th rough  d irec t m easu rem en ts of relative flow
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(P M Poulain, Personal C om m unication) revealed th a t th e  CODE 
drifters follow the surface curren ts to w ith in  2 -3  ( m /s. The 
w ind driven com ponents o f th e  CODE d n fte i velocities, including 
Ekman cu rren ts and slip  w ere  recently  assessed  by Poulain e t al. 
(2009) and re la ted  statistically  to  FCMWF w inds. Using com plex 
linear regression m odels, th ey  found th a t th e  w ind  driven cu iren ts  
a m o u n t to 1% of w ind speed and are  ro ta ted  bv 28'' to the  right o*7 
th e  w ind.

The m aio n ty  o f th e  drifters w ere  localized by Glob ai Position 
ing System  (GPS) a t hourly intervals. Their data  w ere  telem etered  
via th e  Argos system  orbiting  on th e  NOAA satellites. The drifter 
positions w ere  ed ited  foi ou tliers using au to m atic  statistical and 
m anual procedures (B arbanti e t al., 2007; Ursella e t al., 200b).

Finally, lets note th a t th e  FIE m ethods, inclusive th e  tricks" 
(d iscussed in Section 3), m igh t actually  also account for th e  slip 
and leew ay response o f th e  pa rticu lar drifters considered.

2 1 DARTOb experiment

VJe first try  and  pred ic t th e  d isp lacem en t o f drifters launched in 
th e  Adriatic Sea du rin g  th e  DARTOb sea trials; d rift data  for th e  re­
gion w ere  com piled by Veneziaru e t al. (2007). During th is cam 
paign, extensive data  se ts w ere coller ted  bv m ultip le  m eans, and 
m ade available in n ear real-tim e. Drifters w ere launched and data 
w as m ade available in n ear real-tim e by lstitu to  N ationale  di 
Oceanografía e di Geofísica 'p e r im en ta le  (OGS) and th e  NATO/SAC- 
LANT U ndersea Research C entre (NURC ). Model predictions o f the

Gargano region (41°45 N, 16“E) w ere  used to  d irect th e  launching 
of pairs of drifters w ith  the goal of m axim izing th e  coverage of 
th e  sam pling  a iea  Some drifters w ere  found to  sep ara te  a t loca­
tions and in th e  d irections given by the m odel finite size  Lyapunov 
exponents (FSLE) (Haza e t a l , 2007). The trajec tories are  show n in 
Fig. 1; w e will focus onlv on drifter a0b956 (B arbanti e t al., 2007) 
flowm g around  th e  Gargano peninsula as it exhibits a typical 
behavior W e consider only th e  first w eek of th e  d rifte r trajecto ry  
as a fterw ard  a t least one m ode! does no t cover th e  area anym ore.

A* the  sam e tim e, a w ide range of atm ospheric, ocean and  w ave 
m odels w ere  provided operationally  However, increasing  th e  com ­
plexity  o f th e  problem  could lead to less accurate  resu lts  if over-fit­
ting  occurs (E ventt, 2002), and hence only tw o w ind  m odels and 
tw o hvdrodynam ic m odels are  used in th e  HE com binations (i.e. 
no w ave m odels are used). The follow ing m odels w ere  used in 
th e  p resen t study;

1, M eteo France Aladin, o u tp u t fields provided by th e  Service 
Hydrographique et Océanographique de la M anne  (SHOM), 
h ttp:,'/w w w ., nrm .ir.eteo.fr/aladin. The horizontal resolution  is 
0.1°; hourly  m odel o u tp u ts  are available. This m ode’ is fu rth er 
referred to  as Aladin hR. The pred icted  drift is ob ta ined  from 
th e  follow ing ru le-o f the m b: th e  tim e interval m ultip lied  by 
3% of th e  w ind speed, w ith  a d irection  15“ to  th e  right.

2. Aladin/Croatia, run by th e  M eteorological and Hydrological Ser­
vice o f Croatia (see lvatek S andar and Tudor (2004) and h ttp ://  
m eteo.hr/index., en.php). The horizon ta’ resolution  is 0 .03“ and

Fig. 1. Trajectories of the drifters launched during DART06. The dark track corresponds to drifter a06.956 studied later in this paper, and called "track 1" further on; the first 
week of data, w hich is effectively used in this study, is in red. All other tracks are gray. (For interpretation o f  the references to  color in this figure legend, the reader is  referred 
to the web version o f this article.)
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th e  “ tim e reso lu tion” (i.e. w hen th e  m odel ou tp u ts  are  saved to  
disk) is 3 h. This m odel is fu rth er referred  to  as Aladin HR. The 
pred icted  drift is again ob tained  bv th e  sam e r u le o f  thum b.

3 Ad ri a ROMS, an operational ocean fo re tastin g  system  for tne  
Adnatic Sea run  by th e  H vdroM eteom logital Service o f ARPA 
Emilia Romagna, Bologna, Italy (see e.g. Chiggiato and Oddo 
(2 0 0 8 ' and references herein , and  h ttp ://w w v i.a rp aem r.it/ 
sim /?m are), fu rth er refe ired  to as ROMS. The resolu tion  is
0.025° and 3 b

4 NRI (Navy Research Laborato"yl regional Navy Coastal Ocean 
Model NCOM w as im plem en ted  over th e  Adnatic sea (M aitin  
e t  a l , 2000), and subsam ples w ere m ade available in near 
real-tim e; here  w e use th e  area2  subset covering th e  central 
Adriatic Sea only w ith  a horizontal resolution  of 0.08° and tim e 
resolu tion  of 3 h. It is fu rth er referred to  as NCOM D0f>.

rh e  read er is referred  fo th e  official docum en tation  ot th e  re le­
v an t operational cen ters or above cited jou rnal oapers for desc rip­
tions of th e  m odels. All in all, w ith  th e  c o n stan t (bias! m odel added, 
there  are 5 w eigh ts to  de te rm in e  in o rder to  obtain  a linear HE 
(w hich  may be real o r  com plex num bers depending  on *Tie m ethod 
used), o r  less if principal com ponen t analysis (PCA, see Section 3.3) 
is applied  beforehand

2 2. MRFA07 experiment

W e also try  o u t th e  hvper-ensem ble  tec hniques w ith  data from 
th e  MRIA07 ex p erim en t in th e  L gurian  Sea. This cam paign also 
aim ed a t collecting a vast am o u n t of observations, and drifters data

w ere  again provided bv NIJRC and QGS. The trajecto ries a re  show n 
in Tig. 2 [see (Zanasca e t ai., 2007)). W e focus only on th e  en tire  
track  a74875 la te r  in th is study

At th e  sam e tim e, m ultip le  m odels w pre applied to th e  dom ain. 
W e again use tw o atm ospheric  m odels and  tw o hydrodynam ic 
m odels in o u r ensem ble. In o rder to add som e com plexity , w e will 
also include a Stokes drift m odel, even though  rem em bering  th a t it 
m ight be correlated  to th e  w ind  contribu tion . Furtheim ore, ob 
served d rifte r trajectories (see Fig. 2) ind icate  th a t th e  inertial 
oscillations are  qu ite  im po rtan t Hence, w e also add a syn the tic  
m odel corresponding to a c ircular trajecto iy . This w as no t neces 
sary in th e  case ot th e  DARTOb ex p erim en t w h ere  th e  considered  
d r.fte r is m ainly constrained  by th e  relatively strong  W estern  Adii 
a tic  C urrent (WAC), leaving little  con tribu tion  to m erria] oscilla­
tions. In th e  Ligurian Sea, th e  inertial period is ab o u t 17.9 h. Of 
course, this syn thetic  m odel by itself will no t be able to  rep resen t 
real d rifte r trajectories, because it lacks th e  correct am plitude  and 
phase. However, w hen  th is is corrected  for d u n n g  th e  train ing  peí 
iod, and a bias m odel is also considered, th e  ob tained  syn the tic  
forecast m«iv correspond surprisingly w ell to  reality, particularly  
if o thei curren ts, w inds, etc  are w eak In an ensem ble  of m odels, 
th e  synthetic m odel m ay com pensa te  incorrect (e.g. dephased) 
inertial oscillations of som e m odels.

All in all, the  following m odels w ere  used

1. M eteo France Aladtn (provided by SHOM). This m ode! is fu rth er 
referred to as Aladin-FR; pred ic ted  drift is ob tained  from  the  
sam e rule-of th u m b  as before. Horizontal and tim e resolu tion  
a re  0.1" and 1 h, respectively

1
44  N

L41 N

Fig. 2. Trajectories o f the drifters launched during  MREA07. The dark track  corresponds to  drifter a74875 (Zanasca et al.. 2007) also  studied  la ter in th e  paper, and called
"track  5”. The tw o  red boxes correspond to  la ter Fig. 14 (largest box) and Fig. 16 (sm allest box). (For in terp re ta tion  o f th e  references to  color in  th is  figure legend, th e  reade r is
referred  to  the  w eb  version o f th is  article.)

http://wwvi.arpaemr.it/
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2. COSMO-ME ( w w w .cosm o-m odel.org/con tent/tasks/oper;tfionaj/ 
defau lt.h tm ) iu n  operationally  by CNMCA ■■ Italian Mefeurologi 
cal Service (h ttp :, /w w w .m cteoam .'t), fu rther referred to  as 
COSMO-ME; and again d n ft is obtained from  th e  iu le-of-thum h 
Ih e  resolutions a re  0 03° and 1 h.

3. M editerranean Forecasting System  tun  by INGV, Bologna, Italy, 
see Pinardi e t al (2003) and (h ttp :i/w w w .bo .ingv ,it/m fs/) for 
th e  w hole forecasting system , and fonan i e t al. 12008) for the  
m odel itsef, fu rther referred  to  as MES. Resolutions are 
0.0625° and 1 day.

4. NRL NCOM isee  Coelhc e t aí (in press)), fu rth er referred to  as 
NCOM M07. w ith  resolutions 0 005° and 1 h.

5. W aveW atch III (SHOM), fu rth er refe ired  to  as (M O W W 3. The 
resolu tion  is 0.1° and 3 h. The predicted  d n ft is ob tained  as 
th e  tim e interval m ultip lied  by th e  velocity, th e  lattei is 
obtained from  th e  w ave m odel as 3 .2^-, w h ere  H- is th e  signif 
iran t w ave heigh t a id  Tm th e  m ean period of a broad spec trum  
of w aves (Cainiel e t a l , 2002).

b. a syn thetic  m odel o f inertial oscillations w ith  a 
period 17.9 b.

average error (or track 1

average error for track 4

Fig. 1. i'ARTOb experim en t average (over all segm ents) final (b lue) and  hourly av e ra g e ,re d )  error |k m ] for th e  d n tte r  position after 12 h, using v anous HF m e 'h o d s . during
th e  last 12 h o f th e  tra in ing  period (upper panel) and d c i .n g  th e  forecast (low er pan e ll.T h e  results a re  averaged o v era ll 12-h segm ents of track  aORhSR. (For in te rp re ta tio n  of
the  references to  color in th is  figure legend, the  reader is referred to  th e  w eh  version of th is  article  )

http://www.cosmo-model.org/con
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rhu s, considering  a Dias m odel, a t m ost seven (real or com plex) 
w eigh ts are  to be de term ined  w ith  th e  HF m ethods

3. H yper-ensem ble m etnods

Super ensem bles and hvper-ensem bies are technioues w hich 
aim  a t com bining m ultip le  m odels (of respectively th e  sam e and 
d ifferent physical processes) in o rder to provide a forecast w ith  a 
h igher skill The optim al com bination  is obtained during  a train ing 
period, and m inim izes th e  d istance to in d ependen t observations. 
Thus, SE techniques can be considered  as da ta  assim ilation m eth ­
ods, as they  aim  to optim ally  com bine d ifferent sources o f infoim a 
tion (in th is case, m ultip le  m odels, and observations). The m ain 
question  for these  techn iques is w h e th er th e  ob tained  com bination 
will still be optim al in th e  forecasting m ode, i.e. one needs to know  
a characteris tic  tim e during  w hich th e  com bination  is stable, w hich 
m eans, a characteris tic  tim e during  w hich none of th e  m odel's skill 
significantly changes, k n sh n am u rti e t al. (1999) proposed to use an 
unbiased  linear com bm ation  o f th e  available m odels, optim al (in 
th e  least-squares sense) w ith  respect to  observations during  a 
train ing  period of a priori chosen length; all observations have equal 
im portance. Rixen and Ferreira-Coelho (¿007) applied the  tech­
nique in the ocean, also adding non-hnear com binations o f the  
m odi Is (i.e. using neural netw orks and genetic  algorithm s), hu t 
found b ttle  im provem ent over th e  linear com bination. This can be 
understood  as th e  com bination  is de te rm ined  over th e  sam e tra in ­
ing period, e ith e r by linear o r non-lineai m ethods. Thus, no t m uch 
is changed w ith  respect to th e  com bination  being (staying! appro 
p n a te  (or no t) in forecasting mode However, Shin and Krishnam ui 
ti (2003a), Rixen e t al. (in press) in troduced  dynam ically  evolving 
w eights in a linear com bination  of m odels, using data  assim ilation 
techn iques (Kalman filter and particle  filter) adap ted  to th e  super 
ensem ble  paradigm , The la tte r techniques are  able to train  the  
w eigh ts on a tim e-scale  corresponding to  their natural characteris­
tic tim e d iscarding o lder inform ation  au tom atically  The w eight's 
ra te  o f change is d e term ined  by th e  respective (and evolving) 
u ncerta in ties o f th e  w eigh ts them selves, of individual m odels and 
o f observations. Hence, these  techniques w ere  show n to vieid sig­
nificantly b e tte r  resu lts than  m ore sim ple techniques Of course, if

one desires to obtain  a forecast fu rthei aw ay in th e  fu ture  th an  this 
ch a iac ten stic  tim e, no optim al com bination can possibly be ob 
tained, and w ith o u t o ther a priori knowledge, one should probably  
ju s t  use a sim ple ensem ble  m ean of the  m odel forecasts.

In th e  cu rren t study, w e try  to forecast th e  m otion  of su iface 
drifters Their position can be elegan tly  rep resen ted  using  com plex 
num bers, the  longitude being the  real part, and th e  la titu d e  the  
im aginary part. The used HE m ethods are  described h e ieu n d er in 
th e  con tex t o f our application

3 Ï, Individual models

The sim plest SE techn ique is called "best m odel"; it sim ply se­
lects th e  m odel w hich perform s best during  the w hole  tiam in g  
period, and uses th a t one to obtain  th e  forecast, d iscaid ing  all o th er 
m odels. Although po ten tially  useful inform ation is neglected, this 
m ethod  is often used in practice.

A varian t on th is m ethod  is to m ultip ly  each m odel by a com 
plex num ber d e term ined  during  th e  train ing  period This co rre­
sponds to stre tch ing  and ro ta ting  th e  drift vector predicted  by 
th e  m odel. W hen considering w ind  m odels, th e  m ultip lication  th u s 
allow s to  “op tim ize” th e  ru le -o f th u m b  m entioned  above (surface 
drift velocity o f 3% of th e  w ind velocity, 15° to th e  right).

A th ird  varian t a lso rem oves th e  b ias by searching for an optim al 
com bination o f the  considered m odel and a synthetic , constan t 
m odel (i.e. bias); both m odels a re  also m ultip lied  by ro m p lex  factors.

3.2. Ensemble mean

The next m ethod  is the  sim ple "ensem ble  m ean ”. It doe« no t use 
a train ing  period or observations and thus, car.not really  be consid 
ered  as a SF technique, how ever, it is also a w idely  used  m ethod, 
since long k n o w r to provide b e tte r  forecasts than  individual mod 
els (Kalnay and Ham, 1989).

3.3. Least-squares linear combinations

A nother techn ique consists of finding a linear com bination  of 
th e  m odels, m inim izing fin th e  least-squares sense) its dep artu re
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Fig. 4. R em its o f th e  fo rerast bv all HE m e th o d ' for a particu lar 12-h segm ent in the  track a0b056 show ed in Fig. 1, w ith  the  tra in ing  pen o d  starting  ¿4  h aftei th e  dn fte r 's
dep loym ent. The forecast s ta rts  a t  the b row n diam ond , the  pink d iam ond represen ts the  real d rifte r position a t the  end  of th e  forecast. (For in te rp re ta tion  o f the  references to
color in th is  figure legend, the  reader is referred to the  w eb  version  o f th is  article 1
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from observations during  th e  train ing  period. Again, the  w eights 
a re  com plex num bers, w hich corresponds to  stre tch ing  and ro ta t 
ing each m odel in o rder for th e  final com bination  to  bp optim al. 
Two ,/aiiants o f th is m ethod  are  also used in ou r studv First, w e 
add again a co n stan t m odel, th u s add ing  an unbiasing capability  
to  our ensem ble. Second, w e rem ove som e of th e  co linean ties be 
tw pen th e  m odels. To th is purpose, w e perform  pnncipal to m p o  
nen t analysis 'PCA) on th e  m odels, and decide to  rem ove a 
certain  percen tage o f variability, e.g. 1 O'*. For exam ple, w hen  con­

sidering seven m odels, they  w ould  be transform ed in to  seven p rin ­
cipal com ponents, of w hich th e  last 2 ones m igh t bp discarded This 
has th e  fu rther advantage of reducing th e  am o u n t of w eigh ts th a t 
need to  be de te rm ined  (see below).

3.4. Non linear c ombinannns

A nother class o f SE m ethods use non lineai com binations of 
m odels e g . by feeding individual m odels as in p u t to  a neural
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netw ork or genetic  algorithm . However, as m entioned  before, 
th is does no t change th e  fundam ental fact th a t the  com bination 
is d e te rm ined  to he op t'm a l du ring  a defined train ing  period, 
and one ju s t hopes th a t it will still be adap ted  to the  forecast 
period. Even though  th e  non-linear com bination  might be b e tte r 
than  th e  linear one, in practice, im proved resu lts in forecasting 
m ode w ere  no t observed (Rixen and  Ferreira-Coelho, 2007). This 
m ight be due to  th e  fact th a f, com pared to  th e  lineai com bina­
tion (w here  one w eigh t per m odel has to  be determ ined), m ore 
p a ram ete rs m ust be d e term ined  for those  non linear m ethods.

even if one uses e.g. a neural ne tw ork  w ith  a relatively sim ple 
architecture. Even w ith  linear m ethods, th e  m ore m odels a re  in ­
cluded in th e  SE, the m ore w eigh ts need to he de term ined , and 
hence, sm aller ensem bles m ay lead to b e tte r results (for an  illus 
tration , see e.g Maeng-Ki e t al. (2004)). Thus, som e <mprove- 
m en ts m igh t appear w ith  non linear m ethods if one has a 
large am o u n t o f observations during  th e  tia in in g  period (and  if 
no over-fitting  problem s appear). However, th is is no t th e  rase  
in our study, and hence, w e will no t consider non-linear m eth  
ods any further.
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Aladin-FR forecast 
Aladin-HR forecast 
ROMS forecast 
NCOM forecast 
Ens. Mean 
Ens. Lin. comb.
Real Kalman + PCA 
Complex KF 
Complex KF + PCA

Fig. 7. Results o f the forecast oy «elected HE methods for a pam cular 36-h «egment in track a06'l% . sam e color codes as Fig 4. (Foi interpretation o f the references to color in 
this figure legend, the reader is referred to the w eb version of this article )
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F lg. 8  Evolution of model weights with the ACEKF filter as a function of tim e (hours) from the start o f the training period, corresponding to  the first 3 days o f  track 1. The 
com plex weights are represented by their magnitude and the angle they form with the eastward axis (positive clockwise).
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3.5. Dynamical m ethods

In all previous m ethods (except the  sim ple ensem ble  m ean, 
obviously), th e  length o f the  tra in  ng period had to  be chosen a pri­
ori and all observations du ring  th e  train ing  penod  have an  equal 
im portance. M ore com plicated m ethods can be th ough t of, e.g. 
w here th e  observation’s im portance decreases exponentially  w ith 
tim e. However, it w ould  be m ore useful to  have a m ethod  a u to m a t­
ically ad ap ting  th e  w e 'g h ts  to  skill changes in m odels. This can be 
approx im ated  w ith  com m on data assim ila tion  (DA) techniques: 
sta rtin g  from  o u r best guess, th e  w eigh ts are adap ted  d u n n g  the  
train ing  period, w hen  observations a re  available, up  to  p resen t 
tim e. A fterw ard, th e  w eigh ts a re  frozen and used during  th e  fore­
casting  period All DA a lgorithm s could be im p lem en ted , w e  will re­
strict ourselves to  sequen tial DA and th e  Kalman filter (Kalman, 
19fi0) As one m igh t easily get confused by th e  unusual co n ten t of 
th e  different m atrices in th e  Kalman filter eouations, w e briefly 
w rite  th em  dow n and explain th em  below

Forecast

x f y )  =  **„* (!,_ ,) (1)
Pfit,) =  M ,P “(rlm )Mt t Q. (2)

4na/ysis

K =  l*/'(t,)H T[R + H P | ti)HT] ' '  (3)

x°(ti) =  x f(tj)  + K[y° -  Hx/ (t¡)] (4)

P°tt,) =  Ui) -  KHP^(t¡) (5)

X is th e  sta te  vector, w hich contains th e  w eights a ttribu ted  to  the  
m odels in th e  SE com bination; its e rro r covariance m atn x  is P. 
Superscnpt f  denotes its forecasted sta te  after prediction steps; 
superscrip t a stands for analyzed s ta te  afte r the correction steps 
using observations. W e have no a prion know ledge about the  
w eight’s evolution in tim e, and hence, th e  " m o d e r  m atrix  M is cho­
sen as th e  iden tity  m atrix  a t all runes, the  s ta te  vector prediction 
step  is trivial. A nother choice w ould have been to  include an  expo­
nential decrease o f th e  m odel w eights tow ard  f¡, (N being the

am oun t of m odels), o r even m ore com plicated relaxation schem es. 
In any case, as w eights obviously do evolve in tim e, th e  chosen con­
stan t m odel M contains errors; they are  represen ted  by th e  random  
vector if, and have a covariance m atrix  Q, Although no t m ath em at­
ically constrained, intuitively, one expects m odel’s w eights to sum  
approxim ately  to  1, and to  lie som ew here  in o r close to  th e  [0-1] 
range Hence, w e  estim ated  a reasonable standard  deviation of the  
( m odel ) e rro r for individual w eights to  be 0.1 ; the  non -diagonal ele 
m ents o f Q. are pu t to  zero  Fuitherm ore, the  errors affecting the  
sta te  vector o f w eights have a covariance m atrix  denoted  by P; 
th e  initial standard  deviation is chosen as 0.7 (as w e  expect a rela 
tively bad initial guess o f w eights), and again, non-diagonal ele­
m ents in P0 are pu t to  zero  ( 'hough  they  will becom e non-zero in 
tim ef. The choices for the  values o f Q  and P w ere  validated by 
cross-correlation. Let’s also note th a t th e  prediction step  for P al 
lows it to  increase by Q. a t each tim estep. in accordance w ith  our 
in tu ition  th a t th e  errors on w eights increase w ith  time.

O bservations are  represen ted  by th e  vector y, in o u r case they  
are  observed surface drifts. The observation  o p era to r H linking 
the  s ta te  vet to r  space w ith  th e  observation  space, con ta ins the  
individual m odel forecasts o f surface d n ft  (w hereas usually  w hen  
one assim ila tes e.g. tem p era tu re  in a prim itive eq uation  m odel, H 
is ju s t  an  in terpo lation  operator).

The observations’ e rro r covariance m atrix  is deno ted  R, and 
contains th ree  con tributions: in strum en tal erro rs on  th e  observa­
tions them selves (supposed sm all in o u r experim ents), represen ta  
tivity errors due to  th e  fact th a t th e  m odel does no t rep resen t all 
th e  physical processes included in th e  observations, and erro rs in 
th e  observation  operator H, Thus, R essen tia lly  con tains th e  (u n ­
know n) errors affecting all th e  individual, physical m odeis; these  
errors should be carefully estim ated  as R is a critical param eter 
in th e  filter’s functioning. However, th is is a very difficult task, 
requiring  also m ore inform ation  th an  sim plv  each m odel’s fore­
cast: th e  errors and shortcom ings o f individual m odels are p re ­
cisely th e  reason w hy w e use  an  HE m ethod  fori Hence, in the  
p resen t study, R w as again chosen by cross-correlation .

In oceanography, usually, th e  sta te  vector contains hu n d red s o f 
thousands of points, so th a t low -rank approxim ations o f th e  Kai
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m an filter m ust be im plem ented , such as th e  SEEK filter (Pham  
e t al., 1998), th e  Ensem ble Kalman filter (Evensen, 1994). etc. How 
ever, here, th e  s ta te  vector is very sm all, and hence th e  original 
com plete  Kalman filter can be im plem ented  Thus, apart from  the 
hypothesis of a linear m odel and a G aussian w eigh t distribution , 
no fu rth er assum ptions have to be m ade. Finally, it should also 
be not^d  th a t a t th e  end  of th e  train ing  period, the resulting  w eight 
vector, ob tained  w ith  th e  Kalman filter, is strictly  identical to the

one th a t w ould  have been  ob tained  w ith  th e  Kalman sm o o th er 
(the  sam e observations having been taken into account) o r  w ith 
th e  4D Var filter (see e.g. (B ennett, 1992)).

The e q u a fo n s  w ritten  above are valid for real num bers, and 
hence w e use them  w  th  real w eigh ts (i.e th e  individual m odels 
are m ulfiphed w ith  a real n u m b er before being sum m ed together). 
However, to use com plex num bers as w ith  th e  previous SE m eth ­
ods, th e  equations m ust be ad ap ted  in to  th e  so-called Augm ented

average error for track 5

average error for track 5

tig . 10 WRkAO? experim ent average (over all segm ents; final (blue) arid hourly average tred ) e rro r |km j for the  d ritte l position after 12 b using varicus HF m ethods during
the  h in d ia s t (upper panel) and  the  forecast Í low er panel .The results are  averaged o vera ll 12 h segm nts o f th e  considered  track  (For in te rp o la tio n  o f the  references to  rn lo r
in th is figure legend th e  reader is refeired  to  th e  w eb  version of this article.)
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Complex Extended K alm m  filter (AŒKE) (Coh and Mandie, 7007), 
w here  all th e  initiai vectors and m atrices, as well as th e  m odel ma 
trix, are "au g m en ted ” in th e  follow ing way:

w ith  the  asterisk denoting  the  com plex conjugate Vectors thus be 
com e m atrices of double length, and w idth equal to  2; m atiires 
have double length and w idth For our study, all initial covariance 
m atrices a re  chosen identically as above bu t are  then  augm ented. 
Puring  the  hindca.st penod , th e  sta te  vector covariance m atrix 
P*“* progressively becom es fully filled w ’th  non-zero covariances 
betw een  th e  real and im aginary parts.

Thus, using th e  ACEKF, w e have a tool allow ing to dynam ically 
evolve com plex w eigh ts du ring  th e  h in d ia s t period, and a u to m a t­
ically take co v an an res be tw een  longitude and 'a titu d e  in n e m e n ts  
in to  account. Finally, le t’s no te  th a t th e  previously m entioned  
"tricks" (unbiasing, reduction  via PCA) can also be applied for the  
dynam ical m ethods, our initial guess for th e  sta te  vector is sim ply 
taken as th e  resu lt of th e  corresponding least squares lineai com ­
bination  m ethod,

O th c  dynam ical m ethods can be though t of. For exam ple, if one 
supposes th a t th e  w eigh ts o f  th e  n o d e ls  in th e  com bination  do not 
have norm al probability  d ensity  functions th e  kalm an  filter should

not be used. Particle filters (see e.g. Doucet e t al. (2000), or van 
lee u w e n  (2003) for an im plem en tation  in oceanography) alleviate 
th is hypothesis o f gaussianity. In our SE paradigm , one particle  is 
one specific linear com bination  of m odels The cost is th a t one 
has to  use a relatively large ensem ble  o f partic les in o rder to ensu re  
convergence, As in ou r experim ent, th e  m odel M is th e  identity  
m odel, th is is no t necessarily  a lim ita tion ; how ever, in th e  p resent 
study, th e  m ost tim e consum ing step  is th e  spatial and  tem po ial 
in terpo lation  in relatively m assive (physical) m odels o u tp u t files 
The resu lts o f a s tandard  Sequential Im portance R esam pling (SIR) 
filter w ere  sim ilai to those of th e  Kalman filter (see Section 4), 
and abou t 1000 particles w ere  requ ired  for convergence, leading 
to m ucn longer com puting  tim es.

4. Results

For th e  tw o exper-m ents, d u fte r  observations and m odel fore 
cast fields are  in te rpo lated  in o rder to have one position every 
hour. Each hour, m odel velocity helds are  also in te rpo la ted  spa 
tially to th e  exact d rifter location. [Hiring the  tia in in g  as well as 
the  forecast period, w e use m odel casts w ith  a t 'e a s t 24 h forecast 
lead tim e. In o ther w ords, w e  do no t use a m odel h indcast for the 
train ing  period, bu t use a forecast a t least 24 h old This ensu res 
th a t m odels' skills are no t artificially h igher during  th e  tiam in g

S E  K alm an rea

44 .0 0 '

drifter data 
ALADIN-FR
c o s m o -me:
NCOM M07 
INGVMFS 
CMO WW3 
filter results

Fig. 11. Training and forecast using th e  Kalman filter. T raining s ta rts  a t the  blue d iam ond; hourly d isp lacem ents pred ic ted  by each individual m odel a re  rep resen ted  by a
colored segm ent. The actual forecast s tarts  a t th e  brow n diam ond, the pink d iam ond rep resen ts  th e  real drifter position a t th e  end of the  forecast. (For in te rp re ta tio n  o f  the
references to  color in this figure legend, th e  reader is referred to  the w eb  version o f th is article.)
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due to th e  fact th a t da ta  is assim ilated  du ring  hindcasts. Oui tra in ­
ing period is chosen as 48 h (keeping in m ind th a t dynam ical m oth 
ods ran  d iscaid  o lder inform ation). Forecasts are ob tained  for th ree  
horizons: 12 h, 24 h and  36 h.

4.1. DARTOb experiment

Fig. 3 show s th e  position error after 12 h o f forecast (blue b a rs)1 
and the  hourly m ean error during these 12 h (red bars), for each of 
the  HE m ethods, averaged over th e  first w eek (i.e five daily fore­
casts) o f the  drifter track starting  on 11 March 200b (the  first track 
in Fig. 1 ), when it flows along the Gargano peninsula. This track is 
the  m ost rec tilinear one of the  experim ent, bu t this does not neces­
sarily m ake m odel p ied irtions correspond m ore accurately with 
observations. Indeed, a t the  end of the  first week, a t least one m odel 
predicted th a t the  drifter w ould hit the  shore, w hich was not the 
case The upper panel shows the  results in a hindcast period (i.e, a 
non-independent pseudo-forecast obtained during the last 12 h of 
the tiain ing period w hich m eans the  w eights should be particularly 
well adaoted); the  lowe r panel shows the  results in the  independent 
forecast. These results are typical for all the  tracks in the  WAC. After 
12 h, all individual (w ind oi current) m odels have errors o f 6 .5 - 
17 km and of course pe riorm  etmally well during hindcast and fore­
cast (on average). In general, m ultiplying an individual m odel by a 
w eight (obtained during the  training) improves the  hindcast slightly. 
The absolu te value of th e  weights in question is generally comprised 
betw een 0.8 and 1.2; the  angle is small for the  ocean m odels and 
som etim es larger for the  w ind models.

Adding a bias m odel im proves th e  results very significantly, 
w ith errors dropping  to less th an  1 km and 2 km in h indcast and 
forecast m ode respectively. This can be understood  as the  trajec­
tory  is very linear and  hence th e  bias m odel takes a lot o f the

1 For interpretation o f color in Figs 1 -7 ,10 .11 ,1 ,5 ,14  and 17 the reader it referred 
to thf web version of this article

w eight (i.e w e  are using persistence); th e  considered m odel func­
tions as a correction  to  th e  bias or persistence m odel In sum m ary, 
correcting any of th e  m odels for bias and m ultip ly ing  it w ith  a 
w eight, yields m uch b e tte r  forecasts than  th e  com m on "b est m od­
el”, or, for th a t m atter, "ensem ble  m ean ” strategies.

Com bining all th e  m odels im proves resu lts only slightly com 
pared to unbiased, w eigh ted  individual m odels; and adding the 
PCA ‘trick” does no t im prove the  forecast skill a lo t e ith e r in this 
case a lbeit th a t th e  la tte r m ethod  yields the  sm allest forecast erro r 
of all s ta tic  m ethods.

W hen real w eights are evolved during th e  train ing period w ith 
a real-num ber Kalman filter, resu lts a re  relatively bad (hnel erro r 
ab o u t 8 km). Indeed, real w eigh ts only allow  stre tch ing  th e  drifter 
d isp lacem ent vectors pred ic ted  by th e  m odel, bu t no t ro tating  
them . W hen one adds PCA, the  first p iincipal com ponents a re  on 
en ted  tow ard  the  d irection w ith  largest variations, and hence the  
ro tation  induced by com plex w eights is less critical; results are 
be tte r, com parable to those  of tn e  linear com bination  w ith  com 
plex w eights. Finally, w hen one updates com plex w eigh ts w ith  
the  ACFKr, th e  best results a re  oh ta in°d , and th e  p red ic ted  d n fte r  
position is very close on th e  real position (e rro r sm aller th an  1 kml. 
In th is case, adding PC A does no t bnn g  any im provem ent; th e  only 
benefit w ould be to rem ove red u n d an t inform ation, w hich appears 
unnecessary  here

As an exam ple. Fig. 4 show s th e  results of th e  forecast by all HE 
m ethods for the  th ird  12-h segm ent in th e  track  d iscussed  above. 
The real d n fte r  trajectory  is rep resen ted  in blue, w ith  hourly data  
rep resen ted  by a dot The train ing  srops a t th e  browi- d iam ond, 
12 h later, th e  d rifte r is a t the  pink diam ond. All four individual 
m odels bnn g  th e  d rifter too m uch so u thw ard ; bu t th e  unbiased, 
w eigh ted  and  particularly  th e  dynam ical m ethods can cope w ith  
this and correct th e  forecast.

Figs. 5 and b show  th e  results for 24 h and 36 h forecasts respec­
tively, for the  sam e d rifte r Results and co m pansons be tw een  the 
different HE m ethods a re  qualitatively  the  sam e although  of
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course th e  forecast error gets larger as the  forecast length in­
creases. Even m ore th an  for a 12 h h indcast, thp 36 h hindcast 
now a lm o st coincides w ith  th e  48 h train ing  period, and th u s thp 
linear com b in a t'o n  is y ielding very good results during  th is hind ­
cast. An exam plp of a 36 h forecast is show n :n Fig. 7. It cap be seen 
th a t none of the  individual m odels are  very successful, hence the  
ensem ble  m pan is no t accurate  e ither. Correi ted  individual models,

not show n in th e  figure for d a rity , are closer to the  real d n f te r  th an  
th e  respective uncorrected  modpls. Howpver, thp ensem ble  linear 
com bination  is even closer, particularly  w hen  adding  PCA. The real 
Kalmar Filter is unable to ro ta te  m odels, hence th e  resu lts are not 
perfect as explained higher. finally . one can see th a t am ong  all HE 
m ethods, thp At'FKF filters (w ith  o r w ith o u t PCA] forecast th e  drif­
ter position m ost accurately.

average error for track 6
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Fig. 13. MREA07 experim en t: average final (blue) and hourly-average (red) e rro r (km) for the  drifter position after 24 h. for both  th e  h indcast (upper panel) and  th e  forecast
(low er panel). (For in terp re ta tion  of th e  references to  color in th is figure legend, th e  reader is referred to  the  w eb  version  of th is  article.)
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Finally, to  illustrate' th e  concept of th e  characteristic  tim e d u r­
ing w hich  a HE com bination  rem ains valid. Fig. 8 show s the  evolu 
tion  of th e  com plex w eigh ts during  th e  first 3 days o f the

considered track. It can be seen th a t th e  w eigh ts undergo rapid 
changes s ta rtin g  a t hour 8 ’ a t least one m ode1 probably  undergoes 
a strong  change in skill a t th a t tim e. This is verified using  th e  com -
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Fig. 14. Results o f rhe forecast by sele' ted HE mpthods for a particular 2 4 h  segm ent in the track a74873 (see the largest red hox in Fig. 2). The training starts at the blue 
diamond, the forecast at the brown diamond; the pink diamond represents the real dnfter posi'inn at the end o f  the forecast (For interpretation o f the references to color in 
this figure legend, the reader is referred to the w eb version o f  this article )
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plex Kaiman filter bu t ju s t on  single m odels. Foi exam ple, th e  ob­
ta ined  weight evolution of th e  Aladin (SHOM) w ind m odel is 
show n in Fig. 9; it can indeed be seen th a t from  hour 8, th e  drift 
piedii ted  by th a t m odel has to be strongly a tten u ated  (by about 
205t>), th e  ad ju s tm en t raking abou t 10 fi

From Fig. 8. it can be seen  th a t sim ilar rapid changes occur 
a round  hours 20 and 25; bu t elsew here, and particularly  after hour 
25, th e  w eigh ts a re  m odified only slowly. Thus, as only small 
changes happen  afte r hours 25 (except the  con tinuing ad justm ent), 
and  onw ard  to hour 48 these  changes becom e even sm aller, one 
can suppose th a t the  m odels’ skills a re  relat-vely co n stan t during 
these  23 h. This gives us som e confidence to  use  FIE m ethuds for 
th e  forecast, ra th e r th an  th e  ensem ble  mean, In particular, for 
th e  trac k c onsidered  in Figs. 8 and 9, th e  c h a rarten stic  tim e ot 
FIE validity  is a t least 24 h. This should be re la ted  to th e  Lagrangtan 
au tocorrela tion  tim e, w hich is abou t ha lf a day to 1 day (Poulain 
and  Zam bianchi, 2007, Rubio e t al., in press)

rh e  abso lu te  value o f the  final w eigh ts ob tained  a t hour 48 (the  
end of th e  n a m in g  period) a re  ab o u t 0.4 for NCOM. DOb, and less 
for th e  th ree  o ther m odels, a lthough no m odel gets a negligible 
w eight. Furtherm ore, the  bias m odel ob tains abou t 0.1, i.e. the  
sam e w eigh t as th e  ROMS and AL \DIN (SHOM) m odels. The ocean 
m odels undergo relatively sm all ro tations, w hereas the  a tm o ­
spheric w ind m odels are  tu rn ed  by abou t 90".

4.2. MREA07 experiment

The resu lts in the  Ligurian basin a re  less stra igh tfo rw ard , as 
could a lready be expected  from  Fig. 2, partic u larly  because m ost 
o f th e  trajectories closely follow th e  coastline; hence, an  e rro r in 
one of the  individual m odels could lead th e  sim ula ted  trajectory  
in to  land

Fig. 10 show s the  error bars for "track  5" (show n in Fig. 2), con ­
cerning th e  12 h forecast. Conclusions a ie , again, sim ilar to  those 
ob tained  in the  DARTOb experim ent. In partícula), th e  b est results 
are  now  ob tained  w ith  th e  real- n u m b er ka lm an  h lte i w ith  th e  PCA 
trick. All HE m ethods yield b e tte r  resu lts th an  th e  sim ple  ensem ble  
m ean, except th e  ACEKF (w ithou t PCA). In geneial, it ra n  be seen  
th a t PCA reduces the  forecast errors. As show n later, th is is also 
th e  case of th e  24 h and 36-h forecasts. Hence, one m ight suspect 
th a t som e m odels p resen t co linean ties (w hich need  to be re­
m oved I o r th a t there  are  sim ply too m any w eigh ts (seven c om piex 
num bers) to be determ ined . For th e  12 h forecast, w hen  c om paring  
the  real and com plex Kalman filters respectively, th e  advantage of 
having less degrees o f freedom  to de te rm in e  outbalances th e  fact 
th a t d n ft  vectors can only be stre tched , and no t ro tated

An exam ple of resu lt ob tained  w ith  th e  Kalman Filter m ethod  is 
deta iled  in Fig. 11; the  tim e evolution  o f the  w eigh ts is show n in 
Fig. 12. One can see from  Fig. 11 th a t none of the  individual m odels

__________________

18.00 ’

A ladin-FR  forecast 
Meteo-AM  forecast 

NCOM forecast 

MFS forecast 

Ens. Mean 
Ens. Linear Comb.

Ens. Lin. C om t + PCA 

Real Kalman Filter 

Complex KF 

Complex KF + PCA

Fig. 16. Results of th e  forecast by selected HE m ethods for a particu lar 24-h segm ent in the track a74875 (see the  sm aller red box in Fig. 2). Sam e color codes as Fig. 14. The
NCOM_M07 forecast ex tends to  4 4 °15*N, 9°03 W  b u t is cu t off for clarity. (For in terp re ta tion  o f th e  references to  color in th is  figure legend, th e  reader is referred to  th e  w eb
version  o f th is article.)



L Vondenbuicke et oL/Progress in Oceonography 82 (2009) 149-167 165

is qu ite  accurate; m ost pred icted  d isp lacem ents are  too sm all (ex- 
cep t for NCOM M07, w hich  has correct am plitudes bu t is badly 
o rien tated  m ost o f the  tim e, m oreover w ith  changing erro r direc 
tion). However, th e  w eigh ts adap t p e im an en tly  to  the  latest infor­
m ation; one can see th a t for th is p a ^ iru la r  segm ent, rhe  SHOM 
(Aladin-Francel m odel ob tains a larger w eight; furtherm ore, the 
bias also b e to m es m ore and m ore im portan t The circular m odels 
keep low  w erghts a t all tim es bu t as th e  w eigh t o f the  COSMO- 
ME and even m ore o f th e  INGV MFS m odel are decreasing over

tim e the la tter u ltim ately  ob tains a w eigh t sim ilar to the  syn thetic  
inertial oscillations m odel Finally, w e  notice th e  very large factor 
affecting the  w ave m odel; one should rem em bet th a t th e  d isp lace­
m en t itself forecasted by th is mude! is m uch  sm aller

The results for a 24 h forecast are  show n ;n Fig. 13, During the  
h indcast, the  unbiased, w eigh ted  individual m odels, th e  unbiased  
linear com bination  and th e  ACEKF com bination  all perform  rela 
tively w ell (and  b e tte r  than  the  ensem ble  m e a n l  However, in fore­
cast m ode, th e  ensem ble  m ean m ethod  leads to a sm aller e rro r than
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Fig. 17. MREA07 experim en t: average final (blue) and hourly-average (red) e rro r |km l for the  d rifter position after 36 h. for both  th e  h indcast (u p p er panel) and the  forecast
(low er panel). (For in terp re ta tion  of the  references to  color in  th is figure legend, the reader is referred to  th e  w eb version  o f th is article.)
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th e  linear co m b in a tio n 1 W ith  PCA the linear com bination  is som e­
w h a t b e tte r; th e  Kalman filter w ith  real w eigh ts also perform s rea­
sonably  well. All th is indicates th a t th e  characteristic  tim e during 
w hich th e  ob tained  com binations are valid, has approxim ately  been 
reached The ACFFK com bination, w here  m ore degrees o f freedom  
are  p resent, yields a m uch larger e iro r  th an  th e  real n u m b er Ka1 
m an; again, PCA allow s to  so m ew hat im prove its perform ance 
Fig. 14 illustra tes th is for a p e rticu ia rseg m en t s t a t in g  20 days after 
th e  d rifte r launch (som e HE m ethods are  no t show n for th e  clarity 
of th e  figure). In th is exam ple, th e  ensem ble  m ean and ensem ble 
linear com bination  a re  ou tperform ed by the  real Kalman filter; 
how ever, th e  w eigh ts in th e  com plex Kalman filter do  lead to  an er 
ratic  forecast. W ith  PCA, th e  ob ta ined  trajectory  is less en a tic , bu t 
still com plete ly  inco irec t The instability  o f com plex w eights, even 
w ith  PCA is fu rth er illu stia ted  in Fig. 15 show ing th e ir tim e evolu­
tion; all com ponents w eigh ts undergo large variations, w ith  each 
com ponen t som etim es being im portan t, som etim es negligible. 
One m ore exam ple is given in Fig. 16, s ta rtin g  26 days a fte r the  drif­
te r  launch; sim ilar conclusions again apply.

The situations ge ts even w orse  w hen  try ing to  pred ict the  drift 
a t 36  h. Results a re  sh ew n  in Fig. 17. In forecasting m ode the 
ensem ble  m ean m ethods now  yields th e  sm allest errors; all o th er 
m ethods have errors o f th e  sam e order, or larger, as individual 
m odels. This clearly  indicates th a t th e  ob ta ined  com binations are 
no t valid anym ore afte r (less th an ) 36  h; resu lts m ay be som ew hat 
b e tte r  o r  so m ew hat w orse, depend ing  purely  on luck. For som e 
o th er tracks (n o t show n), rhe resu lts are  som ew hat better, and 
som e HE m ethods still perform  relatively well, leading to  results 
sim ilar o r slightly  b e tte r than  th e  ensem ble  m ean. However, one 
m ight conclude that, using th e  m entioned  m odels, th e  surface drift 
p red ic tab ility  lim it in th e  Ligurian Sea during  the  MREA07 experi­
m en t w as som ew here  be tw een  24 and 36 h.

5. C onclusion

In th e  p resen t study, w e  exam ined how  hvper-ensem ble  (HE) 
m ethods can im prove th e  forecast o f surface drift over forer asts 
obtained w ith  a single m odel, o r w ith  th e  m ean of different m odels. 
W e used linear com binarions o f a tm ospheric  and ocean m odels, as 
well as a w ave m odel and syn the tic  m odels (circular or constant, 
corresponding to  inertial oscillations o r to  bias) W e first exam ined 
th e  m ost com m on “com binations”, such as the  ensem ble  m ean or 
th e  “be«'t past m odel”. A nother m ethod  is to  de te rm in e  th e  value of 
th e  w eigh ts du ring  a tra in ing  peuod , by least squares m in im iza ­
tion o f th e  d istance to  observed surface drift. W e also im plem ented  
th e  Kalman filter, a data  assim ila tion  m ethod  allow ing to dynam i­
cally change th e  value of w eigh ts w hen new  observed drifts be 
com e available. The la tte r  m ethod  also  allow s to  estim a te  a 
characteris tic  tim e d u n n g  w hich the m odel’s skills are  approxi­
m ately  constan t, and hence help  us to  decide w h e th er o r no t a 
HE m ethod  should be used or not.

Surface drift can be represen ted  by com plex num hers, fu rth er­
m ore, if one also  uses com plex w eigh ts in th e  linear com bination, 
th is allow s to  stre tch  and to  ro ta te  rhe p red icted  drift vectors The 
Kalman filter has to  be ad ap ted  for using com plex num bers, lead 
ing to  th e  so-called ACFKF filter covariances be tw een  real and 
im aginary  parts are  autom atically  geneia ted

W henever th e  to re ra s t period w as sh o rt enough, th e  HE lead to 
strongly  im proved results, w ith  th e  final position  error reduced by 
a t least a factor 3 com pared to  individual m odels It w as also 
show n th a t dynam ical m ethods, such as the  ACEKF, yield the  
sm allest forecast e rror; as m entioned  before, th e  tim e evolution 
of th e  w eigh ts also provides insigh t in to  th e  HE and m odels perfor­
m ance W hen  m any  m odels are available (seven in our MRFA07 
experim ent!, it is useful to  reduce th e  am o u n t o f w eigh ts to  d e te r­

m ine, e.g. by applying a principal com ponent analysis and rem ov 
ing colinearities be tw een  m odels.

W e show ed th e  benefit o f adding one or m ore syn the tic  m odels 
(a constan t m odel adds unbiasing to  th e  ensem ble; a c ircular m od­
el can add or correct inertial oscillations). However, m ore m odels 
im plv m ore degrees o f freedom  to  de te rm in e  during  th e  train ing  
period, and th is may render th e  ensem ble  unstable.

In general, forecasting th e  drift up  to  12 h is alw ays possible (in 
bo th  dom ains), and  HE m ethods significantly im prove resu lts over 
individual m odels. In particulai add ing  a syn thetic  bias m odel to a 
single w eigh ted  m odel strongly  decreases eiTors, indicating th a t a t 
th is forecasting tim escale, persistence is very useful "adding m ore 
m odels and com bining them  w ith  dynam ical m ethods such  as the  
Kalmar, filter allow s to  fu rth er im prove results. However, a fte r 24, 
and especially  36  h, forecasting m igh t becom e m ore problem atic, 
a t least in a com plex env ironm en ts w ith strong m eso- and sm aller 
scale eddy activity, such as th e  Ligurian Sea. Indeed, w e  show ed that 
m odel skills m ay change significantly over such a tim e peuod , and 
hence the  w eigh ted  com bination  of m odels ob tained  du ring  the  
train ing  period is no t optim al during  the w hole  forecasting penod. 
In particular, adding d bias m odel to  a single m odel does no t increase 
skill, indicating th a t persistence is no t useful anym ore, and th a t the  
role of p nm itive  equation  m odels becom e tru ly  crucial for scales 
longer th an  12 h: th e  issue of good m odel perform ance canno t be 
avoided by super-ensem bles 1 In th e  Ligurian Sea, HE m ethods per 
form ed poorly for 24 o r 26 h forecasts, and a sim ple ensem ble  m ean 
o r an  unbiased linear com bination  lead to  b e tte r  resu lts th an  a Kal­
m an  filter m ethod Hence, it m igh t be b e tte r  to  use "average” 
w eigh ts obtained d u n n g  a longer train ing  period la th e r than  a d ap t­
ing to  th e  m ost recen t data. However, th e  Kalman filter m ethods at 
least allow  to  know  how  fast w eigh ts change in tim e, so th a t one 
can decide w hich HE technique to  use Thus, w h en  observations 
and  different m odels a re  available, w e  recom m end to im p lem en t a 
dynam ical HE m ethod such as th e  Kalman filter, and to  exam ine 
th e  tim e-evo lu tion  of the  w eights. If they  a re  stab le  during  a lapse 
of tim e corresponding to  th e  desired  forecast horizon, th en  th e  re­
su lts of the  dynam ical m ethod  should be used. If they  are  stab le  du r 
ing a m uch longer period, m ethods w ith  a prion  hxed train ing  
lengths will yield approxim ately  th e  sam e results. To th e  con tra iy , 
if th e  w eights are  varying very quickly ( com pa red to  th e  desired  lead 
tim e o f th e  forecast), one should use  average w eights.

In th e  case of a 2-dim ensional variable such  as surface velocity 
(or drift), th e  question  w h e th er one should use  real or com plex 
w eigh ts depends on th e  size o f th e  ensem ble  (i.e th e  degrees of 
freedom  to  be hxed). Generally, com plex w eigh ts provide b e tte r  re 
su its as m odel predic ted  drifts can be bo th  m ultip lied  and rotated, 
H ow ever tw ice as m any param eters a re  to  be fixed du ring  the  
train ing  period If m any different m odels a re  p resen t, or lnsuffi 
c ient train ing  d ata  is available, one could then  ob tain  b e tte r  results 
w ith  real w eights. PCA generally  helps to  decrease  th e  a m o u n t of 
degrees of freedom , and m ight th u s allow  using  com piex w eigh ts 
w here  o therw ise, real w eigh ts w ould  have led to  th e  best results.

In o rder to use hyper-ensem bles operationally , one needs to  
centralize all th e  forecasts, as well as th e  observations. The HE 
com putations them selves a re  perform ed very fast; a large pa rt of 
th e  effort goes to  correctly  reading and in terpo lating  th e  forecasts 
from  the  individual m odels in to  th e  HF algorithm . Provided th a t 
these  issues a re  resolved, an  operational HE forecast can be p ro­
vided as has a lready  been dem o n stra ted  (Rixen et a l , 2008). As 
m ore m odels are  im plem ented  in various regions, w e hope the  
HE. techniques will im prove forecasts a t reduced cost.
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