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Data mining approach identifies research 
priorities and data requirements for resolving the 
red algal tree of life
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Abstract

Background: The assembly  of th e  tree  of life has seen  significant progress in recen t years b u t  algae and  protists 
have b een  largely overlooked in this effort. Many g roups  of algae and  protists have ancien t roots and  it is unclear 
h ow  m uch  data  will be reguired to  resolve their phylogenetic  relationships for incorporation in th e  tree of life. The 
red algae, a g ro u p  of primary pho tosyn the t ic  eukaryotes of m o re  than  a billion years old, provide th e  earliest fossil 
ev idence  for eukaryotic multicelIularity and  sexual reproduction. Despite this evolutionary significance, their 
phylogenet ic  relationships are unders tud ied . This study aims to  infer a com prehensive  red algal tree  o f  life at th e  
family level from a supermatrix contain ing data  m ined from GenBank. We aim to  locate remaining regions of low 
su pp o r t  in th e  topology, evaluate their causes and  estim ate  th e  a m o u n t  of data  reguired to  resolve them .

Results: Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded th e  m o s t  co m ple te  red 
algal tree  of life to  date. Visualization of statistical su pp o r t  sh ow ed  the  presence  of five poorly sup po r ted  regions. 
Causes for low sup po r t  w ere  identified with statistics a b o u t  th e  age  of th e  region, da ta  availability and  n o d e  
density, show ing th a t  poo r  su p po r t  has different origins in different parts of th e  tree. Parametric simulation 
experim ents  yielded optimistic  estim ates  of h o w  m u ch  data  will be n e e d e d  to  resolve the  poorly suppor ted  
regions (ca. IO3 to  ca. IO4 nucleotides for th e  different regions). Nonparametric  simulations gave a markedly m ore  
pessimistic im age, so m e  regions reguiring m ore  than  2.8 10s nucleotides or no t  achieving th e  desired level of 
su pp o r t  at all. The discrepancies b e tw e en  parametric and nonparam etr ic  simulations are discussed in light of our 
d a ta se t  and  know n attributes of bo th  approaches .

Conclusions: Our study takes the  red algae o n e  s tep  closer to  meaningful inclusion in th e  tree  of life. In addition 
to  the  recovery of stable relationships, th e  recognition of five regions in need  of further study is a significant 
o u tc o m e  of this work. Based on our analyses of current availability and  future reguirem ents  of data, w e  make clear 
re co m m e n d a t io n s  for fo r thcom ing research.

Background
Several approaches can be taken to resolving the tree of 
life, the m ost effective often depending on the nature of 
the specific project and the availability of previously col­
lected data. W hereas only one or a few loci are required 
to  resolve the re la tionsh ips am ong a set of recently  
diverged species, m uch larger am ounts of comparative 
data are needed to reconstruct ancient branches of the 
tree of life. An im portant source of m olecular data for 
p rob ing  deep in to  evolu tionary  tim e com es from
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genom ic studies (whole genom e sequences and EST 
libraries). For resolving branches of in term ediate age, 
targeted PCR amplification and sequencing of multiple 
genes is often preferred . M ore often th an  not, some 
DNA data relevant to a given problem  are available on 
public databases (e.g., GenBank) and no t all projects 
require newly generated data. M ining data repositories 
to construct comprehensive phylogenetic trees is one of 
the foci of contemporary research [1-4].

During the past decade, major progress has been made 
in assem bling the tree  of life, using a range of 
approaches. At one end of this spectrum, genome-scale 
phylogenetics have been applied to resolve the ancient
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evolutionary relationships between the major groups of 
eukaryotes [5-7]. Such stud ies are based on large 
am ounts of DNA data for a small set of species. A t the 
o ther extreme, phylogenetic trees including almost all 
extant species have been assembled for some well-stu­
died groups such as mammals [8]. M ost projects, how­
ever, are situ a ted  in betw een these ex trem es and 
attem pt to infer the relationships among representatives 
of families or orders based on a handful of loci [9,10].

It has been shown that the amount of data available to 
infer a phylogenetic tree will affect its accuracy and the 
statistical confidence in its branching pattern. Theoreti­
cal and em pirical stud ies have show n th a t b o th  the 
length of the sequence alignment and the num ber and 
selection of taxa are im portant in this respect [11-16]. If 
a large num ber of lineages diverged from each other in 
a sh o rt period  of tim e, phylogenetic reco n stru c tio n  
becomes notoriously difficult because there has been lit­
tle tim e for base substitu tions to accum ulate between 
the subsequent cladogenesis events and different genes 
are more likely to have discordant phylogenetic histories 
[17-19]. If such rapid rad iations occurred  in  ancient 
times, phylogenetic reconstruction is further hindered 
because the signal about the radiation that was left in 
the DNA is m ore likely to be overwritten and masked 
by substitu tions occurring during the long tim e span 
between the radiation and the present [19,20]. Comple­
mentary to the research into the effects of data availabil­
ity on the accuracy of phylogenetic inference, various 
studies have attem pted to estimate the am ount of data 
needed to reconstruct difficult phylogenetic problems, 
most often using simulation approaches [21-26].

In general, the phylogenetic relationships among algae 
and other unicellular eukaryotes (protists) have been 
investigated in m uch less detail than those of more con­
spicuous organism s like birds, m am m als and higher 
plants. The present study focuses on red algae, which 
were specifically listed as an under-studied group in the 
report of a recent workshop on the future of the NSF- 
sponsored AToF project [27]. The red algae or Rhodo­
phyta form  one of the three major lineages of primary 
photosynthetic organisms that evolved after the enslave­
m ent of a cyanobacterium in a eukaryote cell to form a 
chloroplast more than 1.5 billion years ago [28,29] and 
the earliest fossil evidence for m ulticellular eukaryotic 
life, Bangiomorpha from  the 1,200 Ma H unting form a­
tion, is thought to be a red alga [30].

The Rhodophyta contain the accessory pigments phy- 
cocyanin and phycoerythrin [31]. Their cytoplasm con­
tains floridean starch grains and adjacent cells are linked 
by protoplasm ic connections in w hich proteinaceous 
plugs are form ed [32]. Perhaps the m ost striking red 
algal feature is the complete lack of 9 + 2 m icrotubule 
structures such as flagella and centrioles [32,33]. The

red algae are currently credited with about 6000 species 
in ca. 700 genera [34]. They are m ostly m arine, w ith 
some freshwater genera and one class of volcano-loving 
extremophiles, the Cyanidiophyceae. The great majority 
of red algae are multicellular, w ith an enorm ous range 
of morphologies. Their life histories are complex and in 
the majority of lineages an additional zygote amplifica­
tion stage results in large numbers of spores from a sin­
gle fertilization.

Red algal system atics has seen m any im provem ents 
over the past decades. S tarting  from  a classification 
based on morphological and reproductive features half a 
century ago [35], a series of ultrastructural investigations 
and life-cycle analyses has progressively refined the ordi­
nal classification. Over the  past tw o decades, DNA 
sequence data has brought additional resolution to the 
higher-level classification. The earliest two attem pts at 
reconstructing  a red algal tree of life based on single 
genes (18S rDNA and rbcL) were published back-to- 
back in PNAS in 1994 [36,37] and indicated the para- 
phyly of the Bangiophyceae, which was confirmed and 
detailed in later work [38,39]. A series of single- and 
m ulti-gene phylogenetic studies by Saunders and co­
workers provided increasingly detailed and taxonom i- 
cally im portant overviews of relationships among flori- 
deophyte orders, culm inating  w ith the proposal of a 
series of new subclasses [40-44]. However, despite inten­
sive effort, a lack of re so lu tio n  of the re la tionsh ips 
among florideophyte clades has remained and there is as 
yet no comprehensive phylogeny of the red algae.

The first goal of this study was to generate a compre­
hensive red algal tree of life at the family level based on 
cu rren tly  available data. O ur approach  consists of 
mining the DNA data in GenBank to construct a super­
matrix and analyzing this matrix with model-based phy­
logenetic inference techniques. O ur second goal was to 
locate well- and poorly supported regions in the topol­
ogy, evaluate the possible causes of the remaining poorly 
supported relationships, and formulate future research 
priorities based on this information. We approached this 
goal by identifying poorly supported regions with a sim­
ple visualization technique and calculating several statis­
tics pertaining to data availability and the difficulty of 
resolving poorly supported regions. Finally, the am ount 
of data needed to resolve the poorly supported regions 
is estimated with parametric and nonparametric simula­
tion experiments.

Results
D ataset an d  m odel selection
Data mined from GenBank in combination with a small 
num ber of new sequences allowed us to  con stru c t a 
superm atrix consisting of 98 OTUs and 14 loci (19,799 
characters). The superm atrix  was 34% com plete in a
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locus X O TU  context and 35% in a character x OTU 
context and included all but six of the extant red algal 
families (Blinksiaceae, Catenellopsidaceae, Corynocysta­
ceae, Crossocarpaceae, Pseudoanemoniaceae, Rissoella­
ceae). Figure 1 graphically represents the m atrix  and 
clearly highlights four strongly represented loci (EF2, 
18S, 28S, rbcL). Even though  the rem aining ten  loci 
were poorly represented, their availability was concen­
trated in a fixed set of OTUs (Bangiaceae, Compsopogo­
naceae, C yanidiaceae, G aldieriaceae, G igartinaceae, 
Gracilariaceae, Palmariaceae, Porphyridiaceae, Rhodo­
chaetaceae, Stylonemataceae, Thoreaceae), largely as a 
consequence of a previous study of these taxa [39].

Our model selection approach showed the importance 
of partitioning the data to allow differences in substitu­
tion  processes am ong data partitions to  be captured 
w ith com posite m odels of sequence evolution. O f the 
thirteen potential partitioning strategies that were evalu­
ated, the Bayesian Inform ation Criterion (BIC) selected 
one that consisted of 8 partitions (plastid ribosomal loci, 
nuclear ribosomal loci, 1st, 2nd and 3rd codon position 
of nuclear genes, and 1st, 2nd and 3rd codon position 
of organelle genes) (Additional file 1). The second order 
Akaike Information Criterion (AICc), on the other hand, 
selected a more complex strategy consisting of 13 parti­
tions (23S rDNA, 16S rDNA, 28S rDNA, 18S rDNA, 
1st, 2nd and 3rd positions of nuclear genes, 1st, 2nd 
and 3rd codon positions of plastid genes, and 1st, 2nd 
and 3rd codon positions of mitochondrial genes) (Addi­
tional file 1). As reasoned in the Discussion, we have 
run our ME searches with the less complex strategy and 
our Bayesian inferences with the more complex one. 
Phylogenetic  resu lts
The phylogenetic tree obtained with Bayesian inference 
and its correspondence to the current classification of 
red algae are shown in Figure 2. A lthough m ost of the 
relationships in our tree correspond to results of p re­
vious studies, the phylogeny in Figure 2 represents the 
m ost complete red algal tree of life published to date. 
The ME tree is consistent with the Bayesian tree except 
in som e poorly supported  regions (Additional file 2). 
The approximately unbiased (AU) test shows that the Bí 
tree  is n o t significantly  less likely th an  the ME tree 
(Table 1).
The phylogenetic tree  m atches the cu rren t red algal 
classification very well, largely because the latter derives 
from  previous m olecular studies [39,42,45]. It is no te­
w orthy that all classes, subclasses and m ost orders are 
m onophyletic in our tree. Only two out of 33 orders 
were non-m onophyletic (Ceramiales and Gigartinales). 
W e used the AU test to evaluate whether trees in which 
the non-monophyletic orders are forced to be monophy­
letic  have significantly  low er likelihoods th an  the 
in ferred  ME tree . The AU test resu lted  in  a 95%

confidence set of 33 trees, including the tree in which 
Ceram iales were m onophyletic and the tree in which 
Gigartinales were monophyletic (Table 1).

Statistical support, m easured as bootstrap values, is 
show n in Figure 2 w ith a color g rad ien t from  black 
(high support) to orange (low support). In general, the 
tree is well-supported, especially when compared to pre­
vious studies w ith lower gene sampling. M ost im por­
tantly , large p a rts  o f the  backbone of the tree  are 
recovered with maximum statistical support (PP = 1.00, 
BV = 100). Nonetheless, there are several regions in the 
tree where support is insufficient to allow firm conclu­
sions. This is m ost pronounced in the boxed regions in 
Figure 2, indicated with letters A through E. Although 
there are other clades with low support in the tree, we 
will focus on these boxed regions because they represent 
the m ost significant gaps in our knowledge about the 
red algal tree of life. W e used the AU test to evaluate 
the possibility  th a t the regions rep resen t hard  poly- 
tomies, i.e. polyfurcations stemming from multiple, vir­
tually instantaneous spéciation events. This possibility 
was rejected with high significance for each of the five 
regions: none of the trees w ith hard  polytom ies was 
contained in the 95% confidence set (Table 1).
Presen t d a ta  availability
Because resolving the five poorly supported regions will 
be among the future research priorities, we have sum ­
marized the present level of data availability for each of 
them  and estim ated  the difficulty of resolving them  
based on a num ber of simple statistics and with simula­
tion studies.

The most ancient unsupported region (region A), with 
an estimated late M esoproterozoic to early Neoprotero- 
zoic age [29], has the highest data availability (Table 2, 
Additional file 3) because it has been targeted previously 
with broad gene sampling [39]. Even though the old age 
of this region may pose problems, the intermediate node 
density may facilitate its resolution. Regions B and C are 
of in term ediate  age (likely N eoproterozoic). C urren t 
data availability for these regions is meager to poor but 
the ir in term ediate  node densities indicate th a t these 
regions may not be very difficult to resolve with confi­
dence. Data availability for the last two regions (D & E) 
is poor, but data overlap among the few sampled loci is 
fairly high. Based on their relatively recent age (likely 
Paleozoic) one may anticipate th a t these regions are 
relatively easy to resolve w ith confidence but this may 
be hampered by their high node density.
Future d a ta  requ irem en ts
Sim ulation  stud ies were carried  ou t to  estim ate the 
am o u n t of da ta  th a t w ill be n eeded  to  con fiden tly  
resolve each poorly supported  region. Figure 3 shows 
how the average bootstrap support of branches in the 
reg ional trees  increases as a fu n c tio n  of a lignm ent
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33% of alte«

34% of alte«

11% of altea 13% of stoa'

F ig u r e  1 D a ta  a v a ila b i l i ty  m a tr ix . G raph ica l r e p r e s e n ta t io n  o f  o u r  c o n c a te n a te d  a l ig n m e n t ,  s h o w in g  th e  ava ilab ility  o f  s e q u e n c e  d a ta . T h e  
co lo r o f  co lu m n  a n d  row  h e a d e rs  in d ic a te  th e  a m o u n t  o f  d a ta  av a ilab le  fo r th a t  c o lu m n  o r  row . G reen  in d ica te s  h igh  d a ta  availability , red  
in d ic a te s  low  d a ta  availab ility  a n d  y e l lo w /o ra n g e  re p re s e n ts  in te rm e d ia te  d a ta  availability. T he m atrix  d e n s ity  is 34%  in a locus x  OTU c o n te x t 
a n d  35%  in a c h a ra c te r  x  OTU c o n te x t. N u m b ers  in cells in d ic a te  le n g th  o f  s e q u e n c e  in a l ig n m e n t, w h ich  m ay  in c lu d e  g a p s  a n d /o r  e x c lu d e  
a m b ig u o u s ly  a l ig n e d  reg ions. F igure g e n e ra te d  w ith  th e  gD AM  so ftw a re  h t tp :/ /w w w .p h y c o w e b .n e t .

leng th . In  o rd e r to  derive the  a lignm en t leng th  
required to resolve a region, one m ust first define the 
level of bo o ts trap  su p p o rt the average node should  
have for the region to be considered resolved. W e have 
added a dashed line at 80% bootstrap support for illus­
tra tive  purposes. Subsequently, the estim ated  align­
m ent length required to resolve the region to that level 
of bootstrap support can be deduced by seeing where

the dashed line crosses the line fitted through the data 
points and reading the corresponding value on the x- 
axis. It is immediately obvious that the param etric and 
non-param etric sim ulation types yielded widely diver­
gent results. Param etrically sim ulated datasets always 
resulted in m uch better resolved trees than  nonpara- 
metrically generated datasets (blue vs. orange lines). As 
a co nsequence , the  e stim a ted  a lig n m en t leng th
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Table 1 Likelihood b ased  topo log ica l te s ts
InL BV Pau

B ayesian tre e -185,594.97 0% 0.403

C eram iales -185,607.63 5% 0.186

G igartina les -185,635.98 0% 0.574

reg io n  A -185,622.35 0% <  0.001

reg io n  B -185,678.38 0% <  0.001

reg io n  C -185,818.04 0% <  0.001

reg io n  D -185,686.91 0% 0.001

reg io n  E -185,708.05 0% <  0.001

Various alternative topologies a re  com pared  to  th e  ML topology using an AU 
test. For each alternative topology (rows of th e  table), th e  InL o f th e  
alternative topology is given along w ith th e  p e rcen tag e  o f occurrences o f th e  
alternative topology in th e  unconstra ined  boo ts trap  analysis (BV), and  th e  P- 
value o f th e  AU te st on a larger se t of trees. On th e  first data  line, the  
Bayesian tre e  is com pared  to  th e  ML tree. In this case, th e  null hypothesis of 
th e  AU te s t is th a t th e  ML tree  is n o t significantly m ore likely than  th e  Bl tree. 
In th e  m iddle part o f th e  table, each  o f th e  non-m onophyletic orders is listed 
along with th e  InL of th e  topo logy  in which th e  o rder is constra ined  to  be 
m onophyletic. In this case, th e  null hypothesis o f th e  AU te s t is tha t 
unconstra ined  and constra ined  topologies a re  equally likely. In th e  bo ttom  
part o f th e  table, th e  possibility th a t th e  poorly resolved regions rep resen t 
hard polytom ies is te sted . The listed InL are  for th e  trees in which o n e  o f th e  
poorly resolved region was collapsed, and  in this case th e  null hypothesis of 
th e  AU te s t is th a t uncollapsed and  collapsed topologies are equally likely.
The InL o f th e  unconstra ined , uncollapsed topology is -185,569.97.

req u ired  for re so lu tio n  of a reg io n  is sm all if one 
attaches more importance to the parametric simulation 
results (blue line) and m uch larger if one chooses to 
use the nonparam etric simulation results (orange line). 
Missing data in the nonparametrically resampled align­
m ents is am ong the m any causes th a t may be at the 
base of this discrepancy (see Discussion). In order to 
estim ate  the effect of m issing  data, the  p aram etric  
sim ulations were repeated  w ith  the sam e am ount of 
m issing data p resen t in the n onparam etric  datasets. 
T hese re su lts  (gray line) are in te rm ed ia te  betw een  
those of the other two simulation types.
Spectral partition ing
In order to evaluate whether the signal between natural 
data subdivisions (gene type, genom e and locus) is in 
conflict, we investigated whether these natural data sub­
divisions corresponded to spectral partitions. Spectral 
partitioning subdivides characters in an alignment into a 
prespecified number of clusters based on character com­
patibility [46]. Characters in the same cluster are more 
phylogenetically compatible w ith each other than they 
are to characters in different clusters. O ur results sug­
gest that there is no strong correspondence between the 
spectral partitions and the natu ra l data subdivisions 
(Additional file 4). In contrast, our results show that the 
am ount of conflict between characters w ithin the n a t­
ural subdivisions exceeds the am ount of conflict among 
natural subdivisions in the majority of cases (exceptions 
will be mentioned in the discussion). Spectral partition­
ing into different num bers of clusters yielded sim ilar

results and only the results of the analysis w ith three 
spectral partitions are shown in Additional file 4.

Discussion
W e have reconstruc ted  a red algal tree of life at the 
family level based prim arily on data mined from  Gen­
Bank. O ur principal goal in reconstructing this tree was 
to identify the well-resolved parts and the rem aining 
uncertainties in the tree, the latter engendering a better 
knowledge about the gaps in curren tly  available data 
and leading to  clearly defined research p riorities for 
future efforts to resolve the red algal tree of life. 
Im proved red  algal Tree o f Life
As one would anticipate, the tree we obtained was more 
com plete and better resolved than  those of m ost p re­
vious studies with lower gene and taxon sampling. This 
is likely to  be due to two factors. First, a considerably 
larger am ount of data is used in  th is  study, b o th  in 
term s of taxon and gene sam pling. Second, we have 
carefully selected models of sequence evolution that can 
capture various com plexities of the sequence data by 
allowing different model param eter values for different 
data partitions. It has been well established that appro­
priately partitioned models of sequence evolution yield a 
b e tte r  fit to  em pirical datasets th an  sim ple m odels 
[47-49] and sim ulation experim ents have shown tha t 
phylogenetic analysis w ith suitably partitioned models 
results in more accurate trees [50]. For our dataset, the 
Akaike selection criterion recom m ended finer subdivi­
sion of the data (13 partitions) than the Bayesian infor­
mation criterion (8 partitions). W e have chosen to use 
the m ore com plex m odel for Bayesian phylogenetic 
inference and the less complex model for ML searches. 
Although somewhat arbitrary, this choice is endorsed by 
theoretical studies showing that whereas Bí is sensitive 
to underparam etrization [51], ML optimization is more 
liable to suffer from overparametrization [52,53]. Specifi­
cally, Bayesian analyses using overly simple models tend 
to yield overly high posterior probabilities [51], which is 
undesirab le  considering  th a t we aim  for a realistic  
assessment of uncertainties in our red algal tree of life. 
C auses o f rem ain ing  uncerta in ties
Despite the fact tha t our phylogeny is better resolved 
than many previous trees, it clearly shows that a lot of 
work remains to be done to resolve the red algal tree of 
life. Using a simple visualization technique tha t maps 
bootstrap  support on the tree as colors along a color 
gradient, five poorly supported regions of the tree could 
be readily identified (Figure 2). Poor resolution in phylo­
genetic trees can have several potential causes. The first 
possibility is that several spéciation events have occurred 
virtually sim ultaneously. In this case, the biologically 
correct phylogeny contains hard polytomies. This does
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F ig u re  2  R ed a lg a l t re e  o f  l ife  w ith  c u r re n t  ta x o n o m ic  c lass ifica tio n . T h e  tr e e  w a s  re c o n s t ru c te d  u s in g  Bayesian p h y lo g e n e tic  in fe re n c e  o f 
DNA d a ta  m in e d  fro m  G enB ank  (F igure 1). B ranch co lo rs  In d ic a te  statis tical s u p p o r t o f  th e  c lades: w h e re a s  b lack  b ra n c h e s  a re  s tro n g ly  
s u p p o r te d ,  th e  o ra n g e  p arts  o f  th e  t r e e  a re  poo rly  reso lved . In te rm e d ia te  co lo rs  r e p re s e n t in te rm e d ia te  s u p p o r t (see  g ra d ie n t le g en d ). Five 
poo rly  s u p p o r te d  reg io n s  a re  in d ic a te d  w ith  g ray  b o x es  (A-E). N u m b ers  a t  n o d e s  In d ic a te  b ran ch  s u p p o r t  g iv e n  as  b o o ts tr a p  v a lu es  from  
m a x im u m  likelihood analysis  b e fo re  th e  vertical ba r a n d  Bayesian p o s te rio r p ro b ab ilitie s  a f te r  th e  vertical bar. V alues a re  on ly  s h o w n  if th e y  
e x c e e d  50  a n d  0.95, respectively .

n o t seem  to be the  case for the  poorly  supp o rted  
reg ions in  our red  algal tree  because our AU tes t 
strongly rejects the topologies in which the poorly sup­
p o rted  reg ions w ere collapsed. In  th is  con tex t it is 
im portant to note that each one of our tests focuses on 
an entire region being a hard polytomy. So the test only 
rejects the possibility tha t the entire region is a hard 
polytomy, but it is still possible that smaller hard poly­
tomies exist within a region.

If not a result of biological reality, the poorly resolved 
regions m ust follow from  inadequacy of the dataset or 
failure of the phylogenetic methods. Many studies have 
shown that inappropriate inference m ethods can fail to 
recover the  co rrec t phylogenetic tree  from  DNA 
sequences [54-57]. W e have taken some precautions to 
avoid problems of this nature. First, we have used infer­
ence m ethods th a t m ake explicit use of m odels of 
sequence evolu tion  because these are know n to
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Table 2 D ata availability , re la tive a g e  and  n o d e  d en sity  of poorly  su p p o rted  reg ions

in fo rm a t iv e  loci d a ta  o v e rla p re la tiv e  a g e n o d e  d e n s ity

reg io n  A 9 - »  64.3% 100% 0.88 - 0.97 0.529

reg io n  B 4  - »  28.6% 83.3% 0.35 - 0.53 0.449

reg io n  C 7 - »  50.0% 60.3% 0.33 - 0.53 0.548

reg io n  D 5 - »  35.4% 57.5% 0.34 - 0.43 0.787

reg io n  E 3 - »  21.4% 75.8% 0.14 - 0.25 1.000

The four statistics p resen ted  in this ta b le  describe th e  cu rren t da ta  availability for each  of th e  five poorly su ppo rted  regions and  th e  relative difficulty o f resolving 
th em . The p roportion  o f potentially  inform ative loci and  th e  data  overlap  am ong  potentially  inform ative loci m easure  cu rren t d a ta  availability. Potentially 
inform ative loci a re  th o se  th a t a re  p re sen t for m ore th a n  th re e  o f  th e  OTUs in th e  matrix. Data overlap is given as th e  average  relative e d g e  w eigh t in th e  
intersection g raph  o f  inform ative loci (see m ethods). T he relative a g e  and n o d e  density  m ay indicate how  difficult resolving th e  region will be. The relative ag e  
represen ts how  an c ien t th e  region is, on a scale from  zero  (the  present) to  o n e  (the  roo t o f  ou r tree). The n o d e  density  index is proportional to  th e  n um ber o f 
nodes th a t need  to  b e  resolved per tim e un it (see m ethods). T he partial d a ta  availability m atrices for each  region can b e  found  in Additional file 3.

outperform alternative techniques under a wide range of 
conditions [56]. Second, we have accounted for various 
complexities in our com posite dataset by carrying out 
extensive m odel selection procedures and perform ing 
phylogenetic analyses with models that show a good fit 
to the data.

The last possible cause for the poorly  supp o rted  
regions option is that the dataset is inadequate for resol­
ving them. Two main factors can contribute to failure of 
a dataset to resolve a phylogeny: conflict in the data and 
lack of information in the data. Conflicting signals most 
commonly occur between genome partitions or between 
individual genes. However, this does not appear to be 
the case in our dataset because spectral partitions based 
on site compatibility do not correspond to natural parti­
tions. This lack of correspondence indicates that conflict 
between natural data subdivisions (gene type, genome 
and locus) is sm aller th an  the conflict betw een sites 
within each of the natural subdivisions. The information 
content of a phylogenetic data m atrix depends on the 
num ber of characters, the  num ber of taxa and the

phylogenetic inform ativeness of each site [13,58-60]. 
Because the taxon sampling of our study is nearly com­
plete at the family level, the num ber of characters and 
the am ount of missing data in our DNA matrix (Figure 
1) are more likely to be at the base of the poor resolu­
tion. To examine this in m ore detail and estimate how 
m uch data w ould be necessary to resolve the poorly 
supported regions, we have calculated several statistics 
and carried out simulation studies.
Future d a ta  requ irem en ts
The curren t data availability statistics, along w ith the 
relative age and the node density of each poorly sup­
p o rted  region perm it m ore insight in to  the possible 
causes of the lack of re so lu tion  and, along w ith the 
results from  the sim ulation experim ents, allow us to 
make more specific recom m endations. For this discus­
sion, we will consider an average bootstrap value of 80% 
(dashed line in Figure 3) acceptable support.

Region A consists of the relationships between a few 
classes near the base of the red algal tree. Despite hav­
ing the highest proportion of potentially informative loci

region A region B region C region D region E
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p a ra m e tr ic  s im u la tio n  o f  d a ta  (b lue) a n d  p a ra m e tr ic  s im u la tio n  fo llo w e d  by in tro d u c tio n  o f  m issing  d a ta  (gray). T he a p p ro x im a te  a m o u n t  o f  d a ta
reg u ired  to  reso lve  a reg io n  ca n  b e  d e r iv e d  fo r e a c h  s im u la tio n  ty p e  by spec ify ing  a d e s ire d  level o f  b o o ts tr a p  s u p p o r t  (e.g., th e  d a s h e d  line
d ra w n  a t  80) a n d  d e d u c in g  th e  c o r re s p o n d in g  a l ig n m e n t le n g th  o n  th e  x-axis. N o te  th a t  th e  x-axis u se s  a lo g a rith m ic  scale. T h e  lines c o n n e c t
th e  m e a n s  o f  th e  five v a lu es  o f  e a c h  co n d itio n .
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of all regions and maximal data overlap, the re lation­
ships among these classes have not been resolved confi­
dently [39]. This is probably due to a com bination of 
the intermediate node density in this region and its age. 
R esolu tion  of the ancien t re la tionsh ips am ong the 
lineages in this region of the tree will require the gen­
eration of large am ounts of additional data. Parametric 
simulations require almost 10,000 sites to reach accepta­
ble support and nonparametric resampling suggests that 
almost 284,000 sites will be needed.

Region B encompasses the order-level relationships of 
the Nemaliophycidae. Maximum likelihood and Bayesian 
trees differed in some of these relationships and some of 
the nodes in Figure 2 that were poorly supported in ML 
bootstrap analyses did receive high posterior probabil­
ities in the Bayesian analysis. As m entioned above, dif­
ferent partitioning strategies were used for our ML and 
Bayesian analyses, which may have caused the discre­
pancy. The num ber of potentially  inform ative loci is 
remarkably low for this region. Given the relatively low 
node density and interm ediate age of this region, one 
would expect that this region would not be too difficult 
to  resolve. Param etric sim ulations confirm  this: they 
suggest th a t ca. 1,950 sites should  suffice to  achieve 
acceptable support. This is in stark contrast w ith the 
nonparametric resampling method, which never reached 
the 80% threshold. The spectral partitioning results offer 
some initial insights into why the nonparametric results 
are so pessimistic. The 16S and 23S genes have a m ark­
edly different spectral composition than the other loci, 
and the contrast is especially strong if 16S and 23S are 
com pared to 18S (Additional file 4). Remarkably, this 
effect is no longer apparent when comparing the spec­
tral com position of genomes: nuclear and plastid gen­
omes show a similar spectral composition.

Region C consists of the apparently sudden radiation of 
lineages at the base of the Rhodymeniophycidae. Even 
though the statistics in Table 2 indicate an intermediate 
node density, the fact that most nodes are situated close to 
the beginning of the epoch spanned by this region and 
only a few are near the end of the epoch gives us reason to 
believe that region C represents a rapid radiation. This 
region also features the m ost pronounced  differences 
between the maximum likelihood and Bayesian trees. As 
was the case for region B, Bayesian support values are 
high (PP > 0.95) for a handful of nodes in region C that 
were not present or very weak in the set of ML bootstrap 
trees. O ther studies have also indicated the sensitivity of 
relationships in this region to  m ethodology, gene and 
taxon sampling [40,43,44]. A further discussion of these 
results is beyond the scope of this paper - for now, it suf­
fices to conclude that there is considerable uncertainty 
about the relationships in region C, which should form a 
fu ture research priority. The com bination of the large

num ber of lineages emanating in this region, its old age 
(probably Neoproterozoic) and the substantial previous 
effort that has not led to a solid understanding of its evo­
lution may suggest that this region will be a tough one to 
resolve. Nonetheless, parametric simulations required only 
ca. 1,800 sites to achieve acceptable support. N onpara­
metric resampling reached the 80% threshold at ca. 83,000 
nucleotides.

Region D encompasses the relationships among some 
subgroups of the Gigartinales. Data availability and data 
overlap are currently insufficient to resolve this region, 
probably due to  the relatively high node density. The 
param etric sim ulation results confirm  the difficult na t­
ure of this region: 2,150 sites were required to resolve it 
to an average bootstrap support of 80%. This require­
m ent is higher than that of regions B and C, which are 
both considerably older. Nonparametric simulations did 
not reach the 80% threshold.

Region E represen ts a relatively recent radiation  of 
g igartinalean fam ilies. The com bination  of low data 
availability and high node density is probably responsi­
ble for the lack of resolution in this region. Our spectral 
partition ing  results also suggest th a t conflict may be 
present between the signal contained in the 18S rDNA 
alignment and that of the 28S rDNA dataset (Additional 
file 4). Even though parametric simulations suggest that 
this is a relatively easy region to resolve (ca. 990 nucleo­
tides), our non p aram etric  resam pling  did n o t reach 
acceptable levels of support.

From these sum m aries it can be concluded that the 
five poorly supported regions stem  from  a diversity of 
causes and that resolving them  will likely require differ­
ent kinds of datasets. It is also clear that the am ount of 
data that will be needed to resolve each of the regions is 
still difficult to  estim ate due to  the large differences 
between the param etric and nonparam etric sim ulation 
results. This will be discussed in more detail in the next 
section. Irrespective of the exact data requirements, it is 
clear that more data are needed to resolve the red algal 
tree of life and that a dual approach will be best suited 
to address the variety of phylogenetic questions in the 
five unresolved regions. First, high-throughput genomics 
efforts will be needed to resolve region A and perhaps 
region B. Such efforts could consist of organelle genome 
sequencing, EST data generation or a com bination of 
both. Second, the relationships in regions C, D and E 
require generating large multi-locus datasets for a broad 
selection of Rhodymeniophycideae for which targeted 
PCR amplification may be preferable to high-throughput 
genomics because of the large num ber of taxa involved 
and lower estim ated data requirem ents. In addition to 
resolving the poorly supported regions in our tree, gen­
erating data for the six families absent from  our tree 
should be a research priority.
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Lim itations o f sim ulation  app roach
Several studies have used sim ulation experim ents to 
estimate the am ount of data needed to resolve phyloge­
netic questions. Both param etric [26,61] and nonpara­
m etric  [22,62,63] approaches have been used widely. 
Our results clearly demonstrate some limitations of this 
approach. W ithout exception, the nonparam etric sim u­
lations suggested a markedly more pessimistic image of 
data requirem ent than the parametric simulations. Sev­
eral elem ents of the experim ental design are likely to 
have an appreciable c o n trib u tio n  to  the  difference 
between our param etric and nonparam etric simulation 
results.

First, the simple model of sequence evolution used in 
the sim ulations yields alignm ents that are not as com ­
plex as empirical data matrices. As a consequence, para­
m etrically sim ulated datasets produce higher support 
values because the MF inference uses the true model. 
M ore biological realism  can be added to  param etric  
sim ulations by incorporating  gene tree heterogeneity  
[61] or using highly complex models of sequence evolu­
tion [64].

Second, the nonparam etric  approach used here has 
the disadvantage that no genuinely new data are added 
to the data matrix when it is resampled beyond the ori­
ginal alignm ent length. This will lead to a m ore p ro ­
nounced  effect of signal p resen t in the  datase t bu t 
nodes for which there is little signal or for which there 
are equal am ounts of conflicting signal can be expected 
to rem ain unresolved when no effectively new data are 
added. This effect thus depends on the am ount of data 
present in the original alignment. In our case, the length 
of the regional alignments decreases in this order: A > 
C > B > D > E. Thus, all regions for which the 80% sup­
po rt threshold  is no t reached (B, D, E) sta rt out w ith 
relatively small alignments. Resolving the effect of this 
issue requires extra theoretical work.

Third, missing data present in the empirical data that 
are resampled in the nonparam etric simulations can be 
expected to reduce bootstrap support to some extent. It 
is im portant to note that our regional alignments have 
m uch less m issing data th an  our global data m atrix  
because only the po ten tia lly  in form ative loci are 
included in them. O ur param etric simulations with the 
sam e d is trib u tio n  of m issing data th an  the  original 
regional alignments show that missing data in our regio­
nal alignments has an effect, yet it explains only a small 
fraction of the difference between param etric and non­
parametric simulations (Figure 3).

In conclusion, it is evident that the alignment lengths 
suggested by param etric sim ulation are too optimistic 
and those of nonparametric simulations too pessimistic. 
For th a t reason, we have in terp re ted  the ir respective 
predictions as lower and upper bounds on future data

requirements. The predictions of the parametric simula­
tions have the advantage that they can be more directly 
compared between regions to evaluate the relative diffi­
culty of resolving them  w ith a certain degree of boot­
strap support.
C om plem en tary  s tra teg ie s
In addition to generating supplem entary data, further 
im provem ents of the experim ental design and analysis 
techniques could also contribute to the robustness of 
results. First, the assumption of character independence 
can be relaxed by using special models of sequence evo­
lution inspired by specific characteristics of the studied 
m olecule such as RNA secondary organization, codon 
structure and across-site process heterogeneity [65-69]. 
Second, re s tric tin g  analyses to  subsets of the  tree  
requires less data exclusion because there is less align­
m ent ambiguity and may allow m ore accurate estim a­
tion of model param eters relevant to that region of the 
tree. Mishler’s compartmentalization approach could be 
useful in this context because it allows combining phy­
logenetic insights at various levels in a global phylogeny 
[70,71]. Third, resolving ancient phylogenetic relation­
ships can benefit from techniques that improve the sig- 
nal-to-noise ratio in phylogenetic datasets, for example 
by selective rem oval of fast-evolving sites [72]. Given 
that the red algae are more than a billion years old, all 
five unresolved regions could be classified as ancient. 
Finally, it is worth noting that certain aspects of experi­
mental design can also affect tree inference. Taxon sam­
pling is especially relevant here. In th is context, our 
analysis may suffer to  som e ex ten t from  the  use of 
families as OTUs. This approach leads to relatively long 
external branches, which may result in lower in ternal 
support values. Increasing the taxon sam pling w ithin 
each family can easily solve this.
Taxonom ic perspectives
Finally, the resolution of the red algal tree of life will 
engender a better, more natural classification of the red 
algae. Even though  the p resen t classification closely 
matches our molecular phylogeny, two currently recog­
n ized orders w ere non-m onophy le tic  in  our tree . It 
m ust be noted, however, that the component lineages of 
these orders are situated in the poorly supported regions 
and that m onophyly of the orders is no t rejected with 
statistical confidence (Table 1). Nonetheless, the non- 
m onophyly of the orders in question could be antici­
pated from previous work. The inclusion of the Inkyu­
leeaceae in  the C eram iales has been q uestioned  in 
several studies [73,74]. The non-monophyly of the Giga­
rtina les is also n o t surprising . Years of controversy  
regarding the distribution of families between this order 
and the Cryptonemiales resulted in a surrender tactic in 
w hich Kraft and Robins [75] sim ply m erged the two 
orders considering this the best step forward for a total
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re-evaluation of this complex. Since that time multiple 
discordant elem ents have been moved out to other or 
new orders in an effort to render a monophyletic Giga­
rtinales, a task that continues to this day [43,76].

Conclusions
Fifteen years of m olecular phylogenetic research have 
changed radically our perspectives on red algal relation­
ships at all taxonom ic levels. These foundation studies 
have either had lim ited taxonom ic objectives or were 
based on one or only a few genetic regions. The present 
data m ining effort was in itia ted  to  take th is  area of 
study to the next level, one encompassing analyses of a 
superm atrix  contain ing  m any loci and nearly  all red 
algal families. In doing this we have confirmed many of 
the earlier findings, but have more critically highlighted 
five regions of low resolution and provided insights as 
to future directions to resolve these conundrums. More 
specifically, we have shown that the currently unresolved 
regions stem  from a diversity of causes and that resol­
ving them  will require different approaches. W e propose 
a dual approach consisting of high-throughput genomic 
data to resolve the two m ost difficult phylogenetic pro­
blems (regions A and B) and the developm ent of ta r­
geted m ulti-locus datasets of to resolve the rem aining 
problem s in the Rhodym eniophycidae (regions C-E). 
The p resen t study  illu stra tes  how  data m ining 
approaches can guide the design of projects aimed at 
reconstructing the tree of life and will hopefully provide 
our colleagues and us with the necessary groundwork to 
move this objective forward.

Methods
D ataset com position
All available red algal DNA sequences were acquired 
from  GenBank release 160 and stored in a local data­
base. EST data and sequences longer than  5000 bases 
w ere excluded. R ibosom al RNA and p ro te in -cod ing  
genes from  com plete organelle genom es were added 
back as separate entries. Sequences belonging to the 
fourteen target loci (Figure 1) were extracted and stored 
in separate databases (one for each locus). The sequence 
extraction process consisted of three steps. A first set of 
sequences belonging to the loci of interest was extracted 
based on a database of accession numbers that was gen­
erated in the framework of a literature survey and meta­
analysis [45]. Second, annotations and keywords in the 
description of these entries were subsequently used to 
extract a second set of entries from the local database. 
The assignment of these sequences to the loci was dou­
ble-checked w ith BEAST scores. A th ird  set of entries 
was ex trac ted  by perfo rm ing  BEAST searches of 
sequences annotated in the previous steps against the 
rem ainder of red algal sequences in the local GenBank

database for each target locus separately. Sequences 
yielding high BLAST scores were added to the appropri­
ate files after m anual screening  of the  anno ta tions. 
Additional sequence data were generated following pre­
viously published protocols and added to the databases 
[44,77,78]. Newly generated  sequences are indicated  
with an asterisk in the data matrix (Additional file 5).

After introns had been removed from the sequences, 
they were given a quality score corresponding to their 
length minus the num ber of ambiguous base calls. The 
highest-scoring sequences of each red algal family were 
selected. For a few families of doubtful status, we refined 
the classification and used intrafam ilial groupings as 
OTUs. The taxonom ic database used for this purpose 
was based on a recent classification scheme [79], with 
some minor modifications to add extra taxonomic levels 
w ith in  certa in  fam ilies and reflect recen t w ork 
[74,80-82]. The highest-scoring sequences (see A ddi­
tional file 5) were stored in fasta files and aligned by 
eye. G ap-rich and am biguous regions were discarded. 
The fourteen resulting alignm ents were concatenated 
into a single supermatrix. Alignments of individual loci 
and the superm atrix  will be m ade available th rough  
TreeBase [4] and at http://www.phycoweb.net.
M odel selection
A suitable partitioning strategy and partition-specific 
substitution models were selected in a m ulti-step pro­
cess illustrated in A dditional file 1. Initially, base fre­
quencies of different genes and codon positions were 
visualized to obtain a gross idea of base frequency differ­
ences among potential data partitions. This preliminary 
information and knowledge about the genomic compart­
m ent of the loci led us to identify thirteen partitioning 
stra teg ies for fu rth er considera tion  (m ore details in 
Results). Subsequently, a suitable partitioning strategy 
and partition -specific  m odels of sequence evolution  
were selected using the Bayesian Inform ation Criterion 
(BIC). This selection procedure consisted of three steps. 
For the purpose of m odel selection, a guide tree was 
obtained by carrying out a second-level ML search on 
the unpartitioned dataset with a HKY + Tg model with 
TreeFinder [83]. The first step of the procedure was to 
optimize the likelihood of the dataset for thirteen parti­
tioning strategies, assuming the guide tree and separate 
HKY + Tg models for each partition. The six best-scor­
ing partitioning strategies were retained for further ana­
lysis. In the second step, models of sequence evolution 
were selected for individual partitions using the BIC. 
For each partition present in the six retained partition­
ing strategies, six different nucleotide substitution m od­
els w ere evaluated (F81, F81 + Tg, HKY, HKY + Tg, 
GTR, GTR + Tg). The likelihood of observing the data 
of each partition  was optim ized under these models, 
assuming the guide tree pruned to the taxa present in
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the partition. In the third step, the six partitioning stra­
tegies retained in the first step were re-tested, this time 
applying the best scoring model of sequence evolution 
identified in the second step to the partitions. Both the 
BIC and the second order Akaike Information Criterion 
(AICc) were evaluated during this step. All likelihood 
optim izations and inform ation criterion com putations 
were carried out with TreeFinder.
Bayesian phy logenetic  inference
The phylogenetic relationships among taxa were inferred 
using Bayesian inference (Bí) and maximum likelihood 
searches (ML). Bayesian phylogenetic inference was car­
ried out w ith MrBayes v.3.1.2 [84]. The analysis used 
the com posite m odel selected w ith the AICc, w ith all 
param eters unlinked among partitions. Partition rates 
were allowed to vary under a flat D irichlet prior. Five 
runs of four increm entally heated chains were run  in 
parallel (temperature increm ent = 0.5). The chains were 
run for 35 million generations, with a sample frequency 
of 1000. MrBayes’ default priors, proposal probabilities 
and other settings were used. Convergence of the runs 
was assessed by visual examination of param eter traces 
and m arg inal densities using T racer v.1.4 [85]. An 
appropria te  b u rn -in  value was determ ined  using the 
autom ated m ethod proposed by Beiko et al. [86]. Their 
method was applied to each run individually, with a slid­
ing w indow  of 1000 sam ples, yielding five d ifferent 
burn-in  values. Because two out of the five runs con­
verged on to  subop tim al likelihoods and a th ird  run  
yielded low effective sample sizes (ESS) for a subset of 
param eters despite convergence of the likelihood, the 
posterior distribution of trees was summarized from the 
M CM C o u tp u t of the rem aining two runs using the 
highest burn-in  value obtained across the two runs in 
question.
M axim um  likelihood searches
M axim um  likelihood analyses were carried  ou t w ith 
TreeFinder. This software allows tree searches under 
complex (partitioned) models within reasonable time by 
implementing fast tree search heuristics, with the trade­
off th a t searches can get s tuck  on local likelihood 
optima. To achieve a m ore expansive coverage of tree 
space, tree searches were started  from  a m ultitude of 
s ta rt trees. The search  procedure  consisted  of th ree 
rounds of ML searches from different start trees. First, 
100 start trees were generated by random ly modifying 
the guide tree used for model selection by a num ber of 
nearest neighbor interchange (NNI) steps. The am ount 
of change from  the guide tree was 200 and 500 NNI 
steps (50 replicates each). ML tree searches were carried 
ou t from  each of these s ta rt trees. O ut of the set of 
resulting ML trees, the three with the highest likelihood 
were retained for a second round of NNI modifications 
(100 N NI steps, 30 replicates). ML searches starting

from the new set of start trees were carried out and the 
three highest-scoring trees were used for a last round of 
NNI modifications (20 and 50 NNI steps, 20 replicates 
each). The tree  w ith the h ighest likelihood resulting 
from the last round of analyses was selected as the ML 
tree. All analyses used the com posite m odel selected 
w ith the BIC, bu t param eter estim ates were re-op ti- 
m ized during  the ML search. The second-level tree  
search  was used and p a rtitio n  rates were optim ized 
under the proportional model. Branch support was cal­
culated by non-param etric  bootstrapping (1000 repli­
cates). Bootstrap replicates were started  from  the ML 
tree.
Topological hypo thesis tes ting
The presence of a few non-m onophyletic orders in our 
phylogenetic tree prom pted us to evaluate the statistical 
significance of th is  non-m onophyly . Sim ilarly, we 
wanted to evaluate the statistical significance of differ­
ences between the ML and Bí tree and of trees in which 
poorly resolved regions were collapsed into a hard polyt­
omy. W e used the approxim ately unbiased (AU) test, 
which is based on nonparam etric resampling using the 
likelihood criterion, to identify a 95% confidence set of 
trees from a larger set of trees. The large set of trees we 
used in this analysis included the ML tree, the eight 
alternative topologies from Table 1, and the ML trees of 
1000 bootstrap searches.

The alternative topologies were inferred as follows. 
T he Bayesian tree  was taken  from  the Bí described  
above. For each of the non-m onophyletic  orders, we 
inferred a ML tree in which the order was constrained 
to be m onophyletic. For each of the poorly resolved 
regions (see below), we constructed a tree in which the 
region in question was collapsed and subjected this tree 
to likelihood optim ization. For all trees, site-specific 
likelihoods were calculated with TreeFinder [83]. Subse­
quently, the AU test was performed with CONSEL v.O.li 
[87], using default settings. We verified whether each of 
the eight alternative topologies was present in the 95% 
confidence set.
C haracterization  o f poorly  su p p o r te d  reg ions
In order to identify future research priorities, we aimed 
to (1) identify poorly supported regions of the phyloge­
netic tree, (2) summarize the current data availability for 
the taxa in question and (3) estimate how hard it may 
be to resolve the poorly supported regions.

Branch support (ML bootstrap values) was visualized 
w ith T reeG rad ien ts  v .l .04, allowing stra igh tfo rw ard  
visual identification of poorly supported regions [88]. By 
plotting ML bootstrap values on the Bayesian phyloge­
netic tree, regions featuring poor support can resu lt 
either from  genuinely low bootstrap  support or from  
disagreement between Bayesian and ML results, both of 
which are undesirable.
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First, we tested  the possibility th a t the poorly sup ­
po rted  regions rep resen t hard  polytom ies. For each 
poorly supported region, we constructed a tree in which 
the region in question was collapsed. These trees were 
included  in an AU tes t to  verify w hether they  are 
included in the 95% confidence set of trees (see previous 
section). If a collapsed tree is no t included in the 95% 
confidence interval, its likelihood is significantly lower 
than that of the uncollapsed tree, which can be taken as 
an ind ica tion  th a t the u n su p p o rted  reg ion  does no t 
represent a hard polytomy [22].

For further, more detailed analyses, the well-supported 
lineages emanating from them  were identified and desig­
nated as OTUs. W e constructed a partial data availabil­
ity m atrix  for each poorly  su p p o rted  region. This 
involved the genera tion  of consensus sequences for 
O TU s consisting of m ore th an  one red  algal family. 
From this matrix, we calculated the fraction of po ten­
tially informative loci currently available for analyzing 
the relationships among the OTUs of interest. A poten­
tially informative locus is defined as a locus that is pre­
sent for at least four OTUs of interest. The fraction of 
potentially informative loci is simply calculated as the 
num ber of potentially inform ative loci divided by the 
total num ber of loci considered in this study (14). The 
num ber of p o ten tia lly  in form ative loci alone is no t 
always a good indicator of data availability because there 
also has to be sufficient taxon overlap between loci to 
yield resolved trees. For that reason, we calculated a sta­
tistic representing the am ount of taxon overlap between 
the potentially informative loci. This was done by creat­
ing an intersection graph of the potentially informative 
loci [89]. The edges connecting  d ifferen t loci were 
weighted by the num ber of taxa shared between them, 
divided by the to tal num ber of taxa. The statistic we 
will rep o rt as a m easure of data overlap is the m ean 
edge weight of the intersection graph. It is im portant to 
note that only potentially informative loci were used to 
construct the graphs and calculate the statistics.

In an attem pt to further quantify how difficult it may 
be to resolve the poorly supported  regions, two addi­
tional statistics were calculated. First, the relative age of 
the regions was inferred by fitting a relaxed molecular 
clock model. We fit a lognormal model of rate evolution 
w ith PhyloBayes [90], based on the Bayesian phyloge­
netic tree, a dataset consisting of the four m ost densely 
sampled loci (EF2, 18S rDNA, 28S rDNA &rhcL), and 
giving the root node an arbitrary age of 1. Second, we 
calculated the node density for each region. O ur index 
of node density consisted of the num ber of nodes that 
would need to be present in the region for it to be fully 
bifurcating, divided by the time span of the region and 
rescaled so that the region with the highest node density 
had a value of 1. Our node density index is proportional

to  the  ra te  of cladogenesis in  the  region, w ith  high 
values indicating fast cladogenesis, making the region in 
question more difficult to resolve.
Future d a ta  requ irem en ts
W e carried out a set of sim ulation studies to estimate 
how m uch data will be needed to  resolve the poorly 
supported regions. Our approach consisted of both non­
param etric and param etric bootstrapping using align­
m en ts of d ifferen t lengths and evaluation of the 
resolution of resulting trees as a function of alignment 
length. The following analyses were carried out for each 
region separately.

First, a subalignment and a subtree of the region were 
generated by treating the well-supported lineages em a­
nating from  the poorly supported  region as OTUs. If 
lineages emanating from the region comprised multiple 
taxa, the entire clade was replaced with a single branch. 
The length of this branch was set to be the average path 
length between the ancestral node and each of the des­
cendent leaf nodes. All subtrees were strictly bifurcating 
but typically included some very short internal branches. 
In the regional alignments, OTUs containing m ultiple 
taxa w ere rep resen ted  by m ajo rity -ru le  consensus 
sequences. Regional alignments were reduced to the set 
of potentially informative loci. One outgroup sequence 
was inc luded  w ith  each reg ional alignm ent. This 
sequence belonged to the sister group of the poorly sup­
ported  region. If the sister group contained m ultiple 
taxa, a consensus sequence was used as explained above.

For b o th  the  n o n p aram etric  and p aram etric  
approaches, sequence alignm ents of different lengths 
between IO2 and IO6 nucleotides were generated, with 
100 replicate alignments per alignm ent length. For the 
nonparam etric approach, the  regional alignm ent was 
resampled with replacement until the desired alignment 
length was reached. For the parametric approach, align­
m ents of the desired length were generated by simulat­
ing sequence evolu tion  along the regional sub trees 
under a GTR + I + T4 model with Seq-Gen v .l.3.2 [91]. 
The param eters used for the sim ulation were obtained 
by optimizing a GTR + I + T4 model for the complete 
alignment and ML tree with RAxML [92]. A third set of 
simulations aims to introduce extra realism in the para­
metric simulations by introducing missing data. Missing 
data was introduced in the same am ount and distribu­
tio n  am ong sites and taxa as in  the em pirical 
alignments.

All alignm ents were subjected  to  ML phylogenetic 
inference in RAxML, using a GTR + I + T4 model. We 
sum m arized the 100 resulting ML trees per condition 
by constructing a strictly bifurcating majority rule con­
sensus tree (i.e. without a lower limit on clade presence). 
The average bootstrap value on the majority rule con­
sensus tree  was p lo tted  as a fu nc tion  of alignm ent
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length to evaluate how data availability affects tree reso­
lution. All sim ulations were repeated five times, thus 
yielding five average bootstrap values per condition to 
have an idea of the spread of the results. The entire 
sim ula tion  experim en t am oun ted  to  ML analysis of 
67,500 random  alignm ents (5 regions • 3 sim ulation  
types • 9 alignm ent lengths • 100 replicates • 5 repeti­
tions) and was carried out on Ghent University’s central 
HPC facility.
Spectral partition ing
W e examined potential conflicts in phylogenetic signal 
between natural data subdivisions by comparing them  to 
spectral partitions. The natu ral subdivisions we used 
were gene type (coding for protein or ribosomal RNA), 
genom e (nuclear, m itochondrial or plastid) and locus 
(16S, 18S, 23S, 28S, EF2, coxi, psaA, psaB, psbA, psbC, 
psbD, rbcL, rbcS 8itufA). Spectral partitioning is a tech­
nique th a t p a rtitions alignm ents based on character 
compatibility. More specifically, it clusters the characters 
with the highest average pairwise compatibility, so that 
characters in  each cluster are m ore com patible w ith 
each other than  they are w ith characters in the other 
clusters [46]. If the relative contribution of spectral par­
titions differs strongly between gene types, genomes or 
loci, this can be taken as evidence for conflict between 
them . If, on the o ther hand, sim ilar p ro p o rtions are 
found, the conflict w ithin the natu ral data partitions 
exceeds the conflict between them, indicating that the 
different natural partitions contain similar phylogenetic 
signal.

We applied spectral partitioning to each of the regio­
nal subalignm ents separately. Analyses were run  on a 
web server [93] using the fractional compatibility scor­
ing procedure. Each subalignm ent was analyzed four 
times to allow spectral partitioning into two, three, four 
and five clusters. The contribution of the different spec­
tral partitions to each of the natural data subdivisions 
was assessed by plotting the fraction of sites belonging 
to the different spectral partitions for each of the natural 
data subdivisions. Phylogenetically uninform ative sites 
were not included in these calculations.

A d d itio n a l file  1: M o d el selection procedure. Illustration o f  th e  m odel 
selection  p rocedure , including results.
Click here for file
[ h ttp ://w w w .b iom edcen tra l.com /con ten t/supp lem en tary /1471 -2148 -10 - 
16-51 .PDF]

A d d itio n a l file  2: M ax im u m  like lihood p h y log eny Tree inferred from 
th e  14-locus data  m atrix using ML inference, w ith ML b o o ts trap  values at 
internal nodes.
Click here for file
[ h ttp ://w w w .b iom edcen tra l.com /con ten t/supp lem en tary /1471 -2148 -10 - 
16-S2.PDF]

A d d itio n a l file  3: Partial data  ava ilab ility  m atrices fo r  five  poo rly  
su p p o rted  regions. Four statistics describ ing  cu rren t da ta  availability 
and  th e  relative difficulty o f  resolving th e  region are given below  th e

m atrices (see also Table 2 in m ain paper). The proportion  o f potentially  
inform ative loci an d  th e  data  overlap  am o n g  potentially  inform ative loci 
m easu re  cu rren t da ta  availability. Potentially inform ative loci are th o se  
th a t are p resen t for m ore  than  th re e  o f th e  OTUs in th e  matrix. Data 
overlap  is given as th e  average  relative e d g e  w eig h t in th e  intersection 
g raph  o f  inform ative loci (see m ethods). The relative a g e  and  n o d e  
density  m ay indicate how  difficult resolving th e  region will be. The 
relative a g e  rep resen ts how  an c ien t th e  region is, on a scale from  zero  
(the present) to  o n e  (the roo t o f our tree). The n o d e  density  index is 
p roportional to  th e  n u m b e r o f  n o d es  th a t n ee d  to  b e  resolved per tim e 
un it (see m ethods).
Click here for file
[ h ttp ://w w w .b iom edcen tra l.com /con ten t/supp lem en tary /1471 -2148 -10 - 
16-S3.PDF]

A d d itio n a l file  4: Spectral p artitio n in g  The five regional 
suba lignm en ts  w ere  sub jec ted  to  spectral partitioning, a te ch n iq u e  th a t 
partitions a lignm ents based  on characte r com patibility, th e  sites m ost 
com p atib le  w ith each  o th e r  en d in g  up  in th e  sam e partition. In o rder to  
identify po tentia l da ta  conflict b e tw e en  g e n e  types (protein an d  rDNA), 
g e n o m e s  (m itochondrial, nuclear an d  plastid) an d  individual loci, w e 
p lo tted  th e  relative con tribu tion  o f each  spectral partition for each  g e n e  
type, g e n o m e  and  locus. If th e  relative con tribu tion  o f  spectral partitions 
differs strongly  b e tw e en  g e n e  types, g en o m e s  or loci, this can  be taken 
as ev id en ce  for conflict b e tw e en  them . If, on th e  o th e r  hand, similar 
p ropo rtions  are found, th e  conflict w ithin th e m  exceeds th e  conflict 
b e tw e en  them , indicating th a t th e  d ifferent g e n e  types, g en o m e s  and 
loci contain  similar phy logenetic  signal. N ote th a t th e  spectral partitions 
are ca lcu la ted  for each  region separately  an d  spectral partitions should  
th u s  n o t b e  co m p ared  b e tw e en  regions as any given site m ay have 
b ee n  assigned  to  d ifferent partitions for d ifferent regions.
Click here for file
[ h ttp ://w w w .b iom edcen tra l.com /con ten t/supp lem en tary /1471 -2148 -10 - 
16-S4.PDF]

A d d itio n a l file  5: D ata  m atrix  w ith  G enBank accession num bers List 
o f  s eq u en ce s  inc luded in our a lignm ent, w ith G enbank  accession 
num bers  an d  th e  species from  w hich they  originated.
Click here for file
[ h ttp ://w w w .b iom edcen tra l.com /con ten t/supp lem en tary /1471 -2148 -10 - 
16-S5.PDF]
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