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Abstract

Background: Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to 
sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced 
by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these 
artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their 
potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess 
the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the 
hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban 
infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from 
maintenance and renovation works.

M ethodology/P rincipal Findings: Maintenance caused a marked decrease in the cover of dominant space occupiers, such 
as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. 
These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental 
application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or 
summer. We use these results to identify possible management strategies to inform the improvement of the ecological 
value of artificial marine infrastructures.

Conclusions/Significance: We demonstrate that some of the impacts of globally expanding marine urban infrastructures, 
such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven 
planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of 
policies that consider the ecological features of built infrastructures and the fundamental value of controlling biodiversity in 
marine urban systems.
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Introduction

M arine landscapes have been a ltered globally by the introduction 
o f a  variety o f m an-m ade infrastructures, such as seawalls, dykes, 
breakwaters, groynes, jetties, pilings, bridges, artificial reefs, offshore 
platform s, an d  m arine energy installations [1-4], In  Europe, 
22000 km~ o f the coastal zone is covered in concrete o r asphalt, 
and  about 50%  of the M editerranean shorelines bordering  Spain, 
France, and  Italy are dom inated  by artificial infrastructures (more 
th an  1500 km), most o f  w hich are developed for harbours and  ports 
([5] an d  references therein). In  the ETSA, arm ouring  covers m ore 
th an  50% o f the coastline in some estuaries and  bays ([4] and 
references therein); overall, about 21% o f the 759 km  coastline of

Florida and  12% of the 1763 km  coastline o f  California have been 
altered by  arm ouring, or addition o f bulkheads, revetm ents, o r o ther 
coastal infrastructures. Similarly, in the W estern Pacific, 27% o f the 
coastline in  Ja p a n  [6] and  m ore than  50% o f the shores o f Sydney 
H arb o u r [7] have been  altered by either coastal infrastructure or 
arm ouring. It is expected that m arine infrastructures will further 
proliferate in response to burgeoning coastal populations, expansion 
o f coastal cities, and  greater threats from  climate change, storm 
surges and  sea level rise [3,4,8],

As m arine artificial substrata support m any  species colonising 
epibiota, it has been  suggested that these artificial substrata m ay 
represent adequate mimics o f na tura l hard-bo ttom  habitats [8-9], 
or valuable surrogates for the habitats that they replace [10-11],
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How ever, studies from  different regions o f the w orld and  from 
different types o f artificial infrastructures suggest th a t artificial 
surfaces do no t function as natu ral rocky habitats [12-15], and  
often in troduce surfaces an d  species th a t are extraneous to the 
na tura l environm ents [16-18]. T hese studies docum ent differences 
in the structure o f assemblages inhabiting  artificial infrastructures 
com pared to nearby  natural rocky shores [15,19-22], including 
low species and  genetic diversity [23-25], rarity  o f  particular 
functional groups, such as large grazers and  predators [24], 
different ecological processes [15,26-30], an d  assemblages rep re
sentative o f the early stages o f succession, com prising opportunis
tic, weedy, an d  invasive species [15,17,31-34],

In  terrestrial systems, the prevalence o f opportunistic and  
invasive forms in u rban  areas has often been  a ttribu ted  to severe 
disturbances, typical o f hum an-dom inated  systems [35-39], such 
as those linked with sod use, deforestation, fires, construction 
activities, gardening, and  recreation, am ong others. D isturbances 
(both na tura l and  anthropogenic) are also im plicated in the 
prevalence of opportunistic and  non-indigenous species in a 
variety o f m arine systems [e.g. 40 -44], How ever, the role o f 
anthropogenic disturbances in facilitating the spread o f opportu 
nistic, and  invasive species on  artificial infrastructures is relatively 
unexplored [32]. M arine  artificial infrastructures tend  to be 
subjected to high levels o f disturbances from  bo th  na tura l factors 
[e.g. storms and  sedim ent scour, w hich are especially intense on 
infrastructures constructed for protection  against erosion and  
flooding [21,45] and  anthropogenic factors [e.g. harvesting and  
tram pling, w hich are intense on  m any artificial infrastructures due 
to their accessibility from  highly tourist beaches [46-47].

A nother com m on and  particularly  severe form  o f disturbance, 
w hich is unique to artificial infrastructures, is represented  by 
m aintenance works. T he failure rates o f  coastal infrastructures as a 
result o f scour, underm ining, outflanking, overtopping, and  
ba tte ring  by storm  waves are relatively high, and  there  is an 
ongoing need  for repair and  m aintenance during  the lifetime of 
the structure [48], T h e  ecological consequences o f repair and  
m aintenance for the b io ta  o f artificial infrastructures are currently  
unknown.

W e analysed how the expansion o f opportunistic an d  invasive 
forms on coastal defence infrastructures along the Italian side o f 
the n o rth  A driatic Sea (Italy) could be  influenced by the continued 
repair an d  m aintenance, W e m easured (1) the extent, frequency, 
and  tim ing o f occurrence o f periodical m aintenance, and  (2) 
quantified the response trajectories o f assemblages following 
m aintenance. Since breakw aters in troduce b o th  sheltered (i.e. on 
the landw ard  sides) and  exposed (on the seaw ard sides) substrata 
th a t support different assemblages [17,31-32], we also tested (3) 
w hether m aintenance has different effects in these habitats. 
Finally, since recovery o f assemblages is influenced by the m ix of 
propagules, spores, an d  larvae present in the w ater colum n a t the 
tim e at w hich free space becom es available [49-50], we 
experim entally tested(4) if  d isturbance im posed a t different times 
o f the year could influence the recovery o f assemblages, and  
control the abundance o f opportunistic and  invasive forms. Results 
are used to identify possible m anagem ent strategies in an  effort to 
im prove the ecological outcom es of artificial m arine infrastruc
tures.

Materials and Methods

S tu dy  a rea
T h e  study was conducted along ~ 5 0  km  o f coast o f the north 

east Adriatic Sea (Italy), from  Pun ta  M arina  (44°45'N , 12°29'E) to 
Cesenatico (44°20' N, 12°40' E). T h e  area  is characterised by flat

sandy substrate, w ith m oderate exposure to wave action and  an 
average tidal am plitude o f ~ 8 0  cm. Average surface sea tem per
a ture  varies betw een 8°C in the w inter and  24°C in the summer.

This region is severely urbanised  [5,51], O ver the past 60 years, 
a  wide variety o f m arine artificial infrastructures have been built 
along > 6 0 %  o f this sedim entary coastline (Fig. 1A), including 
> 1 0 0  km  o f breakw aters and  groynes, > 6 0  km  of seawalls and  
> 4 0  km  o f jetties. Breakwaters (Fig. 1A), built w ith large blocks o f 
quarried  rock (1-3  m  across), are deployed a t —100—250 m  from 
the shore, have an  average length o f 100-150 m, an d  extend ~ 2 — 
3 m  above and  below the M ean Low W ater Level (MLWL). These 
breakw aters thus provide bo th  subtidal and  intertidal surfaces for 
colonisation by benthic  organism s [17,32], along bo th  wave- 
sheltered (landward) and  wave-exposed (seaward) habitats.

T h e  study focused on assemblages a t low-shore levels (—10 to 
+20 cm  relative to MLW L). A t these levels on  the shore, 
ephem eral and  weedy m acroalgae [Ulva spp.), filam entous forms, 
the in troduced green alga Codium fragile ssp. tomentosoides), and  
biofilms (comprising coatings o f m icroalgae, juvenile stages o f 
m acroalgae and  silt) are the dom inan t floral taxa on m any 
breakw aters. O th e r dom inan t faunal taxa include mussels (.Mytilus 
galloprovincialis), oysters (Ostrea edulis and  the in troduced Crassostrea 
gigas), barnacles (Chthamalus spp. and  Balanus perforatus), and  the 
lim pet Patella caerulea. D etailed descriptions o f  these assemblages 
can be found in [17,32,46,52-53].

D is tu rb an ce  reg im e
M any coastal infrastructures are constructed using quarried  rocks 

th a t move during sea storms [54], M obile rocks are  subjected to 
stresses that can  cause breakage, size reduction, or dislodgement. 
M aintenance, therefore, often involves the addition o f new  quarried  
rocks over large portions o f the defence structures to repair damages 
from  storms (Fig. IB). W e m onitored m aintenance interventions to 
breakw aters over 3 years, from  Jan u a ry  2001 to D ecem ber 2003, at 
25 reference breakwaters. T h e  breakwaters w ere selected a t random  
along 50 km  of coast. W e recorded: (1) the occurrence o f 
m aintenance interventions; (2) the time o f the year a t which 
interventions w ere carried out, and  (3) m easured the extension of 
the dam age caused by  interventions, as the proportion  (% of the 
total length) o f the breakw ater affected by  the addition o f new  rocks.

Effects o f  m a in te n a n c e
In  April 2002, extensive m aintenance was carried  ou t at 

Cesenatico (Fig. 1A). A bout one th ird  o f the breakw aters a t this 
locality were m aintained th rough  the addition  o f new  blocks over 
> 7 0 %  o f the surface. W e random ly selected 4 breakw aters am ong 
those th a t had  undergone m aintenance; 4 additional breakwaters, 
th a t were no t m aintained, were random ly selected as controls. 
Sam pling started in M ay 2002, after a  storm  stabilised the new 
blocks and  m ade sam pling safe from  risks associated with the 
potential overturning o f blocks. E ight replicate quadrats (20 x 
20 cm), random ly placed a t least 1 m  apart, were sam pled visually 
a t low-shore levels on  b o th  the landw ard  and  seaward sides o f each 
breakw ater, by using a  fram e with 25 sub-quadrats. A score from  0 
(i.e. absence) to 4%  (i.e. occupation o f the entire surface) was given 
to each taxon in each sub-quadrat, an d  the total cover was 
obtained by sum m ing over the entire set o f sub-quadrats [55]. 
O rganism s were generally identified to species level, or grouped 
into h igher taxonom ic o r m orphological groups w hen unequivocal 
identification in the field was no t possible. Sam pling was repeated  
in August 2002, an d  Ja n u a ry  and  M ay 2003 to identify the 
recovery tim e trajectory. A lthough the study was p lanned  to run  
until com plete recovery, 2 control breakw aters were m ain tained  in 
M ay 2003 and  as a  result, the experim ent was term inated.

PLoS ONE I www.plosone.org 2 August 2011 I Volume 6 | Issue 8 | e22985

http://www.plosone.org


M itiga ting the Impact o f Marine Infrastructures
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Figure 1. Human-made, coastal defence infrastructures at Cesenatico, along the Italian shores of the north Adriatic sea. A) View of 
the  study area and breakw aters from Google Earth. B) View of a breakw ater under m aintenance (photo L. Airoldi). 
doi:10.1371/journal.pone.0022985.g001

Effects o f m aintenance in relation to the exposure and  location 
o f the assemblages were analysed using PE R M A N O V A  [56] on 
Bray-Curtis similarity coefficients, calculated using fourth-root 
transform ed da ta  to preserve inform ation on relative covers o f 
species, while reducing differences in scales am ong variables. For 
the analysis, 9999 unrestricted random  perm utations o f residuals 
were used to generate P-values. T h e  analysis included the factors: 
date (random , 4 levels), trea tm en t (fixed, 2 levels: m aintained vs 
non-m aintained control), exposure (fixed, 2 levels: landw ard  is 
seaward), an d  breakw ater (random , 4 levels, nested within 
treatm ent). A m etric m ulti-dim ensional scaling (MDS) plot, 
calculated on a  m atrix  o f centroids in B ray-Curtis space (PCO; 
[56]) for each com bination  o f date, treatm ent, breakw ater, and  
exposure, was used to visualise patterns in m ultivariate data. 
Effects on  the m ost ab u n d an t taxa w ere also analysed individually 
using Analysis o f V ariance (ANOVA), including the same factors 
as in the m ultivariate analysis. C o chran ’s C test was used to assess 
the assum ption o f hom ogeneity o f variances and  da ta  were 
transform ed w hen necessary. Student -  N ew m an -  Keuls (SNK) 
tests w ere used for a  posteriori com parisons o f m eans (57).

Effects o f  t h e  t im ing  o f  d is tu rb a n c e
A m anipulative experim ent was carried  out a t Cesenatico to test 

w hether the tim ing a t w hich m aintenance, o r o ther extensive

disturbances a re  im posed affects the recovery o f the assemblages 
and  the dom inance by  w eedy m acroalgae, an d  w hether any such 
effects varied betw een the landw ard  and  seaw ard sides o f 
breakw aters and  am ong breakw aters. In  M arch  2003, 16 blocks 
> 3  m  apart, were random ly selected on bo th  the landw ard  and  
seaw ard sides o f 3 random ly chosen breakw aters (100s m  apart), 
that had  not been  m aintained during  the past 3 years. Subsets o f  4 
blocks were random ly assigned to each o f 3 different disturbance 
times (April 2003, August 2003, Ja n u a ry  2004), and  controls 
(undisturbed blocks). Assemblages were rem oved from  the entire 
surface o f each block by m eans of paint-scrapers and  brushes, in 
o rder to sim ulate the effects o f large disturbances such as those 
from  m aintenance. Blocks assigned to different times o f distur
bance w ere m arked for later relocation.

Assemblages on  treatm ent and  control blocks were sam pled in 
M ay 2004, as m ost o f  the m acroalgae on  these breakw aters are 
annual species, characterised by a peak in abundance during  the 
spring-sum m er. Four quadrats (20 x  20 cm) w ere random ly 
placed on each block and  sam pled visually, using the same 
technique described in the previous section. No further sam pling 
was possible after this date, as breakw aters were subjected to 
unscheduled m aintenance works.

T h e  effects o f  disturbances applied at different times, and  in 
relation to the exposure an d  location of the assemblages, were
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analysed using PE R M A N O V A . T h e  analysis included the factors 
treatm ent (4 levels, fixed), breakw ater (3 levels, random ), and  
exposure (fixed, seaw ard vs landw ard), crossed to each other, and  
the factor block (4 levels, random ), nested in the interaction 
treatm ent x  exposure x  breakw ater. A M D S plot, calculated on  a 
m atrix  o f centroids in Bray-Curtis space for each com bination  of 
treatm ent, breakw ater, an d  exposure, was used to visualise 
patterns in m ultivariate data. T h e  same design was used to 
evaluate the response of w eedy m acroalgae to m anipulative 
conditions using AN O V A .

Results

From  2001 to 2003, approxim ately 52%  of the m onitored  
breakw aters were m ain tained  only once, 16% were m aintained 
twice, and  32%  were no t m aintained. Almost 80% of the repairs 
were m ade during  spring m onths, from  m id-M arch  to m id-June. 
M aintenance opened a  substantial am ount o f b are  space, through 
bo th  the addition o f new  surfaces and  the disruption o f extant 
assemblages by overturning blocks (Fig. 1 B). T h e  extent o f bare  
space ju st after m aintenance varied from  ~  30-40%  on the 
seaw ard sides o f the breakw aters to > 7 0 %  on  the landw ard  sides.

Effects o f  m a in te n a n c e
T h ere  were significant effects o f d isturbance due to m ain te

nance works that varied am ong dates o f  sam pling (Table 1). 
Assemblages on m ain tained  breakw aters were different from  those 
on  non-m aintained breakw aters after 1 (May 2002), and  4 m onths 
(August 2002) after the tim e of d isturbance (Fig. 2, T ab le  1). 
Despite the lack of significant effects o f m aintenance works in 
Ja n u a ry  2003, low-shore assemblages on  m aintained an d  non- 
m aintained breakw aters differed in M ay 2003, m ore th an  a  year

Table 1. Effects of maintenance in relation to the exposure
and location of the assemblages on the breakwaters.

Source df MS Pseudo-F Pair-wise tests

Date = D 3 24310 13.49***

Treatment = T 1 68385 5.52**

Exposure = E 1 69816 6.49**

Breakwater (T)
= B(T)

6 5415 3.01*** D x T

D xT 3 7912 4.39*** May02: M ^  C, Aug02:
M ^  C,

D x E 3 7223 3.02** Jan03: M = C, May03: 
M ^  C

Tx E 1 21632 3.98** T x E

D x B (T)a 16 1802 1.93*** Landward: M C, 
Seaward: M = C

E x B a) 6 4408 1.84*

D x T x E 3 1925 0.80

D x E x B (T)a 16 2392 2.56**

Residual 420 934

The analysis is a PERMANOVA (17 variables, 4th-root transformed data) 
comparing assemblages between maintained ( = M) and non-maintained, 
control ( = C) breakwaters (Treatment, fixed factor), among dates of sampling 
(May and August 2002, January and May 2003, random factor; in May 2003, two 
control breakwaters were missing), between landward and seaward sides 
(Exposure, fixed factor) and among Breakwaters (4 levels, random factor nested 
in Treatment). a Term has one or more empty cells. * = P<0.05; ** = P<0.01, 
*** = P<0.001.
doi:10.1371 /journal.pone.0022985.t001

after m aintenance had  occurred  (Fig. 2, an d  T able  1). D isturbance 
had  consistently greater effects on assemblages on the landw ard 
th an  on the seaward sides, as shown by the significant interaction 
treatm ent x  exposure (Table 1).

O n  the landw ard  sides, m aintenance caused the im m ediate loss 
o f mussels an d  oysters an d  an  increase in the availability o f bare  
space, m uch o f w hich was im m ediately occupied by a  biofilm 
coating and, to a  lesser extent, by m acroalgae (Fig. 3; see 
Supporting  Inform ation SI for details o f  the univariate analyses). 
In  M ay 2002, 1 m onth  after the m aintenance, b are  rock and  
biofilm  together com prised > 8 0 %  o f p rim ary  substrata, com pared 
to < 3 0 %  on  control breakw aters. Bare rock an d  biofilm  cover 
decreased in M ay 2003, w hen m acroalgae becam e the dom inant 
taxa on m aintained breakw aters (Fig. 3). M acroalgae, which 
com prised ephem erals, such as Ulva spp., filam entous forms, and  
the invasive species Codium fragile ssp. tomentosoides, w ere virtually 
absent from  the landw ard  sides o f non-m ain tained  breakwaters.

O n  the seaward sides, m aintenance had less severe effects on 
mussels, initially increasing the cover o f the biofilm by only 10-20%  
(Fig. 3). However, similar to results observed on  the landw ard sides, 
m acroalgae also increased significantly on the seaward sides following 
the m aintenance (Fig. 3), reaching up to 50% cover on  m aintained 
breakwaters, com pared to < 2 0 %  on non-m aintained breakwaters by 
M ay 2003. T he increase in macroalgae on both the landw ard and 
seaward sides o f breakwaters was particularly interesting because it 
occurred not only during the spring-summer, immediately following 
the repairs, bu t also during the following spring, one year later.

Effects o f  t h e  t im ing  o f  d is tu rb a n c e
In  M ay 2004, the landw ard  sides o f breakw aters were 

extensively covered by a  th in  layer o f sediment, possibly as a 
consequence o f nearby  beach  nourishm ent. Increased  sediment 
deposition p robably  negatively affected filter-feeding organisms 
(i.e. mussels and  oysters), reducing their % cover com pared to the 
beginning o f the experim ent. Nonetheless, it was still possible to 
clearly detect differences betw een blocks th a t h ad  been  disturbed 
at different times.

In  M ay 2004, assemblages on  blocks disturbed in April and 
August 2003 were still significantly different from those on  control 
blocks (Table 2, Fig. 4). In  contrast, there were no detectable 
differences betw een assemblages disturbed in Jan u a ry  2004 and  the 
controls (Table 2, Fig. 4), despite the shorter period  o f tim e which 
had  elapsed. These patterns did no t vary am ong breakw aters or 
betw een the landw ard  and  seaward sides, despite the large natural 
variation a t this scale, and  betw een these habitats (Table 2).

T h e  abundance o f w eedy m acroalgae varied according to the 
tim e at w hich the d isturbance was applied (F3 72 = 4.58, P =  0.054, 
see Supporting  Inform ation S2 for details o f  the univariate 
analyses). T he cover o f  m acroalgae (mostly Ulva spp.) on  blocks 
d isturbed in April 2003 was approxim ately double that on 
controls, on bo th  the landw ard  and  seaw ard sides (Fig. 5). Blocks 
d isturbed in August 2003 also supported a  greater cover o f 
m acroalgae (mostly the invasive Codium fragile ssp. tomentosoides) than  
controls, bu t this was only significant on  the landw ard  sides (Fig. 5). 
Conversely, blocks d isturbed in Ja n u a ry  2004 developed m acro- 
algal coverage com parable to undisturbed controls. T h e  cover o f 
o ther species greatly varied am ong replicates and  blocks, and  it 
was no t possible to identify a  clear response to the treatm ent 
(Supporting Inform ation  S2).

Discussion

O u r results clearly indicate that intense hum an  disturbance can 
be a  m ajor determ inant o f the spread o f opportunistic species on

PLoS ONE I www.plosone.org 4 August 2011 I Volume 6 | Issue 8 | e22985

http://www.plosone.org


M itiga ting the Impact o f Marine Infrastructures

o Control landward
A Control seaward
• Maintained landward
A Maintained seaward

May 2002
Stress: 0.06

August 2002
Stress: 0.08

January 2003
Stress: 0.09

May 2003
Stress: 0.07

Figure 2. Two-dimensional plots of principal coordinate axes (unconstrained metric multi-dimensional scaling, MDS). The MDS
show s ordination o f centroids of assem blages a t the  landward and seaward sides o f replicated control (non-m aintained) and m aintained (March 
2002) breakw aters at Cesenatico in May 2002, August 2002, January 2003 and May 2003. There w ere 4 control and 4 m aintained breakw aters, except 
for May 2003, w hen there  w ere only 2 control breakw aters. Analyses w ere based on Bray-Curtis dissimilarities after 4 th -roo t transform ation of cover 
data. Stress values lower than  0.10 indicate th a t the  ordination is good  and th a t th e  in terpretation  of patterns in 2 dim ensions is reliable. 
doi:10.1371/journal.pone.0022985.g002

artificial coastal infrastructures. M aintenance - w hich is an 
extrem e disturbance - caused a  significant decrease in the cover 
o f  dom inan t species such as mussels and  oysters and  enhanced  the 
cover o f opportunistic organism s such as biofilms, an d  w eedy and  
invasive m acroalgae. T hese effects were particularly  prevalent on 
the landw ard  (sheltered) sides o f breakw aters, while assemblages 
on  the seaward (exposed) sides were only m oderately affected by 
the m aintenance.

T h e  different responses to d isturbance observed betw een the 
landw ard  and  seaw ard sides o f the breakw aters can  be in terpreted  
as a  result o f a  com bination o f factors. Firstly, disturbance per se 
was m ore severe an d  persistent on  the landw ard  sides. T h e  new 
blocks added  to the breakw aters (e.g. Fig. IB) were initially 
unstable and  were overturned by wave action, rolling most 
frequently towards the landw ard  sides. Secondly, the structure o f 
dom inant mussel beds also differed betw een the landw ard  and  
seaw ard sides o f breakw aters [32,46]: on  the landw ard  sides, 
mussels were generally larger in size and  form ed a  m ulti-layered 
m atrix, whilst on  the seaward sides, smaller individuals form ed 
m ono-layered beds [58], w hich tend  to be less susceptible to 
dislodgem ent by  m echanical disturbances [59-60], Finally, on the 
seaw ard sides, mussels, w hich w ere the dom inant space occupiers, 
recovered m ore quickly. Efficient colonisation o f space in  exposed 
habitats m ay result from  greater rates o f recruitm ent o f larvae or 
faster grow th of individuals, due to greater provision o f food 
particles in enhanced  w ater flow [61-62].

T h e  m anipulative experim ent confirm ed that the high cover o f 
weedy m acroalgae, often observed on  artificial infrastructures in 
the study region, can  result from  severe disturbances, such as those

from  m aintenance. In  addition, it showed that the cover o f these 
species varied according to the tim ing at w hich the disturbance 
was applied. T h e  cover o f m acroalgae increased by -—100% on all 
substrata d isturbed in April, and  on landw ard  substrata disturbed 
in August, while no increase was observed w hen the disturbance 
was applied in Jan u ary . T h e  m acroalgal assem blage was mostly 
com posed o f opportunistic forms, representing an  early stage of 
succession, and  invasive species. In  the study area, Ulva spp. are 
am ongst the earliest colonisers on new infrastructures, sometimes 
atta in ing up  to 100% cover 2 m onths post-construction [17].

A lthough the experim ent was not specifically designed to test if 
recovery trajectories differed depending on the tim ing of 
disturbance, our results suggest th a t the tim e at w hich the 
disturbance is applied could also influence the duration  o f recovery 
to reference conditions. Assemblages d isturbed in Ja n u a ry  2004 
were similar to controls after only 4 m onths, while assemblages 
disturbed earlier (in April and  August 2003) still differed from 
controls, despite the longer period  o f tim e w hich had  elapsed. This 
suggests a  non  - linear relationship betw een recovery and  time 
elapsed since disturbance. A possible reason why substrata 
d isturbed in Ja n u a ry  recovered m ore quickly th an  substrata 
d isturbed at o ther times could be related to the different 
recruitm ent peaks o f mussels and  m acroalgae in this region. 
Mussels tend  to recruit in late w inter to early spring [63], while 
m acroalgae recruit in the spring to late sum m er [17]. Therefore, 
the effects o f disturbances occurring  in w inter, w hen m acroalgae 
are less likely to m onopolise space and  mussel recruitm ent is about 
to start, could be short-lasting in this system. In  contrast, 
d isturbances occurring  in spring-sum m er could result in a
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Figure 3. Abundance of most abundant taxa on the study breakwaters at Cesenatico. Data are average percen t covers ±1 SE (n = 32, 8
replicate plots for each o f 4 breakw aters; in May 2003 n = 16 for controls, 8 replicate plots for each of 2 breakwaters) of Mytilus galloprovincialis, 
oysters (a mixture of Ostrea edulis and  Crassostrea gigas difficult to  separa te  by visual sampling), m acroalgae (mainly Ulva spp., Codium fragile  ssp. 
tomentosoides and filam entous forms), biofilm (a coating o f microalgae, juvenile stages of m acroalgae and silt) and bare rock (rock non occupied by 
visible m acroscopic forms) at th e  landward and seaward sides o f control (non-m aintained) and m aintained (April 2002) breakw aters, in May 2002, 
A ugust 2002, January 2003 and May 2003. Asterisks indicate significant differences betw een  assem blages on m aintained and control breakw aters as 
indicated by a posteriori SNK tests. 
doi:10.1371/journal.pone.0022985.g003
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Table 2. Effects of disturbance applied at different times and 
in relation to the exposure and location of the assemblages 
on the breakwaters.

Source o f variation d f MS Pseudo-F

Treatment = T 3 5404.1 9.11**

Exposure = E 1 2.95 11.14*

Breakwater = B 2 33544 16.50**

T x E 2 1745.5 0.94

T x B 6 593.1 0.29

E x B 2 26496 13.03

T x E x B 6 1844.3 0.91

Block a  x E x B) 72 2033.6 4.27**

Residual 288 475.75

pair-wise tests: Treatment

Comparison t P

D1, 02 18.355 0.001

Dï, D3 1.6832 0.118

D1, C 2.6654 0.032

D2, D3 4.7585 0.005

D2, C 2.9879 0.021

D3, C 1.6012 0.141

The analysis is a PERMANOVA (14 variables, 4th-root transformed data) 
comparing assemblages among breakwaters, between landward and seaward 
sides, among treatments (removal in April 2003 = D1, August 2003 = D2 and 
January 2004 = D3; unmanipulated plots =C) and among blocks, 10 months 
after the initiation of the experiment. *= P<0.05; **= P<0.01. 
doi:10.1371 /journal.pone.0022985.t002

longer-term  persistence o f m acroalgae. T h e  m ortality  o f mussels in 
spring 2004 (prior to our sam pling in May), p robably  caused by 
the large deposition o f sediments, m ay have increased the 
similarity betw een assemblages on  blocks disturbed shortly before 
(January) an d  those on  control blocks. How ever, a  similar response 
on  the sheltered sides o f breakw aters, little affected by the 
enhanced  deposition o f sediments, indicates that this was not the 
prim ary  m echanism  responsible for the patterns observed.

O u r results a re  consistent with recent w ork showing how the 
spatio-tem poral variation in the effects o f d isturbance is a  key 
factor in determ ining the success o f  opportunistic and  invasive

species in m arine systems [41,44,64], This has im portant 
implications for the design an d  m anagem ent o f h a rd  coastal 
infrastructures and, m ore broadly, for the conservation o f coastal 
areas, under increasing anthropogenic pressures. Ecological 
considerations in the design o f m arine infrastructures tend  to 
focus on construction m aterials, surface texture, and  habitat 
complexity, as engineering options to enhance the ecological value 
o f these artificial substrata [65-68]. H ere  we show that, in the long 
run , the project lifetime and  required  m aintenance are clearly one 
o f the m ost crucial factors affecting the com position, abundance, 
and  distribution o f species that colonise the infrastructures. For 
any new  infrastructure in troduced  into the m arine environm ent, it 
will take tim e for m ature  assemblages to develop [69-71]. 
Furtherm ore, any following m aintenance, o r o ther analogous 
severe disturbances, will lead  to the assembly o f com m unities that 
represent early successional stages. Im portantly , the m agnitude o f 
this im pact and  the capability o f the system to recover will largely 
depend on  the scale (spatial and  tem poral) o f the disturbance. This 
has some significant policy implications, in term s of incorporating  
aspects o f  the ecology o f the system into decisions regarding the 
tim ing o f m ajor m aintenance and  repairs.

M arine u rb an  infrastructures are often located in harsh 
environm ents an d  their lifetime w ould be significantly reduced 
w ithout routine m aintenance or periodic repairs. At the same time, 
our results suggest that approaches to m aintenance could be 
im proved, for exam ple, by carrying out repair interventions at 
specific times or in a  way th a t reduces their im pacts. For exam ple, 
in the study area, the im pact o f m aintenance on  assemblage 
dynam ics w ould be reduced if interventions are carried  out over 
the w inter ra ther than  spring. H igher operational costs w ould be 
largely offset by  bo th  environm ental an d  econom ical benefits. 
O ptim ising m aintenance w ould reduce the developm ent o f weedy 
m acroalgal species. M acroalgal blooms and  their associated 
detritus w ashed up on beaches are a  com m on problem  in u rban  
coastal areas, causing nuisance to recreational and  tourist activities 
and  leading to expensive rem oval operations [72-74], A ddition
ally, sound m anagem ent o f m aintenance activities w ould reduce 
the likelihood of the establishm ent a n d /o r  spread o f non- 
indigenous m arine species, w ith indirect benefits for fisheries and  
aquaculture. M arine  m an-m ade infrastructures are particularly  
sensitive to invasions by  non-indigenous species [31-34], O u r 
results, in accordance with those o f previous studies [32,46], 
suggest th a t the great invasibility o f artificial infrastructures m ay be 
due to the severe disturbances to w hich they are generally exposed.

2D Stress: 0.05
▲ LandApr 
▼ LandAug 
■ LandJan 
•  LandC 
A  SeaApr 
V  SeaAug 
□  SeaJan 
O SeaC

Figure 4. Two-dimensional plots of principal coordinate axes (metric multi-dimensional scaling, MDS). The MDS show s ordination of 
centroids o f assem blages a t th e  landward and seaw ard sides o f each of 3 breakw aters for each tim e of d isturbance (D1 = April 2003, D2= August 
2003, D3 = January 2004, C = unm anipulated plots). Analyses were based on Bray-Curtis dissimilarities after 4 th-root transform ation o f data collected 
in May 2004. A Stress value of 0.05 indicates th a t the  ordination is excellent and th a t th e  interpretation of patterns in 2 dim ensions is highly reliable. 
doi:10.1371/journal.pone.0022985.g004
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Figure 5. Abundance of macroalgae in the experim ental treatm ents at Cesenatico. Data are average percen t covers ±1 SE (rr = 36, 4
replicate plots for each of 4 blocks for each of 3 breakwaters) o f m acroalgae (mainly Ulva spp. and Codium fragile  ssp. tomentosoides) a t the  landward 
and seaward sides of breakw aters for each tim e of disturbance (April 2003, August 2003, January 2004, Control = unm anipulated plots). 
doi:10.1371/journal.pone.0022985.g005

Indeed, prolonged availability o f unoccupied space, or o ther 
resources generated  by  hu m an  disturbances are considered one of 
the m ain  factors facilitating the establishm ent o f  non-indigenous 
species [75].

C o nclus ions
M itigation o f im pacts o f m arine infrastructures is a  possible 

outcom e o f policies th a t explicitly consider the ecological features 
o f  artificial habitats and  recognise the fundam ental value of 
m anaging biodiversity in u rb an  settings. W e advocate that there  is 
a  need for ecological based p lann ing  an d  m anagem ent o f u rban  
artificial infrastructures. U nderstand ing  the functioning of these 
novel habitats will be key to im proving their design and  
m anagem ent and, hence, to m itigate their negative im pacts and  
enhance their contribution  to m arine  biodiversity and  ecosystem 
functioning.
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