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CHAPTER 2

REVEALING SPECIES ASSEMBLY RULES IN NEMATODE COMMUNITIES

ABSTRACT

Species assemblages are not randomly assembled from a local species pool; they often show
segregated or aggregated distribution patterns. These patterns may be attributed to both
biotic and abiotic factors. On a large scale abiotic factors may be important, while on a
smaller scale other factors such as species interactions may become essential. Here we will
focus on small-scale patterns in nematode communities. Species patterns are generally
revealed by null models based on presence/absence data. Since there is an increasing
chance of falsely rejecting the null hypothesis of a random assembled community with
increasing matrix size, we used an algorithm generating independent null matrices and
applied a large number of swap attempts to build a null matrix. Moreover, we applied an
additional test to reveal the susceptibility of the analyses of checker and the C-, T- and V-
score to a Type | error for randomised data. To minimise the influence of the abiotic
environment, we restricted the swapping algorithm of the null model to the replicate
samples of one sampling event. Since stronger species interactions are expected for species
of the same functional type, the nematode data was split according to the four feeding types
defined by Wieser (1953). Our data indicate that species tend to aggregate and co-occur
more often in some replicate samples than would be expected from a random species
distribution of the local species pool. This is in accordance with the patchy distribution
patterns known for nematode species. These aggregated patterns are also found for the
different feeding types. The factors causing these aggregated patterns cannot be established
since they are not included in the data, but the data do indicate that competitive exclusion is
unlikely at the scale of a sample core.
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INTRODUCTION

Community ecology searches for repeated community patterns to investigate how
communities are assembled from species pools (Wilson, 2001). The mechanisms behind
these patterns can be mainly attributed to two factors: the abiotic environment and
assembly rules. The latter focuses on community patterns due to interactions between
species, such as competition, facilitation, mutualism and other biotic interactions (Wilson,
2001). Species assembly rules were first formulated by Diamond (1975). These rules imply
that interspecific competition between species with similar niches results in non-random
patterns of species distributions where certain species are competed out of the community.
As a result, some species pairs may never be found together which leads to less species co-
occurrences than expected by chance. These rules have been strongly disputed and there
has been a proliferation of studies promoting, refuting and testing these ideas (Connor and
Simberloff, 1979; Diamond and Gilpin, 1982; Weiher and Keddy, 1995; Bell, 2000; Hubbell,
2001; Weiher and Keddy, 2001; Bell et al., 2006; Purves and Turnbull, 2010). In addition, it
has been shown that neutral processes considering only birth, death, random dispersal and
species richness may result in non-random patterns as well (Bell, 2000; Hubbell, 2001;
Whitfield, 2002). However, it has been realised that neutral processes alone cannot explain
the observed community patterns (Bell et al., 2006; Purves and Turnbull, 2010). Moreover,
the theory of Diamond (1975), stating that closely related species with similar attributes are
more likely to outcompete each other, is contradicted by an alternative theory, which
postulates that closely related species might have similar tolerances to environmental
stressors, and would thus rather co-occur within the same communities (Webb, 2000). This
theory has found support in marine communities, where species assemblages tend to be
more closely related than would be expected by chance (Mouillot et al., 2007; Somerfield et
al., 2009). This may indicate that environmental and evolutionary factors are determining
marine community composition, rather than species interactions.

The observations of non-randomness in species assemblages have been tested extensively
for terrestrial and freshwater ecosystems (Gotelli and McGabe, 2002). In marine habitats,
null model analyses have been applied only recently (Mouillot et al., 2007; Carranza et al.,
2010; Semmens et al., 2010). Here we focus on the free-living marine nematodes. Many
studies have investigated the biologic interactions between nematodes and other
taxonomical groups (Schrijvers et al., 1995; Debenham et al., 2004; Kristensen, 2008;
Braeckman et al., 2011). However, here we will focus on interactions generating non-
random distribution patterns of nematode species. Nematode communities are
characterised by a high local diversity (Heip et al., 1985) and within samples several species
may belong to the same trophic group and may even be congeneric. Segregated patterns can
be expected, since interspecific interactions between nematode species have been reported.
In natural conditions, competition within nematode assemblages has been suggested (Heip
et al., 1985; Yodnarasri et al., 2008) and significant interactions between species of the same
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feeding type have been observed (Alongi and Tietjen, 1980; Joint et al., 1982; Steyaert et al.,
2003). In experimental conditions, nematode species reveal complex interactions such as
competition (Alongi and Tietjen, 1980), inhibition (De Mesel et al., 2006a), facilitation (dos
Santos et al., 2009) and predation (Moens and Dos Santos, 2010). Since competitive
interaction is mostly expected within groups of species feeding on the same food type, non-
random patterns indicating segregation of species are often sought for within feeding types
or guilds (Fox and Brown, 1993; Fox and Fox, 2000; Heino, 2009). Here, the data was
subdivided into four feeding types (Wieser, 1953): selective deposit feeders (1A), non-
selective deposit feeders (1B), epigrowth feeders (2A), and predators and omnivores (2B).

The aim of this study is to investigate species co-occurrence patterns within the nematode
community, while (largely) excluding the effect of the environmental variables on the
distribution patters. When these patterns are actually observed, they may then be
attributed to species assembly rules (i.e. as a result of species interactions) rather than by
the environmental conditions. To minimise the effect of the environment on the outcome of
the analysis, the swapping algorithm was restricted to repeated samples taken at the same
location at the same moment in time (further referred to as ‘replicate samples’). Our null
hypothesis states that for all the sampling stations, the species in the replicate samples are
randomly assembled from the local species pool, with the local species pool being all the
species found in the replicate samples from one sampling event. The presence of non-
random distribution patterns are revealed by null models. In null model analysis, co-
occurrence indices derived from the real species-samples matrix are compared with the
indices derived from randomly assembled matrices. These random matrices can be
assembled in many different ways (Gotelli, 2000). Here, we applied two null models for
presence/absence data, the fixed-fixed and fixed-equiprobable model (Gotelli, 2000). Since,
there is an increasing chance of falsely rejecting the null hypothesis of a random assembled
community with increasing matrix size (Fayle and Manica, 2010), we 1) developed an
algorithm generating independent null matrices in contrast to the generally used ‘sequential’
swap algorithm (Gotelli and Entsminger, 2003) and 2) applied a large number of swap
attempts to build a null matrix. Moreover, we applied an additional test to reveal the
susceptibility of the different analyses to a Type | error.

MATERIALS AND METHODS

Species data

To investigate assembly rules within nematode assemblages, data was drawn from the
MANUELA database. Within the EU Network of Excellence MarBEF, MANUELA is a
Responsive Mode Project focusing on the meiobenthos (metazoans passing a sieve of 1 mm
and retained on a 38 um sieve). A central MANUELA database was compiled comprising the
available data on meiobenthos on a broad European scale (Vandepitte et al., 2009).
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The challenge in this study is to find non-random community patterns on a small spatial
scale, but in such a way that these patterns are little or not influenced by environmental
conditions. Replicate samples are obtained within a small spatial scale and at a certain
moment in time. These replicate samples exhibit local variations in species composition, for
similar environmental conditions. Thus, they can provide information on nematode
assemblages on a limited time and spatial scale. Consequently, only those samples with at
least two replicate samples are extracted from the MANUELA database. Time series were
considered as different samples, since seasonal fluctuations may alter the species
composition significantly (Vincx, 1989b; Vanaverbeke et al., 2004a; Franco et al., 2008).

In this way 911 replicate samples belonging to 338 sampling events (with each 2 to 4
replicate samples) were selected from the database (Fig. 2.1 and Fig. 2.4). Only those species
found in more than one replicate sample are considered, resulting in a final dataset
consisting of data on 450 different nematode species. The surface area of the samples varied
between 3.8 cm? and 23.76 cm?: 44% of the samples had a surface area of 10 cm? and 24%
had a surface area of 23.76 cm?. A small proportion of the samples (about 4 %) had a surface
area smaller than 6 cm? and for 28 % of the samples the surface area was not exactly known.
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Fig. 2.1. Location of the sampling stations ().

Tests for species assembly rules

There are two aspects in a null model test: the test statistic and the null model. The test
statistic can be any parameter summarising a community aspect which might relate to
species interactions, such as species aggregation or segregation. The main aspect in
assembly-rule work is framing a valid null model (Wilson, 2001). The null model tests if the
null hypothesis is valid. In this study, we test community patterns against a null hypothesis of
random community assembly. Our null hypothesis states that for all the samples the species
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in a core sample (i.e. a replicate sample) are randomly assembled from the local species pool
with the local species pool being the species found in the replicate samples from one
sampling event.

The null model tests whether the test statistic is significantly different from random, and
should be chosen carefully to include every feature of the observed and thus realistic data,
except the tested feature (Tokeshi, 1986). A systematic comparison of the dataset with
different null models may help to reveal random or non-random distribution patterns in the
species data. Therefore, two null models were developed using the Matlab software
package.

Indices for revealing assembly rules

Several indices have been developed to summarise patterns in species distributions. Here, 4
indices based on presence/absence data are considered: Checker (Diamond, 1975; Gotelli,
2000), the C-score (Stone and Roberts, 1990), the T-score (Stone and Roberts, 1992) and the
V-statistic (Pielou and Robson, 1972 in Schluter, 1984).

The C-score and Checker are commonly used indices (Gotelli and Rohde, 2002; Ulrich, 2004;
Sanders et al., 2007; TomasSovych, 2008; Carranza et al., 2010; Semmens et al., 2010; Kamilar
and Ledogar, 2011). Checker is the number of species pairs which never co-occur and form
perfect checkerboard patterns (Diamond, 1975; Gotelli, 2000). The C-score indicates how
species tend to avoid each other (‘checkerboardness’) (Stone and Roberts, 1992) and is a
measure of species segregation (Stone and Roberts, 1990):

238 X (i) (rj—Tip)
S(5-1)

C — score = (Eqg. 2.1)

where § is the number of species, 1; is the number of sites where species i occurs and r;; is
the number of sites where both species i and j occur. In a competitively structured
community, the C-score should be significantly larger than expected by chance. The T-score
on the other hand measures how species tend to aggregate (‘togetherness’) (Stone and
Roberts, 1992):

S ¢S
2Y 1 X Tij(N+Tij—7i—7))
S(s-1)

T — score = (Eqg. 2.2)

where N is the total number of samples.

The V-score is as an index for species association in samples. V is calculated as follows
(Schluter, 1984):

N _(1;-T)
NIL (17N
with T; the number of species in replicate sample j and T the observed mean number of
species per replicate sample. A value larger than 1 indicates that the species co-vary

positively, while if V is smaller than 1 the species co-vary negatively (Schluter, 1984).

31



CHAPTER 2

Checker is most prone to measurements errors since a single occurrence can destroy a
perfect checkerboard pair, while the C-score and the V-ratio are more robust and patterns
can still be detected in noisy datasets (Gotelli, 2000).

The Null Models

Null models provide tools for testing non-standard hypotheses about patterns in ecological
data (Gotelli, 2000). The general idea is that the original index of the real data matrix is
compared with indices calculated from randomised data. There is always a trade-off
between generalism and realism of the null model (Gotelli, 2000). A general null model
without any constraints easily rejects the random null hypothesis. Thus, the null model fails
to include obvious community features and reveals a non-random pattern. This is a Type |
statistical error and should be avoided at all times. By introducing more of the original
structure into the model, the model becomes ecologically more realistic. However,
simulations will closely reflect the observed data and the null hypothesis will never be
rejected if too much structure is incorporated in the model. In other words, the test is too
conservative and produces a Type |l error. Thus, the community is in fact different from
random, but the null model is not capable of revealing this pattern (Wilson, 2001).

On a large scale, a pattern will always be discerned in the data due to environmental drivers
(Chapter 1, Fig.1.3). Consequently, the influence of the environment should be excluded as
much as possible when these patterns are investigated. This is achieved here by using
replicate samples; replicate samples are obtained from the same station and are assumed to
reflect similar environments. Thus, differences in species composition between replicate
samples will be less influenced by the environmental conditions, but more likely by other
factors.

Since more competitive interaction is expected within feeding groups, the original dataset
was split according to the four feeding groups defined by Wieser (1953).

Due to data limitations the null model used in this study is based on the assumption that the
volume of the individual replicate sample is small enough to allow species interactions, while
the distance between the replicate samples is large enough to exclude species interactions
and is still small enough to reduce the differences in environmental conditions. Because of
the small size of the nematodes, this is an important consideration. Assumptions for
interactions within a replicate sample cannot be deduced for this data since the nematode
community is identified for the whole replicate sample and not for patches within the
replicate sample. For some replicate samples data is available on the vertical species
distribution at different depths in the sediment (slices). It is well known that nematode
communities change with sediment depth: this may be attributed to both environmental
conditions (Soetaert et al., 1994; Steyaert et al., 1999) and competitive or predatory
interactions (Joint et al., 1982; Steyaert et al., 2003). Thus, these vertical environmental
gradients will confound the distinction between the influence of abiotic and biotic factors on
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the species distribution, while it is the purpose of this study to find patterns which are little
or not influenced by environmental gradients.

The swapping algorithm

Null model analyses are based on binary presence/absence matrices where each row
represents a species and each column a site, and each value indicates presence (1) or
absence (0). Gotelli (2000) described nine different swapping algorithms, we applied two of
them which are commonly used (Sanders et al., 2007; Tomasovych, 2008): the Fixed-Fixed
(Swap1l) and Fixed-Equiprobable (Swap2) approach.

For the first approach the matrix elements are reshuffled, but row and column totals of the
original matrix are preserved (Connor and Simberloff, 1979; Gotelli and Entsminger, 2003;
Kamilar and Ledogar, 2011) (Swap1l). This has the following ecological background: setting a
fixed row total will ensure that the number of occurrences of each species in the null
communities is the same as in the original dataset (Gotelli, 2000). Thus, rare species will
remain rare and common species remain common. Setting a fixed column total ensures that
species poor sites, will remain species poor. Since the values of the number of species in a
replicate sample (T;) and the number of sites where species i occurs (r;) remain the same
with this algorithm, the V-score (Eq. 2.3) of the null models will have the same value as the
V-score of the original data (Gotelli, 2000) and no pattern can be revealed. Therefore, the V-
score was not considered for Swap1.

For the Fixed-Equiprobable approach, only the row totals are kept constant, and the
replicate samples are considered to be equiprobable which can eliminate observed
differences in species richness of replicate samples (Swap2). This null model approach is thus
less conservative than the first one and it seems to produce good results for sample data
collected in the field (compared to island data) (Gotelli, 2000).

For Swap1 the presence/absence data were transposed with the swap algorithm suggested
by Gotelli (2000). In the data matrix submatrices of the form:

2 olerly 3

are randomly chosen and zeros and ones are swapped. In this way row and column totals are
kept constant, but the overall matrix changes. Here, the submatrices are chosen within the
replicate samples of a sample. Thus, species can only shuffle between replicate samples and
species from one sampling site cannot move to another sampling site. For each of the 338
samples (with each 2 to 4 replicate samples) 1000 swapping attempts were applied. Thus to
create one null model 338 000 swapping attempts have been made. This is well above the
commonly used value of 5000 (Gotelli and Entsminger, 2005) and the recommended value of
50 000 for large matrices (Fayle and Manica, 2010). Increasing the number of swaps
decreases the Type | error (Fayle and Manica, 2010). Moreover, in our case every null model
is developed independently, while the null models generated by the ‘sequential’ swap
algorithm (Gotelli and Entsminger, 2003) are non-independent since each new null matrix is
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generated based on the one before and differs from it by only 4 matrix elements (Gotelli and
Ulrich, 2010). This implies that more null matrices are needed in case of a ‘sequential’ swap
algorithm to obtain unbiased estimates of significance values (Fayle and Manica, 2011).

The above described indices were then calculated for each null matrix. This was repeated for
999 null matrices (Gotelli, 2000; Carranza et al., 2010).

For Swap2, the swapping algorithm is somewhat easier. Only the row totals have to remain
the same, thus a species can move from one replicate sample to another and the species
richness of the replicate samples can change, but the number of observations for each
species remains constant. One restriction is added to this swapping algorithm: if the
swapping would result in replicate samples with no species, then the swap is not allowed,
since degenerate matrices may increase the frequency with which the null hypothesis is
rejected (Gotelli, 2000), and may thus enhance Type | error.

Gotelli (2000) showed that both swapping algorithms have good power for detecting non-
random patterns in noisy datasets for Checker, the C-score and the V-ratio and have a low
chance of falsely rejecting the null hypothesis. These swapping algorithms were applied to
the complete dataset and to the datasets for the four feeding types.

An additional advantage of restricting the swapping algorithm to the replicate samples is
that replicate samples were processed according to the same methodology. Thus,
differences in sampling techniques between researchers and institutes will only have a
minor influence on the final result.

Null Model Check

Recent research by Fayle and Manica (2010) showed that the probability of incorrectly
detecting a signal in truly random data (Type | error) for the different indices increases with
matrix size. They reviewed 47 publications, and it seems that our database is larger than any
of the databases analyzed in these publications. Therefore, we developed an additional test,
to check for Type | errors related to the structure of our database or related to the swapping
algorithm. A reliable null model should only reveal significant differences caused by non-
random distributions of species. Thus, if an artificial data matrix is supplied to the swapping
algorithm, the null model should not reveal significant differences for the test statistics
based on the randomised data matrix. Otherwise these significant differences should be
attributed to other factors aside non-random structure in the species assemblage, such as
errors inherent to the swapping algorithm or due to the specific structure of the data matrix.
To keep the test within realistic constraints the artificial data matrix was composed by
keeping the same number of species in a replicate sampling, but by randomly assigning
species to a replicate sample. Thus, species aggregations or segregations should not be
revealed for this matrix. For this artificial dataset, the test statistics are calculated and
compared with the results of null models created with the swapping algorithm described
above. To check the reproducibility of this test, it was repeated for three artificial data
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matrices. Since the test is repeated three times and the computation of null models is time
consuming, the number of null models was restricted to 500. No significant differences
should be detected by this test.

RESULTS

Null model check

The null model check for the artificial datasets for the first swapping algorithm with
presence/absence data (Swap1, Fixed-Fixed), reveals no significant difference for any of the
test statistics (Table 2.1). The second swapping algorithm (Swap2, Fixed-Equiprobable)
however, reveals significant differences for the C-, T- and V-score for the artificial data
matrix (Table 2.1). The C-score is larger than expected for a random community, while the T-
and V-score are smaller than expected by chance; indicating segregated species patterns.
The Checker-index shows no unequivocal response. In one case it is significantly larger than
expected by chance, thus indicating that the number of species pairs forming perfect
checkerboard patterns is larger than expected for a random distribution, while in the two
other cases it cannot be distinguished from random.

Swapping algorithm Results for 3 artificial data matrices

Test
statistic
Fixed-Fixed C-score 2260.0 2259.4 2259.1
(p/a) T-score 2828.2 2827.6 2827.3
Checker 2724.0 2730.0 2785.0
Fixed-Equiprobable C-score 2259.8 (>) 2259.3 (>) 2259.4 (>)
(p/a) T-score 2828.0 (<) 2827.5 (<) 2827.6 (<)
V-score 6.97 (<) 6.97 (<) 6.97 (<)
Checker 2803.0 (>) 2794.0 2800.0

Table 2.1. Values of the test statistic for the artificial data matrices; values in bold indicate
that the test statistic of the artificial data matrix is significantly different from the null
models (p<0.05 for a two-sided confidence interval), (>) and (<) mean that the test statistic of
the artificial matrix is respectively significant larger or smaller than expected by chance.

Results for the real data

Presence/absence data

The two swapping algorithms applied for the presence/absence data are thoroughly

investigated by Gotelli (2000). He found that these two swapping algorithms have the best
properties concerning Type | and Type Il errors. However, Fayle and Manica (2010) showed
that the algorithm may be prone to Type | errors for large datasets. The most conservative
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null models (Fixed-Fixed) reveal no significant difference for the C-score and the T-score (Fig.
2.2) indicating that no species segregation and aggregation is apparent in the data. On the
other hand, the number of perfect checkerboard pairs is significantly higher compared to the
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Fig. 2.2. Comparison of the two sided 95% confidence interval of the 999 null models (dotted
lines) based on Swap1 (Fixed-Fixed) with the original value (full line) for the three community
parameters (C-score, Checker and T-score) for all the data and the four feeding types.
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null models. Thus, there are more checkerboard pairs in the real data matrix than would be
expected by chance. Checker is a parameter which may be prone to Type Il error (Gotelli,
2000), but it has good Type | characteristics and significant differences should be reliable
(Gotelli, 2000; Carranza et al., 2010).
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Fig. 2.3. Comparison of the two sided 95% confidence interval of the 999 null models (dotted
lines) based on Swap?2 (Fixed-Equiprobable) with the original value (full line) for the four
community parameters (C-score, Checker, T-score and V-score) for all the data and the four
feeding types.
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The less conservative test (Fixed-Equiprobable) shows significant differences for the C-score,
the T-score and the V-score, but not for Checker (Fig. 2.3): The C-score of the real data
matrix is significantly smaller than the random values, while the T-score and V-score are
higher than expected by chance. As demonstrated in the previous paragraph, this swapping
algorithm results in Type | error for the C-, T- and V-score, thus caution is necessary when
interpreting these results. However, for the real data matrix the opposite pattern is found
compared to the artificial data matrices. Only the T-score for the 1A feeding type reveals no
significant pattern.

The C-score and Checker indices quantify co-occurrence and can produce the same results
(Gotelli, 2000), which is clearly not the case here. The C-score with Swap2 indicates that the
species tend to aggregate more than expected by chance. In contrast, the Checker index
with Swap1 indicates that there are more checkerboard pairs than would be expected by
chance. However, Stone and Roberts (1992) found that a high ‘checkerboardness’ may be
the result of aggregated species. To resolve this apparent contradiction they developed the
T-score which in our case confirms the presence of aggregated communities. The overall V-
score for the entire area is larger than one indicating that species co-vary positively.

DISCUSSION

Algorithm

The Fixed-Fixed algorithm for presence/absence behaves well for the artificial datasets: the
indices calculated for the artificial data matrix are not significantly different from the indices
calculated for the null models. However, the Fixed-Equiprobable algorithm for
presence/absence data reveals that species tend to co-occur less than expected by chance,
while such patterns are not supposed to be present in the artificial dataset. The presence of
this Type | error may be due to the large size of our datasets (Fayle and Manica, 2010). The
large amount of data triggers thus some unexpected problems. Fayle and Manica (2010)
attributed these problems to 1) the ‘sequential’ swapping algorithm (resulting in non-
independent null matrices) generally used in null model analysis and 2) the use of too few
swappings to construct one null matrix. In our research we did not apply the ‘sequential’
swap: each null matrix was built independently from the previous null matrix and the
number of swaps to construct one null model was increased from 5000 to 338 000 swapping
attempts. This resulted in a time-consuming null model analysis, which we expected to be
less prone to a Type | error for the different indices. Nevertheless, a significantly smaller T-
score and a significantly larger C- and V-score are found for the randomised data.
Remarkably, the opposite pattern, a higher co-occurrence than expected by chance, was
found for the real data matrix. Thus, notwithstanding the bias of the swapping algorithm and
the matrix structure towards segregated communities, the real data overrules this bias and
indicates that species tend to co-occur in some replicate samples, forming aggregated
patterns (Fig. 2.4).
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This pattern is not found for the first swapping algorithm: when the total number of species
in the replicate sample is kept constant, no co-occurrence patterns are revealed. This can be
related to the fact that the algorithm is too conservative to reveal any non-random
distribution patterns. However, it is possible that the co-occurrence patterns revealed by
Swap?2 are caused by the differences in species richness between the replicate samples and
less by the presence of specific species pairs.

The V-score of the presence/absence data for the complete dataset is larger than 1
indicating that the species co-vary positively, which is not surprising since the species form
distinct communities over the studied area, which can be ascribed to environmental
gradients (Vincx et al., 1990; Vanreusel, 1990; Vanaverbeke et al., 2011). This is also
reflected in the null models, where V is larger than one as well. It is evident that the null
models also have V-scores larger than one, since swapping is only allowed within replicate
samples. Thus, species will not appear in regions where they are not observed.

The analyses based on data concerning the feeding types generally display the same
patterns as for the entire dataset. Hence, there is no evidence that species within feeding
types interact stronger with each other. For the Fixed-Fixed algorithm for presence/absence
data a significant difference for Checker was found for the overall data but not for the four
feeding types apart. This may indicate that the checkerboard pairs are formed by species
belonging to different feeding types. Yodnarasri et al. (2008) observed competitive
interactions between epigrowth feeders (2A) and non-selective deposit feeders (1B).
However, checking for patterns within the combined group 1B and 2A with the Fixed-Fixed
algorithm resulted in a random pattern for all the test statistics (results not shown).

The tendency of species to aggregate does not necessarily imply that specific species pairs
co-occur more often than expected by chance. Appointing individual species pairs which
often co-occur could be an interesting starting point to set up future experiments. However,
this is a statistical challenge (Sfenthourakis et al., 2006) because even a small number of
species results in a high number of species pairs. Many pairs will be significantly different
from random just by chance at the 5% or 1% error threshold (Ulrich et al., 2009). In our case,
the entire dataset contains data on 450 species, which is an unusual high number, resulting
in 101 025 unique species pairs. Thus, appointing non-random species pairs is statistically
very precarious.

Sample size and patchiness

The effect of the sample size on the result of the null model is minimised by restricting the
swapping algorithm to the replicate samples of one sampling event, which all have the same
size. The most probable effect of the different sample sizes on the outcome of the analysis is
an increase of a Type Il error: although a non-random distribution pattern is present, it
cannot be derived from the data. For instance, in case species tend to form aggregated
patterns (Fig. 2.4), this pattern might be obscured by large samples because species might
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be sampled at the edges of the large replicate sample. The different sample sizes might thus
blur the distribution patterns.

It is a well-known phenomenon that nematode communities tend to form patchy
distributions (Li et al., 1997; Somerfield et al., 2007; Gingold et al., 2010a). On a small scale
the horizontal distribution of nematodes shows a strong patchiness; within a range of a few
centimetres nematode densities can drop with a factor 3 (Arlt, 1973). Horizontal patch size
of meiofauna can vary between 0.3 to 700 cm? (Heip and Engels, 1977; Findlay, 1981;
Blanchard, 1990). The distribution of most nematode species show strong aggregations
(Blanchard, 1990) and species may show repeating patterns in densities of 8, 10 or 12 cm
depending on the species (Blome et al., 1999). The meiofauna sampling cores in our study
have mostly a diameter of 3.6 cm (44 %) or 5.5 cm (24 %) and it is thus evident that the cores
may sample at the middle of a dense nematode community or between these communities
(Fig. 2.4). The swapping algorithm is based on presence/absence data, and patchiness is
often associated with higher nematode densities. To validate the hypothesis that patchiness
and thus higher densities are linked with higher species richness an additional test was done:
for each sample (with more than 2 replicate samples) the Spearman rank correlation
coefficient between the total density of the nematode community and the species richness
in the replicate samples is calculated. This could only be done for the samples where the
total density of the replicate sample is known (216 samples): 50% of the 216 samples have a
Spearman rank correlation coefficient larger than 0.5 and only 12% have a Spearman rank
smaller than -0.5. For small samples, it is easy to produce a strong correlation by chance and
caution should be paid when interpreting these results, but it is clear that there is a strong
tendency to find more species in replicate samples with higher densities (as represented in
Fig. 2.4).

Ecology

The previous analyses indicate that the communities in the replicate samples are not
randomly structured: species tend to aggregate in some replicate samples within a station
and not in others. However, the mechanisms explaining the non-random pattern are difficult
to assess. Even if the null hypothesis is rejected, it is impossible to leap to the conclusion
that species interactions have led to these patterns (Simberloff and Connor, 1981). The
actual mechanism behind the non-random patterns should be revealed by experiments
(Gotelli, 2001). However, if competition and facilitation are at work, these mechanisms are
expected to leave different signatures in the pattern of species co-occurrence.

Competition may result in a given species pair co-occurring less often than expected by
chance, whereas facilitation may result in a given species pair co-occurring more often than
expected by chance. Previous research of assemblages in marine environments show that
any pattern can be found: random patterns for gastropods (Carranza et al., 2010), strongly
aggregated patterns for reef fish assemblages (Semmens et al., 2010) or strongly segregated
patterns for brachiopods (Tomasovych, 2008).
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On a large scale of meters to kilometres environmental gradients structure nematode
communities (Soetaert et al., 1994; Li et al., 1997). When reducing the scale of observation,
other factors may become more important, such as species interactions and patch dynamics
(Levin et al., 2001). According to our results nematode species tend to aggregate in some
replicate samples more than would be expected by chance: this may be attributed to both a
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Fig. 2.4. Schematic representation of a sampling event where 4 replicate cores are taken with

a small sampling core and a larger sampling core in the same community. Patches with
higher densities of the nematode species are delineated by a dashed line. The species found
in the replicate samples are represented in the circles at the bottom. The sampling design at
the left is more likely to reveal the aggregated pattern of the species (blue and red core),
while the sampling design at the right samples better the total species richness.
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similar response to the environment (Sanders et al., 2007) or to species interactions.
Environmental differences between replicate samples may lead to different communities in
these samples. The replicate samples are obtained at a certain moment in time at a certain
sampling station. Therefore, the environmental circumstances in the replicate samples
should be comparable. However, information about the actual distances and physical
differences between the replicate samples is unavailable and it is possible that our original
assumption of similarity of abiotic factors between replicate samples is idle.

Nematode communities often show a patchy distribution, a pattern which is confirmed here.
Many factors may contribute to the origin of a patchy distribution: microtopography (Hogue
and Miller, 1981; Sun et al., 1993; Blome et al., 1999), the presence of biogenic structures
and macrofauna (Reise, 1981; Reidenauer, 1989; Braeckman et al., 2011) or patches in food
sources (Lee et al., 1977; Blanchard, 1990), and even (social) species interactions have been
suggested for meiofaunal communities (Heip, 1975; Findlay, 1981; Chandler and Fleeger,
1987). Our study confirms the presence of small scale aggregations, with some replicate
samples holding more species than others. However, the mechanisms behind this non-
randomness cannot be unravelled with these null models.

The same aggregation patterns were found for the different feeding types. The current
classification of nematodes by feeding groups is rather coarse and species belonging to the
same feeding type may express different adaptations in the buccal cavity (Wieser, 1953;
Deutsch, 1978). There has been some debate on this subdivision and more refined
subdivisions have been suggested (Moens and Vincx, 1997; Moens et al., 2004) but these
differentiations are currently unknown for most nematode species. Thus, this refined
subdivision could not be applied to our data. The aggregated patterns of the species
belonging to the same feeding type may also be explained by the theory of Webb (2000)
which postulates that closely related species are more likely to co-occur due to a similar
response to the surrounding environment. This theory is supported by observations of co-
existing closely related meiofaunal species (Heip et al., 1985; De Mesel et al., 2006b), and
has been attributed at the time to the presence of microhabitats. Somerfield et al. (2009)
suggested that in an open dynamic system such as the marine environment competition is
most probably only operating on short time scales and small spatial scales. Indeed, species
segregations have been found on a small vertical spatial scale between sediment slices of 1
mm or 5 mm (Joint et al., 1982; Steyaert et al. 2003) where species interactions between
two epigrowth feeders (Joint et al., 1982), between predator and prey nematodes (Steyaert
et al., 2003) have been observed. But other factors such as food availability, oxygen
distribution, physical disturbance and compaction of the sediment (Arlt, 1973; Joint et al.,
1982; Steyaert et al. 2003) may also contribute to these segregated patterns.

CONCLUSIONS

The results of our analysis are not unequivocal. Large databases may reveal non-random
community patterns while they are not present (Fayle and Manica, 2010). This is also
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supported by our analyses: randomizing the data revealed a Type | error for the different
indices. When applying the swapping algorithms to large databases we therefore
recommend an additional test which investigates the Type | error properties for the indices
and the algorithms under study. It is clear that further research is needed to find the factors
causing these errors and further adjustment of the algorithm is needed in such a way that
co-occurrence patterns can be unequivocally revealed from large databases.

Nevertheless, our analyses indicate the presence of non-random community patterns at the
level of replicate samples within a sampling station, suggesting locally aggregated nematode
communities. Our analyses also indicate that patches with higher nematode densities
generally have higher species richness. This is in accordance with previous research
describing the patchy distribution of nematode assemblages which has been attributed to a
variety of biotic and abiotic factors.

However, many questions remain unresolved: which factors contribute to this non-random
distribution pattern? Is this pattern a general pattern for the entire area or do some regions
or samples contribute strongly to the observed pattern?

Drawing conclusions regarding species interactions is impossible based on the algorithm; this
is only achievable by carefully monitored experimental set-ups. However, our analyses do
not suggest the presence of competitive interactions. Other factors may contribute to the
observed aggregated pattern, such as the coarse subdivision of the feeding types, the large
scale of the replicate samples compared to the interaction scale of nematodes, the unknown
environmental differences between the replicate samples and the patchy distribution of the
nematodes. Besides, in an open system such as the marine environment competitive
interactions may only be present on a small temporal and spatial scale (Somerfield et al.,
2009) and due to environmental stressors closely related species may even co-occur more
than expected by chance (Webb, 2000).
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