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Consistent meteorological/oceanographic datasets derived from  regional reanalyses and 
'clim ate change projections prove particularly useful fo r coastal defense and offshore industry.

C oastal and offshore applications require appropriate planning and 
design. For m ost o f  them , statistics o f  extrem e w ind, waves, and  
storm surges are o f  central im portance. To obtain such statistics 

long and hom ogeneous tim e series are needed.
Usually such tim e series are hardly available. In m ost cases observa­

tions are either m issing, cover too short periods, or are lacking h om o­
geneity, that is, long-term  changes in  the tim e series are not entirely  
related to geophysical changes on the scale o f interest, but are partly  
due to changes in  instrum entation, m easurem ent technique, or other 
factors, such as changes in  the surrounding o f  the m easurem ent site.

There are in  principle two approaches to address these issues (cf. 
WASA 1998). One is the use o f proxy data that are considered to be 
m ore hom ogeneous and are available for longer periods. An example of 
th is is the use o f pressure data to derive indices for changes in  storm ae- ( 
tivity (e.g., Schm idt and von Storch 1993). The other approach is to

Regional m e te o ro lo g ic a l-m a rin e  reanalyses have been used by th e  F lensburger S chiffbau G esellschaft to  
o p tim ize  RoRo fe rry  o p era tin g  in th e  N o r th  Sea. Such d a ta  have been used fo r  instance during  th e  design 
process o f th e  fe rry  Jasm ine. T h e  ph oto  shows th e  vessel a t  th e  shipyard sh o rtly  before  launch.



T a b le  I .  List of regional m odels ,  m ode l a re as ,  and forcing d a t a  used in th e  c o a s tD a t  r e c o n s tru c t io n s  and 
c l im a te  scenario  s im ulat ions re fe r re d  to  in this  study. T h e  listing is n o t  exhaustive .  For  a  full list w e  refe r  to  
t h e  c o a s tD a t  W e b  page (online a t  w w w .co a s td a t .d e ).

Model 
t im e  span

N a m e  (m odel re ference ,  
se tu p  reference) Model a r e a Grid d is tance Forcing d a ta

R econstruc tions

A tm o sp h er e  
1 9 4 8 -2 0 0 7

REMO
(Jacob and Podzun 1997; 

F eser  e t  al. 2001 )

W e s te r n  E u rop e /ad jacen t  
seas

0 .5 °  X 0 .5° N C E P -N C A R  rean alyses

W a v es  
1 9 4 8 -2 0 0 7

WAM
(W A M D l G rou p  1988; 

W e is s e  and G ü n th er  2 0 0 7 )

N o r th  East A tlan tic , 
N o r th  Sea so u th  o f  5 6 °N

T w o n e s te d  grids 
5 0  km X 5 0  km, 

5 km X 5 km

N e a r -su r fa ce  w ind  fie ld s from  
REMO r ec o n s tr u c tio n

T id e  surge  
1 9 5 8 -2 0 0 2

TELEMAC2D
(H e r v o u e ta n d  H aren 1996; 

W e is s e  and P luess 2 0 0 6 )
N o r th  Sea

U n stru ctu red  
grid 5 k m - 8 0  m 
(coasta l areas)

N ea r-su r fa ce  w ind  and 
p r essu r e  fie ld s from  REMO  

r ec o n s tr u c tio n

C lim a te  scenario  sim ulations

W a v es
19 6 1 -1 9 9 0 ,
2 0 7 1 -2 1 0 0

WAM
(W A M D l G rou p  1988; 

G rab em an n  and W e is s e  2 0 0 8 )

N o r th  East A tlan tic , 
N o r th  Sea

T w o n e s te d  grids 
5 0  km X 5 0  km, 

5 km X 5 km

N e a r -su r fa ce  w ind  fie ld s from  
R C A O  (R äisänen  e t  al. 2 0 0 4 )

T id e  surge  
19 6 1 -1 9 9 0 , 
2 0 7 1 -2 1 0 0

TRIM
(C asulli and Stelling 1998; 

W o th  e t  al. 2 0 0 6 )
N o r th  Sea 10 km X |0  km

N ea r-su r fa ce  w ind  and 
p r essu re  fie ld s and from  

R C A O  (R äisänen  e t  al. 2 0 0 4 )

use num erical m odels driven by reanalysis data over 
sufficiently long periods and at high spatial and tem ­
poral resolution (e.g., G ünther et al. 1998).

Both approaches have advantages and d isadvan­
tages. W hile  p roxy  d a ta  can  generally  be used to 
reconstruct indices for rather long tim e periods (up 
to centuries), the ir spatial resolution rem ains lim ited 
and proxy data m ust be available at sufficient detail 
and quality. H indcasts, on the other hand, are lim ited 
to periods for w hich global reanalyses are available 
(now about 60 yr) and by the quality  of the involved 
models.
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In  the following we describe a set o f coastal and 
offshore h indcasts based on global reanalysis data. 
The h in d casts  are com plem ented  w ith  consisten t 
clim ate change scenarios for the fu tu re . D ata o b ­
ta ined  from  these exercises are integrated  into a jo in t 
database referred to as “coastD at” (available online at 
w w w . c o a s t d a t . d e ). In the following the m odel setup 
and experim ental design are briefly  described. Sub­
sequently, some representative examples are provided 
in  which coastD at has been applied for the analysis 
o f recent and  po ten tia l fu tu re  changes. Finally, ap ­
p lications are show n in  w hich coastD at has been  
used to address coastal and offshore problem s. A n 
outlook for fu rth e r applications is offered at the end 
of th is paper.

M O D E L  S E T U P  A N D  S I M U L A T I O N S .
We used the N ational C enters for E nv ironm en tal 
P r e d ic t io n - N a t io n a l  C e n te r  fo r A tm o s p h e r ic  
Research (NCEP-NCAR) global reanalysis (Kalnay 
et al. 1996) in  com bination  w ith  spectral n udg ing1 
(von Storch et al. 2000) to first drive a regional a tm o­
sphere m odel (Table 1) for an area covering m ost of 
Europe and the adjacent seas. Initially  the m odel was 
in tegrated  for the years of 1958-2002, w ith a spatial

1 Here a height-dependent nudging coefficient was applied to 
the large scale (>750 km) zonal and m eridional w ind speed 
com ponents above about 850 hPa.
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grid  size of about 50 km  x 50 km . The period  has 
been extended later and curren tly  covers the 60 y r of 
1948-2007. Full m odel ou tput is available for every 
hour w ith in  th is 60-yr period.

From  th is  atm ospheric sim ulation, near-surface 
m arine w ind fields have been used subsequently to 
drive h igh -reso lu tion  wave and  tide surge m odels 
(Table 1). W hile the wave m odel was ru n  in  a nested 
m ode w ith  a coarse grid (about 50 km  x 50 km) cov­
ering m ost o f the no rtheast A tlantic and a fine grid 
(about 5 km  x 5 km) covering the N orth  Sea sou th  of 
56°N, the tide surge m odel was ru n  on an u n stru c­
tu red  grid  w ith  typical grid  spacing o f about 5 km  
in  the open N orth  Sea and largely increased values 
(up to 80 m) near the coast and in  the estuaries. As 
for the atm ospheric  p a rt, fu ll-m odel ou tpu ts have 
been stored every hour. In th is  way a high-resolution 
m eteo ro log ical-m arine  (m etocean) dataset for the 
N orth  Sea covering the last six decades of years has 
been created. Figure 1 shows an example of conditions 
obtained for 21 February 1993.

An im pression of the extent to which this approach 
is capable of providing a reasonable reconstruction  of 
the observed w ind and wave climate is given in  Fig. 2. 
Shown are the observed and h indcast w ind speed and

direction  as well as significant wave height, period, 
and wave d irection  for a 3 -m onth  period at station 
K13 (53.22°N, 3.22°E). In  p rincipal, a good agree­
m ent can be inferred. For instance, the storm  event 
on 21 February, w hich caused observed significant 
wave heights o f m ore th a n  6 m , is reasonably rep ro ­
duced for all param eters. O n the other hand , there 
are also events w ith  larger d iscrepancies, such as 
the one around  1 M arch for which wave heights are 
considerably underestim ated, which in  th is case was 
caused by too-low  w ind speeds in  the atm ospheric 
h indcast. W hen com pared w ith scatterom eter data, 
the h indcast w ind fields in  general show a reasonable 
agreem ent, and  it was found  th a t in  coastal areas, 
especially in  such w ith complex topography, h indcast 
w ind fields are significantly  im proved com pared to 
those form  the driv ing reanalysis (J. W interfeldt and 
R. Weisse 2009, personal com m unication).

A com parison  of observed and  h in d c as t sto rm  
in d ic e s  for L und  in  Sw eden is sh o w n  in  Fig. 3. 
G enerally it can be inferred  th a t the observed year- 
to -year v a ria b ility  is ca p tu red  reasonab ly  by  the 
h indcast, although some bias m ay occur. For m arine 
n ear-su rface w ind fields, W interfeld t (2008) dem ­
onstrated  that, com pared to the driv ing  reanalysis,

NCEP/NCAR global Reanalyzes 1948 -  2007

SN-REMOWAM COARSE GRID TELEMAC 2D

depth-isollnes:
0. 20. 4 0 .6 0 . 80. 100 m

velocity =>1.20 m/s 
W ater Level [m]

1.8 3.6 5.4 7.2 9 10.8 12.6 14.4 162 18 19.8 21.6 [m/s]

Fig. I. Layout of th e  cons is ten t  m e to c e a n  h indcast I948-2007 for t h e  s o u th e rn  N o r th  S ea.  F rom  th e  (middle) 
regional a tm o s p h e r e  h indcast hourly wind fields w e re  used to  force a  (right)  t id e  su rge  and a  (left) wave m odel 
h indcas t .  T h e  figure shows an ex a m p le  of co n s is te n t  m e to c e a n  cond it ions  ob ta in ed  f rom  t h e  h indcas t  for 
1200 UTC 2 1 Feb 1993. (middle) N ea r-su r face  (10-m height)  m a r in e  wind fields (m  s"'), and co rrespond ing  wind 
d irec tion  ob ta ined  from  t h e  regional a tm o sp h e r ic  r ec o n s tru c t io n ,  (left)  C o rre sp o n d in g  significant w ave height 
fields (m) and m ean  w ave d irec tion  from  th e  co a rse  and th e  fine grid wave m ode l h indcast .  (right)  T ide su rge  
levels (m) f rom  t h e  co r respond ing  t id e  su rge  h indcast .  A f te r  W e isse  and  G ü n th e r  (2007).
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Fig. 2. ( from  to p  to  b o t to m )  T im e  se ries  of significant wave height 
( S W H ,  m ) ,  T m 02 w av e  p e r io d  (TM 2, s) ,  m e a n  w ave  d i r e c t io n  
(T H Q , ° com ing  f rom ) wind speed  (FF, m  s_l) ,  and wind d irec tion  
(D D ,°  com ing  f rom ) a t  Kl 3 for a  3 -m on th  period f rom  I Jan 1993 to  
3 1 Mar I993. O b se rv a t io n s  (black) and  m ode l resu lts  (g reen ) .  A f te r  
W e isse  and  G ü n th e r  (2007).

an  im provem ent is obtained m ain ly  in  coastal areas. 
M ore validation  can be found  for the atm ospheric 
p a rt in  Feser (2006), for the tide surge sim ulation in  
W eisse and  Pluess (2006), and for the wave m odel 
h indcast in  Weisse and G ünther (2007).

Scenarios for fu ture climate con­
ditions have been obtained in  a sim i­
lar way. H ere the global reanalysis 
has been  replaced by an  ensem ble 
o f d ifferen t global clim ate change 
s im u la t io n s . W e have u se d  fo u r 
sets o f sim ulations using A2 and B2 
em ission scenarios2 for 2071-2100 
w ith  tw o d iffe ren t g lobal clim ate 
m o d e ls . T hese  s im u la tio n s  w ere 
d o w n sc a le d  a p p ro x im a te ly  on  a 
50 km  x 50 km  grid  by the Swedish 
M eteoro log ical an d  H ydro log ica l 
In s titu te  in  the  fram ew o rk  o f the 
P re d ic tio n  o f R egional S cenarios 
a n d  U n c e r ta in t ie s  fo r D e f in in g  
E u ro p e an  C lim ate  C hange  R isks 
and  Effects (PRUDENCE) pro jec t 
(C hristensen  et al. 2002), w ith  the 
r e g io n a l  m o d e l R o ssb y  C e n tre  
Regional A tm osphere-O cean Model 
(RCAO) (Räisänen et al. 2004). From 
th e se  s im u la t io n s ,  n e a r -s u r fa c e  
w ind and pressure fields have sub ­
se q u e n tly  b e e n  u se d  to  p ro d u c e  
h ig h -re so lu tio n  scen a rio s  o f p o s ­
sible wave (G rabem ann and Weisse 
2008) an d  s to rm  surge cond itions 
(W oth 2005; W oth et al. 2006) for the 
N orth  Sea (Table 1). W hile the size 
of th is  ensem ble is s till som ew hat 
lim ited  because o f co m p u ta tio n al 
co n s tra in ts , it allow s n o t on ly  for 
an estim ate of po ten tia l fu ture m et­
ocean conditions, but also for a first 
rough  guess abou t the  underly ing  
uncertainties.

A full listing  of regions, p a ram ­
eters, an d  p erio d s  p rese n tly  co n ­
ta ined  in  coastD at m ay be obtained 
from  the coastD at Web site (online 
at w w w . c o a s t d a t . d e ).

R E C E N T  A N D  P O S S I B L E  
F U T U R E  C H A N G E S .  The coastD at dataset was 
used by W eisse et al. (2005) to  analyze long-term  
changes in  storm  activity  over the N orth  Sea and the 
northeastern  N orth  Atlantic. They found an increase 
in  s to rm  ac tiv ity  from  abou t 1960. S torm  activ ity

2 Here A2 and B2 refer to scenarios according to the Intergovernm ental Panel on Climate Change (IPCC) Special Report on 
Emission Scenarios (SRES; Nakicenovic and Swart 2000) representing a more pessimistic (A2) and a m ore optim istic (B2) 
view regarding the development of future greenhouse gas concentrations.
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Fig. 3. C om par ison  b e tw e en  diffe rent s to r m  indices for Lund, S w eden , ( from  to p  to  b o t to m )  A nnual n u m b e r  
of p re ssu re  read ings of less th a n  980 hPa; annual n u m b e r  of s t ro n g  p re ssu re  te n d en c ie s  exceeding  I6 hPa in 
I2 h; annual 95th and 99th  percen t i le s  of s t ro n g  p re ssu re  te ndenc ies .  O b ta in ed  f rom  o bse rva t ions  a f t e r  d a ta  
f rom  Bärring  and  von S to rch  (2004) (blue), o b ta ined  f rom  c o a s tD a t  ( red ) .

peaked around  1990-95, after w hich a decrease was 
in fe rred . These resu lts  are co n sis ten t w ith  those 
obtained from  proxy data for the area. For instance, 
A lexandersson et al. (2000) and an update in  Solomon 
et al. (2007) repo rt a sim ilar behavior based on the 
analysis o f upper-geostrophic w ind speed percentiles 
derived from  station pressure data. Covering a longer 
p eriod  th a n  the coastD at h in d casts  in  p articu la r, 
these stud ies show ed th a t the 1960-90 increase in  
storm  activity was not unusual, but tha t activity levels 
reached in  the m id-1990s were com parable to th a t at 
the beg inn ing  of the tw entieth  century. Long-term  
changes in  ex trem e sto rm  surges and  ocean  wave 
heights based on the coastD at dataset were analyzed 
by W eisse an d  P luess (2006) an d  by  W eisse an d  
G ünther (2007). In  particu lar, they  found  th a t the 
changes co rrespond  to th a t o f s to rm  activ ity  w ith  
increases in  storm  surges and wave heights between 
about 1960 and 1990, decreasing thereafter.

C hanges o f the N o rth  Sea s to rm  surge clim ate 
in  an  ensem ble of clim ate change sim ulations th a t

fo rm  p a r t o f the  co astD a t da tase t were ana lyzed  
by W oth  (2005) an d  W oth  et al. (2006). F igure 4 
show s the  changes in  ex trem e s to rm  surge levels 
expected  tow ard  the end of th e  century . A lthough  
reg ional details differ am ong the d iffe ren t m odels 
an d  sc e n a rio s , a ll p o in t to w ard  a m o d e ra te  in ­
crease in  severe s to rm  surge levels along  m ost of 
the N etherland , G erm an , and  D an ish  coast lines. 
W hen com pared to the na tu ra l variability  estim ated 
fro m  th e  co a s tD a t h in d c a s t (W eisse an d  Pluess
2006), clim ate ch a n g e-re la ted  increases in  s to rm  
su rge  h e ig h ts  are fo u n d  to  be sm a lle r  fo r m o st 
o f the  N eth e rlan d s  an d  D an ish  coast, w hile they  
are s ign ifican tly  larger along m ost o f the  G erm an  
coastline (W oth et al. 2006).

Using near-surface m arine w ind speeds from  the 
sam e set o f scenario  sim ulations, G rabem ann  and 
Weisse (2008) perform ed a sim ilar ensemble of wave 
m odel sim ulations. A lthough the sam e w ind forcing 
was used, changes appeared to be m ore diverse. In 
particular, regional patterns of changes in  severe wave

AMERICAN M ETEOROLOGICAL SOCIETY j u n e  2009 BADS' I 853
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Fig. 4. D ifferences (colors) of annual 99.5 pe rcen t i le s  of s to r m  su rges  b e tw e en  possible fu tu re  (2071-2100) and 
p re s e n t  day (1960-90, c o n to u r  lines) w e a th e r  conditions ob ta ined  from  t id e  su rge  s im ulat ions using forcing 
f rom  different c l im a te  m odels  and em ission scenarios ,  (left) Response for  t h e  A2 em ission scenario ,  (right) 
R esponse for th e  B2 em ission scenario .  S to r m  su rge  re sp o n se  for nea r -su r face  wind speeds  f rom  t h e  RCAO 
regional c l im a te  m ode l driven by tw o  d iffe ren t global c l im a te  m ode ls  ( top ,  H adA M 3H ; b o t to m ,  ECHAM5) 
a f t e r  d a ta  and  m e th o d s  descr ibed  in W o th  (2005) and  W o th  e t  al. (2006).
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conditions differ and the m agnitude of the changes 
strongly  depends on the choice of the atm ospheric 
m odel from  w hich w ind fields have been used.

A PPL IC A T IO N S OF C O A ST D A T . The coastDat 
datase t has been  used  for a varie ty  o f coasta l and 
offshore applications. This com prises applications in  
ship design, oil risk  m odeling and assessment, and the 
construction and operation of offshore w ind farms. In 
the following a few examples will be provided.

Optimization o f  ship operation profiles. O peration p ro ­
files of RoRo3 vessels operating on fixed routes in  the 
N o rth  Sea were sim ulated over decades of years w ith 
env ironm en ta l cond itions (w ind, w ater dep th , sea 
state) provided by the coastD at dataset (Friedhoff and

M aksoud 2005). O peration  profiles (such as velocity 
or power) were varied  under the constra in t tha t the 
operations are tim e critical, th a t is, the ind iv idual 
trips need to be finished w ith in  a given tim e window, 
as long as perm itted  by safety requirem ents (weather 
conditions). Results for a 200-m RoRo vessel operating 
on a 332-nm round-trip  between Zeebrügge, Belgium, 
and Im m ingham , U nited K ingdom , are provided in  
Friedhoff and A bdel-M aksoud (2005). For the 3,650 
tr ip s  sim u la ted  w ith in  a 10-yr p e rio d  they  found  
fuel consum ption to be increased by about 9% when 
com pared to calm  w eather conditions and attributed

3 RoRo vessels are ships designed to carry wheeled cargo (cars, 
trucks, trailers, etc.). The term  is used in contrast to vessels 
that use cranes to load and unload cargo.
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the effect to the additional power required  to face the 
env ironm en ta l cond itions caused by w ind, waves, 
and  w ater levels. They also showed th a t operation  
profiles m aybe optim ized com pared to conventional 
approaches such th a t opera tion  costs are reduced  
and  delay becom es m in im al. They concluded th a t 
databases such as coastDat m ay provide valuable tools 
to optim ize ship design w ith  respect to the expected 
environm ental conditions on the route.

Environmentally based optim ization o f  ship design.
O perability  and safety on board, bo th  constrained by 
severe w eather conditions, are im p o rtan t factors for 
short sea shipping, especially for RoRo and RoPax4 
vessels. In  ship design, sea-keeping sim ulations are 
used to account for these factors (Cram er et al. 2002). 
Generally, the m otion  o f a ship in  a sea state depends 
on several design param eters (e.g., hull form, location 
of the center of gravity, rad ii of gyration, etc.) and it 
cannot generally be concluded tha t a specific sea state 
is m ore or less severe for the ship than  others. Instead, 
the reaction of the ship to a design m odification has to 
be determ ined for each sea state by direct sim ulations 
(Cram er et al. 2002). In case the in tended  operating 
area  an d  o p e ra tio n  schedu le  are k n o w n  a lread y  
during the design phase, this inform ation can be used 
to sim ulate the ship’s m otion in  environm ental condi­
tions to be expected in  the operation area during  the 
lifetim e of the vessel and to optim ize the design w ith 
respect to the in tended operational profile. D etailed 
w ind and sea state in form ation  over decades of years 
as given by coastD at are an excellent source of data 
for th is k ind  of application.

T he c o a s tD a t d a ta s e t  h as  b e e n  u se d  by  th e  
F lensburger S ch iffbau-G esellschaft to  assess and  
optim ize a RoRo ferry  operating  in  the N o rth  Sea. 
Design param eters such as lim iting accelerations and 
roll angles (H enning et al. 2006), slam m ing im pact 
loads (Stoye et al. 2008), and others have been inves­
tigated. W hen exceedance probabilities o f operational 
lim its were found to be unacceptable, design m odifi­
cations had to be perform ed. For example, w hen the 
occurrences of h igh roll angles need to be reduced, 
passive ro ll-stab ilization  tanks m ay be installed  to 
m odify the eigenfrequency of the roll m otion, m aking 
the  sh ip  m ore seaw orthy  in  a given sea state . A n 
alternative is the installation  of active fin  stabilizers 
th a t com pensate the roll m om ent caused by waves 
up to a certain  degree, provided tha t the ship’s speed 
is sufficient. From  coastD at, statistics about weather

4 RoPax vessels describe  RoRo ships th a t accom m odate  
passengers, in addition.

dow n tim es, for example, for operation  w ith  or w ith­
out fin  stabilizers, m aybe derived. The latter provides 
decision support for the ship operator on w hether the 
im provem ent o f the sea-keeping behavior is w orth the 
investm ent into a roll stabilization system.

Offshore wind farms. In  the N orth  Sea there are pres­
en tly  su b s ta n tia l effo rts un d erw ay  reg a rd in g  the 
construc tion  and  im plem entation  of offshore w ind 
farm s. D esign an d  p la n n in g  o f c o n s tru c tio n  and  
m ain tenance, etc., require  long and  hom ogeneous 
environm ental data th a t are seldom  available at the 
site. There is presently considerable interest in  the use 
of statistics derived form  coastD at for such purposes. 
W eisse and G ünther (2007) have show n tha t there is 
a reasonable agreem ent of such statistics w hen esti­
m ated from  observations and from  coastD at data.

Because coastD at data are available for 60 yr at 
h igh  spatia l and  tem poral reso lu tion , the  data are 
often used to estim ate the m agnitude of rare events 
tha t m ay have considerable im pacts on the site, such 
as the 50-yr re tu rn  value for near-surface w ind speed 
or s ign ifican t wave height. Also, jo in t p robab ility  
distributions, such as any com bination of w ind speed, 
w ind direction, significant wave height, wave periods, 
and  wave d irec tio n , are frequen tly  requested  and 
needed during  the design process. A unique feature 
o f coastD at is th e  es tim a tio n  o f d u ra tio n -re la te d  
s ta tis tics , for in s tan c e , how  long severe sea-sta te  
conditions m ay last on the site. Similarly, statistics of 
w eather w indows m ay be derived. For instance, the 
tim e w indow  w ith in  w hich wave heights, on average, 
rem ain  below a given threshold  (e.g., 2 m) m aybe re­
quired to p lan  equipm ent and m aintenance schemes, 
or to estim ate w hether it would be feasible, at a given 
probability, to arrange the site w ith in  a given tim e 
fram e, for example, a season.

Coastal protection. O n the  basis o f coastD at local 
scenarios for fu ture high water levels for coastal tide 
gauges have b een  c o n s tru c te d  (G ro ssm an n  et al.
2007). A statistical relationship was constructed  be­
tw een observed high water levels at the N o rth  Sea 
and the tide gauge H am burg  (St. Pauli) located about 
80 km  upstream  w ith in  the estuary  o f the Elbe. Sub­
sequently , s to rm  surge p ro jec tions from  coastD at 
were used to elaborate on po ten tia l fu tu re changes 
for H am burg  (Fig. 5). A ccording to G rossm ann et al. 
(2007), an  increase o f the  an n u a l m a x im u m  high  
water levels in  H am burg  of about 20 ± 20 cm appears 
possible and plausible for the tim e horizon  of 2030. 
In  2085, the m ean scenario for St. Pauli am ounts to 
an increase of 64 ± 50 cm. These calculations employ
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Fig. 5. P ro ject ions of c l im a te  c h a n g e - re la te d  m odifi­
ca tions in e x t r e m e  high w a te r s  in Cuxhaven  ( N o r th  
S ea) and H am b u rg ,  S t .  Pauli (Elbe e s tu a ry )  in 2030 
and 2085 based on c o a s tD a t  scenarios  f rom  different 
regional m odels  and em issions scenarios .  B ecause th e  
results from  th e  different scenarios do n o t  differ signifi­
cantly th e  m ean  value is indicated across all models and 
scenarios .  T he  m in im um  and m a x im u m  range  for all 
scenarios  and m ode ls  is shown in addition .  A  se a  level 
rise of 9 cm  by 2030 and of 33 cm  by 2085 is included. 
A f te r  G ro s sm an n  e t  al. (2007).

a m ean  sea level rise o f 9 cm for 2030 and of 29 and 
33 cm (accounting for different scenarios) for 2085, 
respectively.

Oil risk modeling. A toolbox [Program  for the Evalua­
tion  of Lagrangian Ensemble T ransport Sim ulations 
(PELETS-2d)] for Lagrangian d rift m odeling based 
on fields from  coastD at has been developed. A n oil 
chem istry m odel m ay also be included and w ind d rift 
m ay or m ay n o t be taken  in to  account. The la tter 
represents an  essential forcing factor when oil spills 
or d rifting  m aterials are considered.

O n the basis o f coastD at, PELETS-2d has been 
app lied  to  a n u m b e r o f p rob lem s, in c lu d in g  the  
assessm ent o f freshw ater signals at H elgoland, the 
com parison  o f s ta tio n  data  w ith  sh ip -based  m ea­
surem ents, or the assessm ent of oil-related risks. A n 
example is show n in  Fig. 6. Here oil accidents along a 
m ajor shipping route have been considered based on 
coastDat. In order to estim ate travel tim e statistics, 
such oil accidents have been represented by passive 
tracer sim ulations in itialized  once every 28 h over 
about five decades. Subsequently, po tential im pacts 
on different target regions have been exam ined. Such 
target regions m ay be defined, for instance, by their 
po ten tia l sensitivity  to the s tran d in g  oil. Figure 6b 
shows an example of a travel tim e distribu tion  tha t

was ob ta ined  from  such sim ulations. It can  be in ­
ferred that, depending on w eather conditions, even­
tually  65% of all particles reached the target region. 
The m ost frequent travel tim e was found to be about 
2-3 days. In some cases, however, travel tim es could 
be as sm all as 12 h. The latter has considerable conse­
quences for em ergency concepts to be im plem ented.

The analysis could be fu rthe r refined by assum ing 
tha t the frequency of accidents bu t also the efficiency 
of oil fighting  m ay actually  depend on the cu rren t 
m etocean conditions in  each case. All in fo rm ation  
needed  for such stud ies  w ould  again  be available 
from  coastDat.

Assessment o f  chronic oil pollution. The coastD at data­
set in  com bination  w ith  PELETS-2d has also been 
used for the in te rp re ta tion  of chronic oil pollu tion  
(C h ras ta n sk y  et al. 2008). C h ro n ic  oil p o llu tio n  
predom inantly  results from  illegal oil dum ping and 
represents a major th reat for the m arine environm ent. 
It is, however, d ifficu lt to quantify , and  often  the 
num ber of o il-contam inated  beached b irds is used 
as an ind irec t indicator. It tu rn s  out th a t for trend  
assessments the latter m aybe misleading. C hrastansky 
et al. (2009) show an  example of two com m on seabird 
species w here th e  v ariab ility  observed w ith in  the 
n um ber o f corpses registered  du ring  beached b ird  
surveys for the G erm an coast p rim arily  reflects the 
in te rannual variability  of prevailing w eather condi­
tions (Fig. 7). In other words, variations w ith in  the 
n um ber o f beached b irds m ay be at least partia lly  
a resu lt o f changes an d  varia tions in  atm ospheric  
w ind conditions, and changes over several years are 
n o t necessarily  a p ro o f th a t ch ron ic  po llu tion  has 
reduced  as a resu lt o f the im plem ented  m easures. 
C hrastansky  et al. (2008) therefore concluded th a t 
atm ospheric variability  needs to be accounted for in  
the in terpretation  of such data.

Assessment o f  policy regulations. The w eather stream  
g enera ted  in  co astD a t has also b een  used  for an  
a sse ssm en t o f  a p o lic y  re g u la tio n , nam ely , th e  
ou tphasing  o f lead in  gasoline in  Europe. A fter an 
in itia l increase u n til the early 1970s, national and 
E u rope-w ide  re g u la tio n s  have b ee n  ad o p ted , so 
th a t since the late 1980s the presence o f lead in  the 
atm osphere has been greatly  reduced. The questions 
were as follows: how  m uch lead has been deposited 
over the past decades in  Europe and how  success­
ful has the regu la tion  been? To study  th is , g ridded  
estim ates of em issions were derived [for details refer 
to von Stoch et al. (2003) and  references therein], 
w h ich  w ere tr a n s p o r te d  su b se q u en tly  u sin g  the
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daily  w inds available from  the  co astD a t datase t. 
Finally, the deposition , using in  p a rticu la r the ra in ­
fall from  the atm ospheric coastD at reconstruction , 
was d e te rm in ed . The resu lt o f th is  exercise were 
em itte r-rec ip ien t m atrices for all E uropean  coun­
tries, and  estim ates o f the net inpu t in to  E uropean 
m arg ina l seas. As an  exam ple, Fig. 8 shows the esti­
m ated deposition into the Baltic Sea for the period of 
1958-95, w hich clearly displays the in itia l phase of 
grow ing p o llu tion  and  th en  the stepw ise reduction . 
The figure also shows the available estim ates from  
m easurem ents cam paigns and the ir consistency w ith 
the m odel-based reconstruction.

O ther applications. T here  are a n u m b e r o f o th e r  
applications not addressed in  detail here. These in ­
clude applications related to water quality  studies or 
the definition of safety criteria for navigation. D ata 
m ay also be used for com parison o f in  situ data taken

a)

23

15 16
14

10  ■

53 °
5° 6 ° T 8“

at different platform s. For example, data from  a fixed 
s ta tio n  have b een  co m p ared  w ith  m e asu rem en ts  
taken on a ferry passing nearby. Here, usually a better 
agreem ent betw een observations could be obtained 
w hen curren ts from  coastD at were used to sim ulate 
water transpo rts  betw een the two observational sites. 
The tim e-dependent sim ulated travel tim es provided 
an estim ate of the tim e-dependent tim e lag tha t had 
to be taken into account for a proper com parison of 
the two observational tim e series (for m ore details 
see w w w . c o a s t d a t . d e ).

D ata from  coastD at have also been used for some 
te rrestrial applications. For example, terrestrial b io­
sphere m odels were driven w ith  atm ospheric input 
from  coastD at to analyze gross p rim ary  productiv­
ity  over E urope (Jung et al. 2007) or to  exam ine 
and assess the E uropean 2003 carbon flux  anom aly 
(Vetter et al. 2008).

SU M M A R Y  A N D  O U T L O O K .
T he c o a s tD a t d a ta se t co n s is ts  of 
a se t o f  coasta l analyses an d  sce­
narios for possible fu tu re develop­
m en ts. It c o n s titu te s  a co n sis ten t 
m eteoro log ical-m arine (metocean) 
dataset at high spatial and tem poral 
resolution available for the last 60 yr. 
It was show n tha t the statistics of ex­
trem e events can be estim ated from  
coastD at at a reasonable degree of 
approxim ation. Thus far the dataset 
has been developed m ain ly  for the 
N orth  Sea and adjacent areas. Efforts

b)
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Days

Fig. 6. (a) S ec t ion  of t h e  N o r th  S ea .  
G r e e n ,  ye l lo w ,  b lu e ,  a n d  m a g e n t a  
boxes d e n o te  a r e a s  in t h e  vicinity of 
m a jo r  sh ipp ing  r o u te s  in which p a s ­
sive t r a c e r  s im u la t io n s  r e p r e s e n t in g  
hy p o th e t ic a l  oil ac c id e n ts  have b een  
in itiated. T h e  black boxes labeled with 
red  n u m b e rs  ind ica te  t a r g e t  reg ions 
in which t h e  im p a c t  of t h e  acc iden ts  
has been  investiga ted ,  (b) F requency  
dis tribution of th e  travel t im e  th a t  pas­
sive t r a c e r  par t ic les  s ta r t e d  within th e  
m a g e n ta  so u rce  region need  to  reach  
t a r g e t  r e g io n  I4 ( H e lg o l a n d ) .  T h e  
analysis is based on 65% of t h e  initial 
t r a c e r  partic les  th a t  actually  affect th e  
t a rg e t  region within 13,615 sim ulations 
t h a t  w e r e  s t a r t e d  w ith in  t h e  p e r io d  
I958-99. W e a th e r in g  of spilled oil was 
d is rega rded  in this  study.
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number of particles
number of oiled birds (Common Scoter)

F ig . 7 . N u m b e r  of beached  oil-contam inated  birds (C o m m o n  Scoters)  
obse rved  a t  t h e  G e rm a n  coas t  (1992-2003) and n u m b e r  of beached  
t r a c e r  p a r t i c l e s  s im u la te d  w ith  PELETS-2d  b a s e d  on c o a s tD a t  
(1958-2003) assum ing  a  co n s ta n t  level of chronic oil pollution. All 
d a ta  a r e  shown as anom alies  norm alized  by s ta n d a rd  deviation. A fte r  
d a t a  and m e th o d s  descr ibed  in C h ras tan sk y  e t  al. (2008).

3000
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F ig . 8. A nnual lead deposition  ( tons)  over  t h e  Baltic 
S e a ,  f ro m  m e a s u r e m e n t - b a s e d  e s t im a te s  (co lo red  
bars)  and th e  s im ulat ions (gray line) descr ibed  in von 
S to rch  e t  al. (2003).

are presently underw ay to transfer the approach to the 
statistics of polar lows (Z ahn et al. 2008) or tropical 
regions (Feser and von Storch 2008a,b). O th er ex- 
tra trop ical regions, such as the Baltic Sea, are also 
considered.

In face of the lim ited observational m aterial avail­
able for m any  coastal and  offshore areas, regional 
clim ate d a tase ts  such  as co astD a t m ay rep resen t 
p a rticu la rly  usefu l tools for m any  applications, if  
adequately  designed. They n o t only  provide som e 
knowledge about the m eteoro log ical-m arine condi­
tions at places and tim es at w hich no m easurem ents 
have been m ade, bu t in  the prospect o f ongoing and

future climate changes such regional 
c l im a te  d a ta s e ts  m ay  se rv e  as a 
reality  substitu te  w ith in  w hich the 
robustness o f possible (adaptation) 
options for m any  applications may 
be tested . H ere we have p rov ided  
som e exam ples ran g in g  from  ship 
design, to coastal protection, oil risk 
m odeling, or the construc tion  and 
operation  of offshore w ind farm s.

The p u rp o se  o f generating  and 
validating  regional clim ate datasets 
such as coastD at is no t to bu ild  or 
to  c o n s tru c t a forecast system  for 
th e  re g io n . R a th e r, th e  u ltim a te  
goal is to  d esc rib e  a n d  to  assess 
ongoing and possible fu ture climate 
change  an d  to  p ro v id e  to o ls  an d  
da ta  from  w hich reliable statistics  
o f m eteo ro lo g ica l-m arin e  clim ate 
c o n d it io n s  a n d  ch a n g e s  m ay  be 
derived. We have show n th a t such 

in fo rm a tio n  is o f p a r tic u la r  in te re s t for a b ro ad  
range o f p rac tica l app lica tions and , from  ou r ex­
perience, the quality  and  the design of the dataset 
benefit considerably from  the feedbacks provided by 
the different user groups. A m ong others, upcom ing 
versions of coastD at will therefore foster enhanced 
spatial resolution of the regional atm osphere model, 
im proved coastal physics in  the wave m odeling part, 
or larger ensemble sizes w ith respect to the regional 
clim ate change scenarios. Further, and sim ilarly  to 
the effort on assessing the success o f European U nion 
regulations on the use o f leaded gasoline, attem pts are 
underw ay to sim ulate and to assess long-term  changes 
of persistent organic pollu tants (POPs) in  the m arine 
environm ent, in  particu lar for the N orth  Sea and the 
Baltic Sea (Aulinger et al. 2007; M atth ias et al. 2008; 
M atth ias et al. 2009).

Sum m arizing, and in  addition  to the analysis of 
ex isting  observa tional data , we believe th a t com ­
prehensive m odel-based  reg ional clim ate datasets 
such as coastD at m ay provide a valuable source of 
in form ation  for the analysis of regional changes and 
the identification of options for actions especially in  
data sparse coastal or offshore regions.
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