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Abstract We derive conservative time-dependent 
structured discretizations and two-way embedded 
(nested) schemes for multiscale ocean dynamics 
governed by primitive equations (PEs) with a nonlinear 
free surface. O ur multiscale goal is to resolve tidal- 
to-mesoscale processes and interactions over large 
multiresolution telescoping domains with complex 
geometries including shallow seas with strong tides, 
steep shelfbreaks, and deep ocean interactions. We 
first provide an implicit time-stepping algorithm for 
the nonlinear free-surface PEs and then derive a 
consistent time-dependent spatial discretization with 
a generalized vertical grid. This leads to a novel time- 
dependent finite volume formulation for structured 
grids on spherical or Cartesian coordinates, second 
order in time and space, which preserves mass and 
tracers in the presence of a time-varying free surface. 
We then introduce the concept of two-way nesting, 
implicit in space and time, which exchanges all of the 
updated fields values across grids, as soon as they
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become available. A  class of such powerful nesting 
schemes applicable to telescoping grids of PE models 
with a nonlinear free surface is derived. The schemes 
mainly differ in the fine-to-coarse scale transfers and 
in the interpolations and numerical filtering, specifi­
cally for the barotropic velocity and surface pressure 
components of the two-way exchanges. O ur scheme 
comparisons show that for nesting with free surfaces, 
the most accurate scheme has the strongest implicit 
couplings among grids. We complete a theoretical 
truncation error analysis to confirm and mathematically 
explain findings. Results of our discretizations and 
two-way nesting are presented in realistic multiscale 
simulations with data assimilation for the middle 
Atlantic Bight shelfbreak region off the east coast of 
the USA, the Philippine archipelago, and the Taiwan- 
Kuroshio region. Multiscale modeling with two-way 
nesting enables an easy use of different sub-gridscale 
param eterizations in each nested domain. The new 
developments drastically enhance the predictive capa­
bility and robustness of our predictions, both qualita­
tively and quantitatively. W ithout them, our multiscale 
multiprocess simulations either were not possible or 
did not match ocean data.

Keywords Embedding schemes • Multiscale ocean 
modeling • Shelfbreak regions • Coastal dynamics • 
Tidal forcing • M ultiresolution • Multigrid • CFD

1 Introduction

Ocean dynamics is now known to involve multiple 
scales and dynamical interactions with inherent tran­
sient effects and intense localized gradients. Sources
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of interacting scales and interm ittent behavior include 
internal nonlinear dynamics, steep bathymetries, com­
plex geometries, and remote and boundary forcing. To 
predict such dynamics, ocean modeling systems must 
be capable of multiresolution, multiscale, and multidy­
namic numerical simulations. A  major objective of our 
present research is to derive and study robust and ac­
curate two-way embedding (nesting) schemes for tele­
scoping ocean domains governed by primitive equation 
(PE) dynamics with a nonlinear free surface. The intent 
is to resolve tidal-to-mesoscale dynamics over large 
multiresolution domains with complex coastal geome­
tries from embayments and shallow seas with strong 
tidal flows to the steep shelfbreaks and the deep ocean 
with frontal features, jets, eddies, and other larger-scale 
current systems.

Most structured-grid models have been devel­
oped to be general, with applications in varied 
ocean regions (e.g., Lynch and Davies 1995; Mooers 
1999). These modeling systems include M odular Ocean 
Model (Griffies et al. 2007, 2010), Navy Layer 
Ocean M odel/Deep-ocean Assessment and R eport­
ing of Tsunamis (Carnes et al. 1996; Wallcraft et al. 
2003), Regional Ocean M odel System (Haidvogel et al. 
2000; Shchepetkin and McWilliams 2005), Princeton 
Ocean Model (POM; Blumberg and Melior 1987; 
M elior 2004), Parallel Ocean Program (Smith et al. 
1992), M IT General Circulation M odel (Marshall 
et al. 1997), Terrain-following Ocean Modeling System 
(Ezer et al. 2002; Arango et al. 2010), Hybrid Coordi­
nate Ocean Model (HYCOM; Bleck 2002; Chassignet 
et al. 2009), and Harvard Ocean Prediction System 
(HOPS; Robinson 1999; Haley et al. 1999). Examples 
of applications of these models as well as others include 
for the US eastern coastal oceans (Signell et al. 2000; 
Lynch et al. 2001; Robinson et al. 1999, 2001), north­
western Atlantic (Chassignet et al. 2000; Chassignet 
and Malanotte-Rizzoli 2000), Atlantic Ocean (Chassignet 
et al. 2003; Stammer and Chassignet 2000), Pacific 
Ocean and US western coastal oceans (de Szoeke et al. 
2000; Chao et al. 2009), M editerranean Sea (Pinardi 
and W oods 2002; Onken et al. 2003, 2008), European 
North Seas (Berntsen and Svendsen 1999), and basins 
and the global ocean (Semtner 2000; Dufay et al. 2002; 
Marshall et al. 1997; G ent et al. 1998). More recently, 
unstructured algorithms have been applied to simulate 
multiscale ocean dynamics and processes (Deleersni- 
jder and Lermusiaux 2008a, b). Here we focus only 
on the use of conservative structured and embedded 
grid approaches to multiscale dynamics that are ubiq­
uitous around the world: tidal-to-mesoscale dynamics 
at shelfbreaks, including interactions with shallow seas, 
complex coastal geometries, and deep oceans.

To our knowledge, none of the above structured 
models includes fully implicit two-way embedding 
schemes for nonlinear free-surface PEs. W ith fully 
implicit and two-way embedding, all of the updated 
field values are exchanged across scales among nested 
domains, as soon as they become available, within the 
same time step. This is challenging but found most 
valuable with nonlinear free-surface PEs. M ajor con­
tributions of this manuscript are to derive a class of 
such embedding schemes, implicit in space and time, 
to compare them  to alternatives using simulations and 
theoretical truncation error analysis, and to illustrate 
them  in a set of realistic applications. A nother con­
tribution is a time-dependent spatial discretization of 
the nonlinear free-surface PEs, including generalized 
vertical coordinates. These computational algorithms 
are derived and developed next. Specific new devel­
opments include a nonlinear formulation of the free 
surface and its boundary conditions, a modification 
of an implicit time-stepping algorithm (Dukowicz and 
Smith 1994) to handle the nonlinear formulation, a 
consistent spatial discretization for a time-dependent 
finite volume method, a generalized vertical grid, and a 
fully implicit two-way nesting scheme for the nonlinear 
free-surface PE. Implicit two-way nesting schemes are 
shown to have truncation errors of higher order than 
other nesting schemes across the multiresolution do­
mains. Two-way nesting also enables us to easily use 
different param etrizations for the sub-gridscale physics 
in each nested domain. The additions of these improve­
ments are shown to drastically enhance the predictive 
capability and robustness of our ocean prediction sys­
tem. W ithout them, our multiscale multiprocess simu­
lations were either not possible or their predictions did 
not match ocean data.

All of the above new computational schemes have 
been derived and implemented as part of our M IT 
Multidisciplinary Simulation, Estimation and Assimi­
lation System (MSEAS; MSEAS Group 2010). This 
allowed us to evaluate robustness in several ocean re­
gions, including the middle Atlantic Bight, Californian 
coast around M onterey Bay, Philippine archipelago, 
and Taiwan-Kuroshio region of the eastern Pacific 
(e.g., see Section 5). These applications utilized vari­
ous components of MSEAS including our free-surface 
generalization of the original rigid-lid PE model of 
the HOPS (see “Appendix 3" and Haley et al. 1999); 
a coastal objective analysis scheme based on fast- 
marching methods (Agarwal and Lermusiaux 2010); 
uncertainty estimation, data assimilation, and adap­
tive sampling schemes (Lermusiaux 1999, 2002, 2007; 
Lermusiaux et al. 2000, 2002); a stochastic rep­
resentation for sub-gridscale processes (Lermusiaux
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2006); nested tidal inversion schemes (Logutov and 
Lermusiaux 2008); multiple biological models (Tian 
et al. 2004); and several acoustic models (Lam et al. 
2009; Lermusiaux and Xu 2010).

A  recent and comprehensive review of nesting algo­
rithms can be found in Debreu and Blayo (2008), in­
cluding discussions on time-stepping and time-splitting 
issues. They review methods for the conservation of 
quantities across the nesting interface and compare 
a variety of schemes for the transfer of information 
between grids. They conclude with a review of methods 
to control noise, including relaxation methods, sponge 
layers and open boundary conditions suitable for nest­
ing. One-way nesting and two-way nesting with PE 
models are relatively common (e.g., Spall and Holland 
1991; Fox and Maskell 1995; Sloan 1996; Penven et al. 
2006; Haley et al. 2009; Mason et al. 2010), and we refer 
to Debreu and Blayo (2008) for a review. Focusing on 
scheme comparisons, Cailleau et al. (2008) contrasted 
methods to control the open boundaries of a modeling 
domain (Bay of Biscay embedded in a North Atlantic 
domain), specifically one-way nesting, two-way nesting, 
and “full coupling based on domain decomposition" 
(Schwarz method: M artin 2003, 2004). They found that 
this “full coupling" gave the most regular solutions 
at interfaces but was computationally much more ex­
pensive (a factor of 5) than two-way nesting, without 
demonstrating significant improvements. O ther recent 
examples include Barth et al. (2005) who use nest­
ing and the free-surface G H E R  model (Beckers 1991; 
Beckers et al. 1997) to obtain high-resolution simu­
lations in the Ligurian Sea nested in M editerranean 
domains. A  new feature of their nesting algorithm is 
their interpolation of normal velocities from the coarse- 
to-fine domains. They employ a constrained mini­
mization of the second derivatives to obtain smoothly 
continuous boundary fields while maintaining the con­
servation of volume. In Barth et al. (2007), this same 
setup is coupled with an ensemble-based data assim­
ilation algorithm to assimilate sea surface tem pera­
ture (SST) and sea surface height (SSH). Estournel 
et al. (2009) applied “scale-oriented" one-way multi­
model nesting to the northwestern M editerranean Sea 
(MFSTEP: Pinardi et al. 2002), using a variational 
scheme to ensure mass balance. Guo et al. (2003) used 
one-way nesting and the POM  for their studies of the 
Kuroshio, using three telescoping domains. They found 
that higher resolution not only improved bathymetry 
reproduction but also JE B A R  (joint effect of baro- 
clinicity and relief: Sarkisya and Ivanov 1971) and the 
Kuroshio dynamics. O ther developments include at­
tempts at using improved physics in the refined nested 
domain. Shen and Evans (2004) developed such a m od­

eling system based on a semi-Lagrangian scheme: A 
fully nonhydrostatic simulation can be embedded in a 
larger weakly nonhydrostatic simulation which, in turn, 
can be embedded in a still larger compatible hydrostatic 
simulation. M aderich et al. (2008) developed a system 
to model the transport and mixing of industrial cooling 
water in freshwater and marine environments, combin­
ing free-surface hydrostatic physics with a buoyant jet 
model or a nonhydrostatic model, using buffer zones to 
reduce noise due to physics mismatches.

The nesting schemes in all above works fall under 
the categories we define as “explicit" or “coarse-to-fine 
implicit" nesting. As shown in Fig. 1, in explicit two- 
way nesting, the coarse and fine domain fields are only 
exchanged at the start of a discrete time integration 
or time step: The two-way exchanges are explicit. In 
“coarse-to-fine implicit" two-way nesting, the coarse 
domain feeds the fine domain during its time step: 
Usually, fine domain boundary values are computed 
from the coarse domain integration, but the fine do­
main interior values are only fed back at the end of 
the coarse time step. In “fine-to-coarse implicit" two- 
way nesting, it is the opposite; fine domain updates 
are fed to the coarse domain during its integration but 
the coarse domain feedback only occur at the end of 
the fine domain discrete integration. In this paper, we 
derive two-way nested schemes, fully implicit in space 
and time: The fine and large domains exchange all 
updated information during their time integration, as 
soon as updated fields become available. A  type of 
such scheme consists of computing fine domain bound­
ary values from the coarse domain but with feedback 
from the fine domain. Some of the algorithmic de­
tails of our multiscale fully implicit two-way nesting 
schemes are specific to MSEAS, but the approach and 
schemes are general and applicable to other modeling 
systems.

In what follows, in Section 2, we give the equa­
tions of motion, provide an implicit time discretiza­
tion for the nonlinear free-surface PEs, and develop 
a time-dependent, spatial discretization of the PEs. 
In Section 3, we derive and describe our fully im­
plicit two-way nesting scheme and contrast it from 
traditional explicit and coarse-to-fine implicit schemes. 
In Section 4, we compare nesting schemes and 
show that for nesting with free surfaces, the most 
accurate schemes are those with stronger implicit 
couplings among grids, especially for the velocity com­
ponents. We also complete a theoretical truncation 
error analysis to mathematically confirm and explain 
our findings. In Section 5, we illustrate the use of our 
novel discretization and nesting schemes in the middle 
Atlantic Bight, Philippine archipelago, and Taiwan-
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(a) (b)

C oarse Fine Coarse Fine

Fig. 1 Schematic of a explicit, b coarse-to-fine implicit, c fine- 
to-coarse implicit, and d fully implicit two-way nesting. Green 
arrows sketch coarse-to-fine transfers; red arrows sketch fine 
to coarse. The left arrow indicates discrete time integrations or

(c) (d)

Coarse Fine C oarse Fine

time steps (n — 1, n , and n +  1). Nesting transfers occur before 
(explicit) or during (implicit) discrete time step n. If the time steps 
of two nested models are not equal, the duration of step n would 
in general be the longest of the two

Kuroshio region of the eastern Pacific. Conclusions 
are in Section 6 . Details on vertical and horizon­
tal discretizations and fluxes, open boundary condi­
tions, and conservation properties are in “Appendix 1". 
Multiscale nesting procedures for setting up multi­
grid domains and bathymetries, for multiresolution 
initialization, for tidal forcing, and for solving the free- 
surface equation are given in “Appendix 2". O ur origi­
nal two-way nesting scheme for rigid-lid PEs is outlined 
in “Appendix 3".

2 Formulation of a new scheme for free-surface 
primitive equation modeling

In this section, we derive the discretized equations 
of motion for our new nested nonlinear free-surface 
ocean system. We have encoded both the spherical and 
Cartesian formulations (see “Appendix 1") and most 
often use the spherical one, but for ease of notation, we 
present the equations in only one form, the Cartesian 
one. In Section 2.1, we give the differential form of the 
free-surface PEs. In Section 2.2, we recast these equa­
tions in their integral control volume form in order to 
easily derive a mass preserving scheme. In Section 2.3, 
we introduce our novel implicit time discretization of 
these PEs. Finally, in Section 2.4, we derive the corre­
sponding time-dependent, spatial discretization which 
preserves mass and tracers in the presence of a time- 
varying free surface.

2.1 Continuous free-surface primitive equations

The equations of motion are the PEs, derived from 
the Navier-Stokes equations under the hydrostatic and 
Boussinesq approximations (e.g., Cushman-Roisin and 
Beckers 2010). U nder these assumptions, the state vari­
ables are the horizontal and vertical components of 
velocity (u, w),  the tem perature ('/'), and the salinity 
(S). Denoting the spatial positions as U, y, z) and the 
temporal coordinate with t, the PEs are:

Cons. Mass V • u  +  —  =  0, (1)
dz

Cons. Horiz. Mom. - ^ +  f k x u =  — — V p + F , (2)
Dt  ‘ po

Cons. Vert. Mom. —  =  -pg, (3)
dz

D T
Cons. H eat —-  =  F T, (4)

Dt
D S

Cons. Salt —— =  Fs , (5)
Dt

Eq. of State p =  p ( z , T ,  S) (6 )

where is the 3D m aterial derivative, p  is the pres­
sure, ƒ  is the Coriolis param eter, p is the density, p0 is 
the (constant) density from a reference state, g is the 
acceleration due to gravity, and k  is the unit direction 
vector in the vertical direction. The gradient operators, 
V, in Eqs. 1 and 2 are 2D (horizontal) operators. The 
turbulent sub-gridscale processes are represented by F, 
F T, and Fs .
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Since we are considering free-surface applications 
in regions with strong tides, we need a prognostic 
equation for the evolution of the surface elevation, p. 
We integrate Eq. 1 over the vertical column and apply 
the kinematic conditions at the surface and bottom  to 
arrive at the nonlinear free-surface transport constraint

dn
—- +  V • 
dt f  ■ 'J - H

d z )  = 0 (7)

where H  =  H(x, y) is the local water depth in the 
undisturbed ocean.

We decompose the horizontal velocity into a depth 
averaged (“barotropic") component, U, and a remain­
der (“baroclinie"), u ;

u  =  u 7 +  U ; U  =
H

1 f  w   / u dz.
+  n J-H

(8)

To further isolate the effects of the free surface, we 
decompose the pressure into a hydrostatic component 
(employing the terminology of Dukowicz and Smith 
1994), p h, and a surface component, p s:

p  =  P s  +  Ph ; Ph(x, y, z , t )  =  j  gp dt; ;

p s(x, y, t) =  pogi], (9)

Note that the definition of the hydrostatic pressure 
automatically enforces Eq. 3. Using Eqs. 8  and 9, we 
split Eq. 2 into two equations, one for U obtained by 
taking the vertical average of Eq. 2 and one for u by 
removing the vertical average from Eq. 2:

9U
~di

9u;
~dt

» dl]
H+1 ]  dt

dl]
H+1 ]  dt

f k  X U =  F  — gVi]

f k  X u  =  F  — F.

(10)

(11)

In Eqs. 10 and 11, we now have additional terms of the

form 7 ^  A . These small terms are often neglected but 
are kept here since our dynamical focus ranges from the 
deep ocean to the very shallow ocean with strong tides. 
In Eqs. 10 and 11, we have introduced the following 
notation for the terms we group on the RHS:

and for the advection operator 

T{u)T(u) = n o
r  (4>) =  u—  +  V—  +  w — . 

dx d y dz

Note that instead of directly solving for u using Eq. 11, 
we instead solve for u  using Eq. 2 recast in the following 
form
9u
dt

+  f k  X u  =  T  — gVi], (12)

then obtain u from definition 8 . By using Eqs. 12 and 
8  instead of Eq. 11, we reduce the truncation error for 
our time-splitting procedure in Section 2.3.1.

2.2 Control volume formulation of the free-surface 
primitive equations

We now rewrite the governing Eqs. 1, 4, 5, and 12 in 
a conservative integral formulation. W ith this transfor­
mation at the continuous level, it is easier to derive 
a new discrete system that correctly accounts for the 
tem poral changes in the ocean volume due to a moving 
free surface.

We integrate Eq. 1 and the conservative forms of 
Eqs. 4, 5, and 12 over a control volume V and use the 
divergence theorem  to arrive at the following system of 
equations:

I
9
dt

(u, w) ■ d A  =  0, (13)

+ j  f k  X udV =  T  — gVp,  (14)

u =  u
H+1]

rn
/ u  dz,  

J-H

9U U' \ri dl]
dt H+1 ]  dt

+ fk X U =  T  — gVi],

t X L
Tdv )  + r ( T) =  [  FTdV, 

V /  Jv

i. , S d V )  +  r ( S ) =  [  F*dV,  
dt \ J v  )  Jp

p =  p(z,  T, S),

(15)

(16)

(17)

(18) 

(19)

1 i n  ^
JF =  Vph — T(u) +  F ; T  =  —- —  / F  dz

J- iPo H+1 ] - H
dl]
~dt V • [ (ƒ /+  9) U] =  0 (20)
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where

T = - — f  ph m ■ d A  -  f  (u) +  f
Po  J s  J v

F dV,

P  = H P  dz.

S  is the surface of the control volume, and d A  is 
an infinitesimal area element vector pointing in the 
outward normal direction to S.  In Eqs. 14-18, we have 
introduced the following notation for the surface advec- 
tive fluxes:

f (u)  =  ^ ~ j “ j ^  ; f ( 0 )  =  (u,w)  X  d A

where <f> (u, w ) denotes the local advective flux of <j>.

2.3 Temporal discretization

We now derive our novel implicit time discretization for 
the nonlinear free-surface PEs (Eqs. 13-20). Using the 
following discrete time notation:

t„ =  n A t  ; <f(tn) =  <fn

where At  is the discrete time step, and using the second- 
order leap-frog time differencing operator:

5(0) = 0B+1 -  <pn- \

we obtain the following tem poral discretization of 
Eqs. 13-20

[  (un, w n) - d A  =  0,
J s "

(21)

-  5 ^ j  ^ j  f k  X udV  ) =  P n.n—1

u/n+1 =  un+1
H

f ^ l d v )  ,

1 rri"+1
 77 /  u  "I- nn+ J-H

dz.

(22)

(23)

—  -  t t A -  +  f k  x u “ =  WX H + if X

i  5  ̂ƒ  TdV ĵ = ƒ  Frnd V - T ( T n),

H L sdv) =LS d V) =  I Fsnd V - r ( S n), 
r VJy / Jv

(26)

j f + 1 _  j f

At

where

jzn,n—1 _

+  V - [ ( H+i f )  Ue] = 0

—  f  p"h hi, ■ d A  -  f  (u")
Po Jsn

[  Fnd V +  [  F" 1 dV,  
Jv  Jv-1

(27)

P n-n- 1 = -TT̂ —  f  f  Pt f ih-dA-  ¡ V )
J - H  I Po J s ”H + if

■ f  F”
Jv

d V\  dz

1 f*
F ” - 1 dV \ dz.

H + if 1 J—H [Jv

and x =  2 A t is twice the time step. Following the results 
of the stability analyses in Dukowicz and Smith (1994), 
we have introduced semi-implicit time discretizations 
for the Coriolis force

=  ad)n+1 +  (1  — 2a)<fin +  a<fin—1

and for the barotropic continuity:

p  = e<pn+l + (1-0)0".

In practice, we run using the stabilizing choices a =  
I  (C. Lozano and L. Lanerolle, private communica­
tion) and 0 =  1 (Dukowicz and Smith 1994). A  stabil­
ity analysis of the explicit leap-frog algorithm can be 
found in Shchepetkin and McWilliams (2005), while 
Dukowicz and Smith (1994) analyze the linearized im­
plicit algorithm. Note that even though our discretiza­
tion parallels Dukowicz and Smith (1994), we do not 
make the linearizing assumption i] <  H in Eqs. 8 , 9, 
and 27. This generalization allows our system to be de­
ployed in littoral regions of high topographic variations 
and strong tides.

A  couple of observations are worth making. First, 
we are considering the case in which the control vol­
ume is time dependent. Therefore, in the new time 
discretizations (Eqs. 21-26), all terms involving con­
trol volume integrals must be evaluated at the proper 
discrete times as a whole, not just the integrands. The 
second is that Eqs. 22-24 and 27 form a coupled system

(25) of equations to solve for u' +i u /«+i , U"+1, and i f +1.
We decouple these equations using a time-splitting al­
gorithm. A nother approach would have been to use an 
iterative method (e.g., Newton solver). However, time- 
splitting is usually more efficient and for their similar
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time-splitting approach, Dukowicz and Smith (1994) 
showed that no significant physics was lost, provided 
ƒ Aí < 2. O ur time steps are always much smaller than 
that limit.

2.3.1 Time-splitting procedure

Similar to Dukowicz and Smith (1994), we employ a 
time-splitting approach by first introducing the splitting

variables, (f v  u c/V) and Û " +1 :

ƒ  udv) = ( ^ j  udV ĵ + a z S ^ j  gVi]dVy

Û"+i =  U " +1 argVSi] —
u

H  +  if
Ail.

(28)

(29)

The novel portions of this, needed to deal with the full 
nonlinear free-surface dynamics, are the introduction 
of Eq. 28 and the last term  in Eq. 29. Substituting 
Eqs. 28 and 29 into Eqs. 22 and 24, we obtain

S( j  u d V ^ j + a x S ^ j  f k x u d V

=  Tp ^ - i  -  X (^j  gVi] dV ) -  t f  f k  x u  
Jv

dV

+  a 2x2S f k  X Vi] dV ) , (30)

SU +  ctfxk X SU =  T j P n'n- 1 -  g V i f

+  a~gfx~k X  VS/; +  afzSi]k

u

H  +  i f  '

where we have introduced the following notation

(31)

0 “ =  (1  — 2 a ) f n +  2 a f n~l ,

SU =  Û " +1 -  U " - 1

——-—— w+1

S | / v U'iV)  =  ( / v U'iV)  - i l " dV
n—1

H +11 i  i —~ f  p"‘ni‘ ■ d A  -  f (u")
J-H I PO Js"

[  F"
J v

1 tjTH +1J

-  f k  X U 5.

dV j dz 

F ” - 1 dV \ dz
H  U V

To decouple Eqs. 30-31, we first notice that the last 
term  in Eq. 30 and the second to last term  in Eq. 31 are 
both O (x2Sii). These terms are the same order as the 
second-order truncation errors already made and hence 
can be discarded. The last term  in Eq. 31 is O(zSii).  
Although this represents a first-order error term  in 
the free-surface elevation, it is still comparable to the 
error in the free-surface integration scheme (Eq. 27). 
Furtherm ore, the term  is divided by H  +  meaning 
that it is O ( 77^ )  which is never larger than O 
in a single time step and often much smaller. Flence, we 
discard this term  too. Discarding these terms results in 
the following decoupled m omentum equations

/vUdV azS Í  f k
Jv

x u  dV

=  X P ■n,n—1 — r j  gViidV^j — X j  f k x u d V

SU +  a f x k  X SU =  T \ T n'n- 1 -  gVii

(32)

(33)

To finish the decoupling, we take Eq. 27, average it 
with itself evaluated a time step earlier, and substitute 
Eq. 29 for U" 1. The result is the following decoupled 
equation for i f +1

SgxV • [ ( ƒƒ+/ ; ”) VS/;] -  0 V • ( u m\n&r¡) -  

(.H  +  i f )  (0Û '2+1 +  U" +  (1 -  0)U '

2511

=  V l ) ]  (34)

In conclusion, the new elements of tem poral discretiza­
tion are in Eqs. 28, 29, 32, and 34. In particular, the 
nonlinear free-surface param etrization is maintained 
by the H  +  i f  factors in the divergences in Eq. 34 and 
by the second term  on the left-hand side of Eq. 34.

Note that it is this decoupling procedure that in­
spired us to keep the full m omentum equation (Eq. 12) 
instead of the baroclinie equation (Eq. 11; see Section 
2.1). H ad we worked with the baroclinie momentum 
equation directly, the barotropic equations (Eqs. 29, 
31, and 33) would have been unchanged; however, the
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truncation term  in going from Eqs. 30 to 32 would

( k  u '” I \
fv H + r f "  V dV ) ¡ns |cad ° f the higher-

order term  we obtained in Eq. 30. Further, the er­
ror term  in Eq. 30 is more uniform, while the error 
term  that would have been obtained from the baro­
clinie equations would have grown as the topography 
shoaled.

2.4 Time-dependent, nonlinear “distributed-cr" spatial 
discretization of the free-surface primitive 
equations

Using tem poral discretization (Eqs. 21, 23, 25, 26, and 
32-34), we can derive our new, time-dependent, spatial 
discretization. This discretization distributes with depth 
the temporal volume changes in the water column due 
to the time-variable free surface. We found that these 
variations of cell volumes must all be accounted for to 
avoid potentially large m om entum  and tracer errors in 
regions of strong tides and shallow topography.

Following Bryan (1969), we discretize Eqs. 21, 23, 
25, 26, and 32-34 on the staggered Arakawa B-grid 
(Arakawa and Lamb 1977). We retain the B-grid of 
the PE model of HOPS based on its ability to simu­
late geostrophy and any potentially marginally resolved 
fronts and filaments in our multiscale simulations 
(W ebb et al. 1998; Griffies et al. 2000; Wubs et al.

2006). We employ a finite volume discretization in 
which the average of a variable over the volume is 
approximated by the value of the variable at the center 
of the finite volume (see Section 4.7.1). As shown in 
Fig. 2, the tracers and free surface (T , S, /;) are hor­
izontally located at the centers of “tracer cells" while 
velocities (u7, U, Û) are located at the centers of “veloc­
ity cells" which are offset i  grid-point to the northeast 
from the “tracer cells". In the vertical, the 3D tracers 
and velocities (T,  S, u;) are, again, located at the centers 
of their respective cells, while the vertical velocities are 
calculated at the tops of the tracer and velocity cells. By 
choosing this type of discretization, the control volumes 
of Eqs. 21,23,25,26, and 32-34 become structured-grid 
finite volumes.

In the vertical, our new time-dependent, terrain- 
following coordinates are defined as follows: First, the 
terrain-following depths for the (undisturbed) mean 
sea level, z ^ L, are set (see “Appendix 1.1"). We then 
define the time variable model depths such that the 
change in cell thickness is proportional to the relative 
thickness of the original (undisturbed) cell. Hence, 
along model level k, the depths can be found from

Zk(x ,  y, t) =  i](x, y, t) +  1̂ +  j z^SL(x, y).

(35)

(a) (b)
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Fig. 2 B-grid indexing scheme, a H orizontal lay-out. H ere T  
stands for variables centered in tracer cells (T , S , if) and u 
represents variables centered in velocity cells (u, u', U). b Vertical

lay-out. T racer cells are shown, velocity cells have the same lay­
out, mer 
velocity
out, merely shifted (■ grid-point, and w represents the vertical
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By distributing the tem poral change in the free surface 
across all the model levels, we simplify the discretiza­
tion in shallow regions with large tides (e.g., we avoid 
requiring that the top level be thick enough to encom­
pass the entire tidal swing, which in the case of very 
shallow depth can mean most of the total depth). An 
additional computational benefit is that the time de­
pendence of the computational cell thickness decouples 
from the vertical index. This provides us the following 
properties:

1 XH  + nn *'i'k H  '• k1 k=1 k=1

A Vtj,k 
AV^,1L

=  1
H ui

both of which are used to derive Eq. 39 below.
Since our vertical grid is both terrain following and 

time variable, we also define a new vertical flux veloc­
ity, co, normal to the top, f , of finite volumes as

co = w — u • V f  —Oí
d t '

(36)

A n im portant consequence of this definition is that 
the kinematic conditions at the surface and bottom  
reduce to

^ 1  r¡ =  6  :  C o \ _ f [  =  0

Using these definitions, along with the second-order 
mid-point approximation

f  <pdV = <pAV+ 0 ( A V 2),
Jv
we discretize Eqs. 21, 23, 25,26, and 32-34 as

/  u d A  + \
J s ? ,  Js;

co ■ d A  = 0, (37)

5 (uAV)
+  a f k  X 5 (uAV) =  T n-n -  g  (AVV/fl

(u/AV)"+1 =  (uAV)"l i -

— f k  X (uAV)“ , (38)

+i AVm sl / . ( uÂV)”+1^ m sl^E-II ^  a V msl
k= 1

8 {TAV) =  f T nA yn _  f ( T n),

8{SAV) =  FsnAVn - r ( S n),

(39)

(40)

(41)

SU +  ctfxk X SU =  T I T n'n- X -  g V i f  \ ,

aOgTV ■ [(ƒƒ+  i f )  VS/;] - 0 V -  (u '^ S /; )

(42)

281]

= V- {H +  i f )  ( 0 Û ” +1 +  u ” +  d  -

U ”+l =  Û"+1 -  ctTgVSi] ■
H  +  if

;8ll

(43)

(44)

where

T(u) = nu)
f ( u )

I ; f  (cp)= f  cj) u • d A +  I <pco- d A ,
)  Jsr Js»

P ■n.n—1 — [  p i  hh • d A  -  f  (u)B +  F” AV”
Po Js»

F”-1 AV”-1 ,

P n.n—1 _ ■ d A

-  T(u)” + F ”AV” dz

i r l l 1 . . ..
+  {F AV j

Hi, j +  djj J ¡i

-n,n—l _=  P "-"-1 -  f k  X U “,

are the lateral surfaces of a computational cell 
and A'-'u represents the top and bottom  surfaces of the 
computational cell.

W ith our new choice of vertical discretization, all 
cell volumes are functions of time. In regions with rela­
tively high tides (compared to the total water depth), 
not correctly accounting for the time dependence of 
the volume change can lead to large errors in the 
tracer and m omentum fields. Focusing on the com­
putational aspects, this time dependency of the cell 
volume means that we solve the tracer and baroclinie 
velocity fields in two steps. Using tem perature as an 
example, we first solve for (TAV)”+1. Then, after we 
have solved for i f +1, we update the cell volume and 
compute Tn+1. A  second computational property is that

——-—— W+l
we do not maintain separate storage for (uAV) and 
(ii'AV)” 1. Instead, immediately after solving Eq. 38, 
we remove the vertical mean according to Eq. 39. All 
details of the discretization of the fluxes through the
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boundaries of the computational volumes are given 
in “Appendix 1.2". The resultant system of discrete 
equations is given by Eqs. 38-44 and 64-65.

3 Fully implicit nesting scheme

In this section, we derive and discuss our new fully 
implicit (in space and time) two-way nesting scheme. 
Deriving this scheme required a detailed exploration 
of the choices of variables to exchange and the specific 
algorithms, as discussed in Section 4.

Considering first traditional “explicit" and “coarse- 
to-fine implicit" two-way nesting (Debreu and Blayo 
2008), fields are often interpolated from a coarser res­
olution domain to provide boundary values for a finer 
resolution domain. Then fields from the finer domain 
are averaged to replace corresponding values in the 
coarser domain. This is a natural order of operations in 
the sense that often a refined (smaller) time step is used 
for the finer domain, and hence, not all refined time 
steps have corresponding coarse field values. However, 
once updated, the coarse domain fields are no longer 
the same fields that were interpolated for the finer 
domain boundaries. This results in a weakened cou­

la)
Fine —» Coarse

Fig. 3 The basic collocated nesting finite volume domains are 
shown (for a 3:1 example) with the coarse domain nodal points 
indicated by open circles and the boundaries of the corresponding 
coarse domain computational cells in solid lines. The fine domain 
nodal points are marked with plus signs and the boundaries of the

pling (Section 4.6) between the domains which can be 
rectified either with an iteration scheme or with fully 
implicit nesting.

In our new implicit nesting, the goal is to exchange 
all of the updated fields values as soon as they be­
come available. This is analogous to an implicit time- 
stepping algorithm, which simultaneously solves for all 
unknowns. It is only analogous because here updated 
values are exchanged across multiple scales and nested 
grids within the same time step, for several fields. 
Hence, we refer to such schemes as being implicit in 
space and time; the nested solutions are intertwined. 
Such tightly coupled implicit nesting can, in some sense, 
be seen as refining grids in a single domain (e.g., 
Ginis et al. 1998). However, there are some advan­
tages to the nesting paradigm. First, the time stepping 
can be easily refined for the finer domains. Second, 
the model dynamics can be tuned for the different 
scales in the different domains. Most notably, different 
sub-gridscale physics can easily be employed in the 
different domains, and we have used this in several 
regions. Finally, fundamentally different dynamics can 
be employed in the different domains (e.g., Shen and 
Evans 2004; M aderich et al. 2008). To implement our 
implicit nesting, we observe that most of our prognos-

(b )
Coarse —» Fine

corresponding fine domain computational cells in dashed lines. 
a The r :■: r array of fine grid cells averaged to update a single 
coarse grid cell are highlighted, b The 4 : : 4 stencil of coarse grid 
nodes bi-cubically interpolated to update boundary nodes of the 
fine domain are highlighted as are the updated fine grid cells
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tic variables in our free-surface PE model (Eqs. 37- 
44) are coded with explicit time stepping. Therefore, 
reversing the order of operations (updating the coarse 
domain fields with averages from the interior of the fine 
domain before interpolating to the boundaries of the 
fine domain) ensures that, for these fields, the updated 
field values are in place as soon as they are needed. For 
the remaining variables, such implicit nesting is more 
complex. The free-surface i] has implicit time stepping 
(Eq. 43), while U is coupled to /; through (Eq. 44) 
and boundary conditions (“Appendix 1.3"). Further­
more, additional constraints are imposed on i] and U to 
maintain the vertically integrated conservation of mass 
(“Appendix 1.4"). Much of the research summarized in 
Section 4 was centered around these two variables. The 
final results are presented next, assuming a two-domain 
configuration (coarse and fine).

We start by defining collocated grids for the coarse 
and fine domains as shown in Fig. 3. O ur nesting al­
gorithm is suitable for arbitrary odd refinement ratios 
(r:l), subject to the known issues of scale matching 
(e.g., Spall and Holland 1991). In this paper, we illus­
trate the nesting with 3:1 examples. We denote fields 
evaluated at coarse grid nodes with the indices (?'c, /, ) 
and fields evaluated at fine grid nodes with {if, /,). 
We distinguish two special subsets of fine grid nodes: 
(a) fine grid nodes collocated with coarse grid nodes 
(/ fC, j fc) and (b) fine grid nodes at the outer boundary 
of the fine domain ( i ^ ,  / //, ). In this presentation, we 
assume that we have the same num ber of model levels 
and distribution of vertical levels in both domains (i.e., 
no vertical refinement). However, the topography can 
be refined in the finer domains (it is refined in all of 
our examples), subject to the constraints described in 
“Appendix 2.1.1". The algorithms apply to (and are 
coded for) both Cartesian and spherical coordinates.

A t each time step, our nesting algorithm proceeds as 
follows (also shown graphically in Fig. 4):

1. Solve Eqs. 37-42 simultaneously in each domain for
(u/,2+1 Az" +1 Û ”+1 E”+1Az,2+1 5’”+1Az”+1)

2. Replace (u/,2+1 Az”+1, (ƒƒ +  i f ) t n+\  Tn+1A z n+\  
Sn+1A z n+1, i f )  in the coarse domain at overlap 
nodes with the following averages from the fine 
domain (u/,2+1 Az”+1, (ƒƒ +  i f ) \ J n+1, Tn+1 A z n+1, 
Sn+1A z n+1, i f )

. j f c + n ,  if c+ n ,

j.n+i a 7«+i   t  y ^  y ^  s n+l AVn+l
pic,jc, k ^ z ic.k.k -  Z^ n U 'ü h / . t ’

Jc j = j f c - r h i = i f c - r h

jfc+rh ifc+rh

Y] • ='lek E E "“M j .A Ai ,
j = J f c - r h i = i f c - r h

(45)

(46)

T « + l
Jc

j f c + n ,  i f c + n ,

A A }=}fc-rh i=i fc-rh

(47)

where rh =  \r/2\ is the greatest integer less than or 
equal to r / 2 ,

<p =  u 'I', S; AV”m. =  AxLjAyLjAz?jy,

AAj j  =  AxfjAy¡j .

3. In the coarse domain, recompute U" from Eq. 44 
and updated i f . W hen the coarse domain estimate 
of U" was computed from Eq. 44 in the n — 1 time 
step, the coarse domain estimate i f  had not yet 
been updated from the fine domain (Eq. 46 in 
step 2 ).

4. In the coarse domain, solve Eqs. 43 and 44 for i f +1, 
U«+i Az”+1 u/,2+1 Tn+1 Sn+1

5. Using piece-wise bi-cubic Bessel interpolation, B, 
replace values in the fine grid boundary with values 
interpolated from the coarse grid

(48)

_/« + !
a ifb:jfb, k ^ j fb,k =  B ( < l l , k ^ z t l k )  - (49)

u;2+1,. k= BIfbJfb’K

where

« + 1
jc

1

n ifb.jfb''h>f b - J f b

(50)

f  =  T, S, i f ,  i f +1.

Note that Eqs. 49 and 50 are written in terms of 
transports rather than velocities. This is done to 
generate a consistent mass flux as seen by both 
domains. We have implemented this scheme to 
either use the interpolated values in Eqs. 48-50 
directly or to correct them  to allow the outward 
radiation of scales unrepresented in the coarse 
domain. The radiation scheme is an extension of 
Perkins et al. (1997) and updates our previous 
radiation schemes (Lermusiaux 2007; Haley et al. 
2009). Some more promising, recent boundary con­
ditions that we have derived and that improve the 
continuity of horizontal fluxes and reduce jumps in 
vertical fluxes across the fine domain boundaries 
are presented in “Appendix 1.3".

6 . In the fine domain, solve Eqs. 43-44 for i f +1, U"+1, 
Az"+1, u"2+1, Tn+1, and S"+1.
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U
Fig. 4 Present M SEAS-nesting algorithm, two-way implicit in and b in words. Solid lines indicate averaging operators from fine
space and time. The nesting algorithm is shown schematically domain to coarse. Dashed lines indicate interpolation operators
a on the discrete structured finite-volume equations (Eqs. 37-44) from the coarse domain to the boundary of the fine domain
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As written in steps 1-6, the new fully implicit nest­
ing scheme requires that both domains be run with 
the same time step. This is an outgrowth of the ap­
plications we have been running, which have strong 
thermoclines, haloclines, and pycnoclines over shallow 
areas, steep shelfbreak, and/or open ocean. These ap­
plications require a relatively large num ber of vertical 
levels (e.g., from 50 to 100 or more). Satisfying the 
Courant-Friedrichs-Lewy (CFL; Courant et al. 1928) 
restrictions from the resulting vertical discretizations 
requires a small enough time step such that the max­
imum horizontal velocities only reach about 1 0 % of 
their own CFL limits. Hence, decreasing the horizontal 
grid spacing by a factor of 3 or 5 does not affect 
the total CFL limitation much or require a smaller 
time step.

It is a straightforward problem  to restructure this 
algorithm to handle refined time stepping. First, split 
the data transfer from the horizontal interpolation in 
step 5. Before step 2, the values from the coarse grid 
in the two bands outside of the overlap region (i.e., all 
the coarse grid points in the interpolation stencil but 
outside of the overlap region) would be passed to some 
auxiliary storage in the fine grid model. In the fine grid, 
these external values would be time interpolated to 
the current refined time step then spatially interpolated 
with the averaged fine grid values to the outer bound­
ary. A n advantage of our scheme over one with refined 
time stepping is that the fine grid fields are available 
to make the update in Eq. 47, which increases the 
coupling of the barotropic modes between the domains 
(see Section 4)

O ur scheme is directly applicable to an arbitrary 
num ber of nonoverlapping, telescoping domains. First, 
iterate step 2  over all domains from finest to coarsest. 
Then, apply the series of steps 3-5 for all domains from 
coarsest to finest.

Finally, since we allow refinem ent in the topography, 
our undisturbed vertical terrain-following grid, , 
requires constraints to maintain consistent interpola­
tion and averaging operations in the above nesting 
rules. Specifically, in the portion of the coarse domain 
supported by averages from the fine domain, 
are computed from averages z ^ 1/ k following Eq. 46. 
Along the boundary of the fine domain, z ^ M;fjj k are 
interpolated from following Eq. 48. These re­
strictions, along with the nesting couplings on keep 
the computational cells consistent between domains 
which, in turn, keeps the averaging operations in Eq. 45 
consistent (i.e., as long as the coarse cell is equivalent 
to the sum of the fine cells then the integral of a field 
over the coarse cell is conceptually the same as the sum

of the integrals of the same field over the corresponding 
fine cells).

4 Exploring different variations of the fully implicit 
nesting scheme

We now present and compare a series of two-way 
nesting schemes that we implemented and tested. Most 
are simpler versions of the fully implicit nesting scheme 
(Section 3). All schemes were tested on many common 
idealized (e.g., a jet m eander) and realistic test simula­
tions, for a total of about 1,000 simulations. However, 
only the results of one of these tests are illustrated next, 
the same for each scheme. In addition, even though 
we tried a large num ber of permutations among all 
of these schemes, with both small and large variations 
among them, we only present an organized subset of all 
schemes tried. O ur goal is to illustrate the main canon­
ical schemes. We also limit our comparisons to two- 
way nesting. Cailleau et al. (2008) compared one-way 
nesting and two-way nesting. They found significant 
improvements with two-way nesting, which also reflects 
our experience. A t the end, Section 4.7, we provide an 
im portant theoretical analysis of the order of magni­
tude of the dominant truncation errors of the different 
schemes. This analysis mathematically explains and 
contrasts the performance of the various schemes 
(Section 4.7.2).

The main realistic simulation we selected (see 
Fig. 5) is based on the real-time AW ACS and SW06 
exercises (Aug.-Sep. 2006) in the New Jersey Shelf/ 
Hudson Canyon region (W HOI 2006; Lermusiaux et al. 
2006; Chapman and Lynch 2010; Lin et al. 2010). It 
uses Cartesian coordinates. The coarse domain is a 
522 X 447-km domain, with 3-km resolution, to sim­
ulate the region of influence. The fine domain is a 
172 X 155-km domain, with 1-km resolution, to refine 
the simulated dynamics in the main acoustic region just 
south of the Hudson Canyon. For these nesting tests, 
both domains employed 30 vertical levels in a double­
er configuration (see “Appendix 1.1"). The bathymetry 
used was a combination of the N O A A  (2006) Coastal 
Relief Model combined with V8.2 (2000) of the Smith 
and Sandwell (1997) topography in the deep regions. 
This combined bathym etry was interpolated and con­
ditioned to coarse 3-km and fine 1-km resolution do­
mains. In the domains overlap, the 1-km bathymetry 
has sharper scales and is not an interpolation of the 
3-km bathymetry (but the 3-km bathym etry is a 3-km 
control-volume average of the 1-km bathymetry). The 
estimation of the initial conditions was based on two 
objective analyses, one inshore and one offshore of the
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Fig. 5 Nesting domains used for the series of numerical tests shown along with a pair of domains (3 km, 1 km resolutions) used
we completed in the Shallow W ater-06 region. The New Jersey for two-way nesting
ShelhHudson Canyon region of the middle Atlantic Bight is

expected shelfbreak front, using both in situ synop­
tic (gliders, ship deployed conductivity-tem perature- 
depth (CTD), autonomous underwater vehicles) and 
historical data (National Marine Fisheries Service, 
W orld Ocean Database, Gulf Stream Feature analyses, 
Buoy data, etc.). These two analyses were combined 
using a shelfbreak front feature model (Sloan 1996; 
Lermusiaux 1999; Gangopadhyay et al. 2003). The 
Gulf Stream was initialized based on historical CTD 
profiles and estimates of its position based on SST and 
NA V OCEA NO feature analyses. The simulations 
were forced with atmospheric fluxes derived from 
weather research and forecasting (J. Evans, personal 
communication) and Fleet Numerical Meteorological 
and Oceanography Center and laterally forced with 
linear barotropic tides (Egbert and Erofeeva 2002; 
Logutov and Lermusiaux 2008). Twice-daily assimila­
tion of the synoptic data is applied to control uncer­
tainties. The nominal duration for this simulation was 
43.5 days (two cases with incomplete implicit two-way 
nesting term inated early due to local CFL violations, 
Sections 4.2 and 4.3). This duration was chosen by 
considering the time scales of the dominant processes. 
For this representative shelfbreak region, they are on 
the order of 2-7 days. Thus, the simulations are of 
significant (six to 20 events) duration. Results next 
are also confirmed by our extensive set of other (not 
shown) idealized and realistic test simulations.

4.1 Scheme 1: baseline nesting (mimic rigid-lid nesting)

One of the first schemes we tested was a straightfor­
ward update of the nesting scheme used for the rigid-lid

dynamics (see “Appendix 3"). Comparing this scheme 
1 to the consistent implicit scheme of Section 3, Scheme 
1 is a five-step scheme; steps 1, 4, and 6  from Section 3 
remain unchanged; step 3 is eliminated; and steps 2 and 
5 are modified. As a whole, the changes are as follows

-  In step 2 (replacing coarse grid values with averages 
of fine grid values):

-  Eliminate Eq. 46 (averaging surface elevation).
-  In Eq. 47 (averaging barotropic forcing), re ­

place (Hu  +  < y)Û ” + 1 by T";"-1 (i.e., move 
averaging of barotropic forcing one “step" back 
in PE algorithm).

-  Eliminate step 3 (making time-lagged coarse grid 
barotropic velocity consistent with time-lagged fine 
grid averaged surface elevation).

-  In step 5 (interpolating coarse grid values to bound­
ary of the fine grid; Eq. 48), do not interpolate i f.

The net result of these differences is that there 
is a much weaker feedback from the fine domain 
barotropic fields to the coarse domain in this nesting 
scheme. This “baseline" scheme was first considered 
because the analogous rigid-lid scheme worked well.

In Fig. 6 , we show the results of applying this incom­
pletely implicit nested scheme in the middle Atlantic 
Bight. In the top row, we present the vector differences 
between the barotropic velocity computed in the fine 
domain with the barotropic velocity computed in 
the corresponding coarse domain simulation, interpo­
lated to the fine domain. These vector differences 
are overlaid on a map of the magnitude of these

•74 -73.S -73 -72.S -72 -71.S
Longitude (°E)•76 -75 -74 -73 -72 -71 -70 -69

Longitude (°E)
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Fig. 6 Scheme 1: baseline nesting, a V ector difference between 
barotropic velocity in coarse and fine domains plotted in the fine 
domain for 00Z on 17 Aug., 31 Aug., and 18 Sep. (overlain on 
magnitude of vector difference), b Difference between surface

elevation in coarse and fine domains plotted in the fine domain 
for 00Z on 17 Aug., 31 Aug., and 18 Sep. Notice the large (sub)- 
mesoscale differences in the barotropic velocity

vectors. In the bottom  row, we plot the same scalar 
differences for the surface elevation. Going from left to 
right, we show these differences at 3 days (after initial 
adjustment), 17 days (during tropical storm Ernesto), 
and 35 days (post-Ernesto relaxation) into the simu­
lation. While the coupling of the surface elevation is 
good, within ±3 cm everywhere, there is large and 
growing discrepancy in the barotropic velocity. Not 
only is the magnitude of the velocity difference large, 
0 ( 1 0  cm/s), but the velocity differences become sim­
ilar to (sub)-mesoscale features of the region. These 
differences are clearly not interpolation error features 
but represent growing biases between the barotropic 
velocities estimated on the coarse and fine domains (see 
Section 4.7.2).

4.2 Scheme 2: average Û not T

This scheme improves the barotropic feedback from 
the fine domain to the coarse of scheme 1 by averaging 
Û  instead of T  in Eq. 47. This more strongly couples the

barotropic mode by pushing the exchange one step later 
in the nonlinear free-surface PE algorithm (Eq. 42) and 
making the feedback closer to the actual barotropic 
velocity U (Eq. 44). Comparing this scheme 2 to the 
consistent implicit scheme of Section 3: Scheme 2 is a 
five-step scheme; steps 1,4, and 6  from Section 3 remain 
unchanged; step 3 is eliminated; and steps 2 and 5 are 
modified. As a whole, the changes are as follows

-  In step 2 (replacing coarse grid values with averages 
of fine grid values):

-  Eliminate Eq. 46 (averaging surface elevation).
-  In Eq. 47 (averaging barotropic forcing), re ­

place (Híj +  by Û " ^ 1 (i.e., transfer
velocity instead of transport).

-  Eliminate step 3 (making time-lagged coarse grid 
barotropic velocity consistent with time-lagged fine 
grid averaged surface elevation).

-  In step 5 (interpolating coarse grid values to 
boundary of the fine grid; Eq. 48), do not inter­
polate i f .

Cj Springer
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In Fig. 7, we again plot vector differences between 
the fine and coarse estimates for U, but using this 
second scheme. For this particular nesting, a local CFL 
violation (see below) occurs at 4.5 days into the simula­
tions. We therefore focus on the initial error growth and 
examined the differences at 0, 0.25, and 0.5 days into a 
half-day simulation, which is sufficient to illustrate the 
results. Overall, since we now feedback the barotropic 
velocity implicitly, the differences between them  are 
much smaller, with no mesoscale organization and am­
plitudes mainly less than 0.7 cm/s with regions of 0.7-
1.3 cm/s along the shelfbreak and in the Hudson canyon 
and an isolated spot of 1 0  cm/s at the intersection of 
the shelfbreak with the southern boundary (where large 
tidal signal are sensitive to bathymetry resolution). By 
day 4.5 (not shown), this isolated spot doubles in size 
and leads to the CFL violation. However, the surface el­
evation differences are now both large, 0(0.25 m), and 
organized on the mesoscale. By day 4.5 (not shown), 
these differences grow to ±  1 m. By only strengthening

the coupling between the U estimates, we have simply 
pushed the interdom ain growing bias to i] (see Section
4.7.2).

4.3 Scheme 3: exchange i f

This schemes learns from the advantages of each of 
the schemes 1 and 2. It further increases the coupling 
of scheme 2  by also exchanging the surface elevation 
at a lagged time step. The exchange is both in the 
averaging from the fine domain to the coarse domain 
as well as in the interpolation from the coarse domain 
to the fine domain. Comparing this scheme 3 to the 
consistent implicit scheme of Section 3: Scheme 3 is a 
five-step scheme; steps 1, 4, 5, and 6  from Section 3 
remain unchanged; step 3 is eliminated; and step 2 is 
modified. As a whole, the changes are as follows:

-  In step 2 (replacing coarse grid values with averages 
of fine grid values), Eq. 47 (averaging barotropic
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Fig. 7 Scheme 2: average U  not T .  a V ector difference in 
barotropic velocity between coarse and fine domains plotted in 
the fine domain for 00Z, 06Z, and 12Z on 14 Aug. (overlain on 
magnitude of vector difference), b Difference in surface elevation

difference between coarse and fine domains plotted in the fine 
domain for 00Z, 06Z, and 12Z on 14 Aug. Notice the large (sub)- 
mesoscale differences in the surface elevation that develop within 
a half day
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forcing), replace (HLj +  by Û f t 1 (i.e.,
transfer velocity instead of transport).

-  Eliminate step 3 (making time-lagged coarse grid 
barotropic velocity consistent with time-lagged fine 
grid averaged surface elevation).

In Fig. 8 , we again plot vector differences between 
the fine and coarse estimates for U, //, using this third 
scheme. Here too, the simulation is cut short by a 
local CFL violation at 14.9 days into the run. The 
problem  takes time to develop and we thus examine 
the differences at 3, 8 , and 14 days. In the domain as 
a whole, the differences in both U and are small 
in magnitude and scale. The magnitude of the veloc­
ity difference is generally <0.7 cm/s with regions of
0.7-1.3 cm/s mainly near the shelfbreak and Hudson 
canyon. However, where the shelfbreak intersects the 
southern boundary, there is a growing region where 
velocity differences reach 0 (10  cm/s). This eventually

leads to a local CFL violation. The difference in the i] 
estimates remains small, in the range ±3 cm over most 
of the domain and bounded by ±7  cm in the region of 
large U differences. Taken as a whole, this indicates 
that this scheme produces the overall desired level of 
coupling between the coarse and fine domains but is 
overly sensitive (see Section 4.7.2).

4.4 Scheme 4: update U" as function of i f

The improvement in this scheme is not in exchanging 
additional fields between the coarse and fine domains 
but in making sure that the values that are exchanged 
are used as consistently as possible in the free-surface 
PE algorithm. Specifically, we use Eq. 44 to correct the 
time lagged barotropic velocity in the coarse domain af­
ter receiving the averaged time lagged surface elevation 
from the fine domain. Comparing this scheme 4 to the 
consistent implicit scheme of Section 3: Scheme 4 is a
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Fig. 8 Scheme 3: exchange i f .  a V ector difference between 
barotropic velocity in coarse and fine domains plotted in the fine 
domain for 00Z on 17 Aug., 22 Aug., and 28 Aug. (overlain on 
magnitude of vector difference), b Difference between surface

elevation in coarse and fine domains plotted in the fine domain 
for 00Z on 17 Aug., 22 Aug., and 28 Aug. Notice the growing 
velocity misfit caused by an instability at the shelfbreak/southern 
boundary intersection

Ô  Springer



1514 Ocean Dynamics (2010) 60:1497-1537

six-step scheme; steps 1, 3, 4, 5, and 6  from Section 3 
remain unchanged; and step 2 is modified. As a whole, 
the changes are as follows:

-  In step 2 (replacing coarse grid values with averages 
of fine grid values), Eq. 47 (averaging barotropic 
forcing), replace [ h ¡ ¡ +  Û f t 1 by Û f t 1 (i.e., 
transfer velocity instead of transport).

Figure 9 shows vector differences between the fine 
and coarse grid estimates for U, using this implicit 
nesting scheme, at 3 ,17, and 35 days into the coupled 
simulations. Here differences between U and i] are still 
small in magnitude and scale. Difference magnitudes 
for U are <0.7 cm/s over the majority of the domain 
with regions of 0.7-2 cm/s generally near the shelfbreak 
and Hudson canyon. The intersection of the shelf­
break with the southern boundary excites an isolated 
spot of larger differences, 0 (1 - 1 0 ) cm/s between the

coarse and fine U. However, with this scheme, these 
boundary differences remain confined to a small re ­
gion near the boundary and bounded. Moreover, these 
differences are not monotonie but interm ittent, grow­
ing, and fading between 4 and 10 cm/s repeatedly during 
the simulation: They are partly due to tidal and inertial 
responses that differ slightly in the fine and coarse 
domain. This can lead to localized small interm ittent 
misfits. Differences in i] remain small, in the range 
±3 cm over most of the domain and bounded by ±7  cm 
in the region of larger U differences. As the velocity 
differences, the elevation differences in this region are 
interm ittent, growing, and fading repeatedly during the 
simulation. W hen compared to the previous schemes, 
this is the first scheme that possesses sufficient coupling 
for consistent estimates between the coarse and fine 
domains and sufficient robustness for use in realistic 
simulations. However, it does not conserve transport 
(see Section 4.7.2).
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Fig. 9 Scheme 4: update U" as a function of i f .  a V ector 
difference between barotropic velocity in coarse and fine do­
mains plotted in the fine domain for 00Z on 17 Aug., 31 
Aug., and 18 Sep. (overlain on magnitude of vector difference), 
b Difference between surface elevation in coarse and fine do­

mains plotted in the fine domain for 00Z on 17 Aug., 31 Aug., 
and 18 Sep. Velocity and elevation differences generally small 
with interm ittent misfits at the shelfbreak/southern boundary 
intersection
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4.5 Scheme 5: pass ( H  +  i f )  Û " +1 (“transport")

This is the fully implicit two-way nesting scheme which 
we presented in Section 3. This scheme improves upon 
scheme 4 by casting Eq. 47 in terms of transport instead 
of velocity. This brings Eq. 47 in line with Eqs. 45, 
49, and 50 which were already written in terms of 
transports. Averaging and interpolating transports in­
stead of velocities was chosen to enhance the long-term 
stability of the simulations by ensuring the consistency 
of the mass flux estimates between the coarse and fine 
domains.

Figure 10 shows vector differences between the fine 
and coarse estimates for U, //, using this fully implicit 
nesting scheme, at 3 ,17, and 35 days into the coupled 
simulations. Differences between the estimates of U 
in the coarse and fine domains are generally less than 
1 cm/s. Larger differences, between 1 and 4 cm/s, mainly 
occur at the shelf break and in Hudson Canyon, which 
are due to the superior ability of the fine domain to

represent these topographic features. Peak differences 
for U again occur where the shelfbreak intersects the 
southern boundary, reaching 0 (1 -1 0  cm/s). They are 
smaller than those of scheme 4 and show the same inter­
m ittent nature. It should also be noted that differences 
remain small before (Aug. 17), during (Aug. 31), and 
after (Sep. 18) the passage of tropical storm  Ernesto. 
This indicates that the strength of the coupling of the 
coarse and fine solutions is not a function of the velocity 
magnitude. The differences between the estimates of i] 
are generally bounded by ±3 cm, with peak values of 
around ±5  cm at the intersection of the shelfbreak and 
the southern boundary. The small improvement in the 
barotropic velocity coupled with the long-term advan­
tages of maintaining consistent estimates of mass fluxes 
in the two domains led to the selection of this scheme as 
our fully implicit two-way nesting scheme (see Section
4.7.2). Note that at the end of each time step, a perfect 
nesting would not lead to zero differences between the 
coarse and fine estimates on the fine grid (differences
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Fig. 10 Scheme 5: pass (H  +  i f )  Ü"+1 (“T ransport”), a Vec­
tor difference between barotropic velocity in coarse and fine 
domains plotted in the fine domain for 00Z on 17 Aug., 31 
Aug., and 18 Sep. (overlain on magnitude of vector difference).

b Difference between surface elevation in coarse and fine do­
mains plotted in the fine domain for 00Z on 17 Aug., 31 Aug., and 
18 Sep. Velocity and elevation differences small with interm ittent 
misfits at the shelfbreak/southern boundary intersection
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are only zero on the coarse grid). In perfect nesting, 
fine-grid differences vary at each time step due to 
dynamics, but they do not grow with the duration of 
integration.

4.6 Coarse-to-fine implicit nesting

In this section, we compare our fully implicit two-way 
nesting scheme (Section 3) to a more traditionally orga­
nized coarse-to-fine implicit two-way nesting scheme. 
We start by first designing the coarse-to-fine implicit 
scheme that most closely matches our fully implicit 
scheme.

1. Solve Eqs. 37-42 simultaneously in each domain for 
(u/n+1 Az" +1 Û ” +1 r " +1Az" +1 5"+1Az"+1)

2. In the coarse domain, solve Eqs. 43 and 44 for i f +1, 
jjn+l A zn+1 u /n+1 Tn+1 Sn+1

3. Using piece-wise bi-cubic Bessel interpolation, B, 
replace values in the fine grid boundary with values 
interpolated from the coarse grid

u /n + 1 . A 7 n + 1 .
^ f b  ’  i f b  ’  ^  *  f b  > j f b  ?  &

U "+1,. k =  B
f b  ’  J f b

(51)

(52)

(53)

1

H  ■ - I -  n n + l

where

<P =  T, s, i f +1.

4. In the fine domain, solve Eqs. 43 and 44 for i f +1, 
U ”+1, AzB+1, u /B+1, Tn+ \  and S"+1.

5. Replace values in the coarse domain at overlap 
nodes with the following averages from the fine 
domain values

bn+1 À 7 n+1 ‘d e k  ‘cjc.k

ifc+n, ifc+n,

E E
J— J f c  r h  i — i f c

j f c + r h  i f c + r h

Vicie  = A A ,

(54)

(55)

where 

<p =  u , T. S

i = j f c - n ,  i = i f C- n ,

n ' =  L jJ -

6 . In the coarse domain, recompute U" from Eq. 44 
and updated i f.

Figure 11 shows vector differences between the fine 
and coarse estimates for U, at 3, 17, and 35 days into 
the coupled simulations. The top row shows results 
from the coarse-to-fine implicit scheme, the bottom  
row from our final fully implicit scheme. The coarse-to- 
fine implicit scheme leads to differences between the 
estimates of U in the coarse and fine domains which 
are generally between 1 and 2  cm/s, with peak values 
around 10 cm/s. These differences are organized on 
a smaller scale than in scheme 1. This improvement 
over scheme 1 is due to proper couplings maintained 
in the coarse-to-fine implicit scheme. However, when 
compared to our fully implicit scheme (bottom  row), we 
see that the peak differences in the fully implicit scheme 
are bounded by 2  cm/s and most differences are less 
than 1 cm/s. The differences are also of smaller scales 
than those of the coarse-to-fine implicit scales. Overall, 
our final implicit scheme is much more consistent than 
a coarse-to-fine implicit scheme (see Section 4.7.2).

Note that here we are also testing the effects of 
smoothing the transition between the fine and coarse 
resolution topographies near the boundaries of the 
fine domain. In the two runs of Fig. 11, we used a 
six coarse-grid point transition (see “Appendix 2.1.1"). 
Comparing row (b) of Fig. 11 (with this topography 
transition) to row (a) of Fig. 10 (with no transition), 
we find that the interm ittent spot of large velocity 
difference at the intersection of the shelfbreak with the 
southern boundary is absent in Fig. 11 (i.e., absent in 
the case of a smooth transition between the coarse and 
fine resolution topographies). This indicates that one of 
the factors driving those large isolated differences was 
the proximity of an artificial topography structure (the 
sharp coarse-fine transition at the boundary).

4.7 E rror analysis

In Sections 4.1-4.5, we derived a series of nesting 
schemes and compared their performance in realis­
tic simulations. Now, we complete a theoretical error 
analysis of the improvements among schemes. In gen­
eral, the change between successive schemes is due 
to the use or nonuse of averaged values from the 
fine domain for the estimates in the coarse domain. 
In going from Section 4.1 to Section 4.2, we directly 
averaged the Û field not the T  field. This is equivalent 
to saying that, in our Û estimate, we upgraded our 
coarse estimate of V/; with averaged values from the 
fine domain (see Eq. 42). In going from Section 4.2 to 
Section 4.3, we explicitly upgrade our coarse estimate 
of i f  with averages from the fine domain. The change 
from Section 4.3 to Section 4.4 uses the upgraded i f  
to improve the estimate of U". Therefore, we present
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Fig. 11 Barotropic velocity differences: vector difference be­
tween barotropic velocity in coarse and fine domains plotted 
in the fine domain for 00Z on 17 Aug., 31 Aug., and 18 Sep. 
(overlain on magnitude of vector difference), a Differences for

coarse-to-fine implicit nesting scheme, b Differences for fully 
implicit nesting scheme. Overall, our fully implicit scheme is 
much m ore consistent than a coarse-to-fine implicit scheme

the truncation error analysis for the averaging update 
in general and then apply this general analysis to the 
individual schemes.

4.7.1 General error analysis

The horizontal averaging operation for these fields is 
the central point approximation of a 2D integral. The 
error in this approximation can be easily shown to be 
of second order (Ferziger and Peric 1996):

Ay  A r

/  / (¡) dxdy=\(¡)\l0 0) +  O(Ax2) +  O (A y2)] AxAy.

The r:l fine-to-coarse averaging operation can then be 
written as

. i f c + n ,  i f c+ n ,  r ^ l L

  V  Y  I 4> dxdy
:Ayc . A  . . A  . J -^1  J -^1  yrick Ax,

j f = j f c - n , i f = i f c - n , 2

i f c + n ,  i f c + n ,

E  £  4 )AxcA yc .

0 ( A y 2f) Ax ƒ Ay ƒ

. i f c + n ,  if c+ n ,

IT T  E  D  [+>■>, +  «(A x})Axc A y ,

- 0 ( A y 2f )
1

=  (4>) ifc±rh,jfc±rh 

,2 '

r AxcAyc

0 (  Aj f) :ifc±rh,jfc±rh

0 (A y } ) )
ifc±rh,jfc±rh

J f — J f c  f h  l f ~ l f c  ï h

where rh =  |r/2J and { f ) i fc+r„.jfc+rH is the average value 
of <p over the r x r  array of fine cells. From  this we see 
that the estimate for as averaged on the fine grid 
is second order in the fine grid spacing, O(Axy). The 
estimate for <p¡cj c based on the coarse grid primitive 
equations is second order in the coarse grid, D (Ax:). 
Even for only a 3:1 ratio in the grid spacing, this equates 
to an order of magnitude smaller errors obtained by av­
eraging the fine grid estimate. Furtherm ore, assuming 
that the time step is small enough to resolve the physical
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processes (up to their second derivatives), then the 
signs of the averaged error terms will remain constant 
over many time steps, providing a bias on the scale of 
time stepping and a seed for larger-scale biases built up 
through nonlinear interactions.

As a side note, the above error analysis shows an 
unambiguous error reduction when using the averages 
of the fine grid values to replace the coarse grid es­
timates. This definitive statem ent is due to the fact 
that the averaging scheme and the discretization of the 
primitive equations (Section 2.4) are both second order. 
If one was to use higher-order methods to discretize the 
primitive equations, then the averaging scheme used 
should at least match the order of the discretization. 
The use of higher-order averaging schemes might re­
quire extra filtering of the smallest scales in the fine 
domain estimates to avoid aliasing (D ebreu and Blayo 
2008, Section 4.1).

4.7.2 The general error analysis applied to the specific 
schemes

Scheme 1, Section 4.1, and Fig. 6: In addition to hav­
ing the same errors as the later schemes, this scheme 
uses an estimate of V/; that is entirely based on the 
coarse domain fields to compute Û. As shown above 
(Section 4.7.1), this maintains 0 ( A x 2c) in V/; rather 
than O(Axy) errors. M oreover, these are second-order 
errors in V/g hence, the leading order error terms will 
be proportional to the third derivatives in These 
are more “singular" derivatives then the second-order 
derivatives in our PE scheme, explaining why they 
would have to be larger somewhere and spawn the 
dominant biases in Fig. 6 . The fact that these errors 
are directly fed into Û, which in turn feeds directly into 
U, explains why these biases appear in the barotropic 
velocity.

Scheme 2, Section 4.2, and Fig. 7: This scheme updates 
Û  in the coarse domain with averaged values from the 
fine domain, thereby reducing the error in V/; in Eq. 42 
but provides no feedback from the fine grid estimates 
of 1] to the coarse grid. Hence, the coarse domain errors 
in 1] remain everywhere 0 ( A x 2) rather than having 
0 ( A x 2f) in the overlap region. Given direct coupling of
the Û estimates between the domains and the indirect 
coupling of U via Eq. 44, these errors only have the 
freedom  to excite biases in i], as shown in Fig. 7.

Scheme 3, Section 4.3, and Fig. 8: This scheme up­
dates i f  in the coarse domain with averaged values 
from the fine domain. These direct couplings of Û and

i f  prevent the domain-wide biases seen in schemes 1 

and 2 (Figs. 6  and 7). However, the coarse domain 
estimate of U" is still based on the values of i f  that 
were available when the coarse domain computed U" 
from Eq. 44; hence, the coarse domain errors in U" 
remain everywhere 0 (  Ax2) rather than having 0 (  Ax2f) 
errors in the overlap region. These errors can feed 
local instabilities, like those caused by the different 
coarse and fine representations of the shelfbreak topog­
raphy across the southern boundary of the fine domain 
(Fig. 8 ).

Scheme 4, Section 4.4, and Fig. 9: This scheme updates 
U" in the coarse domain with estimates of i f  which 
have been updated with averaged values from the fine 
domain. This means that each term  in Eq. 44 now has 
errors of 0 ( A x 2f) in the overlap region rather than 
0 ( A x 2). As  seen in Fig. 9, this produces a stable scheme 
with small scale errors.

Scheme 5, Section 4.5, and Fig. 10: This is the scheme 
we selected as the best. It updates the transport, i.e., 
the product ( H +  i f ) V n+1, in the coarse domain with 
averages from the fine domain rather than updating 
the coarse estimate of Û"+1. In doing so, we add no 
new averaged values from the fine grid and hence make 
none of the error reductions described in Section 4.7.1. 
This is consistent with the observation that the resulting 
changes (Figs. 9 and 10) are relatively small. The ad­
vantage is that scheme 5 conserves transport at 0 ( A x 2f) 
from the fine-to-coarse grids while scheme 4 does not.

Coarse-to-Fine Implicit Scheme, Section 4.6, and Fig. 11: 
With this nesting scheme, we follow traditional coarse- 
to-fine implicit schemes. In doing so, we introduce two 
error sources of the type described in Section 4.7.1. 
First, when interpolating coarse domain values to the 
boundary of the fine domain, the coarse domain val­
ues used have errors of 0 ( A x 2). In our fully implicit 
scheme, the coarse domain values in the overlap re ­
gion have errors of 0 ( A x 2f). Second, we do not use 
fine grid averaged values of either (H  +  i f  ) V n+1 or 
Û " +1 to update the corresponding coarse grid values. 
This directly means that Û " +1 and U " +1 have errors 
of 0 ( A x 2) in the overlap region rather than 0 ( A x 2f). 
Since Û " +1 is part of the forcing for Eq. 43, the effects 
of these larger errors can immediately spread outside 
of the overlap region due to the nonlocal nature of 
the Helmholtz operator (Eq. 43). Finally, we note that 
the computational cost of our fully implicit scheme 5 
is pretty much equivalent to that of the more classic 
scheme 6 . A  major conclusion of our work is that fully
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implicit (space and time) nesting schemes should be 
used when possible.

5 Examples

5.1 The middle Atlantic Bight

We continue the study of our fully implicit scheme 
(Section 3) and its use (Section 4.5) by now examining 
the consistency of the estimates of the 3D variables be­
tween the coarse and fine domains. In Fig. 12, we show 
the differences between the coarse and fine domain 
estimates of the tem perature, salinity, and total velocity 
(7\ S ,u), at a depth of 50 m. As with the barotropic 
fields, we see an excellent overall agreement between 
the estimates of the 3D fields in the two domains, in 
accord with their different resolutions. The tem pera­

ture differences are mostly bounded by ± 0 . 2  C, the 
salinity differences by ±0.02 PSU and the total velocity 
differences by ±1 cm/s. The larger differences occur 
in two main categories, the topography-driven dynam­
ics (e.g., shelfbreak) and high-gradient dynamics (e.g., 
filaments). First, the fine domains better resolve the 
shelfbreak and the Hudson Canyon and the dynamics 
that these features generate. There, the differences can 
approach ±1.5 C for tem perature, ±0.2 PSU for salin­
ity and ± 1 0  cm/s with interm ittent peak spots around 
±20 cm/s for velocity. Second, in the offshore regions 
where filamentation is taking place, larger differences 
are being generated at the edges of the filaments and 
eddies, which are better resolved in the fine domain. 
Note that these differences are not the same as the 
biases studies in Section 4. On the coarse grid, there 
would be no difference between the coarse and aver­
aged fine grid solutions (coarse fields are replaced by 
averages of fine fields). On the fine grid, differences

(a) Temperature, 15Aug (c) Salinity, 15Aug (e) Velocity, 15Aug

I 00 D*r Differ#««* 0 00 00 IS  Au( 2000

(b) Temperature, 07Sep (d) Salinity, 07Sep (f) Velocity, 07Sep

24 00 Day D ifference O 00 00 ?  Sep 2000

Fig. 12 Tracer and total velocity differences at 50 m in the fully 
implicit scheme, to illustrate baroclinie aspects and increased 
accuracy of finer nested domain, a, b Tem perature differences, 
c, d Salinity differences, e, t Total velocity differences, a, c, e Dif­

ferences at 1 day into the nested simulation, b, d, t Differences 
at 24 days into the nested simulation. Main differences occur at 
shelfbreak/canyon and offshore at edges of filament/eddies, all in 
regions where resolution is im portant
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arise from the above dynamical and bathymetric rea­
sons. Further, the coarse fields are bi-linearly interpo­
lated to the fine grid, which cannot reproduce the real 
gradients on the fine grid.

In Fig. 13, we present a snap shot of the surface 
tem perature fields at 11 Sep. 2006 overlaid with surface 
velocity vectors. Eleven days earlier, tropical storm 
Ernesto passed over the region, cooling the surface 
and advecting the shelfbreak front several kilometers 
offshore (Ernesto did not create any issues in nest­
ing, see Section 4). In the relaxation which follows, 
filaments are being spun off of the shelfbreak front. 
These processes are well captured in this simulation. 
Additionally, Fig. 13 shows the continuity of the large- 
scale structures across the nesting boundary. No shocks 
or spurious waves are generated at the interface be­
tween the coarse and fine domains.

One of the most significant dynamical achievement 
of our new implicit nesting scheme is an increase in p re­
dictive capability. This is shown by comparing our esti­
mates to independent acoustic D oppler current profiler 
(ADCP) data (T. Duda, personal communication) that 
were neither assimilated nor used in the initial con­
ditions of the simulations. Results are illustrated in 
Fig. 14. The AD CP data from a mooring (SW30) are 
compared to velocity estimates from two different sim­
ulations. The first simulation (left panel) is the coarse 
3-km resolution large domain run in “Stand Alone" 
mode, i.e., no nested subdomain. The second simulation

(right panel) is the nested simulations using our new im­
plicit scheme. The initial conditions, atmospheric and 
tidal forcings, assimilated data, and all model param e­
ters are identical. The open boundary conditions for the 
two coarse 3-km resolution domains are also the same. 
The only difference is whether the 1-km resolution 
domain is nested in this 3 km or not. The results are 
dramatic. Simply including the high-resolution domain 
reduces the bias with respect to the mooring data from 
12 to 2 cm/s and the RMS error from 15 to 8  cm/s. To as­
sess the statistical significance of these improvements, 
we compute the standard deviation of subtidal signal 
(obtained by averaging the data with a ± l-d ay  window) 
about its mean, 5 cm/s, and the standard deviation of 
the tidal signal about the subtidal signal, 6  cm/s. Clearly 
the error reductions (10 and 7 cm/s) produced by the 
nesting are significant when compared to the variability 
in the data.

5.2 The Philippine archipelago

O ur next realistic simulation results come from our 
research in the Philippine archipelago as part of 
the Philippines Straits Dynamics Experiment (PhilEx; 
Gordon 2009; Lermusiaux et al. 2009a). The goal of 
PhilEx was to enhance our understanding of physical 
and biogeochemical processes and features arising in 
and around straits and improve our capability to predict 
the spatial and tem poral variability of these regions.

42»

39»

38»

New Jersey Shelf Grid -  3km
7 4 »  7 2 »  70» 74»

Hudson Canyon Grid -  1km
73" 30 73»  72? 30 72 »n

39*30

38*30

U la -  N u *  2 .73041401

28.00 Day F o recas t : 0:00:00 11 Sep 2008
M ln - 1.90022*01  M ax- 2 68332*01

28.00 Day F o recas t : 0:00:00 11 Sep 2008

Fig. 13 Surface tem perature, overlaid with surface velocity vectors, for 0000Z on 11 Sep. 2006 in the fully implicit two-way nested 
New Jersey shelf and H udson Canyon domains
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V at ADCP sw30, (39.025N, 73.0668W), Depth = 68.2 [m] V at ADCP sw30, (39.025N, 73.0668W), Depth = 68.2 [m]

Observed 
Stand Alone

Fig. 14 H ourly meridional velocities (v) at 68 m depth at the lo­
cation of mooring SW30, as m easured by the m oored A D CP (red 
curves) and as estim ated by re-analysis simulations (blue curves) 
with atmospheric and barotropic tidal forcing. No mooring data 
are assimilated, a Comparing mooring velocities against veloc­
ity estimates from a 3-km simulation w ithout nesting (“Stand

A lone”), b Comparing mooring velocities against velocity es­
timates from a two-way nested simulation. O ur new nesting 
scheme removes an 0 (15  cm/s) bias, as averaged during Aug. 
22-Sep. 09. Notice that this bias reaches 0 (30  cm/s) during the 
Tropical Storm Ernesto

Here we used spherical coordinates and defined six 
two-way nested domains, in telescoping setups, ranging 
from a 3,267 x 3,429-km regional domain (with 27- 
km resolution) down to a pair of roughly 170 x 220- 
km strait domains with high (1 -km) resolution (see 
Fig. 15). For physical, biogeochemical, and numerical 
param eter tuning and real-time forecasting, more than 
1 , 0 0 0  simulations were run in this region, for three 
periods. The simulation shown here is for the F e b -  
Mar. 2009 real-time experiment period, focusing on 
the 1,656 x 1,503 Philippine archipelago domain (9- 
km resolution) and the 552 x 519 M indoro Strait do­
main (3-km resolution). Both domains have 70 ver­
tical levels arranged in a double-a configuration, op­
timized for the local steep bathym etry and depths 
of thermoclines/haloclines. O ur bathymetry estimates 
merged profile data (C. Lee, personal communica­
tion) and ship data (Gordon and Tessler, personal 
communication) with V12.1 (2009) of the Smith and 
Sandwell (1997) topography. These simulations were 
initialized using SSH anomaly data (Colorado Center 
for Astrodynamics Research; Leben et al. 2002), cli- 
matological profiles (Locarnini et al. 2006), and our 
new mapping scheme (Agarwal and Lermusiaux 2010). 
Atmospheric forcing at the surface was obtained from 
Coupled Ocean Atmosphere Mesoscale Prediction Sys­
tem  (COAMPS; wind stress) and Navy Operational 
Global Atmospheric Prediction System (NOGAPS; net

heat flux, E-P) fields. For open boundary conditions 
(OBC), the transports from the HYCOM  model were 
used. O ur multiresolution tidal forcing was also used 
at the OBCs of our free-surface simulations (as well as 
in the initial conditions). SSH and SST are assimilated, 
but no in situ synoptic data are used, since one of 
the PhilEx goals was to evaluate if assimilating re ­
motely sensed data in tuned models could capture some 
dynamics.

Figure 16 shows the surface velocity after 20 days of 
simulation. The M indoro Strait domain (right panel) is 
used to resolve two main areas. The first is the M indoro 
Strait which connects the South China Sea (northwest 
corner of the domain) to the Sulu Sea (southwest 
corner). The second is the Sibuyan Sea (interior of 
archipelago) which connects the M indoro Strait to the 
Pacific Ocean via the San Bernardino Strait (12.5 N, 
124.25 E). The higher resolution of the M indoro Strait 
domain resolves the various pathways of the region. 
In the snapshot shown, the tides are favoring inflow 
from the Pacific. This inflow turns primarily north­
ward along the island of Luzon. Even with two-way 
nesting, this pathway is poorly resolved in the Philip­
pine archipelago domain (left panel). The Philippine 
archipelago domain provides the external forcing to the 
M indoro Strait domain. Looking at the left panel, we 
again see the continuity of the flow across the boundary 
of the M indoro Strait domain.
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Fig. 15 Six spherical-grid domains in a telescoping zoom configuration for multiscale simulations in the Philippine archipelago

We also compared our nested fields to independent 
in situ data. As an example, we utilize the results of 
Tessler et al. (2010) who analyzed time series from 
m oored A D CP that were deployed around the Panay 
Sill (11 ló 7 N, 121 55' E) in the M indoro strait system. 
As in our simulations, they found that the mean velocity 
showed a bottom  intensified southward flow (lower 
170 m) into the Sulu Sea. For the Feb.-M ar. 2009 time 
frame, Tessler et al. (2010) estimate a mean transport of
0.35 Sv southward into the Sulu Sea, with a standard de­
viation of 0.07 Sv. We compare this to a time-averaged 
transport of the bottom  170 m through a section from 
(11.305 N, 121.8003 E) to (11.3746 N, 121.9275 E) taken 
from our nested simulation. O ur model estimate is a 
mean transport of 0.39 Sv into the Sulu Sea. O ur en­
semble of simulations gives a model standard deviation 
of 0.2 Sv, reflecting model param eter uncertainty. To 
show the impact of two-way nesting, we compare these 
runs to stand-alone coarse Archipelago runs, with an 
identical setup, but without the finer nested M indoro 
domain. For this coarse-domain-only case, we find that

the time-averaged net transport in the bottom  170 m is 
close to zero and in the central simulation, it is reversed 
(0.28 Sv northward out of the Sulu sea). This dem on­
strates the impact that resolution can have on the dy­
namical flow structure. Our multiresolution approach is 
likely im portant also for larger basin-scale and climate 
studies.

5.3 The Taiwan-Kuroshio region

O ur last realistic simulation results come from our re ­
search in the Taiwan-Kuroshio region (see Liang et al. 
2003, Fig. 1). This research was part of the Quantify­
ing, Predicting, and Exploiting Uncertainty initiative 
(Gawarkiewicz 2008; Lermusiaux et al. 2009c), which 
aims to integrate coupled ocean-acoustic modeling, 
multidisciplinary data assimilation, and autonomous 
ocean platforms to improve prediction and reduce 
uncertainties. We defined a pair of nested domains, 
each with Cartesian coordinates and 70 levels. The
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Archipelago Grid -  9km  M indoro Strait Grid -  3km
11SE 120E 125E 130E " 9 E  I20E I21E 122E I23E 124E

LuzonLuzon

t f y ’Pa nay 
CiV j

Borneo N egros

Fig. 16 Surface velocity at 0600Z on 22 Feb. 2009 in the Philippine archipelago, estim ated by our new fully implicit two-way nesting. 
Left panel: the velocity in the 9-km Archipelago domain. Right panel: the surface velocity in the 3-km M indoro Strait domain

larger domain spanned 1,125 x 1,035 km with a 4.5-km 
resolution. This domain was designed to maintain 
an accurate synoptic estimate of the Kuroshio and 
other regional influences on the intensive survey area. 
The smaller domain covered a 345 x 386-km area 
with 1.5-km resolution. This domain was designed 
to resolve the intensive survey, the recurring cold 
dome, and the Kuroshio-shelf interactions, especially 
in the region of the North Mien-Hwa canyon sys­
tem. O ur bathym etry estimate merges high-resolution 
data (B. Calder, personal communication) with V10.1 
(2008) of the Smith and Sandwell (1997) topogra­
phy. The initial and boundary fields were created us­
ing ship initialization surveys (OR2/OR3), Sea-Glider 
data and SST analyses, and a background constructed 
from high-resolution August WOA-05 climatology with 
deep Summer WOA-05 climatology profiles (Locarnini 
et al. 2006). The simulations were forced with a com­
bination of CO AMPS (wind stress) and NOGAPS 
(net heat flux, E-P) atmospheric fields along with 
barotropic tides. The barotropic tidal forcing was com­
puted using the Logutov and Lermusiaux (2008) model, 
the regional high-resolution bathymetry, in situ tidal 
gages, and coarser-resolution tidal simulations from 
the Egbert global model (Egbert and Erofeeva 2002). 
During the IOP09 (Lermusiaux et al. 2009c), ensembles 
of ESSE simulations were used for uncertainty fore­
casting, over a 1 -month period.

Figure 17 shows the relative vorticity computed at 
50 m depth, 10 days (0000Z on 28 Aug. 2009) into 1- 
month-long realization of the ensemble of simulations

that were carried out. This is a representative simula­
tion for which the fine domain (right panel) captures 
the vortex generation of the Kuroshio passing over the 
I-Lan ridge (starting from Taiwan at 24.5 N, 121.9 E  and 
extending to the southeast). A  well-developed vortex 
wake is clearly visible trailing to the northeast off of 
Yonaguni Island (24.45 N, 123 E). Downstream of the 
I-Lan ridge, the vorticity field shows an eddy trapped 
between the Kuroshio and the shelf. The various off- 
shelf vorticity wakes generally follow the Kuroshio to 
the northeast, out of the domain. On the shelf, the 
interaction of tidal currents with topography produces 
a tight vorticity signal along the 50-m isobath just north 
of Taiwan. Across the mouth of the Taiwan strait, we 
find another (weaker) interaction of tidal currents and 
bathymetry, aligned north by northeast roughly along 
the 80-m isobath. In the coarse domain (left panel), 
the averaged versions of the small domain features 
are maintained. The vortex wakes streaming out of 
the small domain are smoothly continued in the ex­
ternal portions of the large domain. The nesting also 
maintains the wake off Yonaguni Island in the large 
domain even though the island itself is not explicitly 
represented in the large domain. Outside of the small 
domain, similar wakes, topographic generation, and 
eddies are present though of necessarily larger scale. 
We have also compared 2 to 3 days forecasts with in 
situ tem perature and salinity data (Newhall et al. 2 0 1 0 ). 
We find that the two-way nested simulations have 
RM SE and biases that are on .average 10% smaller 
than a stand-alone run (coarse domain alone, without
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Kuroshio Grid -  4 .5km Taiwan Grid -  1 .5km
50m Relative Vorticity 28-Aug-2009 00:00:00

50m Relative Vorticity 28 Au?2009 00:00:00
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Fig. 17 Relative vorticity at 50 m in the Taiwan/Kuroshio region 
for 0000Z on 28 Aug. 2009, estim ated by our new fully implicit 
two-way nesting. This is one of the ensemble simulations we have

for the period 18 Aug.-10 Sep. 2009. Note the smaller scales 
m aintained in the fine resolution, especially the topographic 
generation of vorticity as the Kuroshio crosses I-Lan ridge

the nested domain). Such higher-resolutions runs are 
also useful for internal tide predictions and acoustic 
simulations (Lermusiaux and Xu 2010).

6 Summary and conclusions

In this manuscript, we derived and applied conser­
vative time-dependent structured discretizations and 
powerful two-way nesting (embedding) schemes for 
multiresolution, telescoping domains of primitive equa­
tion ocean models with a nonlinear free surface. The 
resulting schemes are suitable for realistic data-driven 
multiscale simulations over deep seas to very shallow 
coastal regions with strong tidal forcing. Starting from 
the primitive equations with a nonlinear free surface, 
cast into a control volume formulation, we introduced 
a second order tem poral discretization, including a new 
time-splitting algorithm compatible with the nonlinear 
free-surface physics. We then derived a second-order 
spatial discretization that correctly accounts for the 
time variations in the finite volumes. It is coded for both 
spherical and Cartesian horizontal coordinates and for 
generalized vertical grids. We introduced the concepts 
of “implicit nesting" in space and time (exchange all of 
updated fields values as soon as they become available), 
“explicit nesting" (exchange coarse and fine domain 
fields only at the start of a discrete time integration or 
time step), “coarse-to-fine implicit" nesting (the coarse 
domain feeds the fine domain during its time step,

usually boundary conditions, with no feedback from the 
fine domain), and “fine-to-coarse implicit" nesting (fine 
domain updates are fed to the coarse domain during its 
integration). We then derived a fully implicit two-way 
nesting scheme that is compatible with the time varying 
discretization of the nonlinear free-surface primitive 
equations. This scheme allowed us to use different 
parametrizations for the sub-gridscale physics in each 
of the nested domains. We compared this scheme to 
other two-way nesting schemes with modified interdo­
main couplings. We completed a theoretical truncation 
error analysis of these schemes, which confirmed and 
explained our simulation results. We have employed 
our new discretizations and nesting schemes with data 
assimilation in several ocean regions with multiscale 
dynamics around steep shelfbreaks, straits, or other 
complex geometries. Presently, such simulations were 
qualitatively and quantitatively evaluated in three re ­
gions: the middle Atlantic Bight off the east coast of 
the USA, the Philippine archipelago, and the Taiwan- 
Kuroshio region. Of course, we have used the schemes 
in other regions (e.g., Xu et al. 2008; Kaufman 2010).

O ur comparisons of various two-way nesting 
schemes showed that for nesting with free surfaces, 
the most accurate schemes are those with strong 
implicit couplings among grids, especially for the 
velocity components. We showed selected results 
for five nesting schemes (including our fully implicit 
scheme) and a coarse-to-fine implicit scheme. Among 
the implicit schemes, providing more fine-to-coarse
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feedback reduces biases and other discrepancies across 
grids and produces more stable simulations. For the 
simulations shown, the scheme with the least amount 
of fine grid feedback has differences between the 
barotropic velocity estimates of 0 (1 0 ) cm/s, with the 
structures of the difference field organized on the (sub) 
mesoscale. Conversely, the schemes with more feed­
back keep these discrepancies smaller, 0 (1 ) cm/s, inter­
m ittent and organized on smaller scales, with some 
larger differences, 1-4 cm/s along topographic features. 
Among these schemes, our fully implicit one has the 
smallest discrepancies, much smaller than 1 cm/s except 
near steep topography or strong dynamical gradients 
where differences reach 1 cm/s. This is because the 
finer grid is needed there to represent this variability. 
The coarse-to-fine implicit scheme is shown to have 
much greater discrepancies between the coarse and 
fine estimates, generally around 1 - 6  cm/s organized on 
intermediate scales.

W ith our theoretical truncation error analysis, we 
revealed the benefits of additional feedback from the 
fine-to-coarse domains. The leading error terms for 
each nesting scheme were determ ined and studied. We 
proved that coarse domain estimates which are made 
up from averages of fine domain estimates retain the 
truncation error of the fine grid. Even for a second- 
order scheme with only a 3:1 refinement, this equates to 
an order of magnitude reduction in the truncation error 
at these coarse domain points. A  corollary of this analy­
sis is that the improvement from the fine grid feedback 
can be guaranteed only if the feedback algorithm (in 
our case volume averaging) has at least the same order 
of accuracy as that of the overall discretization.

In our three realistic simulations, we resolved large 
domains with multiscale dynamics, including steep 
bathymetries and strong tidal flows in shallow seas. 
In each case, we found that without our new discrete 
PE model, or without nested grids, predictions do 
not match the ocean data. Specifically, in the middle 
Atlantic Bight, we compared nested estimates to m oor­
ing data not assimilated in simulations. Using twin 
experiments between a 3-km resolution “stand-alone" 
domain and the same domain with a two-way nested 
1 -km resolution domain, we show that the addition 
of the nested subdomain removes large biases and 
RMSEs, 0(10-15) cm/s, in the model velocities when 
compared to the mooring data. The two-way nest­
ing scheme is found especially needed during tropical 
storm Ernesto. It is also required for future studies 
of internal tide propagation. The application to the 
Philippine Archipelago region is mostly striking by the 
complexity of the geometry, with multiple islands and 
passages, and by the multiscale dynamics, from very

strong tides in shallow areas to the North E quator­
ial Current in the Pacific. This complexity required 
novel schemes, from our multiscale objective analyses 
for such regions (Agarwal and Lermusiaux 2010) to 
the present time-dependent spatial discretizations and 
fully implicit two-way nesting. In this region, we have 
so far implemented six two-way nested domains, in a 
telescoping setup, covering four-grid resolutions. W ith­
out the present schemes, such multiscale simulations 
were not possible. In addition, comparisons with in­
dependent A D CP data show that nesting substantially 
improves mean transport estimates through straits. 
Such results are also significant for basin-scale and cli­
mate studies. The simulations for the Taiwan-Kuroshio 
region focused on uncertainty, and we showed one 
realization of an ensemble of two-way nested simu­
lations. The region is characterized by strong inter­
actions near the shelfbreaks involving the Kuroshio, 
mesoscale features, strong atmospheric events, rivers, 
strong tides, internal tides, and waves. M ultiresolution 
two-way nesting or unstructured grids are required for 
such dynamics and also for their impacts on acous­
tics (Lermusiaux and Xu 2010; Xu and Lermusiaux 
2010). Quantitative comparisons with independent data 
confirm increased forecast skill due to nesting.

Ongoing and future research includes a study of 
boundary conditions (e.g., Blayo and D ebreu 2005; 
Oddo and Pinardi 2008) for nested domains and com­
parisons with our current radiation-allowing condi­
tions. Finer scales should exit the finer domains freely, 
but this is challenging since they are not resolved 
in the coarser domains. We have also applied our 
schemes to coupled physical-biological dynamics in 
two-way nested domains in the Philippines archipelago 
(Lermusiaux et al. 2009b), and dynamical studies in 
various regions are underway. Also valuable would 
be to merge our nesting algorithms with refined time 
stepping in finer domains (Section 3) and compare the 
results to our present algorithm. O ur implicit nesting 
scheme, after some modifications, could also be ap­
plied to other dynamics such as nonhydrostatic regimes 
as well as to multidynamics, e.g., two-way nesting 
of nonhydrostatic and hydrostatic models; sediment, 
wave, and coastal models (W arner et al. 2008); and 
coastal and storm surge models, with wetting and dry­
ing (Bunya et al. 2010; Tanaka et al. 2010). O ther 
research directions are the comparison and merging 
of our nesting scheme with unstructured grid ap­
proaches (e.g., Deleersnijder and Lermusiaux 2008b; 
Ueckerm ann 2009; Ueckerm ann and Lermusiaux 2010; 
Kleptsova et al. 2010), multiscale feature initialization 
(Gangopadhyay et al. 2003), and multimodel fusion 
(Logutov 2007; Rixen et al. 2009). We also intend
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to combine our schemes with uncertainty predictions 
based on dynamically orthogonal equations (Sapsis and 
Lermusiaux 2009). Even though it is only recently that 
realistic multiscale ocean modeling is becoming pos­
sible, the topic is so im portant for ocean science and 
societal applications that opportunities for our novel 
schemes are expected over a rich spectrum of needs.
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Appendix 1: Additional details of the conservative 
discrete equations

O ur horizontal grids are structured Cartesian or spher­
ical grids, either of which can be rotated from the 
standard geographic orientation (for more details, see 
Haley 1999, Section 2.2). To obtain the spherical repre­
sentation of our Eqs. 37-44 and “Appendix 1.2", iden­
tify x with longitude and y with latitude. Then multiply 
all Ax terms by the radius of the earth ( /Omii) times 
the cosine of the latitude and all Ay terms by Rearth- 
O ur model also includes options for atmospheric forc­
ing, assimilation, tidal forcing, and a river forcing that 
employs relaxation time constants which can be tuned 
to reproduce the desired mass, salt, and internal energy 
(heat) transports. All of these options are compatible 
with the two-way nesting scheme.

Appendix 1.1: Vertical grid

In Section 2.4, we introduced our vertical discretization, 
defining first a set of terrain-following depths for the 
undisturbed mean sea level, z ^ L. Here we present the 
details of z(vl;sA' . We can currently employ five different

schemes for defining these vertical levels, two of which 
are new:

(a) a-Coordinates (Phillips 1957)

MSL _  „  T T

z i,j,k — k i- j (56)

where 0  < ak < 1

(b) Hybrid coordinates (Spall and Robinson 1989)

MSL _  i Zk if k < kc .
Hj,k I _ hc _  ak (H . . _  ,îc) i i k  >kc  V V

where zu are a set of constant depths and //, is the 
sum of the top kc flat level depths

(c) Double a -coordinates (Lozano et al. 1994)

MSL _  I a k f ‘- i  

i,j,k
lí k < kc

¡I  I > ( / / . ,  if k > k c

(58)

fid —
Ze i +  Zc 

2

x tanh

Zc, Z c

2a

ak e

Zc, Zc\

[0 , 1] if k < kc 
[1 , 2 ] if k  > kc

( Hj j  h,cf)

where f i j  is the variable interface depth between 
the upper and lower a-systems, zCl and zc, are the 
shallow and deep bounds for f¡ ¡, href is the ref­
erence topographic depth at which the hyperbolic 
tangent term  changes sign, and a  is a nondimen- 
sional slope param eter (||V  f\\ < a

(d) Mtdti-a-coordinates This new system is a gener­
alization of the double a  system in which, for P  
a-systems, we define P +  1 nonintersecting inter­
face surfaces. Then the depths are found from

for kp-i < k < k „

fr - 1

—  *p (59)

0 ; / / , .  

ou e [(p -  1 ), p\ for kp- i < k < k p

The intermediate interfaces are free to be chosen 
from many criteria, including key oe surfaces (e.g., 
top of m ean thermocline) or large mean vertical 
gradients.
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(e) General coordinates For this new system, we p ro­
vide a 3D field of level thicknesses, A z ^ L, under 
the constraint

¡h.,-
k =  1

The unperturbed levels are then found from

7 m s l  _  
i , j ,k

—  A7MSL 9 1 if k =  1 

> 1

(60)

Note that our new general coordinate scheme 
contains schemes (a-d) as special cases. Flence, 
schemes (a-d) are now implemented by specify­
ing A z(vl;sA' outside the model, according to their 
respective rules, and using the resulting A z ^ ,L as 
input to the general coordinate scheme.

Appendix 1.2: Fluxes through boundaries 
of computational cells

To complete the conservative spatial discretizations of 
Section 2.4, we first establish some notation. Values 
taken at the centers of tracer volumes have integer 
indices, e.g., T¡j_k, while values taken at the centers 
of velocity volumes have odd-half integer indices, e.g., 
u i + 1 j + 1 In the vertical, values taken at either the cen­
ters of "tracer or velocity volumes have integer indices 
while those at the tops or bottoms of the computational 
volumes have odd-half integer indices, e.g., a)ijk+ i. 
Using these rules, we define the following averaging 
and differencing operators:

( K . k  =  2 (fii.j+t.k +  h j - t . k )

(0)tj ,k =  ó i&.j.k+t + (ßi, j ,k-t )  

s x ((ß)i,j,k =  (ßt+i.j .k -  4>i-í,j ,k 

sym ,j ,k  =  <t>i,j+i,k -  4>i,i-í,k 

Sz ((ß)i,j,k =  <t>i,¡,k-\ -<t>i.j.k+ )•

Note that in the above, i and / increase with increasing x 
and y  while k  increases with decreasing depth (negative 
below sea level).

Now we can define the fluxes through the sides of 
the computational cells. We start with the “flux veloc­
ities" evaluated at the centers of the sides. Following

Dukowicz and Smith (1994, Appendix E), we define the 
integrated flows through the “east" and “north" lateral 
walls of the tracer volumes as

v ”+ l .k =  A y ^ A z V  +  ^ A z”- 1 ( U ” +  U ”- 1)|'V t ^  ,

v ” , ,  =  A x i  ( a z V  +  U z " - 1 ( V n +  V " - 1) ) *
\  l i . j + j . k

while at the velocity boxes, we define the integrated 
flows through the “east" and “north" lateral walls as

=  A y j H (I^Aznu '+ ^ A z n- 1 (Un +  Un- 1) ^
i+l, j-\~ \ , k

i+ ̂ , j-\-1, k

- ^ ( ( ( a z V + I * -  ( V + V - ) ) ’ ) ^ u .

These particular spatial averagings are chosen to match 
the discrete transport constraint (Eq. 65 in “Appendix 
1.4"). The new aspect here is the tem poral evalua­
tions. The baroclinie velocity components are evaluated 
at time n.  However, the timings for the barotropic 
components are, again, chosen to match the transport 
constraint (Eq. 65). Also note that these timings as­
sume 0 =  1. To get the corresponding flows through 
the “w est"(“south") lateral walls, simply decrem ent /(/) 
by one.

To evaluate the fluxes through the tops of the com­
putational volumes, we use the above definitions in 
Eq. 37. A t tracer volumes this yields

8z (a>n)i, j .kAxiA y j +  8x ( v n)u k  +  8y (vn)u k  

A ^kj,k Sirm)™-2
Hi,j +  nij t  

while at velocity volumes, we get

8z ( a r ) i+i j+i k A x i+i A y j+i

+  8x ( v n)i+i j+i k +  8y {vn)i+i_j+i_k

(61)

n,n—2

=  o.

(62)
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Using these definitions of the fluxes through the 
boundaries of the computational volumes, we can now 
simply write the discrete advection operator as

f  =  s '  («■”> +  s’ « «  v ) « *

+  s= I ;

This formulation is valid for both tracer and velocity 
computational volumes, with the understanding that for 
velocity volumes the /, j  indices are shifted by one half.

We have evaluated the pressure force term, 
-  y- f s „ p'l iii, ■ d A ,  both by directly discretizing the in­
tegrals of pressure along the cell walls (including the 
horizontal contributions from the sloping cell tops and 
bottoms) and by interpolating the pressure to the corre­
sponding velocity depths and evaluating the differential 
gradient. Both give similar results, but the integral 
evaluation is conservative and produces less noise in the 
resulting velocities (especially near sloping bottoms).

Appendix 1.3: Open boundary conditions

For if, 'I', S, and the application of boundary condi­
tions is straightforward. O ur options (see Haley et al. 
2009; Lermusiaux 1997) include using values based 
on data, applying radiation conditions (Orlanski 1976; 
Spall and Robinson 1989), or, following Perkins et al. 
(1997), using radiation conditions to correct the p ro ­
vided values. For nested subdomains, we have first 
used the interpolated values directly or with Perkins 
et al. (1997) corrections. Some other promising op­
tions we have explored with nested subdomains include 
using the coarse grid values in a narrow buffer zone 
around the fine domain, which reduces discontinuities. 
A nother im portant multiscale conservative boundary 
condition option is to feedback the averages of the 
fluxes across the boundary walls shared with the large 
domain (Fig. 3). These include the advective fluxes of 
momentum and tracers, the pressure force, and the 
diffusive fluxes of momentum and tracers.

We still need an additional boundary condition for 
IF"" 1 since we are unable to directly evaluate Eq. 42 
at the boundaries. To derive this boundary condition, 
we recast Eq. 42 in the form of Eq. 24 and solve for
j x n , n —l  •

J F n ,n —\  — 5(U)
+  f k  x U “ +  g V 4 i ' (63)

Now, the right-hand side of Eq. 63 is made up en­
tirely of quantities that can be directly evaluated at the 
boundary of the velocity grid. For the free surface, we

have found that it is more stable to rewrite Eq. 63 in 
terms of transports:

J Z n ,n —\ — i
H + i ]

+  g ^ l t j (64)

Note: when evaluating Eq. 64, only values at time tn+\ 
are taken from the provided fields (or nesting interpo­
lations). The fields at times t„ and /„ , are both already 
in memory and in primitive equation balance. They are 
combined with the tn+\ fields to evaluate (Eq. 64).

Applying Perkins et al. (1997) boundary conditions: 
Following the algorithm of Perkins et al. (1997), cor­
rections to the provided values (and nesting interpo­
lation values) are obtained by applying the Orlanski 
radiation algorithm to the difference between the PE 
model values and these provided values and using these 
differences to correct the boundary values.

For the barotropic transport, however, this is only 
done for the tangential component to the boundary. 
The correction to the normal component is derived 
from the correction obtained for the surface elevation, 
A 1], and the barotropic continuity equation

9A i] 
~dt~

+  V • [(ƒƒ +  z;)AU] =  0.

Appendix 1.4: Maintaining the vertically integrated 
conservation of mass

To see how the free-surface algorithm maintains the 
vertically integrated conservation of mass, start from 
Eq. 44, multiply by 9{H  +  i f ) ,  and take the divergence 
of the result to get

V • [ ( / ƒ + //2) 0 U"+1] =  V- [(H  +  i f )  e t n+l

-  adgrV  ■ [(ƒƒ +  i f )  Vá /;] +  0 V
Sii

Substitute for the right-hand side of the above equation 
from Eq. 43 and rearrange to obtain

^  • [(/ƒ  +  i f ) ( e u n+1 +  u" +  d  - e iu ”- 1)] = o.

(65)

Equation 65 represents the discrete form of the 
barotropic continuity enforced by the free-surface algo­
rithm. Imbalances in Eq. 65 produce unrealistic vertical 
velocities via Eqs. 61 and 62.
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However, as illustrated by the above derivation, 
Eq. 65 is only satisfied to the same degree that Eqs. 43 
and 44 are satisfied. This places restrictions on the 
valid avenues for nesting. For example, we can safely 
replace the coarse domain estimates of (H  +  z;)Û" +1 

with averages from the fine domain without disturbing 
(Eq. 65). Moving this exchange one step later in the 
algorithm and trying to average (H  +  z;)[0 Û " +1 +  U" +  
(1 -  0)U"_1] would violate Eq. 43, in the sense that we 
would not be able to make the last substitution leading 
to Eq. 65 and hence we would violate Eq. 65. Similar 
to the bias argument of Section 4.7, these fields and 
their errors will persist over many time steps, leading 
to unsustainable vertical velocities.

Appendix 2: Additional details on running our fully 
implicit two-way nested free-surface 
PE model

Appendix 2.1: Setting up domains

Appendix 2.1.1: Topography

There are two main issues when defining topographies 
for nested simulations. The first is that the finer resolu­
tion grid can support finer topography scales, including 
sharper gradients. The bathym etry on the finer grid is 
not an interpolation of the coarser grid bathymetry, but 
the coarser grid bathym etry is a coarse-control-volume 
average of the finer grid bathymetry. The refinement in 
topographic scales can lead to abrupt artificial discon­
tinuities in the topography where the fine and coarse 
domains meet. This can be exacerbated by conditioning 
the topography (Haley and Lozano 2001) to control 
the hydrostatic consistency condition (Haney 1991). 
For a given value of the hydrostatic consistency factor 
(roughly proportional to dx hvh), the finer resolution 
domain can support steeper bathymetric features (e.g., 
shelfbreak). To ensure a smooth transition, we define a 
band of points around the outer edge of a fine domain 
(e.g., a band from the boundary to 6  points inside the 
boundary, see also Penven et al. 2006). In this band, 
we replace the fine grid topography with a blend of the 
coarse and fine grid topographies:

h hlcnd =  o l l |mc T  (1 U  )//coarsc (66)

where a varies from zero at the boundary to one at the 
inner edge of the band (e.g., 6  points).

The second issue comes about from the nesting al­
gorithm itself. As mentioned in Section 3, we force the 
undisturbed vertical grid , z ^ \L, to satisfy the nesting 
rules of Eqs. 46 and 48. To ensure that the topographies

in nested domains satisfy Eq. 46 and 48 and the blend­
ing Eq. 6 6  ,we usually follows these steps:

1. Apply the nesting constraints on the unconditioned 
topographies. Starting from the smallest domain, 
average the fine grid topographies on the suc­
cessively larger topographies according to Eq. 46. 
Then starting from the coarsest domain, interpolate 
the topographies to the boundaries of the succes­
sively smaller domains according to Eq. 48.

2. Starting from the largest domain, apply the con­
ditioning. A fter the largest domain is conditioned, 
apply the blending Eq. 6 6  to the second largest. 
Condition that domain and repeat the blending- 
conditioning cycle with the successively smaller 
domains.

3. Reapply the nesting constraints on the conditioned 
topography. R epeat step 1.

Appendix 2.1.2: Land masking

The first constraint for masking occurs at the bound­
aries of the finer domains. Considering any two nested 
domains, we want continuity of the masks across the do­
main boundary. In other words, a coastline that crosses 
the boundary of the fine domain should not have a jump 
or jog at the boundary of the fine domain. Enforcing 
this consistency, along with boundary constraints on 
the topography (“Appendix 2.1.1"), enforces consistent 
estimates of the areas of the lateral boundaries of 
the fine domain as measured in both the coarse and 
fine grids.

The second constraint is to have a certain degree of 
consistency in defining land and sea in the interior of 
the fine domain. This is a less exact statem ent because 
the fine domain supports a more detailed resolution of 
the land/sea boundary than the coarse domain. Because 
of the superior resolution, we take the view that the 
land mask in the interior of the fine domain is “more 
correct" than the coarse domain mask. Since we use 
collocated grids, this provides us with a simple algo­
rithm  for resetting the coarse mask. For each coarse 
grid point fully supported by fine grid points, we count 
how many of the supporting fine grid points are land 
and how many are sea. If at least one half the fine grid 
points are sea, the coarse grid point is m arked as sea; 
otherwise, it is masked as land.

O ur general procedure is to first define the land 
mask for the largest (coarsest) domain. Then use that 
mask to define a crude first guess for the mask in 
the fine domain. We then reset the interior nodes of 
the fine mask to better resolve the coasts (leaving a 
narrow band around the exterior untouched to ensure
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continuity through the boundary). If we have more then 
two domains, we use the current domain to initialize the 
mask for the next finest domain and repeat. W hen we 
finish the mask in the smallest (finest) domain, we use 
that mask to reset the mask in the next coarser domain, 
using the above sea/land counting procedure. We then 
examine the modified mask in that next coarser domain 
to eliminate any spurious artifacts that may have been 
created (e.g., a narrow mouth of a bay may have been 
closed leaving an isolated “lake" that we do not need to 
maintain). We repeat with the next coarser domain and 
so on until we get back to the coarsest domain.

Appendix 2.2: Initialization

O ur common situation is to estimate the best initial 
synoptic state from tem perature and salinity data (in 
situ, climatologies, satellite, etc.) but little or no direct 
velocity data. O ur initialization scheme for this situa­
tion is described next, focusing mainly on the nesting 
considerations, first briefly for the rigid-lid procedures 
and then the extensions for initializations with a free 
surface.

Appendix 2.2.1: Rigid lid

O ur procedures for rigid lid initializations in nested 
grids are based on (e.g., Haley et al. 2009). Starting 
from tem perature and salinity data, climatologies, etc., 
we create 3D estimates of tem perature and salinity, 
often using objective analyses (Carter and Robinson 
1987; Agarwal and Lermusiaux 2010). From  these 3D 
tem perature and salinity estimates, we construct den­
sity (Eq. 6 ) and the hydrostatic pressure (Eq. 9). We 
then estimate the total velocity using the rigid lid 
geostrophic relation

f k  x (u -  uref ) =  — Vpi, =  — f  Vp df
J z.Po P0 J z Ici

where Z ref is a suitably chosen reference level, which 
can be a “level of no motion", uref is the absolute veloc­
ity at that depth, and we have interchanged the horizon­
tal gradient with the vertical integral. W hen evaluating 
Vp at a particular depth, if any of the p values used 
for the gradient would be below topography, we set Vp 
to zero. To enforce no penetration of land, we find a 
stream  function, f ,  which satisfies V2 :) =  V x u with 
f  set to be constant along coasts. From  this f ,  we 
recompute the velocity. We decompose this velocity 
into barotropic and baroclinie parts (Eq. 8 ). The baro­
clinie portion is fine as is, but barotropic velocities at 
this stage generally do not satisfy the nondivergence of 
transport. To enforce this, we define a transport stream

function i x  V f =  //IJ  and fit it to our estimated 
barotropic velocities via the Poisson equation

V X (~H X =  v  x u -

We derive Dirichlet boundary conditions for the above 
by first noting that the tangential derivative of T to the 
boundary equals the normal component of transport, 
H\J, through the boundary. We then integrate this 
relation around the boundary to obtain the Dirichlet 
values. For domains with islands, we also need to p ro ­
vide constant values for T along the island coasts. We 
do this in a two-stage process in which we first compute 
T assuming all the islands are open ocean. We then use 
that initial guess to derive constant island values that 
minimize the relative interisland transports using fast 
marching methods (Agarwal 2009).

Nesting considerations For nesting the initial tem per­
ature, salinity, other tracers, and baroclinie velocity, 
we can directly enforce some conservation constraints 
by averaging estimates from finer to coarser grids. For 
the transport stream  function, we go to the additional 
step of generating the Dirichlet boundary values for the 
Poisson equation in the fine domain by interpolating 
the stream  function values from the coarse domain. 
This ensures that the same constant of integration is 
used for both domains and that the net flows through 
the fine domain are consistent in both the coarse and 
fine grids. For island values, if the island is represented 
in both the coarse and fine domains, the coarse domain 
value is used. If the island is only in the fine domain, 
then the procedure of the preceding paragraph is used.

Appendix 2.2.2: Free surface

The starting point for the free-surface initialization 
scheme is the above rigid-lid initialization. We start 
by explicitly computing the final, rigid-lid barotropic 
velocities from

U = - x V f .
H

We next create an equation for the initial surface eleva­
tion. We start from the geostrophic approximation with 
the full pressure

fk  x u =  gVi] + — Vph •
Po

Integrating this equation in the vertical from -  ƒƒ to 0 
and isolating results in

gHVi] =  fk  x H\J —
1

— / Vphdz ■ (67)
PO J-H

4b Springer



Ocean Dynamics (2010) 60:1497-1537 1531

Finally, we take the divergence of Eq. 67 to get

v-(gHVii)  = v x ( f m ) ) - —v - ( [  v Phdz
Po \J-H

(68)

To generate Dirichlet boundary values for Eq. 6 8 , we 
integrate the tangential components of Eq. 67 around 
the boundary. Because the coastal boundary condition 
is zero normal derivative, no special action needs to be 
taken for islands.

Once an initial value for // is constructed, then, by 
Eq. 35, the initial depths are recomputed. The tracers 
(tem perature, salinity, etc.) and baroclinie velocity are 
re-interpolated to these new initial depths. Finally, the 
barotropic velocities from the rigid-lid calculation are 
rescaled to preserve the transports:

U fre e  surface —
H

H- U rigid lid *

Nesting considerations These are the same as for the 
rigid-lid case. The additional detail is that now we also 
interpolate the coarse grid estimate of to generate 
Dirichlet boundary values for solving Eq. 6 8  in the fine 
domain.

Appendix 2.3: Tidal forcing

Appendix 2.3.1: Constructing the tidal forcing

W hen adding tidal forcing to our simulations, our un­
derlying assumption is that our regional domains are 
small enough so that the tidal forcing through the lat­
eral boundaries completely dominates the local body 
force effects. To model these lateral forcings, we em­
ploy the linearized barotropic tidal model (Logutov 
2008; Logutov and Lermusiaux 2008). We use a shallow 
water spectral model and generate 2D fields for the 
amplitude and phase of tidal surface elevation and 
the barotropic tidal velocity. We dynamically balance 
these barotropic tidal fields with our best available 
topographic and coastal data along with the best exte­
rior barotropic tidal fields (e.g., Egbert and Erofeeva 
2002). Once we have constructed our tidal fields for 
the desired modes, we can simply evaluate them  for 
any time.

The above procedures can provide tidal fields on 
different grids than used by our PEs. For example, 
Logutov (2008) and Logutov and Lermusiaux (2008) 
are formulated on a C-grid, instead of the B-grid being 
used here. In particular, this means that tidal fields 
interpolated from these grids will not, in general, ex­
actly satisfy the same discrete continuity as in our grid.

O ur experience shows that satisfying the same discrete 
continuity leads to more robust solutions. To enforce 
this constraint, we solve the constrained minimization 
problem

J  = ƒ  {aifpn +  9ß\J\ - Ux +  - \J

+7.91 [?<yz; +  V-(7/U)] +  K-3 [icoi] +  V- ( 77U)] } dV

where z;0, Un as the complex tidal surface elevation and 
barotropic tidal velocity interpolated from the original 
grid and m, U i are the additive “correction" complex 
tidal surface elevation and barotropic tidal velocity that 
minimize J ,

0 = 0o +  m ; U  =  U 0 +  Ui

a and ß  are the weights (including nondimensionalizing 
factors), X and y  are the Lagrange multipliers, the 
superscript ' indicate complex conjugation, 91 and 3 

refer to the real and imaginary parts, and 0, 0 are 
penalty param eters to inhibit unreasonably large total 
velocities. Using the calculus of variations, the above 
minimization is equivalent to solving the following sys­
tem  of equations

H2 1
- V (am ) = - c o i ]o + iV

(0  +4>)ü)ß

e
e  +  <p

-HU(

^  I open boundary 0

m m  + =  0
open boundary

U, =  — -Uo
e  +  <p 

H
- 1 - -V {am) 

(e+4>)cnß

Note that the radiation boundary condition does not 
come from the variations but is a useful addition we are 
free to make after obtaining a =  0  from the variations.

Appendix 2.3.2: Applying the tidal forcing

We use the barotropic tides both for initialization and 
for boundary forcing. For the surface elevation, we 
simply superimpose the tidal surface elevation with the 
subtidal elevation estimated in “Appendix 2.2.2". For 
initialization, this superposition is done over the entire 
area before the final vertical interpolation of tracers 
and ü . For lateral forcing, this is done at run time in the 
PE model at the exterior boundaries (and also along 
two bands inside these boundaries for Perkins et al.
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(1997) boundary conditions). The resulting boundary 
values are used to generate Dirichlet boundary condi­
tions for Eq. 43. A  similar procedure is used for the 
barotropic velocities with two notable differences. First, 
the superposition is perform ed to preserve transport:

(77 T  ^superim posed) U superim posed  =  (77 T  //suhlidal ) U Subtidal

+  T T U tid a l •

Note that the tidal velocity is only multiplied by the 
undisturbed water depth. This is because we are using 
a linearized tidal model. The second difference is that 
the run-time boundary values of the barotropic velocity 
are used for Eq. 64, not directly applied to the final 
barotropic velocities.

Nesting considerations For initialization, the process is 
as for the unnested case. The superpositions described 
above are done for the initial conditions of each do­
main. For the lateral forcing, however, the barotropic 
tidal fields are only applied at the boundaries of the 
coarsest domain. The reason being that applying the 
barotropic tidal fields at the boundary of the coarsest 
domain can produce the full tidal response in the inte­
rior, and hence, the barotropic tidal fields are unneces­
sary for the nested subdomains.

\Si]k -  Si]k~ < Tf \Sl]\ +  Ta

where the superscript k  refers to the iteration number 
and r,g is the relative tolerance for the gradient test 
(typically around ICE8). Fiere we test on both 5/; and 
its gradients to ensure the relative convergence of the 
barotropic velocities (Eq. 44).

Since we have discretized our equations on the 
B-grid, both Eq. 43 and, especially, Eq. 6 8  possess a 
well-known checkerboard mode in their null spaces 
(Deleersnijder and Campin 1995; le Roux et al. 2005; 
Wubs et al. 2006). For realistic geometries, we found 
that applying a Shapiro filter (Shapiro 1970) to the solu­
tion was sufficient to suppress the noise while maintain­
ing the correct physical features. The one case where 
this approach failed was in creating an initialization 
for an idealized flow in a periodic channel. The lack 
of Dirichlet boundary values in that case and corre­
sponding lack of structure they would have imposed 
allowed the checkerboard mode to suppress all other 
structures. To control this error, the matrix in Eq. 6 8  

was augmented with a Laplacian filter (Deleersnijder 
and Campin 1995; W ickett 1999) to prevent the appear­
ance of this mode. Again, this filter was only needed for 
the idealized periodic channel flow.

Appendix 2.4: Solving the equation for the surface 
elevation Appendix 3: Review of rigid-lid nesting algorithm

Equation 43, with Dirichlet boundary conditions, rep­
resents an elliptic system of equations for the surface 
elevation, /p To numerically solve this system, we use 
a preconditioned conjugate gradient solver for sparse 
matrices (e.g., SPARSKIT; Saad 2009). A  typical con­
vergence test for such an iterative solver is an inte­
grated measure of the reduction in the norm  of the 
residual over all points. Specifically, if r is the residual 
of the current solver iteration and r0 is the residual of 
the initial guess, the convergence test is

llrll < t .

where zr is the relative tolerance and ra is the absolute 
tolerance. In practice, we tend to use very small values 
( 1 0 ~ 12 and 1 0 ~25, respectively) to ensure a tight con­
vergence. Using the results of “Appendix 3", we also 
supplement this global constraint with the following 
point-wise constraint:

+
dSl]k dSl]k 1

< r,g
dSl]k

dx dx dx

dSi]k 35 ï; * 1
<

dSl]k
dy dy dy +

One of our first nesting schemes (see Section 4.1) for 
the nonlinear free-surface version of the PEs was built 
by analogy with our two-way nesting scheme (e.g., Spall 
and Holland 1991; Fox and Maskell 1995; Sloan 1996) 
for the HOPS rigid-lid formulation of the PEs. We have 
used this scheme in a variety of dynamical situations 
(Robinson et al. 2002; Leslie et al. 2008; Haley et al. 
2009) and we present it next.

We start with the rigid-lid PEs:

V • u  -

9u;
~di

dw
dz

=  0,

ƒ  k  x u  =  IF — IF,

V x I — x V54> 1 TtfRLV x / £ x  ( - ^ xV5vI/J =  V x f

Ph =  - j  Pgdk -
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D T
~Dt

=  F 1 ,

R Ï  =  Fs
Dt

p =  p ( z , r , S) 

where

u =  u7 +  U ; U =
1

h J_h U
dz H\J =  k  x V'I' .

i ^  i r °
F =  Vph -  T(u) +  F ; T  = —  /  T d z

n  J-lPo '-H

r<u,  =  ( r l " 0  ; Ti4,) =  u Tx + vT y + w t :

Here we have introduced the transport stream  function, 
'I', to replace the barotropic velocity as a state variable. 
Using this notation, we write our rigid-lid nesting algo­
rithm as

1. Solve the rigid-lid PEs simultaneously in each do­
main for (u/n+1, Tn+1,S n+1)

2. Replace values in the coarse domain at overlap 
nodes with the following averages from the fine 
domain values

bn+1p ic .jc .k

1

A V ,.

jfc+n, ifc+n,

E E (69)
j=jfc~rh i=ifc~rh

jfc+rh ifc+rh

J=Jfc Yflttfc

(70)

where r is the ratio of the resolution of the coarse 
grid to fine grid,

<p =  u , T, S ; AVij,k =  A x LjA y LjAzi,j,k ;

A Aí, j =  A xijA yij  ; rh =  \r/2\ .

3. In the coarse domain, solve the rigid-lid barotropic 
momentum equation for lb" 1.

4. Using piece-wise bi-cubic Bessel interpolation, B, 
replace values in the fine grid boundary with values 
interpolated from the coarse grid

/« + 1 
i f b . j f b . k

5.

where

<(> =  T, S , V .

Note that the interpolation of baroclinie velocity is 
written in terms of transport rather than velocity. 
This is done to preserve the baroclinicity of u in 
the fine domain.
In the fine domain, solve the barotropic momentum 
equation for T" 1.

We found that this scheme maintains consistency be­
tween the estimates on the coarse and fine grids p ro ­
vided that a sufficiently stringent convergence criterion 
is used when solving for T" 1. Only using a test on 
the integral of the residuals did not always maintain 
the consistency. Such a test is global in nature and 
can give different convergence results in the coarse 
and fine domains. Instead, we found the best results 
occurred when we supplemented the residual tests with 
the following point-wise test:

d V k 3 U + 1 a v *
dx dx 3y ay

3 U
dx 3y

< e

where here the superscripts k  refer to the iteration 
count in the solver and e is the relative tolerance. 
We test the derivative of T instead of T so that the 
convergence is on the relative change in the transport, a 
physically more meaningful quantity than T itself. This 
test ensures that in both domains the iterative solution 
proceeds at least until the specified tolerance is reached 
at every point, thereby ensuring at least that level of 
consistency between the solutions in the coarse and 
fine domains.
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