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Extended Abstract

Introduction

Sediment transport studies at the scale of estuaries and coastal areas nowadays can be dealt with using 
3D numerical models. For historical and computational reasons, the most advanced models solve the 
hydrodynamics for the  suspension and the sediment mass balance equation, assuming that  particles 
move at the same speed as the fluid, except for the gravitational settling. Because of the  difference in 
vertical and horizontal grid spacing, vertical turbulent mixing is solved with a two-equation model, while 
horizontal mixing is usually done with a constant eddy viscosity model (or sometimes a basic 
Smagorinsky model). The hydrodynamics is usually calibrated on w ater level data, by tuning the 
roughness parameters. These models can predict general trends, but their quantitative prediction 
capacity remains poor. Closer examination shows tha t  predicted velocity profiles usually deviate 
considerably from m easurements. This is no surprise considering the fact that  none of these  models can 
simulate even the  most elementary laboratory flume experiment. Many years of a ttem pts to simulate 
sediment transport with numerical modelling and of analyses of experimental flume data has slowly 
revealed various problems tha t  seem to have been underestimated in understanding sediment transport 
(Toorman, 2002; Toorman et al., 2002; Toorman, 2003).

Suspension capacity

A numerical experiment with a standard sediment transport model with increasing sediment load 
allowed a study of the suspension capacity of open-channel shear flow (Toorman, 2002). This shows 
that the  traditional suspension capacity criterion for a dilute w ater  column is equivalent to a Rouse 
num ber (Z) equal to 1 and a constant flux Richardson number. However, confrontation against 
experimental data reveals that  the true  suspension capacity of the  w ater column depends on the 
suspended load of the high-concentrated near-bottom layer. Therefore, the  traditional criterion does 
not determ ine the true suspension capacity but rather corresponds to a stability limit. Another serious 
problem is the observation tha t  the standard k-e model always yields a limiting flux Richardson number 
of 0.25 (a consequence of the  model constant values), which is much higher than found from 
experimental data.



Drag modulation

Since the  first flume experiments two major observations were made: the apparent change of the slope 
(von Karman "constant" k) of the  log-law for the  velocity profile and of the effective bottom roughness. 
The above mentioned suspension capacity experiment revealed tha t  the standard modelling approach 
automatically yields a reduction of the  slope of the log-law to a value deduced from the  criterion Z = 1, 
which seems to be confirmed by experimental data. However, for natural particles, such as sand, the 
settling velocity is so high tha t  the standard model does not succeed to  keep the measured am ount of 
solids in suspension.
A study of flume data reveals tha t  the  high-concentrated near-bed layer fulfils super-saturated 
conditions (Z > 1) and is not fully turbulent. This suggests that  an additional suspension mechanism is in 
play. It is hypothesized that  the  turbulence generated  in the  wakes of the  particles fills in this gap. 
Interestingly, comparison of velocity profiles for non-cohesive sediment transport with high near­
bottom concentrations in flat bottom flumes show exactly the same features as flow over a rough 
bottom and suggest apparent roughening of the bottom.
Hence, it seems that  low-Reynolds modelling is necessary to simulate what is happening close to the 
bottom. However, a major drawback of most of the low-Reynolds models is that  they are validated for 
smooth bottom conditions only and non-existent for suspensions. The few models for rough bottoms 
have been evaluated and still show some problems. Heredia et al. (2007) have tried to improve these 
models. Since most published experimental data do not provide sufficient detail, LES simulations have 
been carried out of flow over a wavy boundary (Widera et al., 2009). These data have been averaged in 
time and space in order to provide average profiles over an entire wave. The resulting profiles show very 
similar characteristics as for suspension flow over smooth bottoms.

An alternative explanation for the apparent decrease of k  would be an increase of the effective shear 
velocity. The LES data indeed show a higher peak near the crest of the wave and some experiments with 
particles (e.g. Kiger & Pan, 2002; Righetti & Romano, 2004) also show a Reynolds stress peak, which is 
even higher for the particle turbulence than for the fluid flow. However, there  is no evidence of such a 
stress peak in data for flume experiments with sediments at high concentrations (e.g. Cellino, 1998). 
The Reynolds stress data ra ther suggest tha t  the  additional wake generated turbulence is not accounted 
for in the Reynolds stress obtained from the  traditional processing of the turbulence data (Righetti & 
Romano, 2004), and at the  same time explains the strong reduction of the Reynolds stress in the  (super­
saturated) high-concentrated layer. Hence, the  (apparent?) reduction of k  remains a puzzle.

A new low-Revnolds model

From these  observations, it is concluded that  a breakthrough in sediment transport modelling requires 
explicit modelling of the high-concentration effects in the  transient benthic layer. Traditional Low- 
Reynolds two-equation turbulence models require a much too fine grid to  be applicable to large scale 
sediment transport engineering studies. A new strategy is proposed (Toorman, 2010) which applies a 
new low-Reynolds mixing-length (ML) model in the near-bottom layer and a new low-Reynolds k-e 

turbulence model in the w ater column above. The low-fie ML model is calibrated on DNS data for clear 
w ater  flow, and new LES data for flow of a wavy bottom surface (Widera et al., 2009) and provides the 
necessary boundary conditions for the low-fie k-e model.



The standard sediment transport modelling approach (with constant Schmidt number) yields a serious 
underprediction of the suspended load in the outer w ater column (fig.l). Applying Toorman's (2008, 
2009) theoretical Schmidt num ber closure, validated once more independently with the  NS data of 
Muste et al. (2005), resulted in an improvement of the shape of the  predicted sediment concentration 
profile (fig.l).
Based on the  observations in the flume data of Muste et al. (2005) that  the suspension capacity could be 
increased by the  presence of more sediment, without any measurable variation in turbulence 
properties, the assumption is m ade that  the necessary turbulence for suspending more particles must 
be generated in the wakes of the particles. Since this extra turbulent energy only occurs in the 
neighbourhood of the  particles, the corresponding eddy viscosity (assumed to be proportional to the 
volume fraction) for the bulk suspension mom entum  en k-e balance equations is only applied to a 
fraction proportional to the volumetric fraction of the  particles, but for the  sediment mass balance 
accounted for in full. This allows to reproduce the  NS experiments from Muste e t al. (2005) (Figure 1).
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Figure 1: Simulation (with the  KULeuven FENST-2D research code) of a flume experiment (run NS1) by 
Muste e t al. (2005). Comparison between the "standard" model with constant Schmidt number, 
improvement of the  profile shape when using Toorman's (2008, 2009) theoretical Schmidt number 
closure and the new improved mixture theory.



The particle wake generated turbulence has been modelled semi-empirically. However, a t tem pts have 
been m ade to reconstruct the full set of equations for the  suspension by a volume- or weight-averaged 
sum of the  two-phase equations. This confirms that  an important term is missing in the  traditional 
sediment transport mom entum  equation, i.e. the "diffusion" stress (Manninen & Taivassalo, 1996), 
resulting from the velocity lag betw een the two phases. The fact is that  its Reynolds-averaged form and 
the subsequent reconstruction of the TKE equations turns out to be very problematic.

The present work seems a promising road towards be tte r  understanding and modelling of high­
concentrated suspension flow near the bottom.

Future work will focus on the  refinement of the  closure equation for the wake generated  turbulence, 
further validation of the model and on the  adaptation (including upscaling) of this boundary trea tm en t 
methodology in large-scale sediment transport models used in engineering studies.
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