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LETTER
Differential support of lake food  w eb s  by three types  
of terrestrial organic carbon

A bstract
O rgan ic  c a rb o n  in p u ts  fro m  ou ts ide  o f  ecosystem  bou n d aries  po ten tia lly  subsid ize 
rec ip ien t fo o d  w ebs. F o u r w hole-lake add itions o f  disso lved  ino rgan ic  C w ere  m ade  to  
reveal the  pathw ays o f  subsid ies to  lakes fro m  terrestria l d isso lved  organic  c a rb o n  (t- 
D O C ), te rrestria l particu la te  o rgan ic  c a rb o n  (t-P O C ) an d  terrestria l p rey  item s. T erres tria l 
D O C , th e  largest in p u t, w as a m ajo r subsidy  o f  pelagic bacte ria l resp ira tion , b u t little  o f  
th is bacterial C w as p assed  u p  th e  fo o d  w eb. Z o o p la n k to n  received  < 2 %  o f  th e ir C fro m  
th e  t-D O C  to  bacte ria  pathw ay. T e rres tria l P O C  significantly  subsid ized  th e  p ro d u c tio n  
o f  b o th  Z oop lank ton  an d  b en th ic  inverteb ra tes , an d  w as p assed  up  th e  fo o d  w eb  to  
Chaoborus an d  fishes. T h is  ro u te  supp lied  33—73%  o f  c a rb o n  flow  to  Z oop lank ton  an d  20— 
50%  to  fishes in  n on -fe rtilized  lakes. T e rres tria l prey , by  far th e  sm allest in p u t, p ro v id ed  
som e fishes w ith  > 2 0 %  o f  th e ir carbon . T h e  results sh o w  th a t im pac ts  o f  cross-ecosystem  
subsid ies d ep en d  o n  characteristics o f  th e  im p o rted  m aterial, th e  ro u te  o f  en try  in to  the  
fo o d  w eb , th e  types o f  consum ers p resen t, an d  th e  p ro d u c tiv ity  o f  th e  rec ip ien t system .
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I N T R O D U C T I O N

Ecosystem s typically receive materials, including organic 
m atter, from  outside o f  their boundaries. This loading o f  
externally p roduced  (allochthonous) organic m atter can 
subsidize ecosystem  m etabolism  and support the production  
o f  consum ers o f  the receiving ecosystem  (Vanni &  H ead- 
w orth  2004). A lthough  early ecologists recognized the 
im portance o f  cross-boundary  inputs (Summerhayes & 
E lto n  1923), recent w ork  has focused o n  quantifying b o th  
the m agnitudes and significant direct and indirect effects o f  
subsidies o n  food  w ebs (e.g. Pow er &  Rainey 2000; Polis 
et al. 2004) and ecosystem  m etabolism  (below). T he largest 
allochthonous inputs and hence poten tial subsidies to  m ost 
com m unities and ecosystem s is detrita! organic m atter in 
dissolved and particulate form s (Polis et al. 1997). This 
material m ay be directly available o r m ay require tran sfo r­
m ation by m icro-organism s p rio r to  supporting  animal 
consum ers in  recipient systems. In  contrast, smaller fluxes o f  
living organism s across boundaries are o ften  directly 
available to  consum ers and num erous studies dem onstrate 
their im portance in  food  w ebs (e.g. N akano & M urakam i 
2001; Sabo & Pow er 2002). H ow ever, fo r entire ecosystems 
the relative m agnitude and utilization o f  various types o f

subsidies rem ains a poorly  understood  bu t significant 
problem . T heory  indicates subsidies can stabilize population  
dynamics, p redato r—prey interactions and food w ebs (D eAn- 
gelis 1992; H uxel &  M cC ann 1998; T akim oto  et al. 2002; 
L oreau & H o lt 2004). Subsidies also indicate in terdepen­
dence and im portan t connections am ong ecosystem s tha t are 
significant for m anagem ent and conservation  (e.g. E hrenfeld  
&  T o th  1997; Pow er et al. 2004; D ouglas et al. 2005).

T he organic m atter im ported  across ecosystem  b o undar­
ies can also affect the m etabolic balance o f  the receiving 
system by providing a substrate fo r m icrobial respiration  in  
excess o f  local prim ary p roduction  (O dum  1956; W ebster & 
M eyer 1999). W hile these connections and subsidies have 
had a long history o f  study in  stream  ecosystem s (e.g. H ynes 
1972; Cum m ins et al. 1973; Fisher &  Likens 1973) there has 
been far less w ork in  lakes. N evertheless, lakes are examples 
o f  ecosystem s tha t receive large inputs o f  allochthonous 
organic m atter w ith inputs o ften  equal to  o r exceeding 
internal prim ary p roduc tion  (Caraco & Cole 2004). E ven  
though  only a small fraction o f  this allochthonous m aterial is 
respired, the consequence, fo r m any lakes, is tha t total 
respiration exceeds gross prim ary p roduction  (GPP) so that 
net ecosystem  p roduction  is negative (del G iorgio et al. 
1999; Cole et al. 2000; H anson  et al. 2003; Jo n sso n  et al.
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2003). T hus, ecosystem  m etabolism  in  lakes suggests that 
allochthonous support o f  food w ebs could be significant if  
degradation o f  terrestrial carbon is also coupled to  
consum er p roduc tion  (Cole et al. 2002). Studies o f  lake 
Z ooplankton using natural abundances o f  stable isotopes 
support this view and indicate Z ooplankton acquire som e o f  
their carbon from  terrestrial sources (Meili et al. 1996; Jones 
et al. 1999; G rey et al. 2001; K arlsson et al. 2003).

T errestrial organic m atter m ay be incorporated  into 
aquatic food  w ebs by several m echanism s. Terrestrially 
derived dissolved organic carbon  (t-D O C ) enters lakes in 
flowing w ater and is degraded by bacteria tha t are 
subsequently consum ed by predators (H essen 1998; T ranvik 
1998). Terrestrially derived particulate organic carbon  (t- 
PO C ) enters lakes by b o th  fluvial and aeolian transport. 
Terrestrial P O C  m ay be available to  bacteria th rough  
decom position  and to  o th er consum ers th rough  direct 
ingestion (Cole et al. 1990; H essen & N ygaard 1992). 
Terrestrial-prey item s (t-prey) include insects, am phibians, 
and small reptiles and m am m als, w hich either intentionally 
o r accidentally enter lakes. F ish actively consum e these items 
so t-prey  constitutes a variable b u t significant resource at 
least in  som e small lakes (e.g. C arlton & G oldm an  1984; 
H odgson  et al. 1993; H odgson  & H ansen  2005). E ach  o f  
these terrestrial subsidies provides partial suppo rt to  
consum ers, w hich also serve as prey to  predators.

D esp ite  som e understanding o f  utilization m echanism s 
and carbon  budgets fo r lakes, the pathw ays o f  utilization 
and relative m agnitudes o f  the m ajor subsidies have no t 
been  com pared. H ere, the carbon subsidy fo r the food  webs 
o f  several lakes is estim ated accounting fo r three terrestrial 
sources: t-D O C , t-P O C  and t-prey. Inpu ts and fates o f  these 
sources along w ith au to trophic p roduc tion  w ere exam ined 
in  four, whole-lake 13C additions. P rio r w ork  has 
docum ented  tha t internal prim ary p roduction  provides only 
partial support to  consum er p roduction  in  small, low- 
nu trien t lakes (K ritzberg et al. 2004; Pace et al. 2004; 
C arpenter et al. 2005). This paper adds to  a grow ing 
literature on  terrestrial subsidies by specifically analysing 
the pathw ays and relative im portance o f  the three ultim ate 
sources o f  terrestrial subsidies, t-D O C , t-P O C  and t-prey, in 
supporting  ecosystem  respiration  and consum er consum p­
tion. T he analysis dem onstrates tha t the three kinds o f  
terrestrial carbon  make im portan t contributions to  aquatic 
consum ers th rough  distinctly d ifferent pathways.

METHODS 

13C additions and study lakes

N a H 1 3 C 0 3  was added daily to  upper m ixed layer o f  Paul, 
P eter and T uesday lakes during sum m er fo r 5—6 weeks 
(K ritzberg et al. 2004, 2005; Pace et al. 2004; C arpenter et al.

2005). T he enrichm ents elevated the S13C o f  the dissolved 
inorganic C (DIC) creating a large con trast betw een the 
organic m atter p roduced  by (or derived from ) prim ary 
producers w ith in  the lake and terrestrially derived organic 
sources. T he lakes w ere chosen to  provide contrasts in 
D O C  concentrations (an indicator o f  a llochthonous inputs), 
fish assemblages and nu trien t enrichm ent. T he latter 
con trast was created by fertilizing one o f  the lakes (Peter 
Lake) w ith inorganic n itrogen and phosphorus to  stim ulate 
prim ary p roduc tion  and au toch thonous food  w eb pathways.

Paul, P eter and Tuesday lakes are located at the University 
o f  N o tre  D am e E nvironm ental R esearch C enter (89°32 W, 
46°13 N) and described in  detail in  C arpenter &  Kitchell 
(1993). T he lakes are small (0.9—2.5 ha), soft w ater systems 
w ith negligible g row th  o f  roo ted  aquatic vegetation (macr- 
ophytes), m oderate to  high D O C  (0.3—0.7 m m ol C L  1 o r 
4—8 m g C L 1) and low  concentrations o f  D IC  from  80 to  
140 | i M .  All lakes are strongly stratified w ith shallow 
therm oclines (3—4 m), anoxic hypolim nia, and prim ary 
p roduc tion  dom inated  by phytop lank ton  and periphyton.

P eter Lake was enriched twice w ith C in  separate years. 
P eter Lake was fertilized in  the second 13C m anipulation 
(hereafter P eter +N & P) w ith additions o f  inorganic N  
(N H 4 N O 3 ) and P  (H 3 P O 4 ) at an N  : P  atom ic ratio o f  25 
(details in  C arpenter et al. 2005). Prim ary producers were 
stim ulated p rio r to  C addition by adding 
0.69 m m ol P m 2  and 18.9 m m ol N  m  2  in  a single dose 
o n  3 June  2002. D aily additions o f  0.11 m m ol P m 2  day 1 

and 2.7 m m ol N  m  2  day 1 w ere subsequently m ade from  
10 June to  25 A ugust. F o r the o th er three m anipulations 
only the 5 C o f  D IC  was elevated. Loadings w ere 0.24, 
0.35, 0.25 and 0.61 m ol 13C day 1 to  Paul, Peter, Tuesday 
and P eter + N & P  lakes respectively. In  all cases the S13C 
increased the total D IC  by < 1%  and had no  m easurable 
effect o n  pH .

M easurem ent of 13C

13C con ten t o f  the m ajor carbon pools was m easured 
before, during and after the tracer addition, at either daily 
(D IC  and PO C ), weekly [Zooplankton, Chaoborus spp., small 
fish, benthic algae (periphyton), D O C ] o r  at longer intervals 
(larger fish and benthic invertebrates). D etailed m ethods for 
sam pling and preparation  o f  materials for C analysis are 
sum m arized elsewhere (Cole et al. 2002; K ritzberg  et al. 
2004; Pace et al. 2004; C arpenter et al. 2005). T he isotopic 
values fo r som e key com ponents came from  specialized 
studies. F o r example, the m easured isotopic signals for 
pelagic bacteria w ere obtained from  in situ g row th experi­
m ents in  dialysis cultures during the 13C additions (K ritz­
berg  et al. 2004). T he isotopic values fo r phy toplankton  were 
obtained from  the 5 C o f  the C 0 2  m oiety o f  the D IC  and 
estim ates o f  isotopic discrim ination during photosynthesis
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by phy toplankton  (Bade & Cole 2006; Bade et al. 2006). 13C 
was m easured using m ass spectrom eters as previously 
described and reported  here as S13C (i.e. % 0  values relative 
to  a standard, see C arpenter et al. 2005).

Additional m easurem ents of standing stocks and fluxes

T o support the dual iso tope flow (D IF) m odel (described 
below), the standing stocks o f  carbon  pools and m any o f  the 
fluxes am ong these pools were m easured. T hese m easure­
m ents included: daily concentrations o f  D IC  and / C 0 2; 
weekly concentrations o f  chlorophyll a (an indicator o f  
phytop lankton  biom ass), D O C , P O C , the abundance and 
species com position  o f  crustacean Zooplankton and the 
p han tom  midge, Chaoborus (several species), bacterial p ro ­
duction, and dark-bottle pelagic respiration. T he abundance, 
size structure and grow th rates o f  the dom inan t fish species 
w ere also m easured in each lake. D O C  is m easured as 
organic C w hich passes a 0 .7-pm  pore  glass fibre filter; 
particulate organic C is organic C <  153 pm  th a t is retained 
by the glass fibre filter. T errestrial p rey  (t-prey) item s are 
identified to  species and life stage from  the stom ach 
contents o f  fishes. M ethods fo r these m easurem ents are 
described elsewhere (C arpenter et al. 2005) and provided 
in an on-line m anual (h ttp ://w w w .ecostud ies .o rg /cascade ). 
G P P  and to tal system respiration (Rtot) w ere derived from  
continuous deploym ent o f  YSI sondes tha t recorded oxygen 
concentration  and tem perature (along w ith pH ) at 5-m in 
intervals following m ethods in  Cole et al. (2000, 2002) and 
H anson  et al. (2003). G P P  estim ates include the p roduction  
o f  b o th  phytop lank ton  and benthic m icroalgae in tegrated  to  
the b o tto m  o f  the upper m ixed layer. R tot, m easured this 
way, includes the respiration o f  all au to trophs and hetero- 
trophs in  b o th  the w ater colum n and sedim ents to  the 
bo tto m  o f  the mixed layer. M ixed layer depths were 
estim ated from  dep th  profiles o f  tem perature m ade weekly. 
T he rate o f  gas exchange was obtained from  direct 
m easurem ents o f  the gas p is ton  velocity (k¿oo) using a 
w hole-lake SFg addition  and w ind-based estim ates from  
continuous lake-side w ind m easurem ents (W anninkhof et al. 
1985; Cole &  Caraco 1998; Bade & Cole 2006).

The DIF model

T he D IF  m odel was developed to  simulate the flow  o f  C
12 13 13( C +  C) and C. T he ecosystem  was partitioned in to  12 

com partm ents: D IC , D O C , pelagic bacteria, phytoplankton, 
detrita! P O C , Zooplankton, Chaoborus, periphyton  and three 
fish com partm ents specific to  the dom inants in  each lake. 
T w o differential equations, one for C (i.e. 12C +  1 3 C) and 
one fo r 1 3 C, describe the mass balance o f  carbon  fo r each 
com partm ent (A ppendix SI). M odel param eters were 
derived fo r each lake either from  direct m easurem ents,

calculations from  m easurem ents, literature estim ates o r  in  
som e cases by fitting to  observed 13C tim e series (A ppen­
dix SI). T he boundaries o f  the ecosystem  for the purposes 
o f  the m odel were the air—w ater interface to  the base o f  the 
m ixed layer encom passing all sedim ents above the mixed 
layer o f  the lake.

T hree fish com partm ents w ere m odelled in  each lake. In  
Paul Lake the three com partm ents w ere age classes [young 
o f  year, juveniles (age 1  +), and adults] o f  a single dom inant 
species largem outh  bass (Micropterus salmoides). In  P eter Lake 
the fish com partm ents w ere pum pkinseeds (Lepomis gibbo­
sus), sticklebacks (Gasterosteus aculeutas) and fathead m innow s 
('Pimephalespromelas). T he dom inan t species o f  Tuesday Lake 
were golden shiners (Notemigonus chrysoleucas), sticklebacks 
and fathead m innow s. Some term s in  the fish carbon 
balances (e.g. ingestion o f  prey item s, respiration and 
egestion) w ere obtained using a bioenergetics m odel 
(H anson et al. 1997) augm ented in som e cases by m easured 
diets (A ppendix SI). G row th  and biom ass dynamics were 
m easured directly and in terpolated  to  daily values inpu t to 
the bioenergetics m odel.

Perform ance o f  the m odel was evaluated in  several ways. 
F irst, fluxes sim ulated by the m odel w ere checked for 
reasonableness given extensive m easurem ents and  know ­
ledge o f  rates and processes in  the lakes. Second, w here 
possible, the D IF  m odel estim ates o f  som e param eters (e.g. 
photosynthetic  fractionation) w ere com pared w ith  estim ates 
based on  o th er m ethods. T hird , m odelled values o f  5 C for 
the com partm ents were com pared against m easured values 
using least squares regression o f  predicted  vs. observed 
5 C. T he values o f  fitted param eters were arrived at by 
m inim izing the SSE o f  the predicted  vs. observed C 
regressions.

Terrestrial inputs and pathways

T he D IF  m odel provides several pathw ays fo r the inpu t and 
utilization o f  terrestrial organic carbon (Fig. 1). Analysis o f  
these pathw ays is the central focus o f  this paper. Terrestrial 
D O C  (t-D O C ) is an inpu t to  the D O C  com partm ent and 
hence this com partm ent contains carbon  o f  b o th  terrestrial 
and lake origin. This m ixture o f  D O C  is consum ed by 
bacteria th a t are in  tu rn  consum ed by Z ooplankton w ho are 
the prey  o f  fish and  Chaoborus. T hus, t-D O C  can potentially 
m ove th rough  the food  w eb to  fish. T errestrial P O C  
(t-PO C) is an inpu t to  the detrital P O C  com partm ent. This 
com partm ent is a potential resource fo r Zooplankton. 
D etrital PO C  is also lost by sedim entation w here it becom es 
food fo r benthos. T hus, t-P O C  can m ove th rough  the food 
w eb to  fish via Zooplankton and benthos (Fig. 1). Finally, t- 
prey is a food  resource for the fish com partm ents (Fig. 1). 
All fish com partm ents except young o f  year largem outh bass 
(in Paul Lake) consum e t-prey as supported  by diet
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Figure 1 Simplified diagram of pathways for the entry and tro ph ic  
transfer o f terrestrial organic carbon in the dual isotope flow (DIF) 
model. Each box represents a compartment in the D IF model; the 
connections o f these compartments to the terrestrial inputs are 
high lighted with arrows. The boxes shown are: DOC (dissolved 
organic C) w hich is a mixture o f autochthonous and terrestrial 
sources; dPOC (detrital particulate organic C), also a mixture of 
autochthonous and terrestrial sources; bacteria (pelagic bacteria); 
Zooplankton (crustacean Zooplankton); Chaoborus', and benthos 
Ovni hie macroinvertebrates). Only the compartments that are 
connected to terrestrial inputs are shown here. A complete diagram 
for the D IF model is in Appendix SI, Fig. 1. The three terrestrial C 
subsidies are: t-DOC (terrestrial DOC); t-POC (terrestrial POC); 
and, t-prey (terrestrial prey). Each of these terrestrial inputs is 
connected to the aquatic food web in different ways. The heavy 
solid arrows show the pathway of entry o f t-DOC through the 
pelagic bacteria. The dashed arrows follow the input and fate o f t- 
POC through Zooplankton. The dash-dot arrow follows the 
consumption of t-prey by fishes. Where more than one kind of 
arrow is shown (e.g. Zooplankton to Chaoborus), more than one 
terrestrial source is utilized. To simplify the diagram pathways of C 
of autochthonous origin (phytoplankton and beili lile  algae; see 
Appendix S'l, Fig. 1) are not shown here.

observations (e.g. H odgson  et al. 1993; H odgson  & H ansen  
2005).

R E S U L T S

T he addition  o f  13C resulted in  a large increase in  the 13C 
con ten t o f  the D IC  in the lakes and, consequently, in  b o th  
prim ary producers and consum ers (Fig. 2). In  all cases 
p rim ary producers (phytoplankton and benthic algae) 
becam e highly labelled bu t the degree o f  labelling in  the 
consum er organism s, relative to  the prim ary producers, was 
quite d ifferent am ong the lakes and type o f  consum er 
(Figs 2 and 3). T his labelling suggests tha t an alternative 
food  source such as unlabelled terrestrial carbon  is

supporting  som e consum ers. T he D IF  m odel was used to  
quantify the use o f  these alternative sources.

Plots o f  m odelled vs. m easured values o f  13C fo r the 12 
com partm ents are show n in Fig. 3. T he agreem ent o f  
m odelled w ith  m easured values supports the plausibility o f  
the actual fluxes o f  au toch thonous and allochthonous C 
calculated by the m odel. T he best fits o f  the D IF  m odel were 
fo r the P eter and Paul additions (R 2 =  0.98, n =  136 and 
R f  =  0.97, u =  149 respectively) and the regressions slopes 
(+ 1 SE) w ere close to  unity (0.97 +  0.02 and  0.94 +  0.02 
respectively). T he fit for the P eter + N & P  addition  was 
also only slightly low er (R 2 =  0.92, n =  144, slope =  
0.90 +  0.03) an encouraging results considering the rapid 
dynamics o f  C observed in  the low er food w eb com part­
m ents (Fig. 3). W hile Tuesday had  a low er fit the m odel still 
explained nearly 80%  o f  the variability in  m easured values 
(R2 =  0.79, u =  151, slope =  0.96 +  0.04).

Loading of allochthonous and autochthonous organic C

T he m odel prov ided  estim ates o f  organic carbon loading and 
respiration  o f  the biotic com partm ents tha t can be com pared 
w ith m easured values o f  G P P tot and Rtot (Table 1). M odel- 
derived loading o f  t-D O C  and t-P O C  ranged from  21 to  
67 m m ol C m “ day 1 (Table 1) and differences in loading 
follow ed m easured differences in  concentrations am ong 
Paul, P eter and Tuesday lakes. A lthough t-D O C  dom inated  
loading, t-P O C  accounted for a substantial po rtion , averaging 
19.5% o f  total terrestrial loading am ong the lakes (4.6— 
15.8 m m ol C m “ day *). T o tal au toch thonous prim ary 
p roduc tion  (G P P tot) was dom inated  by phytoplankton  and 
ranged from  34 to  103 m m ol C m “ day 1 in the lakes. 
G PPtot was highest in  nu trient-enriched P eter Lake w here it 
was fourfo ld  larger th an  terrestrial loading (Table 1). In  the 
unenriched lakes G P P tot was 1.7 times terrestrial loading in 
Paul Lake, co-equal to  it in  P eter Lake (w ithout added 
nutrients) and only 0.6 times terrestrial loading in  Tuesday 
Lake. T he potential im portance o f  a terrestrial subsidy to  
consum ers is larger than  the above com parisons suggest 
because a fraction (13—21%  am ong lakes) o f  G P P tot is 
respired by the algae them selves (Table 1).

Respiratory losses of allochthonous and autochthonous C

T he three types o f  terrestrial inputs considered by the D IF  
m odel subsidize consum er respiration in  d ifferent ways 
(Table 1). T errestrial D O C  was the m ost im portan t te rrest­
rial subsidy to  the respiration o f  pelagic hetero trophs 
(pelagic Rh) supporting  from  28%  (Paul Lake) to  6 8 %  
(Tuesday Lake) o f  their respiration. As pelagic bacteria are 
the only consum ers o f  t-D O C  in the m odel, this result 
reflects their significance in  overall he tero trophic  respir­
ation. Overall, t-P O C  supported  less respiration (2—26%  o f
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Arrows on .v-axis indicate the start and end 
dates o f the daily additions of inorganic 13C. 
For Peter +N&P inorganic N and P were 
added to simulate primary production (see 
text).

IO

1:1 line

V  -20

Peter

X *2y
>UpJt

1=1

Peter (plus N&P)Tuesday

-20

^K)
-40 -20 -20 0 20 40

8 13C Predicted

Figure 3 Comparison of the S13C predicted 
by the dual isotope flow (DIF) model with 
observed values for each lake. In the 12 
compartments (Paul and Peter lakes) or 11 
compartments (Peter +N&P; Tuesday Lake) 
are indicated by distinct symbols (below) 
along with a 1 : 1 line. Least square regres­
sions of predicted vs. observed values were 
significant at P < 0.0001 (see text). X, DIC; 
O, dissolved organic carbon; A, pelagic 
bacteria; Y, benthic algae; V, macroinverte­
brates; ■, particulate organic carbon; 
□ , Chaoborus; ♦ ,  fish 1; A , fish 2; O, fish 
3; ®, Zooplankton.

R^), b u t this material constitu ted  a respiratory subsidy, 
especially to  Zooplankton, w hich are the m ajor users o f  t- 
PO C  in the w ater colum n (below). In  Paul Lake t-PO C  
supports nearly as m uch  (5.5 m m ol C m  2  day *) pelagic 
Rh as does t-D O C  (6 . 8  m m ol C m  2  day *; Table 1). 
T errestrial prey supported  only a very small fraction o f  
respiration in all lakes (Table 1), bu t w ere highly significant 
C sources to  fishes (below).

W hile terrestrial inputs w ere a m ajor source o f  the carbon 
ultim ately supporting  consum er respiration, au toch thonous

organic carbon from  prim ary p roduction  supported  a large 
share o f  hetero troph ic  respiration in  all cases. In  P eter Lake 
+ N & P  au toch thonous carbon supported  8 8 %  o f  pelagic R^ 
(38.5 m m ol C m  2  day *) o r seven times th a t supported  by 
terrestrial inputs. E ven  in  the absence o f  nutrients, the 
au toch thonous com ponen t o f  respiration was significant, 
ranging from  28%  o f  total pelagic Rh in T uesday Lake to  c. 
60%  in Paul and P eter lakes (w ithout nu trien t additions).

Epilim netic sedim ent respiration (sedim ent Rh =  benthic 
m icro-organism s +  m eiofauna) com prised 29—47%  o f  total
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Table 1 Inputs and respiratory losses o f organic C in the four 
experimental lakes

Paul Tuesday Peter
Peter
(+N&P)

Organic C inputs
GPPphyic 36.3 36.5 28.3 87.1
GPPbenthic 9.5 0.6 5.6 15.5
GPPtot 45.9 37.2 34.1 102.6
T-DOC 21.9 49.7 31.1 21.1
T-POC 4.7 15.8 6.2 4.7
T-prey 0.20 0.76 0.05 0.17
T-loadtot 27.7 66.3 38.0 34.6

Respiratory
Ul ! ! : o 9.7 4.7 6.9 13.3
Pelagic Ri 23.4 16.0 20.2 43.2
Sediment Rh 21.0 15.2 8.32 26.2
Rtot 54.1 35.9 35.4 83.1

Pelagic Ri sources
Autochthonous 10.9 4.4 11.5 38.5
T-DOC 6.8 9.9 5.7 4.1
T-POC 5.5 0.8 2.6 0.4
T-prey 0.20 0.76 0.05 0.17

Sediment Rh sources
Autochthonous 10.3 4.7 2.1 25.6
Terrestrial 10.7 10.5 6.2 1.0

Values are mmol C m 2 day 1 and are derived from the DIF
model, except for total gross primary production (GPPtot) and total 
system respiration (Rtot) which were directly measured (see text and 
Appendix SI). The subscripts '[duao' and ‘benthic’ for GPP refer 
to phytoplankton and benthic algae respectively. T-loadtot is the 
total loading of terrestrial carbon from its three sources, terrestrial 
DOC (t-DOC), terrestrial particles (t-POC) and terrestrial prey 
items (t-prey). Rauto is respiration by autotrophic organisms (sum of 
phytoplankton and periphyton respiration); Rj,, respiration by 
heterotrophs (consumers). In the bottom two sections the sources 
o f carbon respired by heterotrophs are partitioned. For pelagic 
heterotrophic R the figure shows C from primary production 
within the lake (AUTO), and that entering by the three terrestrial 
routes. The sources for benthic heterotrophic R can be partitioned 
only into AUTO and terrestrial. The fates o f inputs not shown here 
include outflow and export to the hypolimion. The D IF model also 
calculates these (see Appendix SI).

hetero troph ic  R  (water colum n plus sedim ents; Table 1). 
Because the m odel did n o t explicidy include the dynamics o f  
the m icrobial and m eiofaunal ben thos, it is n o t possible to  
partition  this respiration am ong the three terrestrial sources, 
b u t we can calculate the relative am oun t supported  by total 
allochthonous and au tochthonous sources (C arpenter et al. 
2005). T he D IF  m odel estim ated 30—50%  o f  sedim ent Rh is 
supported  by terrestrial C in  the unfertilized lakes. The 
fertilization o f  P eter Lake gready increased the supply o f  
au toch thonous C to  the ben thos and decreased the 
im portance o f  allochthonous C to  < 4%  (Table 1).

Support of consumers by allochthonous and 
autochthonous C

T he D IF  m odel allows the com putation  o f  key flows o f  
terrestrial and au toch thonous C sources to  consum ers 
including b o th  direct and indirect pathw ays (Fig. 1; 
A ppendix SI).

Zooplankton and Chaoborus
F o r all the additions, the flow o f  t-D O C  to  bacteria to  
Z ooplankton was a very m inor pathw ay, accounting for 1— 
2%  o f  Z ooplankton C (Fig. 4a). C arbon  o f  phytoplankton  
origin was a variable bu t large source to  Z ooplankton in  all 
cases com prising 25%  in Tuesday Lake, c. 60%  in  P eter and 
Paul lakes and nearly 90% in P eter Lake + N & P  (Fig. 4). 
Terrestrial P O C  was also an  im portan t C source for 
Z ooplankton ranging from  73%  in  Tuesday Lake to  near 
35%  fo r b o th  P eter and Paul lakes. In  nutrient-enriched 
P eter Lake, t-P O C  accounted  fo r m ore than  10% o f  
Z ooplankton dem and (Fig. 4). Chaoborus, an im portan t prey 
fo r m any fish, consum ed only Z ooplankton in  the m odel and 
the terrestrial subsidy o f  Chaoborus tracks tha t o f  Zooplank­
to n  (data n o t shown).

Pelagic baderia
Pelagic bacteria obtain  their C entirely from  D O C  o f  either 
terrestrial o r  in-lake (autochthonous) origin. T errestrial 
D O C  was a m ore im portan t C source fo r bacteria than  
au toch thonously  p roduced  D O C  in  all the  additions except 
P eter + N & P  w here allochthonous t-D O C  supplied 39%  o f  
bacterial dem and (Fig. 4b). In  the o th er lakes t-D O C  
accounted for 60—76%  o f  pelagic bacterial dem and 
(Fig. 4b).

Benthic invertebrates
Terrestrial P O C  was the dom inan t source o f  C supporting  
benthic m acroinvertebrates com prising 60—85%  o f  m acro­
invertebrate p roduction . In  the P eter Lake + N & P  addition 
benthic algal p roduction  was greatly stim ulated (Table 1) 
and the im portance o f  t-P O C  was reduced to  only 6 %  o f  
m acroinvertebrate p roduction  (Fig. 4c).

Fish
In  the m odel, fish had access to  t-D O C  and t-P O C  
indirectly by preying o n  the consum ers o f  these sources and 
their predators (Fig. 1). F ish also consum ed t-prey directly. 
T here w ere large differences in  the im portance o f  terrestrial 
sources and au to trophic  C to  fishes am ong lakes and am ong 
the different types o f  fish. In  no  case was t-D O C  an 
im portan t ultim ate C source to  any o f  the fish groups 
(Fig. 5), reflecting the m inor im portance o f  this source to  
Zooplankton. Prey items o f  terrestrial origin (t-prey) w ere a 
significant com ponen t fo r fish in  all lakes.
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T-DOC
T-POC

0.8 Zooplankton

0.0  — ^ ■

0.8 Bacteria

Benthos

Paul Peter Tuesday Peter+N /P

Figure 4 Support o f Zooplankton, top panel, pelagic bacteria 
(middle panel) and benthic invertebrates (lower panel) by terrestrial 
sources (t-dissolved organic C, grey bar; t-particulate organic C, 
clear bar) and autochthonously produced C (auto, from either 
phytoplankton or periphyton, solid black bar).

In  Paul Lake, w here the three fish com partm ents were 
age classes o f  a single species (largem outh bass), au to trophic 
C was a dom inan t C source only for young o f  year (YOY) 
fish (Fig. 5a). T hese Y O Y  fish feed prim arily on  Zooplank­
to n  before sw itching to  benthic prey as they develop (Post 
eta/. 1997). T he m odel indicates tha t c. 40%  o f  Y O Y  C 
derived from  t-P O C  reflecting the im portance o f  this 
material to  Zooplankton, Chaoborus and benthos. F o r 
juvenile bass w hich are m ore benthivorous and piscivorous, 
t-P O C  and au to trophic  C w ere co-equal (c. 40%  each) w ith 
the rem ainder from  t-prey (Fig. 5a). In  adult fish t-prey, t- 
PO C  and au to trophic C are all abou t co-equal in  im portance 
(Fig. 5a). F o r largem outh  bass, then  t-P O C  was always an 
im portan t subsidy and  t-prey  becam e m ore im portan t as fish 
increased in  size.

Pum pkinseeds and sticklebacks in  Peter Lake (w ithout 
nutrients) used t-P O C , t-prey and au to trophic  C about

equally. Fathead m innow s w ere less dependen t o n  t-prey 
(Fig. 5b). Fertilization o f  P eter L  (+N & P) greatly increased 
G P P  (Table 1) and the standing stock o f  phytop lankton  
(c lOx, see C arpenter et al. 2005). T he nu trien t fertilization 
resulted in  greater use o f  au toch thonous C in  m ost 
com ponents o f  the food w eb (Fig. 4) and decreased 
im portance o f  the terrestrial subsidies fo r all three o f  the 
fish species (Figs 5b,d). Fertilization did n o t consistently 
increase the rate o f  utilization o f  terrestrial C by any 
com ponen t o f  the food web.

In  T uesday Lake t-prey  was the dom inan t source o f  C 
supporting  golden shiners and sticklebacks accounting for 
60—70%  o f  their C consum ption  (Fig. 5c). F o r fathead 
m innow s, t-prey  w ere less im portan t than  t-P O C , as in  Peter 
Lake (above). Overall, fish in T uesday Lake w ere only 
weakly supported  by au toch thonous C.

DI SCUSSI ON 

The DIF model

O ur estim ates o f  carbon flows derive from  a m odel tha t is 
subject to  error because o f  uncertainty in  param eters and in  
m odel structure. N evertheless, there are multiple reasons to 
have som e confidence in  the m odel. F irst, the  m odel 
includes a detailed accounting o f  carbon flows am ong the 
m ajor pools o f  the m ixed layers o f  the lakes. T he m odelled 
connections am ong pools and corresponding estim ates o f  
flows are consistent w ith current understanding o f  lake 
carbon cycles (A ppendix S I, Figure A Í and Table A3). 
Second, m ost o f  the pools and flows o f  the m odel were 
directly m easured, and those n o t m easured w ere estim ated 
by fitting the m odel to  the m easured pools and flows as well 
as the tim e series o f  13C in the pools (A ppendix SI Table 
A4A). T hus, the m odel ou tp u t is strongly constrained by 
field observations. T hird , there is agreem ent betw een 
independen t estim ates o f  param eters tha t w ere also fit by 
the m odel. F o r example, Bade et al. (2006) estim ated 
phytoplankton  fractionation in these lakes by physical 
separation and obtained results in  the same range (1 2 — 
16%0 in  the unenriched lakes and near 0 in  P eter Lake 
+ N & P  as estim ates from  the D IF  m odel (f l3 _ 4  in  
A ppendix SI Table A4B). K ritzberg  et al. (2004, 2005) 
using in situ dialysis culture m easured the fraction o f  algal 
D O C  tha t supported  the grow th o f  pelagic bacteria and 
obtained very similar results to  the D IF  m odel (pX 3_auto in  
A ppendix SI Table A4A). F urther, m odel-fit values for 
param eters n o t m easured (e.g. Z ooplankton coefficients o f  
assimilation) w ere w ithin the range o f  literature values 
(Appendix SI Table A4B). F ourth , the m odel predictions o f  
' C dynamics closely m atch  the observations (Fig. 3). F ifth, 

estim ates o f  allochthony (i.e. the p ro p o rtio n  o f  the carbon 
flow to  a com partm ent supported  by terrestrial carbon)
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Paul lake

Figure 5 Support o f fishes by terrestrial 
sources. The bars are coded as in Fig. 4 
(t-dissolved organic C, grey bar; t-particulate 
organic C, clear bar; t-prey, hatched bar) and 
autochthonously produced C (auto, solid 
black bar). The three groups o f fishes 
modelled in each lake are indicated. LMB, 
largemouth bass; YOY, young o f year; 1 +, 
juvenile LMB.
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from  this m odel w ere corrobora ted  by tw o different, 
independen t m odels fit to  the sam e data (C arpenter et al. 
2005). A lthough these o th er m odels cannot be used to  
estim ate the specific sources o f  allochthony presen ted  in  this 
paper, the co rroboration  o f  total allochthony lends som e 
confidence to  the m ore detailed accounting o f  carbon 
sources presen ted  here. Finally, the estim ates o f  allochthony 
in  the D IF  m odel are robust and n o t greatly affected by 
altering the values o f  key param eters away from  those fit by 
the m odel. Table A 6  and Figure A 2 (see Supplem entary 
material) show  the effect o n  m odel perform ance o f  altering 
values o f  a few key param eters.

Terrestrial DOC

D O C  is the dom inan t inpu t o f  terrestrial organic carbon 
in to  lakes in  general and inputs w ere similar to  G P P  in the 
study lakes except w hen nutrients w ere added (Table 1). 
W hile pelagic bacteria respire large am ounts o f  t-D O C , they 
pass very little up the food  web. W here allochthony in 
Z ooplankton has been  reported  in  o th er studies, it is o ften  
assum ed that the pathw ay is via m icrobial utilization o f  t- 
D O C  w ith subsequent consum ption  o f  m icrobes by 
Z ooplankton (G rey et al. 2001; K arlsson et al. 2003). The 
p resen t study suggests tha t Z ooplankton acquire only a 
m inor terrestrial subsidy by this route. T his result is 
consistent w ith m easured rates o f  bacterial p roduc tion  and 
estim ated bacterial feeding rates by cladocerans tha t indicate 
only a small fraction (4—7%) o f  Zooplankton carbon dem and 
can be supported  by bacteria in  these lakes. Further, a large 
fraction (about half) o f  the D O C  acquired by bacteria is o f  
au toch thonous rather than  allochthonous origin (K ritzberg 
et al. 2004, 2005). Pelagic bacteria, then , pass only a small

am oun t o f  C up  the food  w eb in  these lakes and a 
substantial fraction o f  tha t C is n o t o f  terrestrial origin.

Terrestrial POC

I f  the pathw ay from  t-D O C  to  bacteria to  Z ooplankton is 
small, how  do Z ooplankton acquire terrestrial C? B o th  the 
D IF  m odel and tw o independen t m odelling approaches 
dem onstrate  tha t Zooplankton in these lakes w ere heavily 
subsidized (22—75%) by terrestrial C unless prim ary p ro d u c­
tion  was stim ulated by nu trien t addition (Cole et al. 2002; 
C arpenter et al. 2005). T he D IF  m odel suggests that 
allochthonous support o f  Zooplankton is dom inated  by 
direct consum ption  o f  terrigenous PO C  and this subsidy is 
large in  com parison w ith C o f  au to trophic origin. T hrough  
consum ption  o f  Zooplankton, their p redators (Chaoborus and 
planktivorous fish) also derive a significant subsidy from  
terrigenous PO C . T errestrial P O C  was the single largest C 
source fo r pum pkinseeds and sticklebacks in  P eter Lake 
(unfertilized). T errestrial P O C  was also the largest source o f  
organic carbon to  benthic invertebrates, except during 
experim ental enrichm ent o f  P eter Lake (Fig. 4). Some 
unlabelled sedim ent consum ed by ben thos m ay be au toch th ­
onous p roduction  tha t occurred  p rio r to  the labelling o f  D IC . 
H ow ever, terrestrial P O C  is still a m ajor organic carbon 
source for ben thos w hen  sedim ent carbon is corrected  fo r old 
au toch thonous p roduction  (C arpenter et al. 2005).

Terrestrial prey

Fish also derive subsidies by directly consum ing t-prey  items 
and th rough  piscivory o n  o th er fish tha t consum e t-prey. 
W hile t-prey is a very m inor C inpu t to  these lakes, it is a
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large subsidy to  som e fish (H odgson & H ansen  2005). O nly 
Y O Y  largem outh bass, w hich are highly planktivorous, were 
n o t significantly subsidized by t-prey. In  Tuesday Lake 
t-prey w ere the dom inan t C source for b o th  golden shiners 
and sticklebacks.

Primary production

W hile m ost consum ers utilize one o r  m ore o f  the three 
terrestrial subsidies, consum er utilization o f  prim ary p ro d u c­
tion  from  either phytoplankton  o r benthic algae is im portan t 
and in  m any cases larger than  all terrestrial sources com bined 
(e.g. Z ooplankton in  P eter and Paul lakes, Y O Y  fish in  Paul 
Lake and fathead m innow s in  P eter Lake). W ith a few 
exceptions (m ost g roups in  T uesday Lake, benthic inverte­
brates in  unenriched P eter Lake) prim ary production  
accounted for 30% o r m ore o f  C dem and. T he nu trien t 
fertilization o f  P eter Lake dem onstrated  tha t increases in 
prim ary p roduction  lead to  increases in  the au totrophic 
support o f  secondary production . T hese results are consistent 
w ith the generalization from  m any com parative studies that 
consum er biom ass a n d /o r  productiv ity  increase w ith prim ary 
p roduction  (sum m arized in  K alff 2002). As fertilization had 
no  effect o n  the rate o f  processing o f  allochthonous inputs, 
this analysis does n o t support the idea th a t nutrients o r labile 
co-m etabolites from  prim ary p roduction  increase the utiliza­
tion  o f  m ore recalcitrant terrestrial detritus (C arpenter &  Pace 
1997; T ranvik 1998). T aken together, the p resen t results in 
concert w ith these studies, suggest tha t terrestrial support o f  
consum ers is likely to  be m ost im portan t in low -nutrient, 
oligotrophic systems. Further, it is possible tha t the degree o f  
terrestrial subsidy m ay explain som e o f  the residual variation 
in regressions betw een consum er biom ass and prim ary 
production .

Terrestrial subsidies of ecosystem metabolism

T errestrial D O C  provides substantial support to  m icrobial 
respiration in  the w ater colum n in  these experim ents (e.g. 
Fig. 4b). As these lakes are o ften  net-hetero trophic  
(R >  G PP), respiration  o f  this terrestrial source w ould be 
expected to  be significant. W hile t-P O C  supports less 
respiration than  does t-D O C , the respiration  o f  t-P O C  is 
nevertheless significant and in  som e cases nearly as large as 
the respiration o f  t-D O C  (Paul Lake). T he respiration  o f  
Z ooplankton is typically co-equal w ith tha t o f  pelagic 
bacteria (Cole eta/. 1988) and in  these lakes t-P O C  is an 
im portan t substrate respired by Zooplankton.

General implications

T he im pacts o f  subsidies depend on  a num ber o f  features o f  
the subsidy and the food  w eb including the type o f  material

(e.g. t-D O C  vs. t-prey), the flux rate in to  the recipient 
system (e.g. large inputs o f  D O C  and small inputs o f  t-prey), 
the m ode o f  utilization (e.g. via m icrobial degradation vs. 
d irect ingestion), the route o f  entry in to  the food  w eb, and 
the tem poral variation in  the rate o f  in pu t (e.g. steady 
loading o f  t-D O C  vs. episodic loading o f  t-prey). In  the 
p resen t study d ifferent consum ers were dependen t on  
different form s o f  terrestrial organic carbon: bacteria o n  t- 
D O C ; ben thos and Z ooplankton on  t-PO C ; and fishes on  t- 
P O C  (through consum ption  o f  ben thos and Zooplankton) 
and t-prey. T hese subsidies also provided differential 
support in  term s o f  respiration  (primary fate o f  t-D O C ) 
and production . H ence, assessm ent o f  the im pact o f  
subsidies on  ecosystem s requires considering a variety o f  
sources, m odes o f  utilization and food  w eb interactions.

O u r study raises several questions concerning how  
variation in  subsidies affects ecosystem s. F o r example, 
increasing prim ary p roduc tion  in  P eter Lake increased the 
p ro p o rtio n  o f  au to trophic C supporting  consum ers. This 
study does n o t reveal, how ever, i f  increasing terrestrial C 
inputs to  lakes w ould lead to  a similar increase in  the 
terrestrial support o f  consum ers. In  addition, while te rrest­
rial organic carbon  partially fuels the food  w ebs o f  the small 
lakes studied here, w ould terrestrial carbon  be equally 
im portan t in  larger lakes o f  similar nu trien t status? Factors 
such as w atershed size, lake size, loading rates, w ater 
residence tim e and riparian vegetation m ay be im portant, 
and support o f  food  w ebs m ight differ considerably am ong 
systems.

O u r results add to  a grow ing literature on  cross­
ecosystem  subsidies by quantifying the m agnitude and 
pathw ays by w hich terrigenous D O C , P O C  and anim al prey 
subsidize aquatic food w ebs (H uryn 1996; N akano & 
M urakam i 2001; Polis et al. 2004). T he pathw ays are 
com plex (Fig. 1) and similar com plex pathw ays o f  subsid­
ization m ay occur in  o th er ecosystem s (Loreau & H o lt 2004; 
Polis et al. 2004; M cC ann et al. 2005). I t  is n o t know n if  all 
pathw ays have equal im pacts on  structure, processes and 
stability o f  receiving ecosystems. H ow ever, the sensitivity o f  
m odel ecosystem s to  netw ork  structure (Huxel &  M cC ann 
1998; Ives et al. 2003; Polis et al. 2004) suggests that 
d ifferent pathways o f  subsidization could have im portan t 
effects o n  fundam ental p roperties o f  food w eb dynamics 
and carbon cycling. E lucidation  o f  such effects seems to  be 
an  expanding fron tier o f  ecological research.
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