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For the calibration of any model, measurements are necessary. As measurements are expensive, it is of 
interest to determine beforehand which kind of samples w ill provide maximal information. Using 
a criterion related to the Fisher information matrix as a measure for information content, it is possible to 
design a sampling scheme that w ill enable the most precise parameter estimates. This approach was 
applied to a reactive transport model (based on the Second-generation Louvain-la-Neuve Ice-ocean 
Model, SLIM) of Escherichia coli concentrations in the Scheldt Estuary. As this estuary is highly influenced 
by the tide, it is expected that careful tim ing of the samples w ith respect to the tidal cycle can have an 
effect on the quality o f the data. The tim ing and also the positioning of samples were optimised 
according to the proposed criterion. In the investigated case studies the precision o f the estimated 
parameters could be improved by up to a factor of ten, confirming the usefulness o f this approach to 
maximize the amount of information that can be retrieved from a fixed number o f samples. Precise 
parameter values w ill result in more reliable model simulations, which can be used for interpretation, or 
can in turn serve to plan subsequent sampling campaigns to further constrain the model parameters.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Taking environm ental samples and subsequently analysing 
them  is often an expensive and tim e-consum ing business. In 
particular, when the study concerns trace elements o r biological 
species, the sampling and analysis cannot usually be automated; 
instead delicate and expert handling is required. It is therefore o f 
obvious interest to know  beforehand w h ich and how  samples 
should be taken such that a m axim um  o f in form ation w ill be 
gathered, or such tha t a predeterm ined level o f in form ation can be 
achieved w ith  a m in im um  o f resources. Usually this step is per
formed in a more or less in tu itive  way, based on previous experi
ences o r other p rio r subjective knowledge. This article uses a more 
rigorous criterion to determ ine w h ich  samples w ill be most
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informative. Using this criterion, d iffe rent sampling designs can be 
compared a p rio ri in  order to find the optim al one.

This sampling design strategy was applied to Escherichia coli 
(E. coli) concentrations in  the Scheldt Estuary. E. coli is one o f the 
most common bacteria present in the intestines o f mammals. Huge 
numbers are released to the environm ent every day by human and 
animal excrements. Therefore, the abundance o f E. coli in  water is 
generally used as an indicator o f faecal pollution. A lthough most o f 
E. coli strains are not pathogenic themselves, the E. coli concen
tra tion  indicates the level o f potentia l presence o f other pathogenic 
m icro-organisms from  faecal orig in  and thus the sanitary risk 
associated w ith  various water utilisations (bathing, shellfish har
vesting, production o f d rink ing  water,...) (Edberg et al., 2000; 
Fewtrell and Bartram, 2001 ).

W ith in  the fram ework o f a Belgian in terun iversity research 
project (http://www.clim ate.be/TIM OTHY/), we are interested in 
the spatial and tem poral va riab ility  o f E. coli abundance in the 
Scheldt Estuary. It is an illusion to try  to answer this question by 
measurements alone unless huge resources are invested. Therefore, 
a coupled hydrodynamica! -  reactive tracer model was constructed

http://www.elsevier.com/locate/envsoft
mailto:adebrauw@vub.ac.be
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to simulate the dynamics o f E. coli in  the dom ain o f interest. This 
model w ill provide high resolution simulations o f tem porally and 
spatially varying E. coli abundance. A lthough the structure (i.e. the 
equations) is assumed to be correct, th is model s till needs to be 
calibrated. This means that measurements o f E. coli are needed and 
the question o f the sampling design is relevant. In this particular 
case, very litt le  is known about the d is tribu tion  o f E. coli in  the 
Scheldt. Based on previous studies in other areas (e.g. Steets and 
Holden, 2003; Garcia-Armisen et al., 2006; Servais et al., 2007a,b) 
some general features can be expected (e.g. average disappearance 
rate and general model structure) but it  is clear tha t extrapolation 
o f this knowledge to the m acrotidal Scheldt basin is not straight
forward. These facts were the actual motivations to find a useful 
c riterion to guide the planning o f future sampling campaigns.

The criterion to design an optim al sampling scheme is related to 
the Fisher in form ation m atrix  (Fedorov, 1972). O ptim ality here 
refers to maxim al in form ation content o f measurements, in  terms 
o f the ir ab ility  to deliver precise parameter estimates. In other 
words, guided by the in form ation criterion, the experimental setup 
is selected w h ich  w ill reduce the uncerta inty associated w ith  the 
parameter estimates most. This uncerta inty is the result o f 
measurement uncertainties propagated through the model. Even i f  
the measurement uncerta inty is independent o f space and time, 
measurements taken at d iffe rent locations and tim es w ill deliver 
d ifferent parameter estimates w ith  d iffe rent uncertainties. Using 
the in form ation criterion approach, the parameter uncertainty 
obtained from  any measurement set can be predicted, and thus 
m in im ized -  resulting in  the identification o f the optim al sampling 
setup. More particularly, in  th is study we focused on optim ising the 
sampling setup in  terms o f the location and tim ing  o f a sampling 
campaign. The objective o f the article is to apply this strategy to E. 
coli concentrations in the Scheldt, as an investigation o f its potential 
u t il ity  fo r this real application. Since the results appear promising, 
the next step w ill be the application to a more realistic model setup, 
where the results w ill actually be combined w ith  fie ld constraints 
to eventually derive the optim al realistic sampling strategy.

Experimental design is an im portan t issue for a ll experimental 
studies, although may be not equally recognized in all fields. The 
broad area o f water quality  studies is one o f the fields where 
considerable w o rk  has been done on th is subject (see W hitfie ld , 
1988; Dixon and Chiswell, 1996 for reviews). Several criteria or 
procedures have been proposed to find the optim al sampling 
distribution. One approach is to d istribu te the samples o r exper
iments such tha t the design space is covered as un ifo rm ly  as 
possible, e.g. using a procedure placing experimental points such 
that the ir distance is m axim ized (Kennard and Stone, 1969; 
Marengo and Todeschini, 1992). A lternatively, Sanders (1982) used 
analysis o f variance to determ ine how many and where samples 
should be taken along a rive r’s cross-section to obtain represen
tative mean water quality concentrations. Both these approaches 
have the advantage not to require the assumption o f a particular 
model for the system under study. Most other methods do use 
this assumption. For instance, Sanders and Adrian (1978) used 
a (simple) model to determ ine the station sampling frequencies 
such tha t a un ifo rm  variance o f the water quality variance would 
be achieved. Lo et al. (1996) used krig ing to select the m onitoring 
points w h ich  ensured to produce an average water quality  closest 
to the true (modelled) one. Alvarez-Vâzquez et al. (2006) choose 
samples to be most representative in the ir river section, by 
m in im iz ing  the difference between the po in t measurement and 
the average section value (both estimated using a model). Apart 
from  obtain ing un ifo rm  or representative inform ation, an im por
tan t problem in  water quality studies is the identification o f 
po llu tion  sources. For th is purpose, Sharp (1971) proposed 
a topological strategy (not requiring a model), but many other

model-based (inverse) methods have been proposed since (Sun, 
2007 and references therein). Yet another objective for experi
mental design can be the d iscrim ination between hypothesized 
models (Steinberg and Hunter, 1984 and references therein), or 
sim ply to reduce the cost as much as possible w h ile  satisfying 
some m in im um  requirements (Vandenberghe et al., 2002). 
Knopman and Voss (1989) proposed a m ultiob jective strategy 
com bining the tw o  last objectives w ith  the objective to reduce the 
variance in model parameter estimates. This last objective is the 
focus o f the present study, searching those experiments (samples) 
w h ich w ill enable a most reliable model calibration. I f  the model 
is precisely calibrated, the model itse lf w il l be able to reliably 
reproduce the spatiotemporal variations o f the system, w h ich  is 
eventually w hat we desire. A sampling strategy can be optim ised 
to achieve this objective by using the Fisher in form ation m atrix  as 
a criterion expressing the precision o f the estimated model 
parameters is. Vandenberghe et al. (2002) applied this same 
criterion to investigate the optim al measuring points fo r water 
quality variables in a river. Based again on the same criterion, 
Vanrolleghem and Coen (1995) proposed a procedure to gather 
m axim um  on-line in form ation on processes in a biosensor, 
enabling both optim al model selection and parameter estimation. 
Wagner (1995) and Catania and Paladino (2009) also used 
a s im ilar criterion, respectively for a groundwater m odelling 
application and the estim ation o f dispersion coefficients in labo
ratory experiments. However, none o f these literature results can 
be extrapolated to E. coli concentrations in the Scheldt w ith  its 
typical dynamics due to its d iffe rent dom ain shape and im portant 
tida l influence.

The article is structured as follows. In the Methods section, the 
in form ation criterion is introduced (Section 2.1), followed by 
a description o f how to use th is criterion in practice to design an 
optim al sampling scheme (Section 2.2). Next, some in form ation is 
given on the application: some background on the Scheldt Estuary 
(Section 3.1), the model used (Section 3.2), the model inputs 
(Section 3.3), the im portan t model parameters (Section 3.4) and the 
measurement o f E. coli (Section 3.5). A fter the tools have been 
presented, in Section 4 the results are shown and discussed for 
several conceptual applications. Finally, some concluding remarks 
are given, rem inding the major points o f the results and giving an 
outlook to future opportunities.

2. Methods

2.1. Information criterion

The fundamental idea is that a model will produce the most reliable output if its 
parameters were estimated using the most informative measurements. If we can 
find a formal expression for "information content”, this can be used as a criterion to 
design an optimal sampling distribution. The criterion often used is based on the 
Fisher information matrix (Fedorov, 1972). It has already been applied in several 
distinct areas (e.g. Vandenberghe et al., 2002; Rensfeld et al., 2008). For those not 
familiar with this approach, a basic background is given in this section.

Consider that a model ƒ is able to accurately simulate a variable y  given some 
inputs X and parameters p, i.e. the measured variable y  equals the modelled value 
f(x,p) plus some error term e:

y = f ( x , p ) + e .  ( 1 )

y  and p are vectors of length N  and np respectively. In order to have an accurate 
model, i.e. being close to the measurements (y), the error term should be small. 
Therefore, the fit between model and measurements is usually optimised by varying 
the parameter values until the sum of squared (weighted) errors 
{ (y -K K P ))Tcove 1(y - ß,x,p))) is minimal. The use of this weighting, with the inverse 
of the measurement covariance matrix cove \  has some convenient consequences.

The uncertainty associated with the optimal parameter values can be estimated, 
even before any samples are taken, because it simply results from the propagation of 
the measurement uncertainties through the model. Indeed, the parameter covari
ance matrix can be estimated only knowing the measurement uncertainties and the 
model by
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covp =  (J(R,T)Tcove(R J ) V (R ,T )) \  (2)

where J is the (N  x np) Jacobian or sensitivity matrix, containing all first derivatives 
of the model output with respect to the model parameters. J and cove are explicitly 
said to be dependent on R and T, symbolizing respectively the locations and times 
of the considered model outputs and samples. Using Equation (2) the uncertainty 
can be estimated that would be associated with parameters if they were estimated 
using measurements taken at (R, T). In other words, the actual measurements are 
only needed to estimate the parameter values; the associated parameter uncer
tainties can be estimated even before any measurements exist, as long as it is 
known where and when the samples will be taken and which would be the 
covariance associated with these measurements. The latter can usually be assumed 
based on previous studies, or else it may be a reasonable approximation to say that 
the measurements will be independent and all have the same (possibly unknown) 
variance. To be correct, Equation (2) is only exact in the case that the model ƒ is 
linear in the parameters. In the nonlinear case, Equation (2) is only asymptotically 
valid, i.e. for the sample size tending to infinity. In other words, in that case 
Equation (2) may not represent the actual parameter covariance matrix but it is 
still a measure of the best achievable parameter uncertainty. Further, note that 
these properties are independent of the distribution of the measurement errors 
(e). Under some additional assumptions, the inverse of the parameter covariance 
matrix is also called the Fisher information matrix (Fedorov, 1972), but to avoid 
restricting ourselves to those assumptions, we won’t use this term further. If the 
model is nonlinear, the Jacobian matrix J also depends on the parameter values. 
Therefore, some prior values for the model parameters must be assumed for the 
construction of covp

If there is only one parameter covp is actually a scalar, quantifying the variance of 
p. In that case we define the best sampling distribution (R, f  ) as the one resulting in 
the lowest parameter variance:

(Í?, Î )  =  arg m m  covp =  arg m m ( j(R J )Tcov<, 1J (R J)')  '

=  a rg m a x ( j(R ,r )Tc o v / j ( R , r ) ) ,  (3)

or in words: (i?, T) are those values of (R,T) for which covp has its minimal value.
So, for all realistic combinations of (R, T) ./c o v j can be computed. The spatial and 

temporal distribution that gives the highest value for fcovej can be designated as the 
optimal sampling scheme.

In the more general situation where more than one parameter are estimated, 
fcovej is not a scalar anymore but a matrix. To rank the different sampling distri
butions according to the “total” parameter uncertainty, a scalar function has to be 
applied to f c o v j  first. A common choice is to maximize the determinant off c o v j  
(Jacquez, 1998)

( ß , f )  =  arg m a x (d e t[/(R ,r)TcovE1J (R ,r ) ]) .  (4)

The experimental setup found this way is called D-optimal (from determinant). D- 
optimal experiments have the advantage to be invariant with respect to any 
rescaling of the parameters (Pukelsheim, 2006). Other criteria expressing the 
magnitude of covp 1 with a scalar can be proposed as well, e.g. the trace, or even 
criteria that emphasize the importance of some parameters more than others 
(Fedorov, 1972). Of course, this kind of strategy can be used to optimise any aspect of 
the experiment; yet in this study we focus on the sampling distribution in space and 
time, as in our application these are the major controllable factors.

In practice, the assumption of independent measurement uncertainties being 
constant (i.e. independent of location and time) will often be the only reasonable 
approximation available. In that case, cove equals a constant times the identity matrix 
(a In), which can be omitted without changing the ranking of the different (R, T):

(i?, i )  =  arg max det(j(R, T)Tcove ^/(J?,!))

=  arg max det (j(R, T)T(<r-IN)J(R, T))

=  arg max det Çf(R, T)tJ(R, T))

=  argmaxdet(Fs). (5)

For ease of reference f j  was renamed Fs. To summarize, Equation (5) defines the 
optimal spatial and temporal distribution of samples under the following conditions:

(a) The model is accurate (model structure and prior parameter values are 
reasonable);

(b) The measurement errors are independent of each other and of the time and 
location they were sampled; their variance is a constant If this assumption does 
not hold but the measurement covariance matrix is known a priori (e.g. propor
tional to the measured quantity), the more general Equation (4) can be used.

(c) The model parameters will be estimated by minimizing a weighted least 
squares cost function, using a weighting proportional to the inverse of the 
measurement covariance matrix cove.

(d) If  the model is nonlinear Fs is exactly proportional to covp 1 only for infinite 
sample size, otherwise it is still a measure of the maximal achievable param
eter precision.

Under the above assumptions, applying the sampling scheme satisfying Equa
tion (5) will provide the most “informative” set of measurements, in the sense that 
they will allow to estimate the unknown model parameter(s) with a lowest 
uncertainty (determinant of the covariance matrix). This way, eventually, these 
samples will permit to perform the most precise model simulations.

2.2. Design of an optimal sampling scheme in practice

The practical difficulty remains in “trying” all combinations of (R,T). Due to 
the high combinatorial complexity of this optimisation problem, a theoretical 
solution is only known for very special cases, and even solving the problem 
numerically is very difficult (Fedorov and Hackl, 1997). Conventional gradient- 
based optimisation techniques often fail because of model nonlinearities and 
nonconvexity (McPhee and Yeh, 2006; Catania and Paladino, 2009). Therefore, to 
start, a reasonable subset of all locations and times must be chosen. This is partly 
dictated by practical constraints known beforehand, e.g. some areas of the 
domain are inaccessible or there is a limitation on the number of samples per 
unit of time that can be processed due to experimental or storage constraints. 
The remaining possibilities should then be tested in an efficient way, to keep the 
number of combinations feasible. It is important here to note that the Jacobian 
matrix (and thus the model output) does not have to be computed again for 
every experimental setup. Instead, the model is run 2np +  1 times (np =  number 
of model parameters) with slightly different parameter values and the outputs 
are stored for all locations and times decided in advance. In this study we chose 
to store the outputs at all nodes of mesh and every 30 min. By subtracting the 
different model runs, a finite difference approximation of the sensitivities is 
obtained for all those locations and times. These elements form what we call the 
“meta-Jacobian”. Building this meta-Jacobian does not cost (significantly) more 
time than building a smaller Jacobian matrix, it only requires some memory 
space. Then the actual Jacobians associated with a given experimental setup 
(sampling location +  times) can be formed by selecting elements from the meta- 
Jacobian. This procedure is in fact quite time effective because model runs are 
very expensive and only a very small number of them are needed -  these can be 
performed in advanced and one meta-Jacobian can thus be used for all experi
mental design analyses. Furthermore, as a global (although discretised) search is 
performed, there is more certainty of having found the global optimum, at least 
within the discretisation precision.

The final question is how to perform this “subsampling” of meta-Jacobian 
elements. To guarantee that the “globally” optimal solution will be found, all 
combinations (already reduced by considering practical constraints) must be 
considered. But in practice a sequential procedure, fixing one sample (time and 
location) per step, seems the most feasible.

Depending on the specific application the search for the maximal information 
may be done differently. In the examples shown below, it was decided to split the 
determination of timing (T) and positioning (1?), instead of trying to optimise 
everything at once. In some examples, the timing of the samples was fixed 
beforehand. In real applications this can correspond e.g. to the case where 
a sampling “protocol” must be followed consisting of a fixed number of samples 
taken at predefined time instants. With the timing being fixed, the actual optimi
sation using the above criterion now only concerns the positioning (and number) of 
these sampling “campaigns”, which is much more feasible from the combinatorial 
point of view. More details on the procedure followed are given in the respective 
Results sections.

For real applications, it is only reasonable to admit that practical constraints of 
the experiment and on the field will highly influence the actual possible sampling 
schemes. It is best to include all constraints from the start, but this is not always 
feasible. For instance, it would be a huge amount of work to classify the whole 
domain in “accessible” and “non-accessible for sampling”. Therefore, the reasonable 
strategy seems to perform a first optimisation (taking into account all constraints 
available but knowing that some solutions may still be impossible). If, by confronting 
the proposed samplings to the real world, some of them appear to be impossible, 
one can further optimise the sampling setup, by taking into account the newly 
“discovered” constraints. This could consist of repeating the full optimisation but 
with the new constraints included (possibly in an iterative way) or, alternatively, of 
only a local optimisation (which is satisfactory assuming that the new constraints do 
not greatly change the results).

A final note on prior data: if older measurements are available, these can be 
included in the analysis. The Jacobian matrix can be extended with fixed rows 
representing these measurements; in this way the prior data (or actually their 
locations and timings) will contribute to Fs and can also influence the optimal design 
for the future sampling. This could be worthwhile e.g. in cases where older data are 
only available for a part of the domain. This knowledge is then included, such that 
the outcome of the analysis will probably (but dependent on the model) indicate 
that new samples are to be taken preferentially in the domain unsampled so far. If 
the uncertainties associated with these prior data are known and different from the
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(expected) uncertainties that will be associated with the future measurements, the 
weighting matrix can be constructed and Equation (4) can be used.

3. Application to the Scheldt Estuary

To investigate its potentia l for the problem  o f sampling E. coli in 
the Scheldt Estuary, the results for a num ber o f s im plified examples 
are shown in  the next section. They are s im plified in the fo llow ing 
aspects:

(1) The modelled processes contain some sim plifications (see 
Section 3.2), although much attention has been paid to an 
accurate representation o f the tide as th is is expected to be 
a key player in the Scheldt theatre.

(2) Only the E. coli specific parameters are taken in to  the analysis. 
In theory, also hydrodynamic parameters could be included as 
some o f them  may be badly known too.

(3) Not all po in t sources o f E. coli really present are considered. 
Instead we are interested in  studying the influence o f po in t 
source locations and magnitude to the optim al sampling 
scheme.

(4) Specific constraints like accessibility or cost are not taken into 
account.

Therefore, th is study is meant to iden tify  the general trends 
influencing the in form ation tha t can be retrieved from  different 
sampling designs, in order to explore the potentia l o f th is kind o f 
analysis for future (m ore realistic) applications. Before discussing 
the results, some in form ation on the study area, the model and the 
variable o f interest (£. coli concentration) is given.

3.1. The Scheldt Estuary

The Scheldt River flows from  northwestern France, through 
northern Belgium, ending in  the N orth Sea in the southwestern part 
o f the Netherlands (Fig. 1 ). In this study we w ill concentrate on the 
estuarine part going from  Antwerpen (B) to the m outh jo in ing  the 
North Sea. The river and its tributaries drain a densely populated 
area, where both active industries and intensive agriculture and 
animal farm ing have developed. As a consequence, the Scheldt 
Estuary receives extrem ely polluted water, although recently 
a certain im provem ent has been noted compared to 1970s (M eire 
et al. (2005) and references therein), especially since 2007 when the 
big Brussels’ waste water treatm ent plant started operating 
(Schoonjans, 2007). An im portan t dynamical feature in  the studied 
area is the tide, its m ajor components being sem i-diurnal (lunar tide 
M2 and solar tide S2). W hen referring to the tida l cycle in th is study, 
the M2 period o f 12 h25’ is meant, as this component has by far the 
largest am plitude (four times the second most im portant, S2, 
am plitude). The Scheldt Estuary is considered a m acrotidal system, 
w ith  its large tida l ranges (mean neap and spring ranges are 2.7 and 
4.5 m, respectively) and huge water volumes transferred during the 
tide (approxim ately 200 times more water entering the estuary 
during flood than the average freshwater discharge during one tida l 
cycle (Vanderborght et al„ 2007)). As a consequence o f th is relatively 
small river discharge, the transit tim e through the estuary is esti
mated to be 1-3 months (Soetaert and Herman, 1996). Another 
consequence is tha t the w ater colum n is generally w e ll mixed.

3.2. Hydrodynamica! -  reactive tracer model

A model to describe the dynamics o f the variable o f interest is 
necessary in  this methodology. In fact, i t  is not d irectly the model 
ou tput tha t is o f use, but its derivative w ith  respect to the param
eters, to form  the Jacobian m atrix. In this study th is derivative is

350° 0° 10° 20°
60° 60°

North Sea

UK

Germany
50° 50°

FranceAtlantic
Ocean

40° 40°

350° 0 ° 10° 20 °

Fig. 1. Map indicating the location o f the Scheldt Estuary.

approximated by fin ite  difference between model runs (see Section
4.1). The technical details on the model are summarised in this 
section.

The E. coli dynamics are modelled using a hydrodynamical 
model coupled to a reactive tracer module, form ing a new app li
cation o f the Second-generation Louvain-la-Neuve Ice-ocean 
Model, abbreviated as SLIM (http://www.clim ate.be/SLIM /). The 
hydrodynamic part o f the model solves the (depth-averaged) 
shallow water (thus depth-averaged) equations using the fin ite  
element method (Lambrechts et al., 2008a; Combien et al., 2008) 
w ith  linear discontinuous elements (P?G) for all variables. The fin ite  
element m ethod allows the use o f an unstructured mesh w hich has 
the advantage that the grid size can be adapted in tim e and space 
according to the need o f detail. The mesh used in th is study was 
constructed using Gmsh (Gmsh, 2008; Lambrechts et al., 2008b) 
and is shown in Fig. 2. The whole continental shelf has been 
included in the domain, such tha t the tide can be neatly imposed at 
the boundary, i.e. at the shelf break (m ore details below). However, 
the mesh is refined closer to the estuary and to the coastlines. This 
way, a finer resolution (o f about 200 m) is achieved in the areas o f 
most interest, simultaneously w ith  a reasonable to ta l number o f 
grid cells (about 10 000).

E. coli is modelled as a reactive tracer in tw o dimensions, 
according to (e.g. Breton and Salomon, 1995; Padilla et al., 1997; 
Naithani et al., 2007):

—  +  V ■ (HuC) =  V ■ (K H V C ) +  H(P  -  D ), (6)

where C(r, t) represents the concentration o f E. coli being depen
dent on location and time, H(r, t) and u (r, t) are the water height 
and depth-averaged velocity, respectively, w h ich  are computed by 
the hydrodynamical part o f the model. K  stands for the horizontal 
eddy viscosity, w h ich is fu rther described by a Smagorinsky’s 
parameterization (Smagorinsky, 1963; Lambrechts et al., 2008a,b). 
This incorporates unresolved tu rbu lent features and boundary 
layers along the coastlines, by making K  dependent on the local

http://www.climate.be/SLIM/
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Fig. 2. Model domain w ith  mesh used for this study.

mesh size and flow  structure. A reactive tracer is transported by 
advection and diffusion (the second and th ird  terms o f the equa
tion, respectively), according to the hydrodynamics, and at the 
same tim e it  is subject to some specific dynamics, represented by 
the production (P) and destruction (D) terms. In the case o f E. coli, 
these specific dynamics were assumed to be relatively simple. 
Being outside the ir natural habitat, the faecal bacteria’s dynamics 
are assumed to be lim ited  to disappearance processes. More 
specifically, they are assumed to disappear due to m orta lity  and 
sedimentation, both according to a firs t order relation (e.g. Steets 
and Holden, 2003):

D =  kmortC +  - ^ C ,  (7)

w ith  kmort the m orta lity  rate constant, vse¿ is the sedimentation 
rate. This way, the disappearance is modelled as a firs t order 
decay (Pichot and Barbette, 1978; Kay et al., 2005; Servais et al., 
2007b), bu t w ith  a firs t refinem ent considering a decay constant 
varying w ith  water height. Further refinements can be made, e.g. 
taking in to account the variation o f kmort w ith  temperature, 
salinity, turb id ity , flow, etc., but for th is to be useful the exact 
dependencies should be w e ll quantified. No processes “ produce” 
E. coli, except for the ir in jection in to the dom ain by the considered 
po in t sources.

The fin ite  element m ethod is also used to model the advection- 
diffusion part o f the tracer equation. But fo r the reactive part, we 
on ly solve an ord inary d iffe rentia l equation (ODE) on each degree 
o f freedom o f the concentration field. It is therefore ju s t a pointw ise 
equation acting as a source/sink term  on the advection-diffusion 
equation.

3.3. Model inputs

The influence o f the in itia l conditions becomes negligible after 
some tim e because o f the fric tional and viscous dissipation for the 
hydrodynamical equations, because o f the d iffusion and destruc
tion  terms in  the tracer equation. The actual tim e needed before the 
in itia l conditions’ influence becomes negligible is relatively short 
thanks to the open boundary conditions. So, any in itia l condition 
can be used.

Coasts are considered impermeable and frictionless. The hydro
dynamical model is forced by the tide at the frictionless open 
boundary. We consider tha t the concentration o f E. coli is zero 
outside the domain, such tha t the tracer can on ly  leave the domain 
through the open boundary. E. coli is p rim arily  injected in to  the 
domain by waste water treatm ent plants (WWTPs) acting as point 
sources (Garcia-Armisen and Servais, 2007). In the examples shown 
below it  is not intended to take in to account a ll known po in t sources 
and no upstream po llu tion  is considered to enter the domain. 
Instead, the performance o f the m ethod is investigated for some 
sim plified situations. This allows to better in te rpre t the results and 
make some general statements on the sampling strategy.

It would be closest to reality to model the point sources as Dirac 
delta functions based in  the discharge points. Their im plementation 
in fin ite  element models is not triv ia l and several previous studies 
devoted some efforts in giving a theoretical and numerical framework 
for treating this kind o f po in t sources (Alvarez-Vazquez et al., 2002a,b; 
Scott, 1973). However, in  our particular case (using discontinuous 
shape functions and Eulerian advection schemes w ithou t lim iting  
technology), the im plem entation o f a Dirac input would lead to large 
and unrealistic inter-element jum ps and grid-scale oscillations.
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Therefore, i.e. to guarantee numerical robustness, the point sources 
are modelled by Gaussian-shaped inputs into the model domain 
(Kärnä et al., submitted for publication), i.e. the concentration injected 
at each tim e step is not concentrated in one point but spreads over 
some surface o f the domain, centred around the actual source point. 
However, to be realistic, the standard deviation o f the Gaussian- 
shaped input is chosen sufficiently small compared to the grid size 
(more on this in Section 4.1). Fig. 3 shows a snapshot o f the E. coli 
concentrations in  the estuary during one o f the simulations discussed 
below, w ith  8 po in t sources continuously in jecting bacteria in the 
domain. Note that the values are not intended to be realistic, and 
indeed probably are far from  it, because arb itrary source fluxes were 
used (see Section 4.2.3.).

3.4. Model parameters

The tunable model parameters are given in Table 1. As already 
m entioned in  In troduction o f this section, on ly the E. coli specific 
parameters are considered in this study. Note tha t value ranges are 
available for these parameters, from  previous studies (e.g. Steets 
and Holden, 2003; Garcia-Armisen et al., 2006; Servais et al., 
2007a). A representative average o f these values is used as “ typ ica l” 
and is used in  the simulations.

3.5. E. coli measurements

The sampling design procedure described above w ill be applied 
to make statements towards an optim al sampling design for E. coli 
concentration in the Scheldt Estuary. Therefore, it  seems relevant to 
b rie fly  present some in form ation on E. coli measurements: the 
experimental procedure and a discussion o f existing datasets.

The methods trad itiona lly  used for the enum eration o f E. coli in 
water are plate count methods w ith  d ifferent specific media and 
incubation conditions (Romprê et al., 2002). Today, numerous 
chromogenic and fluorogenic agar media are available on the 
market to enumerate E. coli (Manati, 2000); they a llow  an easy 
detection o f the ß-D-glucuronidase, an enzyme specific to
E. coli. Practically, im m ediate ly after return ing to the lab, the sample 
is filtra ted through a 0.45 pm-pore-size sterile membrane. The filte r 
is then incubated on a selective agar m edium  for 24 -36  h at 
temperature in  the range 36 -44  °C; incubation duration and 
temperature are depending on the selective agar m edium  used.

A fter incubation, E. coli colonies (detected by colour o r fluores
cence) are enumerated and the data are expressed in  E. coli number 
per 100 m l o f water sample.

In order to avoid fluctuations in  E. coli numbers between sample 
collection and analysis when using this type o f m icrobiological 
method, samples m ust be proceeded w ith in  12 h and kept at 4 °C 
between collection and analysis. Accordingly, in  order to assure 
prom pt analysis, the num ber o f samples tha t can be collected 
during a one-day sampling campaign and analysed by a single 
analyst is lim ited  to 20-30. Furthermore, i f  these samples are to be 
d istributed over d iffe rent locations, logistic considerations restrict 
the number o f locations tha t can be visited during one day to on ly 
a few. These constrains should be taken in to account w hen setting 
up the optim al sampling distribution.

Presently, no useful dataset concerning E. coli concentrations is 
available fo r the Scheldt Estuary. The few  existing datasets all exh ib it 
the disadvantages o f low  sampling frequency and very poor spatial 
coverage. Indeed, water quality standards in terms o f fecal bacteria 
concentrations are rou tine ly contro lled on ly in bathing sites during 
the bathing period (June to September) and there are no controlled 
bathing sites in the study area. In addition, even when fecal po llu tion  
is monitored, it  is done w ith  a typical sampling frequency o f one per 
several weeks, w h ich is evidently too sparse to make any statements 
about the specific dynamics o f the system under study, i.e. p rim arily  
the tide (m ain cycle period is ±12 h) for the hydrodynamics and the 
semi-exponential disappearance o f the faecal bacteria themselves 
(typical decay tim e is ±21 h). Therefore, a new sampling scheme, 
w h ich w ill enable to capture these frequencies, is o f real interest. In 
the next section, the potentia l o f the proposed methodology to 
answer this question w ill be investigated.

4. Results and discussion

4.1. Computation and validation o f numerical Jacobian

The Jacobian m atrix, necessary to compute the Es (Equation (5)), 
is approximated by firs t order fin ite  differences between tw o  model 
runs. For this, the model outputs at discrete positions and times are 
used. More precisely, the Jacobian is computed at all corners o f the 
triangu lar grid cells, i.e. at the nodes, and every 30 min.

The fin ite  difference approach was validated for a s im plified 
case where the analytical expression o f the Jacobian m atrix  w ith

0.00341 0.00682

Fig. 3I. Snapshot o f simulation w ith  8 point sources (indicated by the arrows) injecting E. coli into  the estuary (in  units per m3
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Table 1
Overview of model parameters under study.

Symbol Description Typical value

kmort Mortality rate constant of E. coli 1.25 x IO“ 5 s“ 1

Vsed Sedimentation rate of E. coli 5.55 x IO“ 6 ms“ 1

respect to kmort could be derived. This theoretical test showed that 
there are tw o  sources o f error: the discretisation error introducing 
numerical d iffusion and the fin ite  size o f the Gaussian-shaped 
input. In the Scheldt application both are m in im ized by using small 
triangles and a standard deviation for the Gaussian w h ich  is small 
compared to the grid size. This should remove the la tter error but 
the numerical d iffusion is probably not com pletely negligible 
because the grid size is s till larger than the physical d iffusion length 
scale K/W u|| (o f the order o f 0.1-1 m in the Scheldt Estuary).

4.2. One sampling location w ith  fixed sampling times

In th is section, some examples are shown where a single 
sampling location is to be selected. For reasons o f sim plicity, the 
sampling tim ing  is fixed beforehand. How th is tim in g  was chosen is 
explained in the next paragraph; subsequently tw o  case studies are 
discussed, w ith  respectively one and eight po in t sources.

4.2.1. Fixing the sampling times
As the tide is a major process in the domain, the samples at any 

location were fixed to approxim ately cover one cycle o f the major 
tida l component, M2 (12 h25'), such tha t the start tim e o f sampling 
(relative to the tida l phase) is arbitrary. In addition, the

experimental restrictions were taken in to account (cf. Section 3.5), 
resulting in the fo llow ing sampling tim ing: once every ha lf an hour 
a sample is taken, during 12.5 h, resulting in 25 samples. W ith  this 
setup the sampling covers one tida l cycle, and can be performed by 
one person, w ith o u t having to store the samples too long before 
return ing to the lab. Including travel times and preprocessing in  the 
lab, this s till makes a w ork ing day o f more than 17 h.

4.2.2. Optimal sampling location; one source
As a firs t example, some situations w ith  one po in t source o f E. 

coli are shown, in  order to illustrate the importance o f the local 
topography and related hydrodynamics. The point sources always 
discharge E. coli at a constant rate, bu t as on ly  one source is 
considered the actual m agnitude is o f no importance. As it  is 
expected tha t E. coli is p rim arily  injected in to the domain from  the 
exterior (WWTPs, canal discharges, locks o f the harbours, etc), it  is 
most realistic to place sources along the coasts o f the domain. Note 
tha t nothing in the model o r experimental design procedure 
prohibits placing sources inside the domain, on ly  in th is case study 
it  is believed tha t the relevant po in t sources discharge along (or 
very close to) the coastlines. The tim ing  o f the samples was fixed as 
said above. Then the single optim al location is sought where these 
25 samples should be taken. This is done by com puting the Fs at 
every node o f the mesh. If  necessary, another spatial discretisation 
is possible, as w ith  the fin ite  element approach the model ou tput 
can be computed at any position. The optim al sampling position is 
then the one m axim izing Fs (Equation (5)).

Fig. 4 shows the spatial d is tribu tion  o f Fs (on ly w ith  respect to 
kmort' i-e. vsed is fixed) for a source close to Terneuzen, in the broader 
part o f the estuary (see arrow  in Fig. 4). According to the Fs the
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Fig. 4. One source at Terneuzen: spatial distribution of scaled Fisher information matrix (Fs), only considering kmor[, i.e. the information content of a sampling campaign of 12.5 h 
(1 sample / 30 min) for all considered locations. Central figure: dots are sized and colored proportionally to the value of the Fs, arrow represents the point source. This figure serves 
to spatially localise the information maxima. Side figures: Fs as a function of x and y coordinates (i.e. projections), red lines indicate source location. These figures facilitate a more 
quantitative interpretation of the results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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optim al sampling location is s lightly downstream  o f the source, not 
sym m etric and steeply peaked. This shape is thought to be a ttr ib 
utable to the particular tida l dynamics. Indeed, when the simula
tions are performed w ith  a simple sinusoidal tida l forcing at the 
m outh o f the estuary, Fs as a function o f the x coordinate has an 
almost Gaussian shape (results not shown).

The outcome is not on ly dependent on the hydrodynamics, but 
also on the model parameters tha t are considered in the analysis. In 
Fig. 5, the results are plotted for the same situation as above but 
considering the tw o model parameters k m o r t  and vsed- As now two 
parameters are considered, the determ inant o f Fs was computed to 
get a scalar in fo rm ation criterion at every position. The spatial 
d is tribu tion  o f the in form ation looks somewhat d ifferent although 
the peak location is the same. Note however tha t the in form ation is 
not optim al at the source itself. To put numbers on it, sampling at 
the source po int w ill deliver parameter variances respectively 38 
and 47% (for k m 0 r t  and vsed) higher than those found by sampling at 
the optim al location.

The above examples show how an “ in form ative” area can be 
visualised, w ith  a m axim um  indicating the optim al sampling 
location. Other features o f the in form ation spread (secondary peaks 
or fla t m axim um ) can be useful knowledge for planning a sampling 
campaign in  real applications. Depending on the local topography 
and hydrodynamics, the results can differ. In some cases, the 
optim al sampling location may lie upstream o f the po in t source, or 
the analysis may indicate tha t there are several locations delivering 
measurements w ith  equivalently high inform ation.

4.2.3. Optimal sampling location; eight sources
This section w ill show that when more than one po in t source is 

present and on ly one location can be sampled, it  is o f even more

interest to perform  an in form ation or experimental design analysis. 
Indeed, as long as w e know  there is on ly one source, it  is quite sure 
tha t the optim al sampling location w ill be close to tha t single 
source. In the more realistic situation w ith  several sources, deter
m in ing the optim al sampling location is not so obvious anymore.

In Fig. 6 the results are shown considering eight po int sources, 
eight being a more realistic number. In Fig. 3 a snapshot was shown 
o f the simulated E. coli concentrations in the estuary. They are 
positioned along the estuary at known potentia l inputs o f pollution, 
like canal discharge points and harbour locks (po tentia lly  im portant 
because WWTPs discharge in  the harbour). However, the ir im por
tance in terms o f discharge in  E. coli is not w e ll known. Therefore, we 
assumed that they are a ll equal and assigned arb itrary values to the 
source fluxes (1 s 1 ). Fs is computed w ith  respect to both parameters 
k m o r t  and vsed- It is clear tha t not all sampling locations deliver the 
same inform ation, although the sources discharge bacteria at the 
same rate. Instead it  appears tha t sampling close to the most 
seaward sources delivers negligible in form ation compared to the 
v ic in ity  o f the sources in the narrower part.

4.3. Influence o f the sampling tim ing

So far, we fixed the sampling tim ing  beforehand and only 
optim ised the location where the samples should be taken. In this 
section, we w ill investigate how changing the tim in g  o f the 
sampling influences the results (w h ile  s till optim ising the location 
too). First, the question is investigated w hether the tim ing  o f 
a sampling campaign relative to the tida l cycle is relevant. To 
address this question, the fo llow ing sim ulation test was performed. 
A fixed sampling “ protocol” was considered, consisting o f 7 
samples, taken 1 per ha lf an hour, covering a sampling period o f 3 h.
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Fig. 5. One source at Terneuzen: spatial distribution of det(Fs), considering both kmort and vse£f. (cf. Fig. 4) Central figure: dots are sized and colored proportionally to the value of the 
det(F5), arrow represents the point source. Side figures: det(Fs) as a function of x and y coordinates, red lines indicate source location. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6 . Eight sources: spatial distribution of det(Fs), considering both parameters kmolt and vsed. Central figure: dots are sized and colored proportionally to the value of the det(Fs), 
arrows represent the point sources. Side figures: det(Fs) as a function of x and y coordinates, red lines indicate source positions. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

This sampling period is short relative to the main tida l period o f 
approxim ately 12 h and 25 m in; therefore we suspect tha t the 
in form ation tha t can be retrieved from  one such sampling 
campaign w ill vary w ith  the start tim e o f the campaign. In other 
words, we wonder w hether there is a preference to start the 
sampling campaign at high tide, o r low  tide or any other tim e in the 
tida l cycle.

Fig. 7 shows the results for the m axim um  in form ation tha t can 
be retrieved by the 3 h campaign depending on its starting time. In

th is firs t example, Fs is computed on ly w ith  respect to kmort. To 
iden tify  any relation w ith  the tide, the water height is p lotted on the 
same tim e axis, as it  is modelled at the source position (the single 
source at Terneuzen is considered here and as we know  the 
m axim um  in form ation is close to the source, this location seems 
representative). There is a clear period ic ity  in  the in form ation 
evolution, closely m atching the main tida l periodicity. In fact both 
series are almost in anti-phase: the m axim um  in form ation tha t can 
be retrieved from  the sampling campaign is highest for those
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Fig. 7. Relation between maximum information (black line with circles) retrieved from a 3 h sampling campaign (1 sample every half an hour) and starting time of the campaign. 
The simulation considers a single source at Terneuzen (Section 4.2.2) and only parameter kmort for the computation of Es. In the same plot water elevation (blue dotted line) at the 
starting time (different)/ axis) at the source position is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
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campaigns tha t started ju s t before low  tide. A second, smaller 
in form ation peak is visible ju s t before high tide. These phases in the 
tide are both associated w ith  low  water velocities, and the low  tide 
is, obviously, characterised by low  water level. These features may 
increase the sample in form ation because they tend to induce an 
accumulation o f tracer concentration. High concentrations w ill 
probably be associated w ith  high (in  absolute values) sensitivities 
to changes in model parameters, and this is exactly w hat defines 
the in form ation potential o f the samples.

Note tha t th is exercise in fact consists o f the optim isation o f both 
sampling location and start time. Indeed, for every sampling 
campaign (starting at a d ifferent tim e) the m axim al in fo rm ation 
shown in Fig. 7 corresponds to a d iffe rent optim al sampling loca
tion, namely tha t sampling location delivering the most in form a
tive measurements for tha t campaign. As can be expected, this 
location depends on the phase o f the tide as well. Roughly said, for 
campaigns during rising tide, the optim al sampling location is 
upstream o f the source; during fa lling tide it  is downstream.

The results for on ly vse¿ considered, are quite s im ilar (not 
shown). Note tha t th is means that when both parameters are taken 
in to account, and trace(Fj) is used as the in form ation criterion, 
instead o f det(Fs), also s im ilar results are obtained.

Conversely, when repeating the exercise w ith  both parameters 
and det(Fs) as in form ation criterion, a d ifferent picture is found 
(Fig. 8). Indeed, the inform ation, now expressed by det(Fs) s till 
exhibits a period ic ity strongly related to the tide, but the peaks are 
shifted. There is s till a gain in  in form ation when sampling around 
low  tide, but the highest in fo rm ation is achieved 2 -3  h before high 
tide. Sampling a litt le  b it later and during the biggest part o f falling 
tide results in much lower inform ation. This is not straightforward 
to explain in terms o f hydrodynamics anymore, and is probably due 
to the fact tha t to m axim ize det(Fs) the off-diagonal terms, related 
to the interaction between the tw o parameters, play a role, w h ich is 
not the case i f  on ly one parameter is considered or the trace 
criterion. In fact, a sampling may be optim al to estimate the two 
parameters individually, or to m inim ise the ir indiv idual variances, 
but not optim al to reduce the ir covariances -  w h ich is probably the 
case here. This observation confirms that the optim al sampling 
setup depends on w h ich parameters are to be estimated w ith  the 
eventual measurements. More generally, it  illustrates the expec
ta tion tha t there is no single best sampling, the optim al sampling 
depends on w hat you w ant to do w ith  it.

Looking at the achievable parameter precision quantitatively, 
the difference between tw o  sampling campaigns starting at 
d ifferent times can be huge. For instance, when comparing the two 
campaigns indicated by arrows in  Fig. 8: a campaign starting at 
tim e 53.5 h (just after h igh tide) w ill result in  a parameter variance

nine (kmort) to eleven (vsec¡) times the variance found when the 
sampling started at tim e 49.5 h (just before high tide). This means 
tha t to achieve comparable precisions ten times more samples 
w ould be needed in the first case than in the second case.

Besides the start tim e o f a campaign, the sampling frequency 
may also be a factor influencing the retrievable inform ation. The 
sampling frequency may be changed by varying the number o f 
samples or the to ta l campaign period. The firs t case is irre levant as 
more samples w ill always deliver more inform ation. But the effect 
o f the second case is not so obvious a priori. To investigate how 
changing the sampling frequency (by changing the campaign 
period and keeping seven samples) affects the m aximal in form a
tion  tha t can be retrieved from  the sampling campaign, the 
preceding exercise was extended to take in to  account varying 
sampling frequencies in addition to sampling location and 
campaign starting time. Several cases were considered:

(a) the in form ation is optim ised w ith  respect to location and 
starting time, and the variation o f this m aximal in form ation as 
a function o f sampling frequency (or actually campaign period) 
is plotted;

(b) the in form ation is on ly optim ised for location, i.e. for 
a campaign fixed to start at t  =  0;

(c) the in form ation is on ly optim ised for start tim ing, i.e. for 
a campaign fixed at the source position.

The results are summarised in  Fig. 9, showing that apparently the 
maximal inform ation as a function o f sampling frequency does not 
exhib it any systematic pattern. That is to say, the optim al sampling 
frequency could not be related to any other feature, like the tidal 
periodicity. The highest inform ation is found for the shortest 
campaign but it  is not clear whether this is a systematic result or found 
by coincidence. Yet, the parameter variances can be improved by 
choosing the best sampling frequency, so it  is certainly not irrelevant 
to consider sampling frequency as an optim isation variable.

4.4. Selecting several sampling locations

So far, we have considered problems where on ly one sampling 
location is to be selected. In th is section, the selection o f several 
sampling locations was investigated. A sequential procedure is 
proposed, such tha t the in form ation criterion is optim ised for one 
location at a tim e. W ith  a fixed sampling tim ing, the firs t step is 
then identical to the selection o f a single sampling location (Section
4.2). In the next step, th is location is fixed, and the additional 
in form ation tha t can be retrieved from  a second simultaneous 
sampling at another location is maximised.
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Fig. 8. Similar to Fig. 7 but with both parameters kmort and vse(j considered.
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Fig. 9. Evolution of (maximal) information content (Fs) of a 7 samples campaign as 
a function of the campaign period. Fs is computed considering both parameters kmort 
and Vsed. Thick red line: information at optimal sampling location and starting time. 
Thin black line: information at optimal sampling location but for fixed starting time at 
t =  0. Blue dashed line: information for optimal starting time and at fixed location 
(source position). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

First, note that i f  on ly one model parameter is considered in the 
analysis, there is on ly one single optim al sampling location, no 
m atter how many can be selected. Indeed, the criterion which is 
maximised is J(R,T)tJ(R,T), where the Tstands for the fixed sampling 
times and R defines the different sampling locations. As 
j(R,T) =  L/(ri,T); J(f2,T); ...] it  is easily seen that the in form ation 
criterion w ill be m aximal i f  all the one-location criteria are maximal 
and this w ill obviously happen for one and the same location:

ni
J(R, T)tJ(R, T) =  Ÿ J in ,  T )TJ(rj, T) <  n, max ( j ( r ,  T)TJ(r, T ) j . (8)

¡ = i

If  more than one parameter is included, whether th is property 
(the in form ation from  several sampling locations is the sum o f the 
“ in form ations” from  the single locations) s till holds depends on the 
criterion used. I f  trace(Fs) is used, the property is s till valid, bu t for 
det(Fs) it  is not so obvious due to the m ixed off-diagonal terms. In 
other words, i f  the in form ation is expressed by trace(Fs), on ly one 
single sampling location is optimal, no m atter how many sim ulta
neous replicates can be taken. So, no additional in form ation is to be 
gained by perform ing tw o simultaneous sampling campaigns at 
tw o  d ifferent locations. For D -optim al design, theoretically 
d ifferent locations may appear to be optimal. But based on some 
tests, i f  d ifferent locations come out o f the analysis at all, they are 
very close to each other. Consequently, i f  a fixed sampling tim ing  is 
applied, not much in form ation is to be gained by repeating this 
sampling at a d iffe rent location, compared to sim ply perform ing 
a replicate experiment at the same location.

5. Conclusion and perspectives

The potential o f the inform ation criterion related to the Fisher 
inform ation matrix, expressing the magnitude o f the covariance 
m atrix o f the model parameters, has been investigated to derive 
optim al sampling schemes for the calibration o f a sim plified model for
F. coli concentration in the Scheldt Estuary. From the results, the 
method appears useful. Accurately tim ing and placing samplings have 
been shown to significantly reduce the parameter variances -  indeed

up to a factor o f ten in the investigated examples -  w h ich w ill in  tu rn  
influence the re liab ility  o f the calibrated model.

Considering the method, we would like to make tw o  remarks 
w ith  outlooks towards future developments. First, the experi
mental design procedure used here, based on the m in im iz ing  the 
parameter covariance m atrix, delivers a design w h ich  is on ly locally 
optimal, because it  depends on the values o f the model parameters 
used to compute the m atrix. To cope w ith  this dependence, and at 
the same tim e include the fact tha t the model parameter values are 
not w e ll known bu t fall w ith in  a w e ll known range, a robust 
experimental design method could be applied. Such an approach 
computes the optim al experiments for the parameters varying 
w ith in  predefined ranges, and selects the u ltim ate optim al exper
im ent based on some robustness rule. For instance, the most 
representative experiment may be selected, by taking the 
“ centro id” experiment o r the experimental conditions found by 
cluster analysis (D ror and Steinberg, 2006); an even more robust 
approach is to select the experiment performs best for the worst 
case parameter values (m in im ax approach, Rojas et al., 2007; Sun, 
2007; Sun and Yeh, 2007). Such an approach m aybe interesting for 
environm ental applications, as many model parameters are 
in trins ica lly  not fixed bu t can vary according to varying environ
mental conditions, even w ith in  one system.

A second remark refers to the lack o f “ real” optim isation algo
r ith m  in th is study. Rather, a “ grid search” optim isation was per
formed, i.e. the optim isation variables (tim e and location) were 
on ly considered at discrete values, but they were considered at all 
these discrete values. Adm ittedly, this procedure w ill on ly give the 
optim al setup w ith in  the precision o f the discretisation, so it  has to 
be chosen to be relevant w ith  respect to the crucial length and tim e 
scales. But the advantages are tha t w ith in  the search points the 
global op tim um  is found, and the “ optim isation” is relatively fast: 
on ly 2np +  1 model runs are needed, to compute the meta-Jacobian 
by fin ite  difference o f model outputs, and the model outputs can be 
stored at all times and locations a p rio ri decided. On the other hand, 
i f  more variables have to be optim ised simultaneously, “ try ing ” all 
combinations becomes impossible because o f the exponentially 
increasing com binatoria l complexity. Therefore, it  w ou ld  be in ter
esting to find the optim al experimental variables using an efficient 
and global optim isation a lgorithm  bu t w h ich s till requires 
“ samples” from  the meta-Jacobian.

For real applications, and the Scheldt case in particular, some 
recommendations may be formulated. First, for reliable results the 
model should include realistic and quantified po in t sources. 
Furthermore it  is recommended to adopt a pragmatic attitude 
towards the optim al sampling scheme. The experimental design 
outcome should be regarded as a guideline and in terms o f general 
trends, rather than as an inescapable fact. This is especially so 
because in  real applications the actually optim al sampling design is 
a compromise between maxim ised in form ation and practical 
constraints. I f  these constraints are known beforehand (e.g. 
sampling o ff the banks is more expensive because a boat is needed), 
they may be included in the in form ation criterion to form  a “ cost 
function” expressing the overall “value for money” associated w ith  
a sample. Some previous studies already considered a m axim um  
budget tha t should not be exceeded as a constraint in  the ir 
experimental design analysis (Wagner, 1995; Sciortino et al., 2002; 
Catania and Paladino, 2009), but the experimental cost was sim ply 
set proportional to the num ber o f samples and thus did  not depend 
on the other variables o f the sample. However, in  general not all 
practical constraints are known in  advance. Summarizing, the 
experimental design procedure can be used to find the optim al 
sampling conditions, taking in to account a ll quantifiable in form a
tion  influencing the qua lity  and cost o f the measurements. Once 
th is “ theoretical” op tim um  has been found, it  can fu rther be
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confronted w ith  practical constraints, to enable the planning o f an 
effective sampling campaign.

For E. coli in  the Scheldt the current problem is the lack o f prio r 
data. Since the model is then the on ly  in form ation at hand, the 
proposed experimental design seems useful. In a future situation 
where data w ill be available, an iterative procedure can be applied: 
using the data the model parameters (and may be even the model 
structure) can be improved and this new model can be used 
together w ith  the old data to determ ine where next samples should 
be taken. This way, at each stage a ll available in form ation is used to 
decide on the next step. As such, this approach to experimental 
design illustrates (again) tha t models and observations should not 
be regarded separately but instead that they are the tw o ind is
pensable pieces at our disposal to resolve the puzzle o f reality.
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