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Abstract

The residence time m easures the time spent by a w ater parcel or a po llu tan t in a given w ater body and is therefore a widely used 
concept in environm ental studies. While m any previous studies rely on severe hypotheses (assuming stationarity  o f the flow and /o r 
neglecting diffusion) to  evaluate the residence time, the paper introduces a general m ethod for com puting the residence time and /o r 
the m ean residence time w ithout such simplifying hypotheses. The m ethod is based on the resolution o f an adjoin t advection- 
diffusion problem  and is therefore prim arily m eant to  be used w ith num erical models.

The m ethod and its im plications are first in troduced using a simplified one-dim ensional analytical model. The approach  is then 
applied to  the diagnostic o f the three-dim ensional circulation on the N orthw est E uropean C ontinental Shelf.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The residence time is one o f the m ost widely used 
concepts to quantify the renewal of water in semi­
enclosed w ater bodies. This is usually defined as ‘the 
time it takes for a water parcel to leave the dom ain of 
interest’ (e.g., Bolin and Rhode, 1973; Takeoka, 1984; 
Zim m erm an, 1988). Together with the close concepts of 
flushing time, transit time and age, the residence time is 
often regarded as a very useful m easure o f the influence 
of the hydrodynam ic processes on the aquatic sys­
tems. As such, it is included in m any environm ental 
studies (e.g., N ixon et al., 1996; Jay et al., 2000). The
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com parison of the residence time with the biochemical 
activity rates helps to understand the dynamics of a 
system (Braunschweig et al., 2003). In estuaries, in 
particular, the residence time is seen as a measure o f the 
time of exposure o f the living biomass, nutrients and 
contam inants to the prevailing particular biochemical 
conditions. It is therefore used to characterize and 
classify the estuaries into different groups (e.g., Dyer, 
1998). A similar approach is used to understand 
eutrophication problem s in lakes (e.g., Vollenweider, 
1976).

From  the definition, m easuring the residence time in 
a given dom ain only requires to m ark the w ater with 
some dye and follow it until it leaves the dom ain. While 
a priori simple, this definition of the residence time has, 
however, a num ber of ra ther complex implications. A 
first com plication comes from  the fact th a t the residence
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time is a function o f space and time; tracers released at 
different locations and times inside the dom ain of 
interest will leave this dom ain at different times. Then, 
one m ust take into account the fact that every water 
parcel has its own residence time (in a well-defined 
dom ain). I f  some tracer is discharged at a given time and 
location, the different tracer parcels will follow different 
paths, have different histories ... and leave the dom ain 
o f interest at different times. Therefore, the situation 
should ideally be described by a distribution o f residence 
times.

As a result of these com plications, the effect o f the 
hydrodynam ics cannot be easily summarized into one 
single figure, as often sought by those who have recourse 
to  the concept o f residence time. Simplification hypoth­
eses are therefore often introduced which ignore spatial 
and tem poral variations and reduce the residence 
distribution to  a single value. The residence time in 
a bounded system is therefore often approxim ated by 
the flushing time:

where V  is the volume o f the water body and Q is 
the flow rate through the system (e.g., Soetaert and 
H erm an, 1996; Steen et al., 2002). Alternatively, the 
residence time is approxim ated by fitting a decreasing 
exponential curve:

m(t )=m(0)e~'^Ti (2)

to  the time series o f the m easured mass m(t) of a tracer 
that is progressively flushed out o f the system (e.g., 
M onsen et al., 2003). The corresponding e-folding time, 
which is sometimes called 'tu rnover tim e’ (e.g., Arne- 
borg, 2004), represents the time taken for the initial 
mass o f the tracer to  be decreased by a factor 1/e. The 
flushing time Tt  defined in this way represents the m ean 
residence time o f a tracer whose mass varies according 
to  Eq. (2).

The previous approaches ignore the tem poral vari­
ability o f the flow, assume a perfect and immediate 
m ixing in the studied dom ain and /o r disregard spatial 
variations of the residence time (M onsen et al., 2003). In 
this paper, we present a generic m ethod for evaluating 
the residence time and /o r the m ean residence time 
w ithout simplifying hypotheses. The m ethod relies on 
the concepts o f adjoint state and adjoint problem , i.e. on 
the analysis o f the time-reversed flow. It is therefore 
prim arily m eant to  be used w ith num erical models, but 
some aspects can also be useful to  understand experi­
m ental results.

The use o f the adjoint state to  com pute transit times 
and tracer ages is not new. In  their diagnostic study of 
atm ospheric flows, Holzer and Haii (2000) introduce 
a boundary p ropagator to  m odel the influence of

open boundary conditions backw ards in time. The 
in terpretation o f the boundary  p ropagator as a flux in 
the time-reversed flow allows the com putation o f transit 
time distributions. Hill et al. (in press) use the adjoint ap­
proach to carry out sensitivity studies and estimate the 
efficiency o f carbon sequestration in the ocean.

The adjoint approach is used here to  derive evolution 
equations which describe the d istribution of residence 
times and/or the m ean residence time in arbitrary  semi­
enclosed w ater bodies.

2. Evaluation of the residence time in a 
one-dimensional problem

To introduce a clear definition o f the residence time 
and understand its implications and way o f calculations, 
let us consider a one-dim ensional flow w ith constant and 
uniform  velocity « (> 0 )  and diffusion coefficient k (> 0 ). 
Let A' be the spatial coordinate. This highly simplified 
problem  could be seen as a model o f a river or a m arine 
channel. We are concerned w ith the residence time of 
w ater or dissolved constituents in a segment a  e [—L,L] 
o f this one-dim ensional system. In  the sequel, this region 
o f interest [—L,L] will be referred to  as the control 
region.

2.1. Forward procedure

I f  some dye or tracer is injected at a particular point 
A'o e [—L,L] at the initial time tQ, this will be p ro ­
gressively removed from  the control region by the 
combined actions o f advection and diffusion. Fig. 1 
(solid curves) shows the progressive movem ent and 
spreading o f the initial patch as time goes by. The 
inventory of the tracer present in the segment a  e [—L,L]

Control region

t ’ =  0 .25

0.6

0.2
t '=  2.0

3  4 k-2 1 1 2

release point

Fig. 1. Spatial distribution of the concentration of a passive tracer for 
different times t' =  u2íI(4k) after a point release (solid curves: infinite 
domain; dashed curves: with concentration clamped to zero at the 
boundary of the control region).
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Fig. 2. Evolution of the mass of the tracer in the control region (solid 
curves: infinite domain; dashed curves: with concentration set to zero 
at the boundary of the control region).

allows to  plot the mass 7 7 2(f) o f the tracer rem aining in 
the control region as a function o f time (Fig. 2).

The residence time is defined as the time taken by the 
tracer to leave the control region. Obviously, the 
different parcels o f tracer released initially take different 
times to  leave the dom ain. The mass 772(f) plotted 
in Fig. 2 can be seen as the cumulative distribution 
function o f the residence times; for any fixed time 
t  =  t Q + t  > t Q, m ( t 0 +  T ) / m ( t 0) m easures the fraction 
o f the initial release w ith a residence time larger than  r. 
It is, however, com m on to focus on the m ean residence 
time 0 of the tracer parcels. Following Bolin and Rhode 
(1973) and Takeoka (1984), we write:

0 =  -

1
m ( t 0 ) ,

r° i
t d m =   — -

V 777(?o) ,
d/72. . ,

d t (3)

Observing that the mass 772(f) decreases exponentially to 
zero for large times /, 0 can be further expressed as:

0 =
1

where

772 (? )  =
772 (?) 

772 ( t 0)

(4)

(5)

can be interpreted as the mass o f tracer rem aining at 
time 1 after a unit point release or, alternatively, as the 
norm alized cumulative d istribution o f residence times.

W ith the constant hydrodynam ics o f our simplified 
system, the residence time does not depend on the time 
o f release tQ. It does, however, vary with the location of 
the initial release. Fig. 3 shows the kind o f distribution 
o f the m ean residence times tha t would result from  such 
a procedure (in the particular case o f L  = 4 k / u).

The average o f the m ean residence time over the 
control region can be evaluated using a single -  in situ or 
num erical -  experiment. To show this, let us first clarify 
the notations and denote by m(t; ?oWo) the mass of 
a tracer rem aining inside the dom ain at time 1 after

0.5

-0 .5 0.5 4 k

Fig. 3. Spatial distribution of the mean residence time 8 (solid curve) 
and the mean strict residence time & (dashed curve).

a unit release at time t Q and location a 0 . Using Eq. (4), 
the average residence time can be expressed as:

(0) = à
\

m(t; to,Xo) d t ld.\'o

j j -  j  m( t ;  f h x 0) d x 0 ) d t

/> oo
=  /  M(t; t0) dt

Jtv

where

M (f, fo) =  2 l J  m (t;  to, A-o)d.-Yo

(6)

(7)

denotes the mass o f the tracer rem aining inside the 
control dom ain at time 1 after a unit discharge uniformly 
distributed in the control region at time tQ. The average 
m ean residence time (0) can therefore be obtained from  
the inventory following a uniform  discharge.

2.2. Backward procedure by means o f  the 
adjoint model

The procedure described above for the evaluation of 
the m ean residence time can be based on experimental 
da ta  or model simulations. In  both  cases, the de­
term ination o f the m ean residence time at different 
points o f the control region requires repeated and 
separate experiments w ith different releases at these 
points. The m ethod is therefore not appropriate to  get 
the complete spatial distribution o f 0 over the control 
region. A different and m uch cheaper approach is 
applicable to num erical studies.

The num erical experiment aiming at the evaluation of 
the residence time at location a 0 according to  the 
forw ard procedure described above requires the solution 
o f the linear advection-dispersion problem:

' 9C 9 C _  92C 
9/~*~H9a KQx2 

. C(t0,x)  = Ô(x — A'o)

( 8 )
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(where <5 is the D irac generalized function) with ap­
propriate boundary conditions for the concentration 
field C (/ ,a ). The solution to  this differential problem  in 
the infinite dom ain r e  ]— °°, °o[ is given by:

C(t ,x )  = Qu( t , x , t 0, x 0) 

where

(9)

G n (  ̂  ■ A", to , A q)
1

s / 4 T T K ( t - t 0)
exp O  -  A-0 -  u(t -  to))2

4 n { t -  to)

( 10)

is the so-called G reen’s function o f the problem .
The resolution o f Eq. (8) am ounts to  advance the 

initial concentration field in time using the forward 
operator A tJo such that:

C ( / , a )  =  A , r 0C ( /0,A-) ( 11)

F or the simplified one-dim ensional model considered 
here, the forw ard operator can be w ritten as:

/ oo
Gu( t , x , t 0,x ' ) f ( x ' ) d x '  for 1 > to (12)

■ co

W ith the definition (Eq. (11)) o f the forw ard operator 
and the notation:

/ co

./i vuh v ai r  Vf g e  L2
■ co

(13)

o f the scalar product on the space o f square-Lebesgue- 
integrable real functions L2, tn can be expressed as:

m(t; to, A'o) =  / C(x,t)cl(x)dx = (C(t,x),cl(x)}
J  —  CO

=  (A,f05 (A -  x 0),d(x))

where

ƒ 1 Va  e [—L,L\I { .\ ƒ 1 Vas [-L,r
C ̂ L'L' y 0 elsewhere

(14)

(15)

is the characteristic function o f the control region 
[ -L ,L \ .

Using the above results, one gets:

m ( t ;  /0,A 'o)=^( E rf
A'o T L  +  u(t — t0)

E rf

\ J  4 k  ( t  — t0) 

xq — L~\~ u(t — ?o)
s / 4 K ( t - t 0)

(16)

and

6 ( t 0 , A 'o ) =  /  m ( t ; t o , X o ) d t
Jt0
L  — A'o K

1 — exp
l l (L+  A'o)

( 17)

These expressions were used to  plot Figs. 2 and 3.
Notice that the solution (Eq. (16)) differs from  the 

decreasing exponential law (Eq. (2)) used in simple 
assessment procedures. The m ain difference is the delay 
that appears in Fig. 2 before the mass starts to  decrease 
significantly. The assum ptions o f perfect and immediate 
mixing used to  justify an exponential decrease are indeed 
not met here and Eq. (2) is not a valid approxim ation of
m ( t -  t Q,A 'o ) .

Now, to  derive the backw ard procedure for the com ­
putation  o f the residence time, we introduce the adjoint 
operator A*,  o f A t,to such that:

( A t,tof g )  = ( f A % 0g) y  f g e  l 2 (18)

W ith this definition, Eq. (14) takes the final form:

m ( t ;  t 0 , x 0) =  (<5(a -  a 0) ,  A ^ cI ^ l ^  ( a ) )

/ oo
<5 ( a  -  A'o ( a ) d  A

■ oo

(W)

Using Eq. (19), the values taken by m(t; ?oWo) for 
different release points a 0 e [—L,L] can all be obtained 
by a single application o f the adjoint operator A*tt  to 
the characteristic function d(x) o f the control region.

F or the simplified problem  at stake, the adjoint o f 
Eq. (12) can be written explicitly as:

/ oo

Q-U(t, x , t 0,xJ)f(xJ)AxJ
■ 00

Using Eq. (19), one has therefore:

m(t; / 0 , A0 ) = ^ * f o ( a )

/ oo

G - f t ,  X,  to, A'o ) d [ - L, L\ (A 'o)dA 'o

■ 00

(20)

-L \J  4iTk(1 — to)

exp
( a  — A'o +  n{ t  — t o) )2

4/c(t - 10)
d.A'o for t  >  to 

(21)

which is identical to  Eq. (16). This shows the equiva­
lence of the forw ard and backw ard approaches.

Now, in the same way as the propagation  of the 
initial conditions o f Eq. (12) by the forw ard operator 
(Eq. (11)) was considered equivalent to  the resolution of 
problem  (12), the propagation  in time (Eq. (19)) o f d(x) 
by the adjoint operator A*tt corresponds to  the 
resolution o f the adjoint problem:
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9c; 9e; 92c; n
977+ " ä 7 + ^ “ 0
C* (t ,x)  = d [ - L ,L] ( x )

(24)
(22)

where the solution C*(/0,a') defines the adjoint state 
(see A ppendix A or M orse and Feshbach, 1953). This 
adjoint problem  is the so-called 'reverse flow’ problem. 
It m ust be integrated backw ards in time from  'initial 
conditions’ given at 1 until time /0.

The spatial distribution o f the residence time can then 
be com puted from  Eq. (4) where m{t) is given by:

m (t) = m ( t ; t0, x 0) = C*(t0, x 0)

i.e. from  the solution o f the single adjoint differential 
problem  (22).

2.3. Boundary conditions

The resolution o f the forw ard and adjoint problems 
presented above requires appropriate boundary con­
ditions. Different boundary conditions can lead to 
different in terpretation  of the residence time.

In  Fig. 1, we considered that the boundary o f the 
control region had no influence on the dynamics of 
the tracer. In  particular, the tracer continues to  be 
advected and diffused after leaving the control dom ain 
[—L,L\.  A lthough the velocity is continuously directed 
to  the right, some tracer parcels tha t have been flushed 
out can re-enter the dom ain because o f diffusion. The 
mass m{t) shown in Fig. 1 (solid curve) is the to tal mass 
o f the tracer parcels present in the control region, 
irrespective o f the particular paths followed by these 
parcels; some of the tracer parcels contributing to  m{t) 
have left and re-entered the control dom ain (once or 
more) between tQ and t. Therefore, the time scale 
com puted from  this inventory and whose spatial 
distribution is plotted in Fig. 3 (solid curve) does not 
correspond w ith the usual definition of the residence 
time as the time to  exit the dom ain for  the f irst time but 
w ith the time to  definitively exit the dom ain.

From  here, we will call strict residence time & the time 
taken by a parcel to  exit the dom ain for the first time. 
This definition requires to  completely ignore tracer 
parcels as soon as they leave the dom ain. This cannot 
usually be done experimentally but the m athem atical 
and num erical approaches described above can be 
adapted to  cope w ith this requirem ent. To do so, the 
forw ard problem  (Eq. (8)) m ust be solved in [—L,L]  only 
w ith the additional boundary  conditions:

C ( t , - L )  = C ( t , L ) =  0, V /> /0 (23)

tha t ensures that the water parcels touching the 
boundary  are immediately removed from  the com puta­
tion. As shown in the appendix, the corresponding 
boundary  conditions for the adjoint problem  are

By com parison, the only boundary conditions used to 
derive Eqs. (16) and (17) are to  request that the solutions 
do not grow exponentially at infinity. Except for these 
m odifications, the com putation procedure and the ad­
vantage o f the backw ard approach are unchanged.

The solutions w ith this new approach are plotted 
w ith dashed lines in Figs. 1-3 where they are com pared 
with the results o f the first approach.

As expected from  the definitions, the cum ulative dis­
tribution function of the strict residence time is always 
smaller than  the corresponding distribution function 
o f the residence time (Fig. 2). Also, the m ean strict 
residence time is everywhere smaller than  the residence 
time (Fig. 3). The difference is particularly significant 
close to  the upstream  boundary where the m ean resi­
dence time is m axim um  while the m ean strict residence 
time is close to  zero. The m ean true residence time 
vanishes at the boundaries o f the control region because 
the parcels located close to  the boundaries are rapidly 
flushed out by advection or by diffusion. The m ean strict 
residence time shows a m axim um  in the upstream  half of 
the dom ain.

The decision about which o f the two approaches 
is the m ost appropriate has no simple answer. Both 
concepts are useful in different contexts.

I f  the parcels undergo a dram atic change o f their 
properties when leaving the dom ain, the strict residence 
time is certainly appropriate to  characterize the dynam ­
ics. This could be the case, for instance, if  one follows 
some organic m aterial in an anaerobic region; leaving 
the control region would m ean entering an aerobic 
regime which would perm it rapid bacterial activity. The 
particles re-entering the anaerobic dom ain would be so 
different tha t it would not be appropriate to  count them 
any longer. Also, if  the problem  is to  evaluate the time 
taken before the parcels touch the surface where rapid 
gas exchanges take place, the strict residence time 
approach is appropriate.

I f  the boundaries o f the control region are somehow 
artificial in that they do not correspond w ith strong 
dynam ical changes, the residence time approach can be 
preferable. I f  the aim is to  quantify the time during 
which a region will be exposed to  a pollu tant discharged 
into the control region, it is desirable to  take into 
account the fraction o f the pollu tant that returns to  the 
control dom ain and use the residence time concept. The 
strict residence time approach would indeed underesti­
m ate the duration  o f the pollution event. Also, the strict 
residence time is inappropriate when the flow meanders 
around the boundary  o f the control region. The resi­
dence time appears on the contrary as a way to  remove 
part o f the arbitrariness in the definition o f the 
boundaries o f the control region. The im portance of 
the return  flow is also well-known in tidal systems in



696 É.J.M . Delhez et al. / Estuarine, Coastal and Shelf Science 61 (2004) 691-702

which the tracers are advected back and forth  though 
the boundary; when the tidal prism m ethod (e.g., Dyer, 
1998) is used to  evaluate the flushing time o f tidal 
estuaries, for instance, a return  flow factor is introduced 
to  estim ate the fraction o f effluent water returning to  the 
dom ain each flood tide.

In  spite o f the significant differences between the two 
residence times, the m odeler has sometimes no other 
choice but to  use the strict residence time in his 
numerical studies. In  particular, this happens when the 
control region coincides w ith the dom ain o f integration. 
In  this case, appropriate inform ation is often lacking to 
describe the return  path  o f tracer parcels that have left 
the control dom ain. The parcels are therefore ignored as 
soon as they exit the dom ain for the first time and the 
strict residence time is com puted.

N ote also tha t, strictly speaking, the concept o f m ean 
residence time as the m ean time taken by w ater parcels 
to  leave definitely the control region is only valid in 
an infinite dom ain. The m ean residence time can be 
com puted using Eq. (4) only if m(t)  goes to  zero when 1 
tends to  infinity. This is only possible in a case o f pure 
advection (no diffusion) or if the initial released is mixed 
into an infinite volume o f w ater (or if  some external non ­
linear process removes the m aterial from  the system). In 
other situations, the mass m(t)  will tend tow ard a very 
small value (1 over the volume o f the system) which is 
not zero. In  theory, the d istribution o f the residence time 
will still m ake sense but the m ean will be unbounded. 
The strict residence time does not sulfer from  such 
problems and its m ean value can always be com puted 
using Eq. (4), at least if w ater parcels are allowed to 
leave the control region, i.e. if  this is not disconnected 
from  the world ocean. In  practice, the concentration 
o f the dye/tracer will fall below the detection limit or 
the com putation accuracy or will leave the com puta­
tion dom ain so tha t the problem  associated with 
the definition of the residence time used here will be 
avoided.

3. Generalization

The forw ard and backw ard procedures described in 
the previous section for the com putation o f the residence 
time are easily extended to  general three-dim ensional 
tim e-dependent flows.

In  this section, the discussion will be kept at a 
practical level. Detailed m athem atical developments are 
deferred to  A ppendix A.

3.1. Extension to three-dimensional problems

The generalization to  three-dim ensional flows is 
straightforw ard. Let o j  denote the control region. The

forw ard problem  am ounts to solve the advection- 
dispersion problem:

9 c
—  +  v- V C = V - [K- VC]

C{t0,x)  = ô ( x -  A'o)

in the spatial dom ain Q w ith appropriate conditions 
on the boundary <5Q. I f  the strict residence time is to 
be com puted, Eq. (26) needs only to  be solved in the 
control region o j  (a subset o f Q) w ith C =  0 at the inflow 
and outflow boundaries o f Q.

The problem  for the adjoint variable C*T(t,x) is then:

9C*_ i +v.ver+v.[K.vc*r]=o (26)
C*t ( T , x ) = ôùj(x )

where <5w( a )  is the characteristic function o f the control 
region o j  and where the model has to  be integrated 
backw ard in time from  the 'initial conditions’ prescribed 
at some time T. H ere again, the problem  m ust be 
restricted to  the control region o j  if the strict residence 
time is to  be com puted. The boundary conditions for the 
adjoint problem  are derived from  those of the forward 
model according to  Table 1.

The solution o f the adjoint problem  can still be 
interpreted according to:

C*t ( T — T,x 0)= m ( T ;  T — t ,x 0) V r > 0 (27)

and can be used to  com pute the m ean residence time at 
any point a-0 in the control region.

3.2. Variable hydrodynamics

In  Section 2.2, we claimed tha t m(t)  could be 
obtained from  one single sim ulation carried out with 
the adjoint m odel (Eq. (22)). A careful reader would 
have noticed that running the adjoint model backward 
from  'initial conditions’ at time T  delivers the to ta l mass 
;« (r ; A'o) =  Cj(?o, a'o) in one run  for the different 
release points a 0 but for a single time T. The evaluation 
o f m(t;t(),X()) for different times 1 requires successive 
sim ulations w ith the adjoint m odel by varying the 'initial 
tim e’ T  = 1. The problem  o f having to  apply the forward 
m ethod to  different release points is now moved into the 
similar problem  o f having to deal w ith different 'initial 
times’ for the adjoint problem.

Table 1
Correspondence between the boundary conditions for the forward and 
adjoint problems

Forw ard problem Adjoint problem

C =  0 C* =  0
V C n =  0 [vC* +  K V C *]n =  0
[v C -K -V q -n  =  0 K V C *n  =  0
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In  the case o f constant hydrodynam ic fields, the 
problem  can be avoided because the solution does not 
depend explicitly on t0 and /, but only on the difference 
t — t0 (see Eqs. (10), (16) and (21)). In this case, running 
the adjoint model only once from  an arbitrary  'initial 
tim e’ T  provides:

C*t{ T — T,x<s)=m{T\ T —r,A'o) =  ;«(/o+  r; ?oA'o) V r> 0
(28)

where the last equality is valid because the translation  of 
the observation time t and the release time t0 by 
a com m on delay does not modify the solution. In  other 
words, the solution C*t (T  — r , A 0)  of the adjoint problem  
at successive times T  — r  but from  a fixed (arbitrary) 
origin T  provides the fraction o f the mass tha t is present 
in the control dom ain after a delay r  following a unit 
release at a 0 . The m ean residence time can then be 
com puted using Eq. (4).

W ith variable hydrodynam ic conditions, the problem  
given above cannot be avoided and a set o f adjoint 
problem s (Eq. (26)) m ust be solved by varying the 
'initial tim e’ T : the determ ination o f the full distribution 
o f residence times requires the solution o f a one- 
param eter family problem . As suggested by the de­
pendency o f m  on the observation time /, the release 
time ?o and the three spatial coordinates o f the release 
point A'o =  (A ',t’, r ) ,  the problem  can be restated as 
a differential problem  in a five-dimensional space which 
is similar to  the space introduced by Delhez et al. 
(1999a) and Deleersnijder et al. (2001) in their theory of 
age.

To render this five-dimensional space m ore explicit, 
we define the cumulative d istribution function D ( t 0,T,.x0) 

as the fraction o f the mass o f the tracer released at time 
to and location a 0 whose residence time is larger or equal 
to  r, i.e. the mass o f tracer in the control region at time 
?o +  t .  From  this definition, it comes:

0 ( / , A ' o ) =  /  Z > ( / ,  r ,A '0 ) d r (31)

D(to,T,  A 'o) = m ( t 0 + r; t0, x 0) = C* +T(t0, a 0 ) (29)

Introducing this definition into Eq. (26), the differential 
equation for D(t,T,x0) can be expressed as:

r 9 D  9 D
I —------ -— bv • VZ) + V  • K • VZ) = 0
< 9/ 9 r
I z > ( / , 0 , a )  =  <5u (a)

(30)

Eq. (30) w ith boundary conditions taken from  Table 
1 m ust be solved in a five-dimensional space. It plays the 
same role as the equation for the age distribution 
function discussed by Delhez et al. (1999a) and Delhez 
and Deleersnijder (2002) in the theory o f age.

To simplify the problem , one can content oneself w ith 
the determ ination o f the m ean residence time. In  terms 
o f the cumulative distribution function, this can be 
expressed as:

Assuming that D(t, r,a 0) decreases to  zero when r  tends 
to  infinity, i.e. the whole m aterial is eventually flushed 
out o f the control region, Eq. (30) can be integrated with 
respect to  r  to  simplify the problem  into the m ore 
classical differential problem:

90
91

+  <5u + v - V0 +  V- [K-V0] = 0 (32)

for the m ean (strict) residence time 9(t, a ) .

Eq. (32) forms the m ain result o f this paper and 
defines the procedure to  com pute the m ean residence 
time. The com putation  o f the m ean residence time at any 
time and location only requires the integration o f Eq. 
(32) w ith appropriate boundary conditions as discussed 
above. This equation is nothing but an advection- 
dififusion equation w ith a unit (negative) source term  in 
the control region o j . U sual numerical techniques, which 
are already available in the hydrodynam ic model, can 
therefore be applied to  solve it. The only subtlety is the 
fact tha t the equation m ust be integrated backw ard in 
time and with the reversed flow, i.e. w ith v changed to —v. 
This requires m inor additional im plem entation efforts. 
In  a first step, the hydrodynam ic model used to generate 
the velocity and turbulence fields is integrated forward, 
as usual, and the interm ediate results are stored. Then, in 
a second step, Eq. (32) is integrated backw ard in time 
using the hydrodynam ic fields com puted in the first step.

Some words o f caution are required here. Eq. (32) 
m ust be integrated backw ard from  some 'initial tim e’ T. 
The real conditions at time T  will never be know n 
precisely because they require the knowledge o f what 
happens between T  and +  °°. Theoretically, Eq. (32) 
should be integrated backw ard from  T  = + . in
practice, however, T  has to  be finite and will be chosen 
as large as possible. As a result, the solution o f Eq. (32) 
will never produce the exact m ean residence time. I f  the 
sim ulation is carried out for a sufficient long time, 
however, the influence o f the initial conditions will 
disappear, the solution o f Eq. (32) will be representative 
o f a larger and larger p roportion  o f the tracer and it will 
approach the strict m ean residence time.

4. Application to the English Channel and southern 
North Sea

In  this section, the backw ard approach described 
above is applied to the evaluation o f the m ean residence 
time in the eastern English Channel and the southern 
N orth  Sea.

The results are obtained by means o f the three- 
dim ensional, hydrodynam ic model o f the N orth  W est­
ern European C ontinental Shelf developed at the G H E R
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(GeoH ydrodynam ics and Environm ent Research labo­
ratory, University o f Liège). This model is baroclinie 
and includes a robust and versatile turbulence closure 
scheme (Delhez et ah, 1999b). It covers the whole shelf 
to  the east o f the 200 m  isobath, from  48 °N to 61 °N, 
including the Skagerrak and K attegat, w ith an horizon­
tal resolution o f 10' in longitude and latitude, i.e. about 
10 km  X 16 km, and 10 vertical <r-levels (Delhez and 
M artin , 1992). The numerical im plem entation is based 
on a finite volume approach and uses a TVD scheme 
with superbee limiter for the advection o f scalar 
quantities (James, 1996). The model is forced at its 
open ocean boundaries, which are located far away from  
the regions o f interest, by nine tidal constituents and the 
inverse barom eter effect. The m eteorological forcing 
data (6-h air tem perature, surface pressure, relative 
hum idity, wind speed, cloud cover; horizontal resolution 
1.5° X 1.5°) are extracted from  the N C E P/N C A R  
reanalysis o f surface data from  N O A A /C D C  (http :// 
www.cdc.noaa.gov/cdc/reanalysis/).

The sim ulations span the period o f about two years 
between January  1983 and September 1984. The 
hydrodynam ic m odel is first integrated forw ard in time 
from  adjusted hydrodynam ic fields. Then Eq. (32) for 
the m ean residence time is integrated backw ard in time.

Two different control regions are considered: the 
Eastern part o f the English Channel and the southern 
N orth  Sea. The precise boundaries o f these control 
regions are plotted in Fig. 4 together w ith a schematic 
view of the residual circulation. In  addition to  the 
general circulation shown in this figure, the region is also 
characterized by strong tidal currents -  w ith a tidal 
excursion o f m ore than  10 km  -  and a variable wind 
forcing dom inated at a time scale o f three to  five days by 
the passage o f A tlantic depressions over the shelf (e.g., 
Lee, 1980; Pingree, 1980).

356" 358" 0" 2" 4" 6" 8"
55" 55"

North Sea
54° 54°

53° 53°
U.K.

52° 52°NI.

51 51
Belg ium

English Cha50° 50°
France

49° 49°
356° 358° 0* 2 ' 4 6‘ 8 '

Fig. 4. Boundaries of the control regions and schematic description of 
the residual circulation (after Lee, 1980; Pingree, 1980; Salomon et al., 
1988).
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Fig. 5. Time series of the average mean residence time (thick curves) 
and average mean strict residence time (light curves) at the surface in 
the two control regions (solid line =  Eastern English Channel, dashed 
line =  southern North Sea).

The average values o f the residence times in the two 
control regions are shown in Fig. 5 as a function o f time. 
The backw ard sim ulations started on 1 September 1984. 
D uring a first phase, the m ean residence time increased 
from  the prescribed zero initial value. It takes about 6 
m onths to  remove the effects o f this initialisation. 
D uring the rest o f the sim ulation period, the average 
m ean residence time lies in bo th  control regions between 
40 and 85 days, w ith extreme values o f 30 days in 
N ovem ber/D ecem ber 1983 and 105 days in M arch 1984.

Clearly, the results obtained between M ay and Sep­
tem ber 1984 are not significant. This is not unexpected: 
it is indeed impossible to  get the m ean residence time 
during this period from  a sim ulation tha t ignores what 
happens after September 1984. Considering the physical 
m eaning of the residence time it appears reasonable to 
trust the results obtained after an initialisation period 
equal to  twice the com puted m ean residence time.

As expected from  their respective definitions, the 
m ean strict residence time is always smaller than  the 
m ean residence time.

The tem poral variations o f the average residence 
times in the two control regions are roughly in phase 
w ith each other and reflect the tem poral variability of 
the flow. The enhanced w inter circulation induces 
m inim um  residence times while the slowing dow n of 
the flow in spring and summer is responsible for the 
larger residence times o f particles released during this 
period o f the year. Because the residence time reflects the 
intensity o f the horizontal exchange during some period 
o f time following the observation time, relative minim a 
(resp. maxim a) occurs at the beginning o f each period of 
strong (resp. weak) circulation.

The snapshots o f the m ean residence time taken in 
mid August 1983 and shown in Figs. 6 and 7 reflect the 
general circulation in this part o f the shelf.

The m ain part o f the general circulation in the Eastern 
English Channel is one-dimensional from  the W estern 
English Channel to  the Southern Bight o f the N orth  Sea.

http://www.cdc.noaa.gov/cdc/reanalysis/
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Fig. 6. Snapshot o f the mean residence time (in days) (a -  upper panel) 
and mean strict residence time (in days) (b -  lower panel) at the surface 
in the Eastern English Channel on the 15/08/1983.

The residence time decreases therefore gradually from  
the W estern boundary o f the control region to  the Strait 
o f Dover. The m ean residence time in the mid-channel 
waters is about 30 days.

M uch larger residence times are found along the 
French coast (Fig. 6). These are related to the very slow 
net m otion in this part o f the Channel. The flow in this 
region is indeed dom inated by persistent residual gyres 
induces by tidal non-linear interactions (e.g., Salom on 
et al., 1988; Delhez, 1996). As shown by G uéguéniat 
et al. (1995), pollutants can rem ain trapped in these 
residual gyres for a long time, hence the large m ean 
residence time com puted here.

The m ore distant iso-lines in the vicinity o f the Strait 
o f D over reflect the acceleration o f the residual flow in 
this part of the Channel.

The residence time (Fig. 6a) and the strict residence 
time (Fig. 6b) com puted in the English Channel differ 
significantly in the vicinity o f the western boundary  of 
the control region, especially in the central and northern  
part o f this section. As expected, the strict residence time 
is close to  zero there because tracer parcels are rapidly

a) o" 2" 4" 6'

53" 53"

U.K.

52" 52"
NL

51" 51"
Belg ium

o' 2' 4' 6'

b )  o ” 2" 4" 6

53" 53"

U.K.

52" 52"
NL

Thamei

51 51
B elg ium

o' 2' 4' 6

Fig. 7. Snapshot o f the mean residence time (in days) (a -  upper panel) 
and mean strict residence time (in days) (b -  lower panel) at the surface 
in the southern N orth Sea on the 15/08/1983.

flushed out tow ards the W estern part of the Channel by 
diffusion and strong mesoscale currents. The same tracer 
parcels re-enter the control dom ain by the combined 
action o f the mesoscale and residual currents. The return 
flow m ight therefore not be neglected and the residence 
time m ust be preferred to the strict residence time.

Similar results are obtained for the residence time 
in the southern N orth  Sea (Fig. 7). Here, the m ain 
différences between the residence time and the strict 
residence time are concentrated in the Strait o f Dover 
and at the western side o f the northern  boundary. These 
différences show tha t boundaries o f the control region 
cannot be seen as natu ral boundaries o f the flow. 
The residence time approach helps to  circumvent this 
apparent level o f arbitrariness.

At this time o f the year, the m ain residence time 
reaches 70 days at the Strait o f Dover. It decreases 
gradually along the m ain stream  flowing across the 
Southern Bight o f the N orth  Sea. The m ean residence 
time is about 40 days in the center o f the control region.
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Larger values are found along the Belgium and D utch 
coasts, on one side, and along the English coast, on the 
other side. M axim um  values are found in the shallow 
estuaries (Thames, W ash) but also at the m outh  of the 
Rhine estuary. N ote, however, that the spatial resolu­
tion o f the hydrodynam ic m odel is not appropriate to 
describe the complex baroclinie dynamics o f the Rhine 
R O F I (e.g., R uddick et al., 1995). Such processes are 
likely to  accelerate the flow along the D utch coast and 
reduce therefore the residence time in this region.

residence time in a control dom ain w. The m ethod, 
relying on elementary calculus, provides directly the 
expression o f the adjoint problem.

The forw ard problem  consists in the general 
three-dim ensional tim e-dependent advection-diflusion 
problem:

9  c
— + v  • V C = V  • [K • VC] in [/qToo] XQ 

C(t0,x)  = ô ( x -  x 0)

5. Conclusion

The residence time is a very useful concept in m any 
environm ental studies. While previous approaches were 
often based on simplified hypotheses, a rigorous generic 
m ethod is now available to  study the residence time in 
a semi-enclosed dom ain by means o f a numerical model. 
This m ethod can be used to  com pute the distribution of 
residence times or only the m ean value o f this 
distribution. The procedure requires the solution of 
the adjoint problem  to the advection-diflusion equation. 
It can be extended to  com pute the residence time of 
tracers w ith a radioactive decay or other tracers with 
a linear dynamics.

While the basin average residence time can be 
com puted by other m eans, the backw ard procedure 
described here provides the spatial distribution o f the 
residence time. This is a very valuable inform ation as it 
allows to  identify the regions where, for instance, 
pollution problem s are likely to  develop.

As for other similar concepts, a clear understanding 
o f the implications o f the definition is required for an 
appropriate in terpretation  of the results. The definitions 
o f the residence time as the time before the parcel leaves 
the dom ain for the first time or for the last time can be 
used in different contexts. Both approaches are feasible 
w ith the procedure set up in this paper; only the 
boundary conditions m ust be adapted.
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X / / ƒ  C * < j^ + v  V C - V - [K VC] }>dx
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Appendix A. Derivation of the adjoint problem

In  this section, we present an alternative m ethod to 
introduce the adjoint problem  used to  evaluate the

By integration by parts, this expression is easily trans­
form ed into:

Table 2
Boundary conditions for the forward and adjoint problems on the 
different parts Ti. r 2 and T3 of the boundary T of the integration 
domain

Forw ard problem Adjoint problem

r  i C =  0 C* =  0
r 2 V C n =  0 [vC* +  K V C *]n =  0
r 3 [v C - K V q - n  =  0 K V C * n  =  0
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m(T; t0, x 0) = iii C(T, x ) d x  -  i d 1
J  J  J  OJ J  toto JJJü

d C*
XC<\ — — - v - V C * - V -  [K-VC*] \ d x

[C C * ] ^ d A '-  i  dt  
/  Q J  ÍQ

X ¡I  C*[vC — K • VC] • ndU
s

i dt [i C (K-VC*) - n d Z  
110 JJs

(36)

Now, assume that the adjoint variable C* solves the 
problem:

{9 C*
—  ■+ V - V C  +  V- [K -V C *]= 0  in [fo, 7] X fi (3y) 

C*(T,x)  = cL(x)

where

cL(x) =
1 V .re  ù j  

0 elsewhere (38)

is the characteristic function o f the integration dom ain. 
Eq. (36) simplifies into:

m(T;  f0 ,A 'o) =  / / /  C (/0,x)C*(t(hA')d.Y 
JJJü

- i  dt ÍÍ C* [vC — K • VC] • n dU 
J  ÍQ J  J  S

- f  dt iiC(K  -VC*) ndU  (39)
J  to J  J  21

Taking into account the initial condition o f the forward 
problem  (Eq. (33)) and using the boundary  conditions 
listed in Table 2 for the adjoint variable C*, Eq. (39) 
takes the final form:

m(T\ to, A'o) — C* (t0 1 a'o) (40)

which is the basic equation on which relies the backward 
m ethod for the evaluation o f the residence time.
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