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Mercury (Hg) is a toxic element of global concern with lim-
ited biological function. Hg bioaccumulates in organisms 
and biomagnifies in aquatic food webs largely as the neu-

rotoxin methylmercury (MeHg, CH3Hg). Overexposure to Hg, pri-
marily due to consumption of seafood, has major environmental and 
human health implications with a socio-economic cost estimated to 
exceed US $5 billion per year1. The global Hg problem has worsened 
significantly due to anthropogenic pollution2,3, although there are 
natural sources of Hg to the environment such as volcanic emis-
sions and weathering of Hg-bearing minerals in rock (for example, 
cinnabar)2. Hg is of particular concern in the Arctic1, where Hg 
concentrations in marine biota have increased by an order of mag-
nitude over the past 150 years (ref. 4). This has led to health risks in 
local communities, where diets rely heavily on marine animals1. The 
Arctic is particularly vulnerable to anthropogenic Hg perturbations 
because it may be a global Hg sink as prevailing atmospheric cir-
culation carries Hg to northern latitudes5. Although anthropogenic 
pollution is a major contributor to the elevated Hg concentrations in 

Arctic biota, inputs from climatically vulnerable naturally occurring 
pools have also received more recognition during the last decade6–10. 
For example, Arctic rivers are a significant Hg source to the Arctic 
Ocean and are climatically sensitive due to their intensifying hydro-
logical cycles (variability and magnitude), widespread catchment 
permafrost cover and disproportionate warming in the Arctic9,11. As 
yet, little consideration has been given to the Greenland Ice Sheet 
(GrIS) in the Arctic Hg cycle.

The GrIS is the second largest body of ice on Earth, covering 
nearly 25% of the land surface area in the Arctic region. Observed 
rapid and accelerating GrIS mass loss is producing increased annual 
freshwater runoff to coastal waters, which is predicted to nearly 
double in magnitude by 2100 (ref. 12). The biogeochemical implica-
tions of this increasing runoff are uncertain but likely important13,14. 
Only a handful of studies of Hg concentrations from Arctic pro-
glacial rivers exist from the Canadian High Arctic Archipelago and 
disconnected glaciers (that is, those not part of the ice sheet) in 
east Greenland15–17, all showing moderate and climatically sensitive 
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Hg concentrations in glacial runoff. Glaciers in the Himalayas and 
Alaska have also been highlighted as Hg stores and sources to down-
stream ecosystems18–21, with all studies implying an atmospheric or 
ice-marginal Hg source. There are no data from runoff draining the 
large, polythermal-based catchments of the GrIS. Determining the 
role of the GrIS in the Arctic Hg cycle is therefore crucial in assess-
ing Arctic ecosystem health both now and into the future.

Here, we evaluate Hg and MeHg concentrations in meltwaters 
originating from the southwestern margin of the GrIS and export 
to downstream fjords (Fig. 1). The study focuses on a >4,000 km2 
region of the GrIS that covers three glacial catchments ranging from 
~85 to 3,200 km2 in size (Russell Glacier (RG), Leverett Glacier 
(LG) and Isunnguata Sermia (IS)), and three fjord systems (Nuup 
Kangerlua (NK), Ameralik Fjord (AF) and Søndre Strømfjord 
(SS)), which receive substantial GrIS meltwater inputs (Fig. 1 and 
Methods). All GrIS catchments sampled are warm based from the 
ice sheet margin and have well-developed subglacial hydrological 
systems, likely with regions of anoxia22,23. Data are presented for total 
Hg (THg), particulate Hg (pHg, >0.45 µm), total dissolved Hg (dHg, 
<0.45 µm), size-fractionated dissolved Hg (cHg = 0.02–0.45 µm, 
sHg = <0.02 µm), dissolved inorganic Hg2+ (dIHg, <0.45 µm) and 
dissolved methylmercury (dMeHg, <0.45 µm) over four field sea-
sons. Complementary metagenomic sequencing of DNA from the 
subglacial microbial community sampled from subglacial meltwa-
ters exiting LG is used to hypothesize Hg biogeochemical pathways 
through the identification of hgcAB, merA and merB genes. Our 
results provide evidence for the importance of ice sheet runoff in 

regional Hg cycling and indicate that coastal Hg dynamics are likely 
to change under climatic warming scenarios.

Mercury concentrations and speciation in meltwater rivers
Measurements of Hg in GrIS subglacial runoff over all sampling  
periods and sites were similar to contaminated and urban water-
sheds but much higher than those reported for glacierized  
and non-glacierized environments elsewhere (Table 1 and 
Supplementary Table 1)2,8. High concentrations of dHg were observed 
in samples of runoff taken through June and July 2018 across 
three GrIS catchments (Fig. 2 and Table 1). Discharge-weighted 
mean concentrations of dIHg (Hg0 + Hg2+) were 603–1,260 pM 
(LOADEST modelled mean concentrations were 607–1,310 pM; 
Supplementary Table 2). There appear to be systematic differences 
in the dIHg concentrations observed between glacial catchments 
that may be explained by underlying bedrock type (Extended Data 
Fig. 1). Two of the glaciers (IS and RG) located predominantly on 
the Nagssugtoqidian mobile belt have significantly lower (P < 0.05; 
n = 28) dIHg concentrations (mean 632 and 603 pM, respectively) 
than LG, which predominantly overlies an Archaean block geologi-
cal belt to the south (1,260 pM; Extended Data Fig. 1). The larger 
glacial catchments (LG and IS) show a gradually increasing trend 
in dIHg over time (R2 = 0.20 (P < 0.15; n = 12) and 0.54 (P < 0.05; 
n = 14), respectively), concurrent with increasing discharge and sea-
sonal subglacial hydrological system expansion (Fig. 2). The small-
est catchment (RG) displays relatively invariant dIHg concentrations 
and discharge during the observation period (Fig. 2). Meltwater 
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dIHg concentrations reported here are one to two orders of magni-
tude greater than dHg concentrations in Arctic rivers (1.5–14 pM; 
Supplementary Table 1), and more than an order of magnitude higher 
than Arctic river THg concentrations (28–74 pM; Table 1). The dif-
ferences between GrIS meltwaters and Arctic rivers are also reflected 
in extremely high dIHg catchment yields (1,440–2,310 mmol km−2 
year−1; Table 1), approximately two orders of magnitude higher than 
large Arctic rivers (4–20 mmol km−2 year−1). Only polluted rivers and 
estuaries in Asia have been shown to have similar or higher concen-
trations of dIHg (up to 50,000 pM; Supplementary Table 1)24,25.

Methylmercury concentrations from the three catchments  
(Fig. 2d) indicate substantial export of bioavailable Hg and poten-
tial Hg cycling pathways in subglacial ecosystems. Concentrations 
of dMeHg are relatively high from all three glacial catchments  
(>5 pM), exceeding values from most pristine freshwaters, and 
similar to those found in wetlands (below detection in rivers to 
2.5 pM in the Everglades)2,16,26. Dissolved dMeHg accounts for 
0.74 ± 0.17% (LG), 1.5 ± 0.97% (IS) and 2.1 ± 0.43% (RG) of the 
total dHg concentration, which is in the range of other freshwater 
systems (~1–10%)2, including Arctic rivers (~0.2–5 %)10, but lower 
than marine environments (4–22%)27. The higher concentrations of 
dMeHg in RG outflow coincide with higher mean dissolved organic 
carbon (DOC) concentrations compared with LG and IS (16 ± 2 µM 
versus 12 ± 4 µM, respectively; Extended Data Fig. 2), and higher 
methane (CH4) concentrations compared with LG22,28. These differ-
ences suggest that variations in subglacial hydrology and/or organic 
matter content and supply beneath each catchment are important 
for dMeHg cycling. In addition, a greater fraction of meltwaters 
may originate from hypoxic/anoxic regions of the glacier bed at RG 
(hypothesized due to the high CH4 concentrations22,29) where poten-
tial for methylation is higher1,30. There may also be an influence of 
river-marginal inputs in the RG catchment (for example, progla-
cial lakes and tundra) given that the meltwater river travels along 
the ice margin for ~9 km before arriving at the sampling site. High 
concentrations of dMeHg in the glacial catchments sampled here 
therefore point to spatially heterogeneous subglacial water sources 
and hydrological flow pathways, a psychrophilic mercury cycling 

microbial community capable of mercury cycling and/or abiotic 
dIHg methylation2,31. The dMeHg concentrations also have detri-
mental implications for bioaccumulation of ice sheet-derived Hg 
in Arctic ecosystems. Collectively, the Hg concentrations here lead 
to first-order estimates of dHg fluxes from the southwestern region 
of the GrIS (Extended Data Fig. 3) of 87.8 (15.1–210) kmol year−1 
dIHg and 0.99 (0.31–1.97) kmol year−1 dMeHg (Table 1), which 
are within the same order of magnitude as Arctic rivers and with 
much higher yields (382 mmol km−2 year−1 dIHg and 4.3 mmol km−2 
year−1 dMeHg; Table 1), highlighting the importance of previously 
unquantified ice sheet runoff in the Arctic Hg cycle.

A 2015 time series dataset from May to the end of July from LG 
(Fig. 3) indicates temporal variability and distinctive size fraction-
ation in dHg. Concentrations followed the seasonal hydrological 
drainage evolution of LG and are divided into four time periods22,32 
(Fig. 3): (1) lower concentrations during the initial onset of melt 
in early May (day 135–150), (2) opening of the subglacial portal  
(day 152)22 corresponding to sHg increasing from ~1,800 pM to 
~4,200 pM, (3) the ‘outburst’ period, where the subglacial hydro-
logical system was perturbed by water inputs from supraglacial 
meltwater drainage events22,33 (day 170–190; 1,000–5,000 pM sHg 
and 2,000–18,000 pM cHg) and (4) the post-outburst period (day 
190 onward), where discharge was largely controlled by the intensity 
of surface melt and Hg concentrations fell to a seasonal minimum 
before increasing, with the decline in discharge observed around 
day 208 (Fig. 3). There appeared to be a weak relationship between 
outburst events and Hg concentration. For example, sHg was ele-
vated during outburst events 1, 2 and 4 (blue regions in Fig. 3) com-
pared with immediately before, similar to trends observed in CH4 
and DOC (refs. 22,32), indicating periodic flushing of isolated subgla-
cial waters high in Hg. A rise in Hg concentrations during a period 
of decreasing discharge in period 4 reinforces a previous hypothesis 
that lower subglacial water pressure in subglacial channels as dis-
charge falls results in drainage of concentrated channel-marginal 
waters from more isolated regions of the subglacial environment 
into main drainage channels along a hydraulic gradient23,33. Total 
dHg was dominated by cHg species (0.02–0.45 μm; mean 82% of 

Table 1 | Measured discharge-weighted mean concentrations, estimated fluxes and estimated yields of dissolved mercury species

Concentration Estimated flux Estimated yield

Study area Catchment 
size

Discharge dIHg dMeHg dHg dIHg dMeHg dHg dIHg dMeHg dHg Source

km2 km3 year−1 pMa kmol year−1 mmol km−2 year−1

LG 850 1.5b 1260 8.8 1,270 1.89 0.01 1.90 2,220 15.5 2,230 This 
study(627–1,730) (5.79–13.7) (633–1,740) (0.95–2.59) (0.01–0.02) (0.96–2.61) (1,110–3,050) (10.2–24.2) (1,120–3,080)

RG 85 0.31c 632 12.9 645 0.20 0.004 0.20 2,300 47.0 2,350 This 
study(451–889) (10.8–16.2) (462–905) (0.14–0.28) (0.003–0.01) (0.14–0.28) (1640–3,240) (39.4–59.1) (1,680–3,300)

IS 3,200 7.6c 603 7.6 611 4.58 0.06 4.64 1,430 18.1 1,450 This 
study(215–970) (4.5–10.5) (220–981) (1.63–7.37) (0.03–0.08) (1.67–7.45) (511–2,300) (10.7–24.9) (521–2,330)

GrIS–
southwestern 
margin

230,000 122e 720d 8.1d 728d 87.8 0.99 88.8 382 4.3 386 This 
study(215–1,730) (4.47–16.2) (219–1,750) (15.1–210) (0.31–1.97) (15.4–212) (65.6–915) (1.36–8.56) (67.0–923)

Arctic riversf 3,500 1.4–3.7g 28–74f 9.2g 184f 0.2–1.0g 4.0–19.9f Ref. 9

Global rivers 37,000 1.18g 23.5 43.5 g 870 Ref. 8

(0.5–3,000) (580–1,160)

Upscaled preliminary estimates for the southwestern region of the GrIS (Extended Data Fig. 3) are based calculated from the discharge-weighted mean value from the three glacial catchments. Estimates 
from Arctic rivers and a global river range are given for comparison. A range of estimates are given in parentheses and are derived from the minimum and maximum concentrations recorded at each 
field site or the sample set (for GrIS southwestern margin). Values from this study are presented to three significant figures or two decimal places. LOADEST estimates are provided in Supplementary 
Table 2. aMean concentrations from glacial catchments are discharge-weighted mean concentrations. b2009–2012, 201533,49. cModelled 2009–2018 MAR catchment runoff50. dDischarge-weighted mean 
concentration from all LG, RG and IS Hg samples (see Methods). eMean modelled MAR southwestern GrIS meltwater discharge from 2009 to 201850. Catchment area includes ice sheet surface up to the 
ice divide (that is, regions that are not hydrologically active; Extended Data Fig. 3). Minimum is the lowest discharge year (2009); maximum is the largest discharge year (2012). fTHg concentrations, fluxes 
and yields. gEstimated assuming ~5% of dHg is MeHg, which is an upper end estimate form the Mackenzie River10.
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dHg), similar to other trace elements in ice sheet meltwaters34. High 
colloidal Fe and Al concentrations (>1 µM)34 indicate cHg species 
are likely adsorbed to inorganic nanoparticle minerals (for example, 
Fe and Al (oxy)hydroxides).

Mercury cycling genes in the subglacial microbiome
DNA metagenomic analysis from LG meltwater suggests that sub-
glacial microbial communities are genetically equipped to deal 
with Hg, consistent with other Arctic environments35. Microbes 
have been shown to cope with Hg2+ toxicity by transforming it into 
volatile Hg0 using mercuric reductase encoded by the merA gene 
and respond to MeHg stress by using the organomercurial lyase 
encoded by the merB gene to de-methylate MeHg into Hg0 (and 
CH4)36,37. Analysis of the microbial metagenomes at LG during 2015 
showed the presence of merA and merB genes (Extended Data Fig. 4  
displays taxa bearing the merA gene, a subset of which also carry 
the merB gene), while genes encoding for known Hg methylation 
(hgcAB)38 were not detected. The presence of dMeHg and absence of 
hgcAB has also been reported for marine environments37, indicating 
that other poorly described microorganisms and metabolic path-
ways may be important for Hg methylation, or that abiotic methyla-
tion predominates31. Clearly, there is a need to better constrain the 
activity of Hg cycling microbes in subglacial environments and their 
impact on the speciation of exported Hg.

Environmentally high mercury concentrations in fjords
Hg concentrations in Greenlandic fjords help elucidate whether 
inputs from glacial meltwaters have the potential to impact down-
stream ecosystem health. We find that environmentally high surface 

dIHg and dMeHg concentrations are sustained downstream of gla-
cial inputs in NK and AF in a region with bedrock geology similar 
to the Kangerlussuaq field sites (Figs. 1 and 4 and Supplementary  
Table 1). Surface concentrations of dIHg ranged from 12.5 to  
30.6 pM (Fig. 4a). Lower values were measured at higher salinities, 
consistent with seawater dilution of a glacial meltwater Hg source. 
At the salinities sampled in these fjord systems (17.0–32.4), dIHg 
appears to mix linearly (Fig. 4a; R2 = 0.70 (P < 0.05; n = 9)) with lower 
concentrations at higher salinities implying seawater dilution, but 
this does not follow a two end-member mixing model using the data 
from the northern ice sheet catchments sampled. We hypothesize 
non-conservative behaviour at lower salinities due to removal of Hg 
by scavenging on flocculated particles, alongside biological and/or  
photochemical reduction of Hg2+ to Hg0 with subsequent degas-
sing26, which is implied by a more limited dataset from SS (Fig. 1)  
downstream of RG and LG inputs (see the dHg concentrations from 
fjord waters with salinity 0.4–8.3 in Extended Data Fig. 5).

Dissolved methylmercury (dMeHg) in fjord surface waters 
accounted for a larger proportion of dHg than meltwater runoff 
(6–14% versus 0.6–4.7%), and the percentage composition was 
positively correlated with salinity (R2 = 0.49; P < 0.05; n = 9), con-
sistent with trends observed in marine environments elsewhere27. 
The dMeHg concentrations were slightly lower than those found 
in meltwaters (1.56–2.59 pM versus 4.47–16.2 pM), but much 
higher than open ocean concentrations (0.02–0.13 pM)27, indi-
cating non-conservative mixing and dMeHg enhancement in the 
fjord (Fig. 4b). Additional inputs may include microbial methyla-
tion in the water column or fjord sediments, which are likely to be 
anoxic39. The dIHg and MeHg concentrations were more than an 
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order of magnitude higher than values reported for the upper water 
column in major ocean basins (THg 0.19–1.3 pM, MeHg 0.02–0.13 
pM)27, including the proximal Labrador Sea (THg 0.25–0.66 pM, 
MeHg 0.03–0.12 pM)40,41. These data therefore highlight a role for 
Greenlandic fjords as Hg hotspots and demonstrate the potential 
importance of local Hg sources to coastal Arctic ecosystems.

Likely source of mercury to ice sheet meltwaters
The precise origin of Hg in GrIS meltwaters is unknown. The major-
ity of Hg delivered by GrIS meltwater runoff is unlikely to come 
from anthropogenically derived atmospheric Hg deposited on the 
ice sheet surface and transported through surface melt because dHg 
concentrations in meltwater rivers exceed all reported surface snow 
and ice values (<0.3–150 pM)18, including samples from the GrIS 
(<0.3–10 pM)42. Additionally, a large proportion of supraglacial Hg 
is likely to be photochemically reduced to Hg0 and volatilized under 

the high-irradiance conditions18. Evidence of high Hg in the subgla-
cial environment of the southwestern sector of the GrIS comes from 
pHg concentrations measured at LG, which are expected to integrate 
the bedrock/sediment signal of the hydrologically active catchment. 
The pHg concentrations in LG suspended sediment range from ~8.5 
to >90 nmol g−1 (mean 44 nmol g−1), which, with the elevated sus-
pended sediment concentrations found in Greenlandic meltwaters 
(~1 g L−1; Figs. 2a and 3a), correspond to very high pHg concentra-
tions of 11–73 nM (Supplementary Table 1). Particulate Hg concen-
trations represent the higher limit of previously measured samples 
and are comparable only to igneous/metamorphosed rock and lake 
sediment concentrations in Hg-rich geological deposits, including 
sediment samples overlying Precambrian shield bedrock in Canada 
(up to 105 nmol g−1)2,43,44. These findings are unexpected and imply 
a poorly understood mechanism of Hg enrichment, the existence of 
relatively large quantities of Hg-bearing minerals such as cinnabar 

<0.02 µm (sHg)

0.02–0.45 µm (cHg)

sH
g (pM

)cH
g 

(p
M

)

0

5,000

10,000

15,000

20,000

0

2,000

4,000

6,000

Day of year (2015)

130 140 150 160 170 180 190 200 210 220

D
is

ch
ar

ge
 (

m
3  s

–1
)

0

100

200

300

400

S
S

C
 (g L

–1)

EC

SSC

E
le

ct
ric

al
 c

on
du

ct
iv

ity
(µ

S
 c

m
–1

)

0

20

40

60

80

100

0

0.5

1.0

1.5

2.0

2.5

1 2 3 4

a

b

c

Fig. 3 | Hydrogeochemical and metagenomic time series of LG proglacial river in 2015. a–c, Meltwater discharge (a), electrical conductivity and 
suspended sediment concentration (SSC) (b) and soluble (sHg, <0.02 µm) and colloidal/nanoparticulate mercury (cHg, 0.02–0.45 µm) (c) concentrations. 
Shaded blue regions indicate outburst event periods, corresponding to abrupt changes in EC, SSC and discharge due to supraglacial meltwater entering the 
subglacial hydrological system and forcing stored waters from the ice sheet bed. Four Hg concentration time periods are indicated above a.

NATuRE GEoSCIENCE | VOL 14 | JULY 2021 | 496–502 | www.nature.com/naturegeoscience500

http://www.nature.com/naturegeoscience


ArticlesNature GeoscieNce

in subglacial sediments and/or the influence of overridden Hg-rich 
permafrost that is being gradually eroded. Overridden permafrost 
is an unlikely source because pHg concentrations would have to 
vastly exceed those recorded in recent studies (0.06–0.4 nmol g−1)11. 
Instead the unique physicochemical properties of glacial environ-
ments are likely to enhance mobilization of Hg in Hg-rich bedrock 
because of intense bedrock comminution by physical erosion that 
produces an abundance of freshly weathered microparticles45. There 
is also evidence of geothermal activity under large portions of the 
GrIS (refs. 46–48), potentially manifested locally at LG by an iron-rich 
groundwater spring located 400 m in front of the glacial terminus46 
with a sHg concentration >20,000 pM. This geothermal activity may 
be associated with the presence of the geological divide between the 
Nagssugtoqidian mobile belt to the north and the Archaean block 
to the south and/or geothermal hotspots under southwestern and 
central Greenland46,47 (Extended Data Fig. 1).

Data collected from meltwater rivers draining a ~4000 km2 region 
of the GrIS and two fjords receiving meltwater runoff indicate a 
large export of Hg from southwestern Greenland. Extremely high 
Hg yields, coupled with dMeHg concentrations of environmental 
concern, highlight the need to better understand ice sheet processes 
in the Hg cycle, especially the elevated pHg concentrations, which 
likely fuel the ice sheet Hg cycle. Hypothesized microbial cycling of 
Hg in the subglacial environment, including unidentified methyla-
tion pathways and as a mechanism of protection from the high lev-
els of dissolved inorganic Hg present, provides additional support 
for the importance of Hg in these systems, but additional evidence 

is still needed to demonstrate activity of the merA and merB meta-
bolic pathways. Our data indicate that glacial meltwater-sourced Hg 
impacts downstream fjords, where much lower but environmentally 
high concentrations persist, with high potential for Hg bioaccumu-
lation in coastal food webs. It is highly uncertain how projected 
increases in ice sheet melt rates due to climatic warming in the Arctic 
will impact Hg export; however, we postulate that rising meltwater 
runoff will increase Hg yields and therefore downstream flux. This 
large, unaccounted for and climatically sensitive Hg source has not 
been considered in current global Hg budgets and Hg management 
strategies, but it should be assessed urgently given the human and 
economic implications of elevated Hg exposure.
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methylmercury (dMeHg) (b) concentrations. Error bars reflect either 
instrumental precision (dMeHg) or the standard deviation of measurements 
between three Hg laboratories (dIHg). An approximate conservative mixing 
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concentrations similar to meltwaters sampled in the Kangerlussuaq area, 
and using values from the Labrador Sea as a high-salinity end member40,41. 
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bounds on the linear regressions.
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Methods
Site description. Kangerlussuaq (LG, RG and IS). Glacial meltwater samples were 
collected from three land-terminating glacial catchments on the southwestern 
margin of the GrIS during the 2012 (LG), 2015 (LG) and 2018 (LG, RG and IS 
sampled concurrently) summer ablation seasons. The three glacial catchments 
are east and northeast of Kangerlussuaq and drain west into the Isortoq River and 
Watson River (Fig. 1, ED1 and ED6). The hydrology of this sector of the GrIS is 
relatively well documented49,51–55, especially that of LG. All samples were collected 
from a fast-flowing location at the edge of the meltwater rivers draining the three 
glacial catchments.

LG extends ~80 km into the ice sheet interior, has a hydrologically active 
catchment area of ~600–900 km252,50 and drains through a single portal on the 
northern side of the glacier snout (Extended Data Fig. 6a). Detailed documentation 
of the sampling site for LG can be found elsewhere22,33,56. LG samples were taken 
at 67.062° N, 50.201° W (2012, 2015) and 67.066° N, 50.215° W (2018). The 2018 
sampling site was located approximately 1 km downstream of the 2012/2015 
sampling site for logistical reasons.

RG is located to the north of LG (Fig. 1) and drains into Akuliarusiarsuup 
Kuua (Extended Data Fig. 6c). It was sampled in 2018 at 67.104° N, 50.217° W at 
the same location where hydrochemical gauging took place. The RG catchment 
is relatively poorly defined and comprises several sub-catchments with multiple 
outlets. More recent modelling estimates put the active catchment area at ~85 km2 
(including the ‘Point 660’ sub-catchment defined in ref. 53) and the distance it 
extends inland at ~10–15 km (refs. 50,57),

IS is located to the north of both the LG and RG catchments. The glacier 
drains into Isortoq River to the west (Extended Data Fig. 6b), where samples were 
taken and hydrological gauging performed at 67.166° N, 50.889° W in 2018. It 
extends over 120 km into the GrIS from the ice margin and covers approximately 
3,200 km2 (to an altitude of 1,750 m; Fig. 1)53 and approximately 7,300 km2 to the 
ice divide50.

NK/AF. NK (Godthåbsfjord) is one of the best-studied fjords in Greenland 
(Fig. 1)14,58–60. It is ~190 km long, up to 8 km wide, has a mean depth of 260 m 
and covers an area >2,000 km2. Glacial meltwater enters the fjord through a 
combination of land- and marine-terminating glaciers, of which three are major 
marine-terminating glaciers (Narssap Sermia, Akullersuup Sermia and Kangiata 
Nunaata Sermia) and three are land-terminating glacial inputs (Kangilinnguata 
Sermia, Qamanaarsuup Sermia and Saqqap Sermersua). Freshwater inputs during 
the summer ablation season drive an estuarine circulation with a low-salinity 
surface plume flowing toward the fjord mouth to the west61. Meltwater input 
into the fjord is estimated to be ~20 km3 year−1, with roughly a 50% contribution 
from marine- and 50% from land-terminating glaciers, and minor inputs from 
non-glacial tundra runoff60. All glaciers have experienced thinning and accelerating 
retreat over the past two decades, echoing other outlet glaciers of the GrIS60.

AF is located to the south of NK (Fig. 1). Glacial meltwater enters the fjord 
from a single land-terminating glacier, Kangaasarsuup Sermia. The freshwater 
input from the river at the head of AF is estimated to be 2.4 km3 year−1 (1.8–3.7 km3 
year−1), with meltwater runoff contributing >75 % of total discharge (mean of 
Modèle Atmosphérique Régional (MAR)-generated liquid water runoff from 2008 
to 2017 (ref. 50)).

Hydrological monitoring. Hydrological monitoring of LG has been described 
in detail multiple times elsewhere49,51,52, and the same approach was taken for 
all catchments in this study. In brief, LG was hydrologically gauged at a stable 
bedrock section throughout the 2012 and 2015 ablation seasons (late April to 
end of August) and LG, IS and RG during a 3-week period in 2018. A package 
of hydrochemical sensors connected to a datalogger (Campbell Scientific 
CR1000 or CR800) were deployed to record pH (Honeywell Durafet), water 
temperature (Campbell Scientific), electrical conductivity (Campbell Scientific 
547 or Keller-Druck DCX-22-CTD, calibrated with an 84 µS cm−1 conductivity 
standard before deployment), turbidity (Partech C or Turner Designs Cyclops-7T 
turbidity sensor) and stage (HOBO pressure transducer) at each sampling site. 
Stage was converted to discharge using a rating curve determined from rhodamine 
dye-dilution experiments (n = 41 during 2012, n = 25 during 2015 at LG; and n = 8, 
6 and 9 at LG, IS and RG, respectively, during 2018). Uncertainties on discharge 
measurements were calculated using the root-mean-square error and are estimated 
as ±10.7–12.1%. Turbidity was converted to suspended sediment concentration 
(SSC) using a calibration of manual sediment samples collected against the 
turbidity recorded at the time of sampling52. Uncertainties in SSC are estimated to 
be ±6% (ref. 52).

Sample collection, processing and storage. Trace metal clean sampling. 
All samples were collected according to strict trace metal clean protocols. 
Sampling bottles (15/250-mL low-density polyethylene (LDPE) bottles and 
250/500/1,000-mL fluorinated high-density polyethylene (Fl-HDPE) bottles) and 
syringes were cleaned sequentially in 1% DECON (~24 h), trace metal grade 3 M 
HCl (~48 h), followed by trade metal grade 3 M HNO3 (~48 h) and thoroughly 
rinsed with ultra-pure water (UPW; Milli-Q, 18.2 MΩ cm−1) in between cleaning 
stages before drying under a laminar flow hood (ISO 5). Whatman GD/XP 

polyethersulphone (PES) 0.45 µm and Whatman Anotop 25 0.02 µm syringe 
filters were cleaned with ultra-trace metal grade HCl (OptimaT). The 0.45 µm 
syringe filters were cleaned by passing through 20 mL of 1.2 M HCl, with the 
final ~1 mL acidic cleaning solution allowed to sit in the filter for ~2 h before 
rinsing with 40 mL of UPW and flushing with laminar flow filtered air to dry. 
The 0.02 µm filters were cleaned by passing 20 mL of 0.02 M HCl, followed 
immediately by 20 mL of UPW and clean laminar flow filtered air to dry. A 
portable peristaltic pump or Teflon diaphragm pump and filter capsules were 
used for sample collection in 2018 (see ‘LG/RG/IS 2018’ and ‘NK/AF 2018’). 
Peristaltic pump tubing was soaked in 1.2 M trace-metal grade HCl for 24 h 
and rinsed by pumping several litres of ultra-pure water though it before use. 
AcroPak 500 capsule filters (0.45 µm with Supor PES membrane) were thoroughly 
flushed with sample water (several hundred millilitres) before collection of the 
final sample.

LG/SS 2012. Total particulate Hg was determined on ten samples taken at 
LG intermittently from 16 May to 11 July 2012. Meltwater was collected in a 
borosilicate glass bottle, taken to a laboratory tent and immediately filtered 
through a 0.22 µm membrane filter (PES) with the sediment retained on the filter. 
Filters were stored air-dried and cool before analysis. Three samples for total 
dissolved Hg (dHg) were also taken downstream of LG from a salinity gradient 
in surface waters of SS (ca. 25 km downstream of LG) on 16 June, using the same 
protocols as particulate Hg samples above, with the 0.22 µm filtrate stored in 
250-mL acid-washed borosilicate glass bottles and stored cool in the dark before 
analysis (Extended Data Fig. 5).

LG 2015. Samples were collected from 1 May to 28 July 2015. Samples from 
80 time points were size fractionated (0.02 + 0.45 µm) for total filterable Hg 
concentrations, and an additional sample was taken from a geothermal spring 
located 400 m in front of the glacier terminus on 28 July46. Bulk water samples 
were collected in 250-mL or 1000-mL LDPE bottles, zip-lock bagged and taken 
immediately to a designated ‘clean’ laboratory tent (no shoes, hairnets and strict 
cleaning protocols observed) for processing. Bulk samples were filtered through a 
0.45 µm syringe filter (12 mL to waste and rinse, with final 10 mL collected), then 
through a stack of 0.45 µm/0.02 µm syringe filters (12 mL to waste and rinse with 
final 10 mL collected; see ‘Trace metal clean sampling’). These filtered samples 
were immediately preserved with Optima grade HNO3 to a final acidity of 0.074 
M according to Environmental Protection Agency (EPA) method 245.1 and stored 
individually double zip-lock bagged in the dark and refrigerated as soon as possible 
(maximum of 2 weeks).

Although Hg storage in LDPE bottles is not advisable for low-level Hg 
analysis62,63, short-term storage of samples (~weeks) for total Hg analysis with 
elevated concentrations when acidified is likely to be acceptable64. Loss or 
enrichment of Hg due to transmission through plastic of volatile Hg0 is the most 
likely storage artefact63 due to the porosity of unfluorinated polyethylene. A study 
has shown a >10 ng L−1 (~50 pM) enrichment in samples stored in LDPE over a 
period of 5 weeks (refs. 63). This corresponds to ~15% of the discharge-weighted 
mean concentration of sHg and 3.2% of the discharge-weighted mean 
concentration of cHg from LG in 2015, assuming a worst-case scenario of 200 pM 
contamination over the storage to measurement period of ~120 days. Furthermore, 
any contamination effect should be reflected in the procedural blanks.

LG/RG/IS 2018. Samples were collected concurrently at three glaciers over a 
25-day period in 2018 from 19 June to 14 July to determine dissolved inorganic 
Hg (dIHg, as Hg2+) and dissolved methylmercury (dMeHg) concentrations. 
Sample collection took place at 11:00 at LG and RG, and 15:00 at IS on the same 
days, the latter delayed by 4 h to account for the water transit time from the 
glacier terminus to the sampling site ~26 km downstream (that is, to capture a 
body of water similar to the two other sampling locations; Fig. 1). Bulk water 
samples were collected in acid-cleaned 1000-mL Fl-HDPE bottles and taken 
immediately for processing in a laboratory tent or field laboratory. Water was 
filtered through a 0.45 µm AcroPak 500 capsule filter using a peristaltic pump 
and acid-cleaned C-Flex tubing into 250-mL Fl-HDPE bottles after rinsing with 
three aliquots of filtered water. Samples were immediately acidified using ultra 
trace metal grade (Optima) HCl to a final concentration of 0.048 M (0.4% v/v 
concentrated HCl). Sample bottles were double zip-lock bagged and stored in the 
dark until returning to the University of Bristol, where they were transferred to 
refrigerated storage.

NK/AF 2018. Samples were collected from the surface waters of two fjord systems 
during a cruise in July 2018 (5 July–9 July). Trace metal clean sampling was 
undertaken using a towfish system coupled to acid-cleaned polyvinylchloride 
tubing, a Teflon diaphragm pump (A2CH1 F8 AstiPure II, Saint Gobain) and final 
filtration through a 0.45 µm AcroPak 500 capsule filter. The towfish comprised 
a plastic fin held ~1.5 m underwater by ~25 kg of epoxy-covered dive weights. 
Samples were filtered into 500-mL Fl-HDPE bottles after rinsing three times 
with filtered sample water, then acidified using ultra trace metal grade (Optima) 
HCl to a final concentration of 0.048 M (0.4% v/v concentrated HCl) and stored 
refrigerated until analysis.
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Geochemical analysis. Particulate and total dissolved mercury (2012). Particulate 
and total dissolved mercury concentrations were determined at the Woods Hole 
Oceanographic Institution. Filters were first oven dried at 55 °C overnight before 
being digested in ultra trace metal grade 2 M HNO3 (refs. 65,66.) Briefly, filters were 
placed in pre-cleaned 15-mL polypropylene centrifuge tubes, and 8 mL of acid was 
added. Tubes were inverted to mix then placed in an ultrasonic bath at 55 °C for 
15 min. Samples were then centrifuged for 5 min at 3,000 rpm, and supernatant 
retained in a new, clean tube for total Hg analysis.

Total Hg in leach solutions and in filtered fjord samples was determined by 
cold vapour atomic fluorescence spectroscopy (CV-AFS) following EPA method 
1631. Samples were digested with bromine monochloride (BrCl) and then reduced 
with hydroxylamine hydrochloride (NH2OH⋅HCl). Hg present was reduced to Hg0 
with stannous chloride (SnCl2) and quantified by dual Au-amalgamation CV-AFS 
using an external standard calibration curve. Filter blanks processed as per samples 
were all below the instrumental limit of detection (<0.5 pM).

Total dissolved mercury (2015). Total dissolved Hg in 0.02 and 0.45 µm filtered 
samples were determined using a Thermo Scientific XSERIES 2 quadrupole 
ICP-MS with collision/reaction cell after acidification of samples to 1% (v/v)  
HCl (laboratory distilled ultra trace metal grade) at the National Oceanography 
Centre in Southampton, within 3 months of sample collection. This method 
is sub-optimal for analysis of Hg due to a memory effect and very high first 
ionization potential in ICP-MS analysis, leading to low sensitivity and prolonged 
sample washout. Several measures of analytical quality were noted to ensure 
reliable results. For example, the analytical precision over the concentration range 
observed in samples was ±23.4%. Sample memory effects (a common issue in Hg 
ICP-MS analysis), determined by running a high-concentration sample followed 
by five analytical blanks, was high at ~400 pM in the first blank to <100 pM in the 
final blank. Procedural blanks (n = 16) taken in the field using transported  
ultra-pure water and the same procedure as samples, run intermittently throughout 
the run, averaged 522 ± 255 pM, and the mean was subtracted from measured 
values before reporting. It is expected that a large fraction, if not all, of this  
(~400 pM), is due to the system memory effect or storage contamination in LDPE 
bottles, further highlighting that this methodology is not suitable for low-level 
Hg analysis. The detection limit (mean of ten blanks + standard deviation × 3) 
was therefore high at 800 pM, and all blanks fell under this. A subset of samples 
were also analysed by CV-AFS (as per section 4.1) in a separate Hg laboratory 
(Greg Carling at BYU) with blank values <200 pM and similarly high sample 
concentrations that correlated to those reported via ICP-MS (R2 = 0.58) with a 
positive offset for CV-AFS samples (~1,000 pM), despite 4 years of storage time, 
which would otherwise be deemed unacceptable. The higher values reported for 
the CV-AFS method are likely either due to underreporting by ICP-MS, or sample 
contamination over the prolonged storage period63. The discharge-weighted mean 
concentrations for sHg in 2015 (1,400 pM) are similar to discharge-weighted mean 
dIHg concentrations in 2018 (603–1,260 pM; Supplementary Table 1), the latter of 
which were collected and measured in a Hg-clean manner. This gives additional 
confidence that the 2015 reported values are reliable within the estimated 
uncertainty (~±30%).

Dissolved inorganic Hg0/Hg2+ and dissolved MeHg (2018). Dissolved inorganic 
Hg2+ and dissolved MeHg in glacial meltwater samples were determined in the 
High Magnetic Field Laboratory Mercury Lab. Both Hg species were detected 
simultaneously after direct aqueous ethylation67, purge and trap, separation via 
gas chromatography and detection using CV-AFS, on a Tekran 2700 system using 
EPA method 1630 with adaptations from Mansfield and Black68. Briefly, samples 
were diluted 1:15 with Hg-free ultra-pure water (Milli-Q, 18.2 MΩ cm−1), buffered 
to pH 4.1 and ethylated with NaBEt4 to a final concentration of 40 µM. Glacial 
meltwater samples had very low DOC concentrations (<20 µM) and were found 
suitable for the direct ethylation technique without distillation or addition of NaCl 
(ref. 68). Spiked samples (n = 12, spike values: Hg2+ concentration of 10 pM, MeHg 
concentration of 2 pM) displayed mean Hg2+ recovery values of 98% (95–100%) 
and MeHg spike recoveries of 103% (77–111%). Precision values based on replicate 
analysis (n = 5) of 10 pM Hg2+ standards and 2 pM MeHg standards placed 
randomly throughout the analytical run were ±3.1% and ±9.1% respectively. 
Blanks were below instrumental detection limits for both Hg2+ (~<1 pM) and 
MeHg (~<0.1 pM).

Fjord samples were analysed using techniques similar to those above. MeHg 
and Hg2+ concentrations were determined following Mansfield and Black68 with 
addition of NaCl before direct aqueous ethylation using NaBEt4. Samples were 
diluted 1:2 in Hg-free UPW (Milli-Q, 18.2 MΩ cm−1) and buffered to pH 4.1 
(using 3 M sodium acetate/acetic acid buffer), followed by NaCl addition to a final 
concentration of 1.2 M and direct ethylation with addition of NaBEt4 to a final 
concentration of 40 µM. Spiked samples (n = 12, spike values: Hg2+ concentration 
of 10 pM, MeHg concentration of 1 pM) displayed mean Hg2+ recovery values of 
117% (78–153%) and MeHg recoveries of 104% (88–119%). MeHg precision was 
±8.3%, calculated from five replicate standards (1 pM) run randomly throughout 
the analytical run, while Hg2+ precision using the direct ethylation technique 
was ±11.7%. Three NaCl blanks (that is, blanks treated exactly the same as 
samples with 1.2 M NaCl addition) were below the detection limit for MeHg 

(<0.1 pM), and were ~1 pM for Hg2+. Total dissolved Hg was also determined 
independently in two other Hg laboratories using CV-AFS and EPA method 1631 
(Greg Carling and Carl Lamborg) as in ‘Particulate and total dissolved mercury 
(2012)’. Differences between the total dissolved Hg concentration in the three 
laboratories were ±23% (±8–42%). Mean total dissolved concentration from all 
three measurements are used as the reported value for TdHg (Fig. 4) along with 
individual error based on the standard deviation of the three concentrations 
reported by individual laboratories.

Dissolved organic carbon (2018). Samples for DOC concentrations were filtered 
using 0.45 µm Whatman Aqua 30 syringe filters into acid-washed HDPE 
bottles (10% HCl v/v for 48 h) and kept frozen in the dark until analysis. DOC 
concentrations were measured after acidification using a Shimadzu TOC-LCHN 
analyser with high-sensitivity catalyst. Sample concentrations were calculated from 
a manual calibration curve based on standards (0.05–2 mg C L−1), gravimetrically 
prepared from a certified TOC standard of potassium hydrogen naphthalate 
(1,000 ± 10 mg C L−1; Sigma Aldrich). The limit of quantification (LOQ) was 
0.026 mg L−1 (where LOQ = LOB + 5 × s.d. of low-concentration sample, where 
LOB is the limit of baseline)69. Precision was calculated from repeat standard 
measurements of 0.10 and 0.50 mg C L−1 and was better than ±5%.

Microbiological analysis (2015). Samples for microbiological analysis were 
taken at the portal of LG during May–July 2015 concurrently with samples taken 
for geochemical analysis to identify genes associated with Hg cycling in the 
subglacial microbial community. Water samples were passed through a Sterivex 
syringe filter (0.22 µm; Millipore) using a sterile syringe until clogged (~300 mL). 
Water was flushed from the filter chamber, filled with nucleic acid preservation 
buffer (LifeGuard, QIAGEN) and immediately frozen in the field at −20 °C. Total 
DNA in suspended sediment retained in the Sterivex filter was extracted using 
the PowerWater Sterivex DNA isolation kit (MO BIO). A full description of 
microbiological sample collection and DNA extraction can be found in refs. 22,70, 
as the extracts sequenced for metagenomes here consisted of subsamples of those 
used for 16S rRNA gene analysis in the cited studies.

Four pooled samples were used for metagenomic sequencing due to the  
low DNA content of individual extracts and cost. Pool 1 represented 
early-season assemblages (three daily samples in the period from 4 May to 7 
June), pool 2 represented ‘early’ outburst events (five daily samples in the period 
from 20 June to 2 July), pool 3 represented ‘late’ outburst events (four daily 
samples in the period from 5 to 10 July) and pool 4 represented late season (four 
daily samples in the period from 13 July onward) when an efficient drainage 
system was established. A total of at least 20 ng of treated DNA from each 
pooled sample served as the input for the TruSeq Nano DNA library preparation 
kit (Illumina). Insert length ranged between 295 and 409 bp. DNA libraries were 
prepared using a TruSeq Nano DNA LT kit and sequenced (2 × 150 bp) in four 
lanes of Illumina NextSeq500 using a High-Output V2-300 kit at the Bristol 
Genomics Facility. The four metagenomes obtained were assembled as follows: 
reads were trimmed by removing adapters with Trimmomatic using Illumina 
TruSeq2-PE adapters with a seed mismatch threshold, palindrom clip threshold 
and simple clip threshold set at 2, 30 and 10, respectively. Sequencing reads 
were quality filtered by base call quality using the FASTX-Toolkit, specifically 
fastq_quality_filter, with the following parameters: -Q33 -q 30 -p 50. The 
paired-end assembly of the remaining reads was performed with the MEGAHIT 
assembler (v. 1.1.3) with the following parameters: megahit −1 all.pe.qc.fq.1 
-2 all.pe.qc.fq.2 -r all.se.qc.fq -o all.Megahit.assembly. Reads from all samples 
were assembled together. A total of 9,168,354 contigs were obtained, with an 
average length of 618.7 bp; N50 was 712 bp. The total length of the assembled 
metagenome reached 5,672,583,505 bp, while the longest contig had 297,443 bp. 
Assembled data were annotated using the MG-RAST automated pipeline against 
the RefSeq database. For phylogenetic analyses, homologues of translated 
merA sequences were found using BLASTP against the National Center for 
Biotechnology Information nr database71. Representatives of known main 
lineages were also added. Sequences were aligned in MAFFT v. 772 and trimmed 
manually. The phylogenetic tree (Extended Data Fig. 4) was determined by 
Phyml v. 3.173 under the LGgamma model and non-parametric bootstrap 
analysis with 100 replicates.

Statistical analyses. All statistical analyses were performed in JMP Pro 15 (SAS). 
Student’s t test was used to determine whether population means were statistically 
different. Linear correlations were used to determine the strength of relationship 
between two variables and the significance of the correlation. P values are 
presented in the main text with P < 0.05 assumed to be statistically significant.

Flux estimations. Discharge-weighted mean method. The first-order flux 
estimates presented in Table 1 are calculated using the discharge-weighted mean 
concentrations from the three 2018 sampling sites, where the most complete 
IHg and MeHg record is present. The discharge-weighted concentration was 
then multiplied by the mean annual modelled meltwater discharge from the 
southwestern margin of the GrIS (2009–2018; Extended Data Fig. 2) from ref. 50 to 
generate dIHg and dMeHg flux estimates for southwest Greenland.
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LOADEST method. Catchment fluxes were also estimated using the 
constituent-load modelling software LOADEST74, with measured 2018 mercury 
concentrations and mean daily discharge. Regression models for concentrations 
were generated using the adjusted maximum-likelihood estimator and automatic 
best model selection (model 0) to allow for model selection based on the Akaike 
information criterion. Total annual fluxes were estimated using the mean 
concentration output of the model with the modelled meltwater discharge detailed 
in Table 1, with uncertainty defined as the modelled concentrations at the 25th and 
75th percentiles. These data are presented in Supplementary Table 2. Mean flux 
estimates deviated ±0.7–7.6% from those calculated using the discharge-weighted 
mean concentrations in Table 1.

Representativeness of the study area. There are obvious limitations to using 
three glaciers to estimate Hg export from the southwestern margin of the GrIS. 
We acknowledge that IS, LG and RG collectively cover a small proportion of 
the ice sheet (~0.3% by surface area) and southwestern Greenland (~4.1%). 
However, the area is significantly larger (by almost two orders of magnitude) 
than any other glacier study area investigated thus far in the literature (both 
in Greenland and worldwide), and to our knowledge, this is the only study 
to date that has measured Hg concentrations in ice sheet runoff (rather than 
disconnected ice caps in Greenland). Furthermore, the annual discharge of 
these three outlets equates to nearly 8% of the runoff from the southwestern 
sector of the GrIS. The Kangerlussuaq area is an excellent analogue study area 
for the southwestern region of the GrIS for several other reasons that have been 
documented in previous studies, including the underlying geology, hydrology and 
because its discharge is proportional to total modelled ice sheet runoff49,51,75–78. 
The underlying debris and morphology of the catchment are similar to other 
catchments of southwestern GrIS79 (Extended Data Fig. 2), and bedrock geology 
is predominantly Neoproterozoic gneiss/granite, which is typical of large areas of 
the crystalline rocks that dominate the Precambrian Shield on which Greenland 
lies75,80 (Extended Data Fig. 1). The catchment hydrology here is also believed 
typical of the large Greenland outlet glaciers that dominate discharge of meltwaters 
from the GrIS76–78,81.

Data availability
All data contained in this article that are not included in tables are freely available 
(https://doi.org/10.5281/zenodo.4634280). The metagenomic data are accessible in 
MG-RAST under the number 4765056.3.
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Extended Data Fig. 1 | Generalised geological map of (a) Greenland and detailed geology of (b) the Kangerlussuaq region. a, indicates the best 
interpretation of bedrock geology underlying the Greenland Ice Sheet from ref. 82 (lighter colours), with major geological provinces KMB (Ketilidian Mobile 
Belt), AB (Archean Block), NMB (Nagssugtoqidian Mobile Belt), CM (Committee-Melville), EI (Ellesmere-Inglefield), V (Victoria), E (Ellesmerian) and 
CFB (Caledonian Fold Belt) indicated. Generalised oceanic currents are indicated by black arrows and derived from ref. 83. b, displays more detailed geology 
of the Kangerlussuaq region where river sampling sites are located, and is derived from the GEUS Geological Map of Greenland75. The Precambrian shield 
bedrock underlying the study areas (Isunnguata Sermia, Russell Glacier, Leverett Glacier, NK and AF), covers > 75% of Greenland (orange and purple 
geologies; for example AB, NMB, KMB and CM).
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Extended Data Fig. 2 | Dissolved organic carbon concentrations in the proglacial rivers of Leverett Glacier, Russell Glacier and Isunnguata Sermia.
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Extended Data Fig. 3 | Southwestern region of the Greenland Ice Sheet used to estimate meltwater discharge fluxes in Table 1 with (a) ice sheet 
underlay and (b) geology underlay as per Fig. ED1. Study catchments areas are shown in the shaded region.
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Extended Data Fig. 4 | Phylogenetic tree of microorganisms carrying the merA gene in subglacial meltwaters from Leverett Glacier. The sequences are 
taken from all four pooled samples (see Methods).

NATuRE GEoSCIENCE | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


ArticlesNature GeoscieNce

Extended Data Fig. 5 | Total dissolved mercury concentrations from grab samples taken from surface waters at low salinities along Søndre Strømfjord 
(Fig. 1a) in 2012. Uncertainty (±12.7 %) was calculated from replicate measurements of the low salinity sample. The range of concentrations from NK and 
Amaralik fjord are given in the shaded purple area (salinities of 17.0–32.4).

NATuRE GEoSCIENCE | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


Articles Nature GeoscieNce

Extended Data Fig. 6 | Images of glacial catchments/proglacial meltwater rivers sampled. (a) Leverett Glacier terminus, (b) Isortoq River (proglacial 
river of Isunnguata Sermia) looking upstream close to the sampling location in Fig. 1 and (c) Russell Glacier terminus (Akuliarusiarsuup Kuua) looking 
upstream. Approximate river widths are given for perspective.
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