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Abstract
We present an ensemble approach to quantify historical global mean sea-level (GMSL) rise based
on tide gauge reconstructions. This approach combines the maximum internal uncertainty across
the ensemble with an estimate of structural uncertainty to provide a conservative estimate of the
total uncertainty. Comparisons of GMSL rise over the 20th century based on deltas and linear
trends (and their respective uncertainties) are consistent with past Intergovernmental Panel on
Climate Change assessments and show good agreement with satellite altimeter timeseries.
Sensitivity tests show that our estimates of GMSL rise are robust to the choice of reference period
and central estimate timeseries. The methods proposed in this study are generic and could be easily
applied to other global or regional climate change indicators.

1. Introduction

Observational timeseries of historical global mean
sea-level (GMSL) change are essential to our under-
standing of climate variability and change. Their
uses include: assessments of the current state of
our climate (e.g. Thompson et al 2020); monitoring
and advancing knowledge of sea-level variability and
change (Ponte et al 2019a, Hamlington et al 2020);
evaluation of climate and Earth system models (e.g.
Slangen et al 2017); provision of sea level services
such as hindcasts and real-time forecasts (Ponte et al,
2019b); and to inform assessments of future change
and their socio-economic and environmental impacts
(Church et al 2013a, Oppenheimer et al 2019). All of
the above applications require rigorous evaluation of
the observational uncertainties.

Reconstruction of GMSL change from the
available coastal tide gauge observations repres-
ents a substantial scientific challenge with a num-
ber of processing steps, each of which can influence
the resultant timeseries (see section 2). Differences
in methodological approaches across the available
products leads to a diversity of GMSL reconstructions

in terms of the underlying trends and interannual-to-
decadal variability (e.g. Oppenheimer et al 2019). The
importance of this ‘structural uncertainty’ (Thorne
et al 2005) has led to several studies adopting an
ensemble approach to quantify uncertainty in essen-
tial climate indicators related to sea-level change (e.g.
WCRP 2018, von Schuckmann et al 2020).

In this paper we present an ensemble approach
to estimate observed GMSL rise, based on five tide-
gauge reconstructions as an example, or ‘case study’.
While some previous studies have made use of
ensemble-based estimates of observed change (e.g.
WCRP 2018, Oppenheimer et al 2019, von Schuck-
mann et al 2020), we take a more holistic approach to
the estimation of total uncertainty. This is achieved
by combining an ensemble-based estimate of internal
uncertainty (i.e. the uncertainty in GMSL associated
with each reconstruction, sometimes referred to as
‘parametric’ uncertainty) with an ensemble estimate
of the structural uncertainty, which is informed by
the ensemble spread (Thorne et al 2005).We find that
both sources of uncertainty are substantial and there-
fore omission of either will tend to underestimate the
total uncertainty.
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In addition, we introduce elements of expert
judgement and steps to avoid circularity in model-
observation comparisons that use our ensemble
timeseries. Based onour ensemble, we evaluateGMSL
rise for a number of different periods and compare
these to individual reconstructions and past Intergov-
ernmental Panel on Climate Change (IPCC) assess-
ments. This comparison uses both delta (i.e. the
total change over a given period) and linear-trend
calculations, and we discuss the suitability of these
change metrics for different applications. The meth-
ods presented here are generic, and could prove useful
in the assessment of other global or regional climate
change indicators (e.g. Trewin et al 2021).

The outline of the paper is as follows. In section 2
we present the datasets used in our ensemble estim-
ate of historical GMSL change, including a summary
of the different methods used by the dataset origin-
ators. In section 3 we describe the construction of
our ensemble GMSL estimate and the delta and trend
calculations presented in this paper. The main res-
ults are shown in section 4, including timeseries of
GMSL change with uncertainties and comparisons
of the estimated sea-level change for several example
periods. Finally, in section 5 we present a summary of
our main findings.

2. Data

Our 20th century ensemble analysis is based on
a selection of available GMSL estimates, spanning
different methodological approaches and including
uncertainty estimates (table 1). Where necessary,
units are converted to mm and annual mean timeser-
ies are generated from monthly mean data, weight-
ing by the number of days in each calendar month.
To facilitate comparisons with assessments of GMSL
change since 1901 reported in the IPCC Fifth Assess-
ment Report (AR5; Church et al 2013a) and the
IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate (SROCC; Oppenheimer et al
2019), we extend the Dangendorf et al (2017; here-
after DA2017) estimate back to 1901 by simply
duplicating the 1902 value.

The long tide gauge records needed to perform
reconstructions over the 20th century have a highly
heterogeneous temporal-spatial distribution, with
greatest data availability in the North Atlantic sec-
tor (e.g. Church andWhite 2011; hereafter CW2011).
In addition, tide gauge records are of varying qual-
ity and often subject to additional non-climatic sig-
nals that can, to some extent, be corrected for in order
to better isolate the underlying GMSL change. There-
fore, GMSL reconstructions are subject to diversity
in the corrections applied to tide gauge records as
well as the quality and criteria for selection of geo-
graphic locations to be included or excluded from
the analyses (e.g. Hamlington and Thompson 2015,

Hay et al 2017), such as excluding records in tecton-
ically active areas and/or where sediment compaction
is important.

Tide gauge records can be corrected for the effects
of atmospheric pressure loading known as inverted
barometer (IB, e.g. Piecuch and Ponte 2015), how-
ever, a relationship between air pressure and sea level
is not straightforward at decadal and longer times-
cales and thus no adjustment might be preferable to
a partial or a potentially poor adjustment (e.g. Miller
andDouglas 2006). Geodynamicalmodels are used to
correct for ongoing glacial isostatic adjustment (GIA,
e.g. Peltier et al 2004). These models, however, do
not consider other potential sources of land move-
ment (e.g. sediment compaction, terrestrial water
storage and/or cryosphere loadings). First-difference
of annual values can be used to account for uncertain
datum and allow a greater number of stations to be
considered (e.g. Church and White 2011). For other
potential tide gauge corrections and more specific
details, we refer the reader to WCRP Global Sea Level
Budget Group (WCRP 2018) and references therein.
A summary of the corrections applied to each dataset
used in this study is listed in table 1.

Once the tide gauge records have been selected
and any corrections applied there are fundamentally
two approaches to determining GMSL (e.g. Church
and White 2011). The first, and simplest approach, is
to apply spatial averaging to the tide gauge records, to
arrive at an estimate of GMSL change. Several studies
have adopted a ‘virtual station’ (VS) approach, which
averages neighbouring station sea-level changes in
several regions before averaging the regions to get
an estimate of GMSL change (e.g. Frederiske et al
2020; hereafter FR2020). The VSmethod avoids over-
weighting of densely-sampled regions in the global
average. FR2020 combined this approach with sea-
level budget analysis of individual ocean basins using
a large Monte Carlo simulation to sample across the
estimated uncertainties.

The second type of approach uses estimates of
the large-scale patterns of sea-level variability and
change to interpolate between the tide gauge locations
and thus estimate GMSL change. CW2011 applied
the reduced space optimal interpolation (RSOI) tech-
nique (Kaplan et al 2000, Church et al 2004), using
spatial patterns of sea-level variability informed by
empirical orthogonal functions applied to satellite
altimeter data. A strength of this approach is that
it relies purely on observational data to inform the
estimate of GMSL change. However, it assumes that
the sea-level variability captured in the satellite alti-
meter record since 1993 is representative of the entire
period, i.e. it assumes statistical stationarity. Calafat
et al (2014) have evaluated the ability of RSOI meth-
ods to represent trends and variability of GMSL using
an analytical solution and synthetic tide gauge obser-
vations based on an ocean reanalysis. The authors
caution that the approach taken in CW2011 will
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Table 1. Summary of GMSL reconstructions and methods used in this study.

Abbreviation Period Method Corrections applied References

CW2011 1880–2013 Reduced space optimal
interpolation (RSOI)

IB, GIA, tested for
cryosphere and terrestrial
water storage (minimal
difference).

Church and White (2011);
Church et al (2013b)

HA2015a 1880–2010 Kalman smoothing (KS) IB, GIA, cryosphere
fingerprints, spatially-
uniform fingerprint for
thermal expansion and
terrestrial water storage,
sterodynamic fingerprint
from CMIP models.

Hay et al (2015, 2013)

DA2017 1902–2012 Virtual station
(VS modified)

IB, GIA, GPS (or alti-
meter minus tide gauge),
cryosphere fingerprints,
terrestrial water storage
fingerprint.

Dangendorf et al (2017)

DA2019a 1900–2015 Kalman
smoothing/(KS-RSOI)

No IB, GIA, cryosphere
fingerprints, sterodynamic
fingerprint from CMIP
models.

Dangendorf et al (2019)

FR2020 1900–2018 Virtual station
(VS modified)

IB, GIA, GNSS (or
altimeter minus tide
gauge), cryosphere fin-
gerprints, sterodynamic
fingerprints (including
reanalyses), terrestrial
water storage fingerprint,
nodal tide correction.

Frederikse et al (2020,
2018)

a Indicates ‘hybrid’ products that include information from CMIP climate models as part of the estimate of regional sea-level changes.

tend to alias regional coastal variability at decadal
timescales and over-estimate interannual variations
in GMSL. However, they found that the approach
of CW2011 captured the long-term trends in GMSL
reasonably well, which is the focus of the present
study.

Hay et al (2015; hereafter HA2015) used a Kal-
man Smoother (KS) approach to combine the tide
gauge data with temporal-spatial patterns of sea-level
change associated with: (a) ocean processes from six
CMIP5 climatemodel simulations (Taylor et al 2012);
and (b) ‘fingerprints’ of sea-level change associated
with GIA and mass loss from Antarctica, Greenland
and mountain glacier regions. A strength of the Hay
et al approach is that it allows a more comprehens-
ive treatment of the drivers of observed sea-level
change and accommodates non-stationarity of trends
and incomplete data records. However, an important
caveat is that in the absence of observations, the KS
relies on the model dynamics. Based on these previ-
ousworks,Dangendorf et al (2019; hereafterDA2019)
sought to unify the RSOI and KS approaches in their
estimate of GMSL change in an attempt to better rep-
resent both the long-term signals (KS) and sea-level
variability (RSOI). A summary of dataset methods is
provided in table 1, along with the main references,
where further details can be found.

3. Methods

In this section we present our approach to construct-
ing an ensemble estimate of historical GMSL change
that includes a conservative approach to estimating
the overall uncertainty.

Before describing the details of the methodology,
there is an additional aspect to consider when, e.g.
using observations in model evaluation (e.g. Slangen
et al 2017) or detection and attribution studies (e.g.
Marzeion et al 2014, Slangen et al 2016); that is the
issue of ‘circularity’. Circularity, or circular reason-
ing, can arise in this context when information from
models is used to influence observational analyses of
past climate change. A common example is the use
of spatially complete data from climate model sim-
ulations to establish temporal-spatial relationships
that can be used to inform interpolation of obser-
vational data voids (see section 2). Such approaches
have been applied to tide gauge reconstructions of
GMSL change (e.g. Hay et al 2015, Dangendorf et al
2019) and also estimates of past ocean temperature
and heat content change (e.g. Smith and Murphy
2007, Cheng et al 2017). These ‘hybrid’ products that
convolve observations and climatemodel simulations
may be compromised for use in the evaluation of
climate model simulations and attribution studies,
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because they are no longer independent from model
simulations (e.g. Torkaska et al 2019).

Care must be taken not to introduce circularity in
climatemodel evaluation or detection and attribution
studies. As far as we are aware, none of the tide gauge
reconstructions used here make direct use of climate
model information in determining their estimate of
GMSL change. Therefore, we do not eliminate the
hybrid products from our ensemble. The framework
we introduce in this study is generic and suitable for
other variables and applications. However, the meth-
odological details should consider the application in
question.

For example, if we were to consider regional sea-
level changes as part of this study, we would seek to
maximize the information content of the reconstruc-
tions in our ensemble, while avoiding circularity with
climate model simulations. This could be achieved
by omitting hybrid estimates from the ensemble that
is used to determine the central estimate timeser-
ies. However, hybrid estimates would be retained for
the purposes of informing the ensemble estimate of
internal and structural uncertainty (section 3.1), fol-
lowing the terminology of Thorne et al (2005).

3.1. An ensemble estimate of GMSL change
There are four steps in the construction of the
ensemble estimate of GMSL change: (a) construct
the central estimate timeseries; (b) construct the
ensemble timeseries of internal uncertainty; (c) con-
struct the ensemble timeseries of structural uncer-
tainty; (d) combine the timeseries. Each of these steps
is described below in sequence.

The choice of central estimate is made based on
the application. For this study, the focus is on determ-
ining long-term changes in GMSL. Since Calafat et al
(2014) found the RSOI approach for CW2011 to be
reasonable for these purposes, we include this RSOI
estimate in our ensemble. Of the two reconstructions
that employ a KS method to inform the long-term
GMSL changes, we use the more recent study of
DA2019. Similarly, of the two VS-based reconstruc-
tions we use the more recent study of FR2020, which
is more up-to-date and includes a more comprehens-
ive treatment of uncertainties. The central estimate
timeseries is constructed by simply taking the aver-
age of CW2011, DA2019 and FR2020, i.e. each of the
three methods—RSOI, KS and VS (table 1)—is given
equal weight in our ensemble central estimate.

The next step is to estimate the internal uncer-
tainty. Internal uncertainty is the term we use to
describe the uncertainty estimates that are asso-
ciated with each individual GMSL reconstruction
(figure 1(a)). Different estimation methods are used
among the products and result in substantial differ-
ences in both the magnitude and time evolution of
internal uncertainty.We take a conservative approach
to constructing the ensemble internal uncertainty by
selecting the largest value at any given time across

all available products (including ‘hybrid’ products,
figure 1(a), dashed black line). If there were good sci-
entific justification to do so, the estimate could be
based on a subset of reconstructions. However, our
approach assumes that all internal uncertainty estim-
ates are equally valid and hence all are included.

As discussed by Thorne et al (2005), structural
uncertainty arises from the choice of approach in
the reconstruction of observational datasets. This
is particularly important when the spatial sampling
density is low (as is the case for tide gauge recon-
structions of GMSL change), as there are different
approaches to account for the missing information,
such as RSOI or the VS method. We estimate the
structural uncertainty through computing the stand-
ard deviation of the central estimates of all products
relative to the ensemble average (figure 1(a), grey
shading). To do this, we first express every timeseries
to a reference period by subtracting the average value
for 1991–2010. This is the latest 20 year period that is
common to all products and offers improved cover-
age and more numerous gauge records compared to
earlier periods (e.g. Calafat et al 2014). Note that the
central estimate timeseries is also computed relative
to the same 1991–2010 reference period.

Finally, we assume that the internal and structural
uncertainty estimates are independent with a normal
distribution and we therefore add the timeseries in
quadrature to provide a timeseries of the total obser-
vational uncertainty. This timeseries is then com-
bined with the ensemble central estimate to provide
an ensemble timeseries of GMSL change with uncer-
tainties (figure 1(b)).

To assess the robustness of our results, we carry
out two sensitivity tests. In the first, we use a much
longer reference period of 1902–2010 to explore the
impact this has on our results. The choice of reference
period has an impact on the estimate of structural
uncertainty, as shown in figure S1 (available online
at stacks.iop.org/ERL/16/044043/mmedia). For the
second test, we eliminate hybrid products from our
ensemble central estimate, by replacing the DA2019
timeseries with DA2017. This test affects the cent-
ral estimate timeseries but not the ensemble-based
uncertainties, as shown in figure S3. Overall, the
impact of the sensitivity tests on our results are small,
with the largest variations in central estimates and
total uncertainties for GMSL change not exceeding
a few mm for all periods considered in this study
(figures S2 and S4). Further discussion is provided in
section 4.3.

3.2. Metrics of GMSL change: deltas vs trends
We compare our ensemble timeseries to individual
products and past assessments of observed GMSL
reported by the IPCC on the basis of two change met-
rics.

The first, which we refer to as a ‘delta’ or ∆, is
simply the difference in GMSL between two years in

4

https://stacks.iop.org/ERL/16/044043/mmedia


Environ. Res. Lett. 16 (2021) 044043 M D Palmer et al

Figure 1. (a) Comparison of the individual timeseries of internal uncertainty (coloured lines) and the ensemble structural
uncertainty (grey shaded region) as function of time. The maximum internal uncertainty is taken as the ensemble estimate (black
dashed line). (b) The ensemble timeseries of GMSL change (black line) with structural uncertainty and total uncertainty
indicated by the shaded regions as shown in the figure legend. Note that HA2015 (blue) and DA2019 (orange) are ‘hybrid’
estimates that are partly informed by climate model simulations.

the historical record. The uncertainty in each delta
value is estimated by combining the total uncertainty
for each of the two years in quadrature—under the
assumption that the uncertainties are independent.
While we consider this assumption to be reasonable
for years that are temporally distant, it may tend to
overestimate the uncertainty for shorter periods (e.g.
interannual-to-decadal timescale). Deltas are perhaps
the simplest approach to quantifying sea-level change
but they can be sensitive to end-point effects in the
presence of substantial year-to-year variability. Deltas
represent a logical choice for budget studies and
may have advantages in accommodating accelerations
in rates of GMSL change, compared to linear-trend
estimates.

The second metric of change we use is the slope
of a linear fit to the GMSL central estimate applied
over a specified period, which we refer to as a ‘trend’.
This approach has been widely used in the IPCC AR5
and SROCC reports to characterize the average rate of
change of key indices, such as globally averaged sur-
face temperature, globally integrated ocean heat con-
tent, and GMSL. While a trend over a longer period
is effective for removing the effects of internal vari-
ability, the assumption of a linear trend may be less
appropriate in case of substantial accelerations in the
rate of GMSL change. For consistency with IPCC
assessments, we compute the uncertainty in the trend
based on the approach of Santer et al (2008), which
accounts for serial autocorrelation in the timeseries.
Note that this approach does not make use of the
a priori uncertainty estimates presented in figure 1.
The uncertainty arises purely from the variability
and temporal autocorrelation in the central estimate
timeseries (2008, 2012).

4. Results and discussion

4.1. Ensemble timeseries of GMSL change and
uncertainties
Estimates of internal uncertainty (expressed as the
90% confidence interval) across the GMSL recon-
structions range from between about 30 and 40 mm
at the start of 20th century to between about 5 and
25 mm at their lowest values in the early 21st cen-
tury (figure 1(a)). While all estimates show a sub-
stantial decrease in the estimated internal uncertainty
over the first half of the 21st century, the non-hybrid
estimates tend to level off around 1960. In contrast,
the two hybrid estimates (HA2015 and DA2019) con-
tinue their much smoother reduction of uncertainty
into the 21st century. Our conservative ensemble
estimate of internal uncertainty is based on the max-
imum value across all products for any given year
over the period 1900–2010 (figure 1(a), dashed line).
Using this criterion, the ensemble internal uncer-
tainty estimate is based on the HA2015 and DA2017
estimates, with values ranging from>40mm to about
25 mm.

The estimate of ensemble structural uncertainty is
computed as the standard deviation of the ensemble
relative to the ensemble mean, when all timeseries
are expressed relative to their 1991–2010 mean value
(figure 1(a), grey shading). The structural uncertainty
(expressed as the 90% confidence interval) is largest
prior to the mid-20th century, with an average value
of around 20 mm between 1900 and 1950. Between
about 1950 and 1970 there is a substantial reduction
in structural uncertainty, which has an average value
of around 5 mm between 1980 and 2020. The estim-
ate of structural uncertainty has quite a lot of residual
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Figure 2. (a) The change in GMSL for a number of example periods expressed as a difference between the first and last years; (b)
as panel (a), but expressed as an average rate for the time period; (c) linear-trend fits to the individual timeseries for each period.
For panel (c), uncertainties are computed following the approach used in AR5 (Santer et al 2008) based serial autocorrelation in
the central estimate timeseries. Uncertainties are shown for the ensemble, AR5, SROCC and Altimeter timeseries only. Hybrid
estimates are indicated by the partly-filled markers. The values for the satellite altimeter are based on timeseries provided by
Frederikse et al (2020)

noise, with typical year-to-year variations of several
mm. Overall, the ensemble structural uncertainty is
about 50% smaller than the ensemble internal uncer-
tainty, making a lesser but still important contribu-
tion to the total uncertainty.

The estimates of structural and internal uncer-
tainty are combined in quadrature to estimate the
ensemble total uncertainty (figure 1(b), light grey
shading), under the assumption that they are essen-
tially independent and have a normal distribution.
Total uncertainty ranges from about 50 mm in the
early 20th century to about 25 mm in the early 21st
century. The ensemble central estimate is determ-
ined by taking the mean of the three non-hybrid
products, i.e. CW2011, DA2017 and FR2020. The
ensemble central estimate has a very similar timeser-
ies to FR2020, with some reduction in the higher fre-
quency variability as a result of averaging across sev-
eral estimates. We note that the CW2011 product,
which is based on anRSOImethod, shows less variab-
ility than products based on a VS approach (DA2017
and FR2020).

4.2. Comparison of long-term changes in GMSL
In this section we compare changes in GMSL from
our ensemble estimate with the individual central
estimates of the products listed in table 1 and the
assessment ranges presented in recent IPCC reports.
We consider estimates of GMSL change based deltas
and trends (see section 2) for the periods 1901–2010,
1901–1990, 1901–1993, 1993–2010 and 1971–2010.
These periods are informed by the periods used in
past IPCC assessments and the availability of satellite
altimeter data from 1993.

For all periods considered, the 90% confid-
ence interval of each delta based on our ensemble
GMSL estimate encompasses the individual products
(figure 2(a)). Our ensemble estimate is consistent
with the assessment of AR5 (Church et al 2013a)
for the period 1901–2010, with a slightly lower cent-
ral estimate and substantially larger uncertainties
(table 2). We note that reconstructions published
since the AR5, tend to show lower rates of GMSL rise
over the first half of the 20th century than earlier stud-
ies (figure 1(b); Hay et al 2015).

The deltas presented in figure 2(a) can be simply
converted to a mean rate of GMSL rise for each
period by dividing by the period length in years
(figure 2(b)). Unsurprisingly, the comparison to AR5
is very similar when expressed as an average rate.
Our ensemble estimate for the period 1901–1990
shows remarkably good agreement with the assess-
ment presented in the recent SROCC (Oppenheimer
et al 2019). The ensemble estimate uncertainties
for 1993–2010 and 1971–2010 seem large compared
to the spread of individual GMSL reconstructions.
Since structural uncertainty is relatively small dur-
ing these periods, the ensemble total uncertainty
is dominated by the internal uncertainty estimate
(figure 1).

The comparison of average linear trends
and uncertainties following Santer et al (2008)
(figure 2(c)) presents a very different picture to
the analysis based on deltas (figure 2(b)). While
the ensemble central estimate is broadly similar to
the rates based on deltas, there is a large reduc-
tion in the estimated uncertainties. As a result,
for every period, one or more individual GMSL
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Table 2. Summary of the estimated deltas, rates and trends in GMSL. Uncertainties are expressed as the 90% confidence interval.

1901–2010 1901–1990 1901–1993 1993–2010 1971–2010

Ens.∆GMSL
(mm)

175± 50 120± 50 121± 50 54± 33 83± 36

Ens. rate
(mm yr−1)

1.6± 0.5 1.3± 0.6 1.3± 0.5 3.0± 1.9 2.1± 0.9

Ens. trend
(mm yr−1)

1.5± 0.1 1.4± 0.1 1.4± 0.1 3.0± 0.2 2.0± 0.3

AR5∆GMSL
(mm)

190± 20 — — — —

AR5 trend
(mm yr−1)

1.7± 0.2 — — 3.6± 0.5 —

SROCC trend
(mm yr−1)

— 1.4± 0.6 — — —

Altimeter∆GMSL
(mm)

— — — 49± 9 —

Atlimeter rate
(mm yr−1)

— — — 2.7± 0.5 —

Altimeter trend
(mm yr−1)

— — — 2.9± 0.2 —

reconstructions exhibit a trend that lies outside the
ensemble 90% confidence interval. The AR5 assess-
ment for 1901–2010 has similar, albeit slightly larger,
uncertainties than our ensemble. TheAR5 assessment
was based on the reconstruction of CW2011, using
ordinary least squares linear fit with the uncertainty
representing the 90% confidence interval (Rhein et al
2013; their Table 3.1) using a similarmethod to Santer
et al (2008) to account for serial autocorrelation. We
note that our ensemble approach (section 3) will
tend to reduce variability in our central estimate
timeseries and may explain why our uncertainties are
smaller than those of AR5, based on the Santer et al
method.

The SROCC (Oppenheimer et al 2019) used an
ensemble estimate that augmented the GMSL recon-
structions available at the time of AR5 with the addi-
tional estimates of Hay et al (2015) and Dangendorf
et al (2017) to arrive at an assessed rate of GMSL
rise of 0.8–2.0 mm yr−1 for the period 1901–1990.
We arrive at very similar 90% confidence interval
for this period, i.e. 1.0–2.0 mm yr−1, based on the
standard deviation of trends computed using Church
and White (2011), Ray and Douglas (2011), Jevre-
jeva et al (2014), Hay et al (2015) and Dangendorf
et al (2017). The SROCC approach is similar to the
ensemble estimate presented here and shows remark-
ably good agreementwith our estimated uncertainties
based on deltas. If we were to carry out our ensemble
method using an identical ensemble to SROCC, we
might expect to see larger overall uncertainties arising
from the estimate of internal uncertainty in addition
to structural uncertainty.

The ensemble estimates of GMSL change are
highly consistent with values based on the satel-
lite altimeter timeseries presented by Frederikse et al
(2020) for the period 1993–2010 (figures 2(a)–(c);

table 2). For the GMSL change based on deltas, as
expected, the satellite altimeter timeseries have much
smaller uncertainties than our tide gauge reconstruc-
tion ensemble (figures 2(a) and (b)), which nev-
ertheless encompass our ensemble central estimate
(table 2). A comparison of trends based on Santer et al
(2008) yields very similar central estimates and uncer-
tainty values (figure 2(c) and table 2).

The trend results presented here call into ques-
tion the suitability of the Santer et al approach for
estimating uncertainties in GMSL rise, which does
not account for structural or internal uncertainty in
the ensemble (figure 1), and appears to underestimate
the overall trend uncertainty (c.f. figure 2(b) and (c)).
We note that thismethodwas devised primarily in the
context of estimates of global mean surface temperat-
ure (GMST) change, which has very different obser-
vational properties to GMSL. Compared to GMSL,
estimates of GMST are supported by more numerous
and well-distributed observations and the methodo-
logical uncertainties are relatively small compared to
the observed signals (e.g. Morice et al 2012). GMST
is subject to large internannual-to-decadal variabil-
ity associated with ENSO and other modes of climate
variability and therefore Santer et al (2008) is a very
useful approach for quantifying uncertainties in the
underlying multi-decadal trends. For climate indices
with lesser variability and larger observational uncer-
tainties (e.g. GMSL, ocean heat content) our results
suggest that it is important to incorporate a priori
estimates of internal and structural uncertainty when
assessing the observed changes. We would therefore
caution against using the Santer et al (2008) method
for assessing trend uncertainty in GMSL. Our res-
ults suggest that the spread in linear trends across the
ensemble is amore reliable basis for estimating uncer-
tainty in GMSL change.
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4.3. Sensitivity tests
As a fist sensitivity test, we recompute our GMSL
ensemble using a longer reference period of 1902–
2010 (figure S1), since the choice of reference period
is somewhat subjective. This results in an estimate of
structural uncertainty that is more time-constant and
does not show the substantial reduction after 1950
see in figure 1(a). Relative to our original ensemble,
the total uncertainty increases in the last few decades
of the timeseries. The sensitivity to reference period
arises due the different decadal rates of change seen
across the reconstructions, particularly during the
period 1940–1980 (figure 1(b)). While the change in
reference period has no impact on the central estim-
ates of GMSL change, it does increase the uncertainty
of the delta in GMSL for the periods 1993–2010 and
1971–2010 by 6 mm and 4 mm, respectively (figure
S2). The effect on the uncertainty for the longer peri-
ods does not exceed ~1 mm.

In a second sensitivity test, we eliminate hybrid
estimates from our central estimate ensemble by
replacing DA2019 with DA2017, while retaining the
1991–2010 reference period. While the multi-decadal
characteristics of GMSL are largely unchanged, the
new ensemble has substantially larger interannual
and decadal variability (figure S3). However, the
uncertainties in delta GMSL are unaffected by the
change of central estimate, and differences in the cent-
ral estimate does not exceed 3 mm for any period
(figure S4).

5. Summary

We have presented a simple ensemble-based method
to estimating GMSL change over the 20th century.
This method considers the contribution from both
internal uncertainty (i.e. the estimates of uncertainty
in GMSL change associated with individual ensemble
members based on their chosen method) and the
structural uncertainty (i.e. the differences among
ensemble member central estimates that arise from
choice of method). Our results suggest that both
internal uncertainty and structural uncertainty make
an important contribution to the overall uncertainty.
The implication is that estimates of GMSL change
based on a single product are likely to underestim-
ate the total uncertainty, as are ensemble-based estim-
ates that do not account for internal uncertainty (i.e.
ensemble spread alone is not enough to characterize
uncertainty).

The method is flexible and can easily accom-
modate elements of expert scientific judgement. For
example, for some applications it might be appropri-
ate to remove hybrid estimates (i.e. those that con-
volve observations with climate model simulations)
from the central estimate in order to avoid circularity
in the context of climate model evaluation or detec-
tion and attribution studies. Other examples of expert

scientific judgement might include: selecting a subset
of products to estimate the uncertainties; or select-
ing a sub-ensemble to inform the central estimate
based on those that are less subject to known sampling
biases.

While we have used tide gauge reconstructions of
GMSL to illustrate the method, it could be readily
applied to other metrics of global or regional climate
change of relevance to climate monitoring, model
evaluation or detection and attribution studies.

Data availability statement
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included within the article (and any supplementary
files).
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