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[1] High biological activity causes a distinct seasonality of surface water pH in the North
Sea, which is a strong sink for atmospheric CO2 via an effective shelf pump. The intimate
connection between the North Sea and the North Atlantic Ocean suggests that the variability
of the CO2 system of the North Atlantic Ocean may, in part, be responsible for the observed
variability of pH and CO2 in the North Sea. In this work, we demonstrate the role of the
North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in
governing this variability. Based on three extensive observational records covering the
relevant levels of the NAO index, we provide evidence that the North Sea pH and CO2

system strongly responds to external and internal expressions of the NAO. Under positive
NAO, the higher rates of inflow of water from the North Atlantic Ocean and the Baltic
outflow lead to a strengthened north-south biogeochemical divide. The limited mixing
between the north and south leads to a steeper gradient in pH and partial pressure of CO2

(pCO2) between the two regions in the productive period. This is exacerbated further when
coinciding with higher sea surface temperature, which concentrates the net community
production in the north through shallower stratification. These effects can be obscured by
changing properties of the constituent North Sea water masses, which are also influenced by
NAO. Our results highlight the importance of examining interannual trends in the North Sea
CO2 system with consideration of the NAO state.
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1. Introduction

[2] Coastal and marginal seas play an important role in the
atmosphere-ocean carbon exchange, responsible for a dispro-
portionately large amount of primary production relative to
their surface area [Gattuso et al., 1998], which is triggered
by large inputs of nutrients and organic carbon from the adja-
cent ocean, land, and atmosphere [Wollast, 1998; Thomas
et al., 2005a; Thomas et al., 2008b]. The export of this car-
bon into the adjacent open ocean, thus sequestering large
quantities of anthropogenic CO2, is known as the continental
shelf pump [Tsunogai et al., 1999; Thomas et al., 2004].
The effectiveness of this pump is related to the physical and

biological conditions governing the CO2 disequilibrium
between the atmosphere and the sea surface, which in turn
is thermodynamically responsible for the CO2 uptake and
the subsequent variation in pH and partial pressure of CO2

(pCO2). The codependence of this variability on physical
and biological factors makes it difficult to discern the
increase in CO2 solely attributable to atmospheric pCO2

increases [Santana-Casiano et al., 2007].
[3] The North Sea is a shelf sea on the northwest European

continent with links to the North Atlantic Ocean in the south
and the north. The majority of water exchange with the North
Atlantic occurs in the northern North Sea, where inflowing
waters enter through the Orkneys-Shetland shelf, Shetland
shelf, and the Norwegian channel, with the Norwegian
Trench providing the main exit pathway of circulated water
out of the North Sea [Otto et al., 1990; Winther and
Johannessen, 2006]. The total net carbon export to the
North Atlantic via the Norwegian Trench has been estimated
to be 6±1 × 1012 mol C yr�1 [Wakelin et al., 2012], which
includes more than 90% of the CO2 drawn down from the
atmosphere in the North Sea [Thomas et al., 2005a]. The
effectiveness of the North Sea CO2 pump is determined prin-
cipally by water mass exchange between the North Sea and
the North Atlantic Ocean in combination with the export of
carbon out of the surface layer, predominantly as sinking par-
ticulate organic matter [Thomas et al., 2004; Bozec et al.,
2005]. The latter applies most significantly to the deeper
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(>50 m), seasonally stratified northern part of the North Sea
(>56°N), where seasonality in pH is controlled by produc-
tion of organic matter and its export [Thomas et al., 2009].
The seasonality of pH and pCO2 in the southern North Sea
is also closely coupled to primary production; however, the ex-
port of organic matter is reduced by the rapid remineralization,
which takes place in the shallow (<50 m) and well-mixed
water column [Borges and Frankignoulle, 1999, 2002;
Schiettecatte et al., 2006, 2007].
[4] Over the North Atlantic Ocean, a number of atmo-

spheric teleconnection patterns influence climate variability
of which the North Atlantic Oscillation (NAO) is the most
prominent. The NAO Index (NAOI) is defined as the differ-
ence of atmospheric sea level pressure (SLP) between the
Icelandic low and the Azores high and accounts for the
greatest proportion (>30%) of the observed SLP variance
in the region from December to March [Hurrell, 2003]. The
effects of the NAO control a number of large-scale processes
at different timescales [e.g. Hurrell, 1995; Hurrell and van
Loon, 1997; Greatbatch, 2000]. Since the atmospheric pres-
sure anomalies are most pronounced during northern hemi-
sphere winter [Greatbatch, 2000] and the ratio of signal to
noise is the highest [Hurrell and van Loon, 1997], commonly
(but not exclusively) the NAOI recorded during December,
January, and February (DJF), has been referred to in the liter-
ature yielding the most accentuated NAOI variability. Thus,
although the NAOI is commonly established for DJF conse-
quences of the NAO have been identified at various time-
scales. While the atmospheric realm responds at immediate,
shorter timescales, for example via variability of trajectory,
direction and strength of winds, the oceanic system responds
at times scales from seasons to decades, for example via
altered circulation patterns at various spatial scales [e.g.,
Hurrell, 1995; Hurrell and van Loon, 1997; Greatbatch,
2000; Thomas et al., 2008a]. Modeling studies [Thomas
et al., 2008b; Levine et al., 2011; McKinley et al., 2011]
and long-term observations [Santana-Casiano et al., 2007;
Pérez et al., 2010; Bates, 2001] suggest that NAO-driven
changes exert significant control over the interannual vari-
ability of hydrographic properties and in turn the uptake
of CO2.
[5] Recently, observations from the North Sea [Thomas

et al., 2007] and the North Atlantic Ocean [Watson et al.,
2009] indicate that the surface water pCO2 has risen faster
than the atmospheric pCO2, which has been linked to the
effects of the NAO, with varying time scales of effect across
the region [Santana-Casiano et al., 2007; Thomas et al.,
2008a]. In-depth discussions of the role of the NAO in regu-
lating the climate and weather go beyond the scope of the
present paper, and can be found elsewhere, for example in
Hurrell [1995], or Greatbatch [2000]. However, within the
North Sea, many processes have demonstrated significant
correlations with the wintertime (DJF) NAOI, which, as we
later show, impact the carbonate system. The strength of
the water mass exchange between the North Atlantic and
the North Sea is regulated by the NAO, which in turn affects
physical and chemical characteristics of the North Sea water
column for the annual cycle. As a consequence of enhanced
water mass exchange between North Atlantic and North
Sea during years of positive NAOI (NAO+)[Winther and
Johannessen, 2006; Kühn et al., 2010], the corresponding
increase of the North Sea’s nutrient inventory leads to

higher productivity throughout the productive season from
spring until the end of summer [Pätsch and Kühn, 2008].
Characteristic in the North Sea’s response to NAO forcing
can also be a hysteresis between cause and effect: In the
North Sea, NAO+ has further been associated with higher
precipitation across Scandinavia with drier conditions over
central Europe [Ionita et al., 2011]. Changes in precipitation
patterns over the drainage area of the Baltic Sea during winter
will affect the runoff from the Baltic Sea into the North Sea
over the relevant (runoff) seasons. Additionally, stronger
westerly winds during winter, correlated with a positive win-
tertime NAOI, push North Sea water into the Baltic Sea, a
process that in turn leads to an enhanced outflow from the
Baltic Sea into the North Sea during the subsequent spring
and summer [Hordoir and Meier, 2010]. These patterns are
generally reversed during a NAO negative (NAO�) state.
From these few examples, it is evident that despite the fact
that the NAOI is commonly established for winter (DJF),
the consequences for the North Sea are complex, not re-
stricted to the winter season, and can be (partly) masked
or even overridden by local or regional weather. One of the
primary aims of this paper is to unravel this complex situation
and to understand the variability of the North Sea CO2 system
in front of this background.
[6] The intra-annual variability of pCO2 and dissolved

inorganic carbon (DIC) has been well documented in the
North Sea [Frankignoulle and Borges, 2001; Thomas
et al., 2005b; Prowe et al., 2009; Bozec et al., 2006; Omar
et al., 2010; Artioli et al., 2012]; however, on long time
scales little work has been done [Thomas et al., 2005a;
Thomas et al., 2007; Borges and Gypens, 2010] and despite
the proximity of the North Atlantic, the drivers for
interannual variability of the CO2 system in relation to the
North Atlantic variability have not yet been investigated
from field observations. Further, the full scope of variations
in pH and pCO2 is still difficult to constrain when
attempting to reproduce them in models [Prowe et al.,
2009; Gypens et al., 2011; Lorkowski et al., 2012; Artioli
et al., 2012]. Relying on a unique data set covering three
basin-wide occupations of the North Sea during all relevant
NAO phases, we are now able to examine the influences of
NAO forcing on the North Sea carbonate system.

2. Materials and Methods

[7] The North Sea was sampled during August/September
2001, 2005, and 2008 using a station grid of approximately
90 identical stations each time [Bozec et al., 2005, 2006].
These years experienced NAO (DJF) indices of �1.9, 0.12,
and 2.1, respectively (http://www.cgd.ucar.edu/cas/jhurrell/
indices.html, 2012). As we examine the influence of the
NAO in the North Sea on different time scales, we assume
that the wintertime NAO forcing will be responsible for
producing the most prominent signal in the data on a basin-
wide scale.
[8] Due to greater spatial coverage of DIC and pCO2 data,

in all three years, compared to that of total alkalinity (AT) and
pH, the latter two were calculated from the former two, as
previously done in intercomparison studies [Thomas et al.,
2009]. Internal consistency studies from cruises with full
carbonate parameter coverage in late summer indicate that
AT and pH can be predicted, using DIC and pCO2, with an
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accuracy of ± 9 μmol kg�1 and ± 0.008, respectively
(L.A. Salt, manuscript in preparation, 2013). Only stations
with valid values for DIC and pCO2 for all of the three
years were used, resulting in a total of 85 stations worth
of data for comparison.

2.1. DIC and pCO2

[9] Samples for the carbonate parameters were obtained
following the operating procedures outlined in DOE [2007].
Carbonate system parameters, DIC, AT, and pH (in 2005)
were determined at 8–15 depths per station, yielding approx-
imately 700 samples per cruise. All samples were analyzed
within 12 h of sampling, and were verified for quality control
using certified reference material (CRM) supplied by Prof.
Andrew Dickson (Scripps Institute of Oceanography, USA).
A single sample was obtained for both DIC and AT and
these were determined by coulometric and potentiometric ti-
trations, respectively. For further details, please see Thomas
et al. [2007].
[10] Surface water pCO2 was measured every minute using

a flow-through system with continuous equilibration and
infrared detection [Körtzinger et al., 1996], yielding approx-
imately 20,000 measurements per cruise with an accuracy of
±1 μatm. A temperature normalization was applied to the
pCO2 data to obtain pCO2@16°C, which is independent
of temperature differences between the years [Takahashi
et al., 1993].

2.2. Calculations

2.2.1. Water Mass Analysis
[11] The North Sea surface waters (5 m depth) were sepa-

rated into three simpler constituents using a mixing analysis
of the dominant water masses in the North Sea [Kempe
and Pegler, 1991; Shadwick et al., 2011], with North
Atlantic water, Baltic Sea water, and German Bight water
as end-members. The latter two consist of a fraction of
North Atlantic water; however, the large freshwater contribu-
tion makes both very distinct from North Atlantic water and
allows us to track them into the central North Sea. In order
to differentiate water mass fractions from n number of con-
tributors, n� 1 end-member variables are required. As this

decomposition was done for the surface waters, tempera-
ture cannot be used, because due to seasonal heating and
cooling it is not a conservative tracer as used in traditional
multiparametric optimizations for analysis of deep waters.
Salinity, DIC, and AT all offer sufficiently distinct end-
member concentrations to be used; however, the codepen-
dence of AT on salinity makes DIC favorable. The DIC
is nonconservative due to biological uptake/release of CO2;
however, the end-members used (Table 1) are sufficiently
distinct that changes in DIC concentration affected by mixing
are much greater than the potential interference of primary
production/respiration. This was confirmed by similar results
being obtained using salinity and AT, which is more conserva-
tive with respect to primary production.
[12] The end-members for the North Atlantic and German

Bight were determined individually for each year, with only
the Baltic end-member remaining constant. As we lacked
observations in the Baltic Proper, DIC and AT values were
taken from literature for a representative salinity of 8 [Thomas
and Schneider, 1999; Hjalmarsson et al., 2008] (Table 1).
The North Atlantic end-member was determined by the max-
imum surface salinity found in the northwest North Sea
(Latitudes > 58°N and Longitudes < 0°E) and its corre-
sponding DIC value. The German Bight end-member was
determined by the salinity and DIC value found at the station
closest to the Elbe river mouth (54.75°N, 8.25°E). By using
annually determined end-members for the three years, we
can rule out any change in water mass fractions occurring
due to changes in the chemical signal of end-members, which
we later show does occur in the North Sea. Statistics describing
the calculated water mass fractions are shown in Table 2.
2.2.2. DIC Inventory Calculation of the North Sea
[13] To quantify the changes in DIC between years, differ-

ences in biological activity and remineralization must be
accounted for. Here we use the apparent oxygen utilization
(AOU = [O2]sat � [O2]obs) to account for production and
remineralization, applying the Redfield ratio [Anderson and
Sarmiento, 1994] in the following equation:

DIC* ¼ DIC� AOU*0:7ð Þ:

[14] These values were integrated throughout the water
column to a common maximum depth per station, and
then station totals were extrapolated over the entire North
Sea basin. To help us better understand the changes, the
International Council for the Exploration of the Sea (ICES)
defined boxes [ICES, 1983] were used to examine the
regional changes in DIC and salinity. Unless specified other-
wise, boxes 1–5 refer to the entire water column, not just the
upper 30m, whereas boxes 11–15 refer to the deep (>30 m)
portion of these boxes, respectively.

Table 1. Dissolved Inorganic Carbon and Salinity End-Membersa

DIC ( μmol kg�1) and
Salinity End-Members 2001 2005 2008

North Atlantic 2047 (35.06) 2078 (35.30) 2065 (35.13)
Baltic 1530 (8) 1530 (8) 1530 (8)
German Bight 2090 (30.36) 2012 (30.77) 2149 (32.28)

aThe DIC end-members used for the water mass fraction calculation for
the three years, with the corresponding salinity values in parentheses.

Table 2. Statistics of the Different Water Mass Fractions Present in the North Sea in 2001, 2005, and 2008a

2001 2005 2008

Water Mass Range Average Median Range Average Median Range Average Median

North Atlantic 0–100 83 91 0–100 81 87 0–100 84 91
Baltic 0–16 2 0 0–15 3 1 0-20 3 7
German Bight 0-100 15 4 0–100 16 10 0–100 13 1

aThe basin-wide range of values, average, and median are given with the units representing the % of the total water present in the North Sea.
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2.2.3. Calculation of Brunt-Väisälä Frequency Squared
[15] To assess the vertical stability of the water column in the

northern North Sea (>56°N), we utilized the Brunt-Väisälä
frequency squared:

N2 ¼ �g=ρð Þ: ∂ρ=∂zð Þ
where z is the depth (m), ρ is density (kg m�3) computed fol-
lowing the density equation of Fofonoff and Millard [1983],
and g is the gravitational acceleration (9.807 m s�2). The tem-
perature and salinity data from the conductivity-temperature-
depth (CTD) casts with a 1 m resolution were smoothed using

a cubic spline. The N2 was calculated from the smoothed
dataset and the depth at which the maximum N2 occurs we
defined as the mixed-layer depth.

3. Results

[16] The main distribution pattern of the carbonate param-
eters is relatively constant between years (Figure 1). The
brackish Baltic outflow around the Norwegian headland has
low AT and DIC signals. The German Bight, in the south-
west, is distinguished by its high AT and high DIC content.
The Shetland shelf represents the main North Atlantic inflow

Figure 1. Surface layer distribution of carbonate parameters with 50 and 100 m depth contours.
(a–c) Total alkalinity (μmol kg�1) for the years 2001, 2005, and 2008, (d–f) dissolved inorganic carbon
(μmol kg�1) for the years 2001, 2005, and 2008, (g– i) pH for the years 2001, 2005, and 2008, and (j– l) par-
tial pressure of CO2 (pCO2; μatm) for the years 2001, 2005, and 2008. The DIC and pCO2 are observations,
AT and pH are calculated parameters from DIC and pCO2, using carbonic acid dissociation constants of
Mehrbach et al., 1973, refit by Dickson and Millero [1987], and pH is given on the Total scale. Average
values for 2001, 2005, and 2008 are 2299, 2298, and 2291 μmol kg�1 for AT, respectively, 2034, 2052,
and 2055 μmol kg�1 for DIC, 8.129, 8.105, and 8.079 for pH, and 323, 344, and 369 μatm for pCO2.
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site, and is clearly identified by notably higher AT values than
the basin-wide average (Figure 1b). The anticorrelated pH
and pCO2 both show a strong gradient at the 50 m depth con-
tour, representing the boundary at which the dominant con-
trol on pCO2 changes from temperature, in the well-mixed
south, to biology, in the stratified north [Prowe et al., 2009;
Thomas et al., 2005b]. The gradient between the north and
south is steepest in 2008, closely followed by 2001, and
weakest in 2005. This pattern reflects the measured surface
water temperatures in the North Sea, 2001 and 2008 being
the warmest (mean surface temperatures of 16.2°C (±1.3)
and 16.1°C (±1.1), respectively), and 2005 the coldest
(15.4°C (±1.0)). The highest northern pH values and lowest
pCO2 values are observed in the northern North Sea in
2001, with progressively decreasing mean pH and increasing
mean pCO2 trends over time. The average surface DIC in-
creased by 21 μmol kg�1, although not uniformly, and the av-
erage surface AT remained relatively constant, ± 4 μmol kg�1,
throughout all three years.
[17] The North Sea CO2 system is largely governed by

the relative contribution of different water masses composing
the North Sea water as well as the rate at which these are
circulated within the North Sea shelf. The mixing analysis

(Figure 2a) clearly identifies the North Atlantic Ocean water
as the dominant water mass, constituting an average 83%
fraction throughout all three years (Table 2). The average,
basin-wide fraction of Baltic water increases from 2% in
2001 to 3% in 2005 and 2008 (Table 2). The dominant
North Atlantic inflow follows an anticlockwise circulation
from the north, mixing in the south with German Bight
water. In the northeastern areas, the Baltic Sea outflow plays
an additional role where it is introduced to the circulation on
its way out of the North Sea. This leads to the presence of
two main mixing regimes, one consisting of North Atlantic
and German Bight water, and the other of North Atlantic
and Baltic water (Figure 2a). It can be seen that in 2008 these
two regimes are most distinguishable, which corresponds to
the year in which the maximum Baltic fraction was recorded
(20%; Table 2). The formation of the two mixing environ-
ments is reflected in the formation of a dichotomy in pH
measurements in 2008, which is absent in 2001 and 2005
(Figures 2b–2d). The dichotomy divides the North Sea, with
more acidic waters in the south and higher pH values in
the north. The divide is formed at, approximately, the 50 m
depth contour accounting for the strong gradient visible in
Figures 1i and 1l.

Figure 2. Water type contributions to the North Sea. (a) The fractions of North Atlantic water, Baltic
water, and German Bight water in the North Sea in 2001 (blue), 2005 (green), and 2008 (red). (b–d)
Histograms of the frequency of calculated pH values binned in 0.01 pH unit intervals with the mean value
per year marked by the red line.
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[18] Examining the mixing relationship between the North
Atlantic and Baltic water further reveals a change in the
water mass end-members from 2001 to 2005. A linear re-
gression was applied, for each year, to data with a Baltic
water mass fraction greater than the three-year average of
3% (Figure 3) revealing three statistically significant rela-
tionships. The years 2005 and 2008 show a remarkably similar
mixing line with the most notable difference being a general
decrease in the salinities observed in the Skagerrak in 2008
compared to 2005. Such a shift is reflective of different propor-
tions of the two water masses but indicates that the water
masses remain constant in their properties. The difference

between these two years and 2001, however, is much greater.
The slope of the regression line is shallower in 2001, indicative
of a higher DIC Baltic end-member and a lower DIC North
Atlantic end-member. The same relationship is reflected,
between 2005 and 2008, in the ATmixing diagram (Figure 3b).
[19] The inorganic carbon, after correction for metabolic

DIC (calculations in section 2.2.2) and respective salinity in-
ventories were used to quantify the changes (ΔS and ΔDIC)
between the two time periods. The change in each ICES
box for the two time periods showed a significant correlation
coefficient of 0.903 and 0.839 (excluding Box 8) for the
period 2001–2005 and 2005–2008, respectively. Box 8,
heavily influenced by the German Bight, recorded very
low salinities for 2008, coinciding with a larger Elbe dis-
charge [http://coast.gkss.de/staff/kappenberg/elbe/abfluss/
elbe.abfluss]. This box is likely to be more representative
of local effects thus skewing the general pattern for the rest
of the North Sea (including box 8 gives an R2 = 0.49).
Although the increase in DIC was basin-wide from 2001
to 2005, it did not occur evenly across the basin or through-
out the water column.
[20] The greatest increases in average DIC concentration

from 2001 to 2005 occurred in the central and northwestern
North Sea. The latter region is significantly deeper than the
southern North Sea; thus, the ICES boxes were further
divided into a surface (30m) and deep box. The surface boxes
showed an increase of the same order of magnitude as the
deep boxes; however, due to the greater DIC concentrations
at depth, this constitutes a lower percentage of total increase.
From 2005 to 2008, the changes in DIC were much smaller
and demonstrated no clear pattern. The North Sea DIC inven-
tory was 8.11 Pg C (1 Pg = 1015 g) in 2001, 8.17 Pg C in
2005, and 8.18 Pg C in 2008. Hence, it increased by approx-
imately 0.8% (+ 6 × 10�2 Pg C) from 2001 to 2005, while the
inventory remained almost stable (+ 5 × 10�3 Pg C, <0.1%)
between 2005 and 2008. The deep northern boxes demon-
strated a greater inventory increase of 1.1% from 2001 to
2005, and a 0.0% change from 2005 to 2008. Of the entire
observed change in these boxes, 97% occurred from 2001
to 2005.
[21] The changes in the DIC concentrations in the surface

also manifest in the change in temperature-normalized
pCO2 (pCO2@16°C) distribution (Figure 4). The increase
in the average North Sea pCO2@16°C from 2001 to 2005
is 26 μatm, compared to 4 μatm from 2005 to 2008 (the in-
creases for 2001 to 2005 and 2005 to 2008 for nontemperature

Figure 3. North Sea - Skagerrak mixing diagram. Linear
fitted regressions for the mixing relationship between the
Skagerrak and North Atlantic inflow in the northern North
Sea. Upper graph shows DIC and lower graph shows AT.
Points were selected based on percentage of Baltic water
mass fraction present (>3%). Dashed lines represent one
standard deviation (±1σ) of the residuals for each fit, also
given in parentheses.

Figure 4. Distribution of temperature-normalized (16°C) pCO2 in surface waters. In (a) 2001, (b)
2005, and (c) 2008.
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normalized pCO2 were 21 μatm and 25 μatm, respectively).
Using an average basin-wide pCO2@16°C from all three years
(346 μatm), these increases correspond to 7.5% and 1.0% in-
creases, which are proportional to the calculated increase in
the North Sea DIC inventory. This agreement implies that
the surface expression of pCO2@16°C is, to a large extent,
representative of the entire water column, which, due to the
shallow depths of the majority of the North Sea is not surpris-
ing. Similar to the distribution of DIC increase, the majority of
the increase in pCO2@16°C occurs in the northern North Sea,
namely, where the main inflow site is for North Atlantic water.
In the north (>56°N), the average surface increase from 2001
to 2005 is 44 μatm, and from 2005 to 2008 the increase is
2 μatm. The southern North Sea shows much more stable in-
creases, of 22 μatm and 18 μatm. At this time of year in the
northern North Sea, pCO2 without the effect of temperature
is predominantly controlled by biology [Prowe et al., 2009].
Using this parameter pCO2@16°C to investigate the differ-
ences in production between the three years would indicate
a drop in primary productivity from 2001 to 2005 and 2008.
However, the AOU in subsurface waters in the northern
North Sea show comparable values between all three years
(36.4 μmol kg�1 in 2001, 30.1 μmol kg�1 in 2005, and 31.3
μmol kg�1 in 2008), indicating that net community production
(NCP) was similar.

4. Discussion

[22] Despite the similar fundamental patterns observed in
2001, 2005, and 2008, distinct differences occurred as a con-
sequence of different DIC mixing patterns and proportions.
In 2008, the year with the most positive NAO index (+2.1),
the most pronounced front between the two mixing regimes
occurs, where North Atlantic and German Bight waters were
on the southern side and a mix of North Atlantic and Baltic
Sea waters were on the northern side. This is caused by the
fact that both the inflows of North Atlantic [Winther and
Johannessen, 2006] and Baltic Sea [Hordoir and Meier,
2010] water into the North Sea are strongest under NAO+
conditions due to stronger westerly winds, strengthening
the anticlockwise circulation [Lenhart et al., 2004; Winther
and Johannessen, 2006]. There is subsequently an increased
flow from east to west along the isoclines at 50 m, (the
Dooley current [Dooley, 1974]), in addition to increased flow
down the west coast of the UK. When these inflows weaken
during neutral (2005) or NAO� (2001) phases, there is a less
pronounced mixing pattern and the contrast between the two
regimes is diminished with more mixing occurring in the
eastern central North Sea. The front between the north and
south is thus less distinct or vanished, as for example, visible
in the greater presence of Baltic Sea water (Figure 2) or in the
distribution of AT (Figure 1), which is unaffected by the an-
thropogenic CO2 perturbation, in contrast to the remaining
CO2 system parameters.
[23] The biogeochemical divide along the 50 m contour,

separating the northern and southern North Sea, is a well-
documented feature in CO2 distributions [Thomas et al.,
2004; Bozec et al., 2005; Prowe et al., 2009; Omar et al.,
2010]; however here, the manifestation of this divide is
shown to be strongly influenced by the NAO. The observed
mixing behavior has profound implications for the distribu-
tion of pH in the North Sea (Figures 1c–1e). The two

aforementioned mixing regimes lead to a higher pH in the
stratified northern region, where Baltic Sea and North
Atlantic inflows mix, and a lower, more acidic pH, in the
shallower southern region. When these inflows weaken dur-
ing NAO� years, evidently more thorough mixing between
these regions occurs and the pH histogram reveals a more
transitional pattern.
[24] In addition to NAO-driven changes in mixing ratios

and rates, the North Sea CO2 system is further affected
by the biogeochemical properties of its composing water
masses. This applies especially to the DIC concentrations
of the inflowing North Atlantic Ocean waters, which have
demonstrated substantial variability during the recent decade
[Watson et al., 2009; Thomas et al., 2008a; Schuster and
Watson, 2007]. The northern North Sea CO2 system shows
a substantial increase in DIC and temperature-normalized
pCO2 and decrease in pH between 2001 and 2005 (Figures 1
and 3) in comparison to that observed from 2005 to 2008.
The concomitant change in salinity with the change in DIC
throughout the water column reveals that the increase is water
mass driven. Otto et al. [1990] state that changes in salinity in
the North Sea stem from either changes in the salinity of
inflowing water or changes in runoff. A shift in the salinity-
DIC mixing diagram confirms that the DIC concentrations in
the North Atlantic end-member have increased dramatically
from 2001 to 2005, which we propose is a delayed response
to NAO-driven changes in the North Atlantic [Thomas et al.,
2008b]. This accelerated the decrease in pH and increase
in pCO2 of the North Sea beyond that anticipated from the
rise of atmospheric CO2 concentrations alone [Thomas et al.,
2007]. The DIC and salinity changes between 2005 and
2008 also demonstrated a significant correlation, but were an
order of magnitude smaller thus much less pronounced, yield-
ing similar end-member DIC concentrations for 2005 and
2008, analogous to the variable behavior observed in surface
pCO2 in the North Atlantic Ocean [Schuster et al., 2009].
[25] The same pattern was unsubstantial in the AT-salinity

mixing line. As the increase in DIC observed in the North
Atlantic, and subsequently the North Sea, is driven by air-sea
pCO2 exchange, there is no concomitant change in AT with
DIC. However, there is still some variation in the AT-salinity
mixing lines, which could be associated with the noted change
in salinity [Thomas et al., 2008a]. The NAO also exerts large
influence over precipitation patterns over Europe so that
NAO+ leads to drier conditions across Europe but wetter con-
ditions over Scandinavia [Hurrell and van Loon, 1997]. It fol-
lows that in 2008 we would expect more rainfall and runoff in
the northern area of the Baltic drainage basin, which is associ-
ated with granite rocks and has lower AT values compared to
the south [Hjalmarsson et al., 2008]. This would lead to lower
AT in 2008 compared to 2001, which is consistent with our
computed AT end-members (Figure 3b). These changes in pre-
cipitation patterns over Europe and thus riverine runoff into
the North Sea may additionally alter salinity and DIC patterns
in the southern North Sea, where the majority of riverine input
enters the North Sea. However, the riverine contribution repre-
sents just 0.5% of the water budget and 0.7% of the carbon
budget in the North Sea [Thomas et al., 2005a], which is insuf-
ficient to cause the change recorded in DIC or pCO2, although
it may have contributed to the observed variability.
[26] The northern North Sea is sufficiently deep to develop a

summer thermocline, thus facilitating phytoplankton blooms

SALT ET AL.: VARIABILITY OF NORTH SEA PH AND CO2

1590



during the productive period, which are maintained in the sur-
facemixed layer. Using the maximumwater column value of a
representative northern station of the Brunt-Väisäilä frequency
as an indicator of the mixed layer depth, we observe a very
stable, but shallower stratification with a surface mixed layer
of approximately 30m in 2001 compared to 40m in 2005
(Figure 5). Since the residence time of the waters in the
North Sea is of less than one year, there is no accumulation
of metabolic DIC (previous years’ primary production has
no effect on the current state of the North Sea). If the NCP
were the same, as it was indicated in our datasets by AOU, a
change in mixed-layer depth (MLD) would impact the ob-
served pCO2. While the biological pCO2 drawdown was on
the order of 300–330 μatm in 2001 [Thomas et al., 2005b],
a similar NCP would have caused a pCO2 drawdown of
200–250 μatm in 2005, characterized by a mixed layer depth
of 40m. This would lead to a difference of 50–130 μatm
between the two years, which is in line with the observed in-
crease of 51 μatm of temperature-normalized pCO2 (Figure 4)
in the northern North Sea. Taking the observed salinity
change into account, such an increase would correspond to
a pH decrease of 0.056.
[27] Kühn et al. [2010] have modeled a greater CO2 sink

in the northern North Sea during years of NAO� (2001)
compared to years of NAO+, which they attributed to
weaker stratification facilitating greater upward transport of
nutrients. The highest pH values and lowest pCO2 values
recorded are observed in the northern North Sea during years
of NAO�; however, we cannot ascribe this to weaker strat-
ification. The weaker stratification in 2005, associated with
cooler temperatures, demonstrates that the expression of
pH and CO2 can be exaggerated or masked by physical con-
ditions within the North Sea. The variability of the mixed
layer depth in the North Sea is controlled by a combination
of temperature and NAO [Lenhart et al., 2004] and we propose
the latter affects it through two possible processes. First, a
stronger North Atlantic inflow weakens the thermocline in

years of neutral and positive NAO, leading to less stable strat-
ification as found in 2005 and 2008. Alternatively, weaker
winds may allow the thermocline to rise during more negative
NAO conditions. In 2008, a stronger warming of the surface
waters resulted in a more stable water column with a shallower
mixed layer. This situation enhanced the NCP effect on the
surface layer pCO2. Simultaneously, the warmer waters experi-
enced in 2008 raised the pCO2, eventually leading to compara-
ble pCO2 conditions in 2005 and 2008, with 2008 showing
the warmer and shallower surface layer.
[28] In summary, our results indicate that under condi-

tions of NAO+, as in 2008, the North Sea shelf pump is
more efficient than under NAO� due to increased rates of
Atlantic and Baltic inflow into the North Sea and a strength-
ened anticlockwise circulation. The strengthened biogeo-
chemical divide between the northern and southern North
Sea means that more carbon is exported from the northern
North Sea out of the Norwegian Trench without coming
into contact with the atmosphere, which limits subsequent
outgassing of remineralized CO2 making the shelf pump
more effective. When NAO+ occurs in conjunction with a
year of higher SST, shoaling of the thermocline allows
intense areas of primary production to develop. This causes
lower pCO2 and higher pH in surface waters of the northern
North Sea; however, this is not shown to have any effect on
total carbon uptake. In addition, any changes to the biogeo-
chemical content or quantity of the source water masses
contributing to the North Sea can intensify or diminish
these expressions.
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