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1 | INTRODUCTION

Abstract

Intertidal habitats (i.e. marine habitats that are (partially) exposed during low tide) have
traditionally been studied from a shorebird-centred perspective. We show that these
habitats are accessible and important to marine predators such as elasmobranchs (i.e.
sharks and rays). Our synthesis shows that at least 43 shark and 45 ray species, of which
54.5% are currently threatened, use intertidal habitats. Elasmobranchs use intertidal
habitats mostly for feeding and as refugia, but also for parturition and thermoregula-
tion. However, the motivation of intertidal habitat use remains unclear due to limita-
tions to observe elasmobranch behaviour in these dynamic habitats. We argue that
elasmobranch predators can play an important role in intertidal food webs by feed-
ing on shared resources during high tide (i.e. ‘high-tide predators’), which are acces-
sible and also consumed by terrestrial or avian predators during low tide (i.e. ‘low-tide
predators’). In addition, elasmobranchs are able to change the bio-geomorphology of
intertidal habitats by increasing habitat heterogeneity due to feeding activities and
may also alter resource availability for other consumers. We discuss how the eco-
logical role of elasmobranchs in intertidal habitats is being affected by the continued
overexploitation of these species, and conversely, how the global loss of intertidal
areas poses an additional threat to an already vulnerable taxonomic group. We con-
clude that studies on intertidal ecology should include both low-tide (e.g. shorebirds)
and high-tide (e.g. elasmobranchs) predatory guilds and their ecological interactions.
The global loss of elasmobranch predatory species and intertidal habitat provides ad-

ditional compelling arguments for the conservation of these areas.
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(i.e. sharks and rays). Coastal reefs, estuaries, saltmarshes and soft-

bottom flat habitats play an important role in the life cycle of many

Coastal habitats are vital to both coastal and oceanic marine spe- species, for example as nursery habitats for early life-stages, feeding

cies, such as marine mammals, teleost fishes and elasmobranchs areas or as sites for mating or spawning/parturition (Knip et al., 2010,
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Sievers et al., 2019). Among coastal habitats, the intertidal harbours
some of the most dynamic habitats in the world. The intertidal is
the transition zone between land and sea, between low and high
tide level, where the same habitat is exposed during low tide and
submerged during high tide (Figure 1a). With a global distribution,
intertidal ecosystems deliver important ecosystem services, such
as food production and coastal protection (Beninger, 2019; Koch
et al.,, 2009; Murray et al., 2019). However, intertidal ecosystems
are threatened by coastal development, sea level rise and coastal
erosion. Since 1984 approximately 16% of the global areal of in-
tertidal flat areas has been lost (Murray et al., 2019). The ongoing
degradation of these habitats threatens its associated species, some
of which already face significant anthropogenic disturbances like
overexploitation, pollution and climate change (Halpern et al., 2008;
Lotze et al., 2006; Lu et al., 2018; Pendleton et al., 2012).

Intertidal habitats are constantly influenced by the rhythm of
the tide. Compared with (sub)tidal habitats, which are always sub-
merged, species using the intertidal face additional challenges and
constraints as a result of the never-ending cycle of the incoming
and receding tide (Figure 1). Intertidal habitats are only exposed or
submerged for a certain period of time, depending on the elevation
of the habitat and the local tidal regime. For example, high inter-
tidal habitats such as saltmarshes are only submerged occasion-
ally, whereas habitats like intertidal flats and mangroves are often
exposed for a certain number of hours each day (Figure 1). These
changes in tidal phases are often influenced by strong hydrody-
namic forces and severe changes in temperature and/or salinity (e.g.
Hernandez et al., 2002; Smith, 1956). The interplay of tides in areas
bordering land and sea makes these habitats accessible to both ma-
rine and terrestrial/avian species (Figure 1c).

The value of intertidal habitats has been recognized for
species groups such as migratory wading birds (Deppe, 1999;
Piersma et al, 1993), marine mammals (Vermeulen, 2018;
Wilson & Jones, 2018), teleost fishes (Deppe, 1999; Gibson &
Yoshiyama, 1999) and even for some terrestrial mammals (Carlton
& Hodder, 2003). For instance, migratory wading birds use intertidal
flats as stop-over sites between wintering and breeding grounds
along their migratory flyways as feeding areas to profit from the high
availability of benthic prey species (Piersma et al., 1993; Zwarts &
Piersma, 1990). Marine mammals such as small cetaceans and pin-
nipeds use intertidal habitats for feeding (Vermeulen, 2018) and for
resting (Wilson & Jones, 2018), whereas terrestrial mammals benefit
from the extra feeding opportunities that intertidal habitats provide
(Carlton & Hodder, 2003). During high tide, marine species such
as teleost fishes use intertidal habitats for feeding, refuge and as
a nursery habitat (Gibson, 1986; Gibson & Yoshiyama, 1999). This
often includes early life-stages of many commercial and pelagic fish
species (Jin et al., 2007; Rangeley & Kramer, 1995).

Although the importance of coastal and nearshore habitats to elas-
mobranch species is generally well understood (Heithaus et al., 2010;
Knip et al., 2010), less is known about the use of tidal habitats (i.e.
habitats strongly influenced by tidal water movements). Furthermore,
knowledge of intertidal habitat use (i.e. habitats that are only available
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during a certain phase in the tidal cycle due to exposure) is often com-
pletely absent or remains undocumented. This is surprising, as these
species may play an essential role in the functioning of these marine
ecosystems (Atwood et al., 2015; Heupel et al., 2014), and intertidal
habitats potentially allow elasmobranchs to indirectly interact with
other (terrestrial and/or avian) predator guilds.

Ecosystem functioning (i.e. defined as the fluxes of material
and energy within an ecosystem (Brandl et al., 2019)) is sustained
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FIGURE 1 Intertidal habitats are strongly influenced by the tide, being submerged and exposed at least once per day (a). Compared to
subtidal (i.e. always submerged habitat) or supratidal habitats (i.e. always exposed habitat), intertidal habitats are submerged for a certain
amount of time each day (b). These habitats are used by species adapted to these challenges, such as mobile sharks, rays and teleosts which
use intertidal habitats during high tide and wading shorebirds which use the same habitat during low tide (c). Larger-bodied sharks, rays and

teleosts are restricted to subtidal habitats.

by species interacting within food webs and their abiotic environ-
ment (Boero & Bonsdorff, 2007; Brandl et al., 2019). Keystone spe-
cies often play an important role in the functioning of ecosystems,
by maintaining diversity and structure of ecological communities
(Mills & Doak, 1993; Power et al., 1996). Within marine food webs,
large-bodied, mobile sharks have been recognized as top-predators
(Heupel et al., 2014; Navia et al., 2016), and smaller shark and ray
species often occupy meso-predatory positions (Navia et al., 2016).
Both top-predatory sharks and meso-predatory rays have been
identified as having keystone roles on coral reef and intertidal hab-
itats, respectively (Heithaus et al., 2010; Power et al., 1996; Ruiz &
Wolff, 2011). According to recent estimates, 31% of all shark species
and 36% of all ray species are currently threatened with extinction
(Dulvy et al., 2021), jeopardizing their key-role in the functioning
of marine ecosystems (Atwood et al., 2015; Ferretti et al., 2010;
Hammerschlag et al., 2019).

We aimed to address the knowledge gaps surrounding the inter-
tidal habitat use of elasmobranchs. We provide a global synthesis of
available information on intertidal habitat use by sharks and rays,
in order to describe how these species use these habitats and to
conceptualize how these habitats allow elasmobranchs to interact
with other (low tide) predatory guilds. Specifically, we aimed to (1)
describe which elasmobranch species and which life stages of their
populations use intertidal habitats and for what purpose, (2) describe
novel perspectives on how shark and rays potentially interact with
other species and predator guilds, with a focus on potential trophic
interactions between different predatory guilds using intertidal hab-
itats and (3) discuss how the removal of sharks and rays from these
areas could undermine the functioning of intertidal ecosystems and
their communities, and conversely how the loss of intertidal habitats
could affect sharks and rays.

2 | METHODS

To identify literature describing the intertidal habitat use by elasmo-
branchs, we performed a literature search on the Web of Science.
This literature search was conducted using a combination of the
search terms ‘elasmobranch®, ‘shark*, ‘ray*, ‘skate’, ‘batoid*’ and
‘chondrichthyan* with ‘tidal*’ and ‘intertidal*. After deleting ir-
relevant studies (i.e. studies outside the scope of this study), this
search resulted in 150 studies. Secondly, we included additional
literature based on the initial literature search by following the
snowball principle (see Lecy & Beatty, 2012), resulting in a total of
403 studies to be included in our review process. Each study was
assessed by two different researchers and was only included if the
study described elasmobranchs utilizing intertidal habitats, defined
as shallow coastal habitats that are influenced by the tidal cycle, that
emerge during low tide and are submerged during high tide (i.e. dif-
fering from tidal habitats that are not necessarily exposed during
low tide; Table 1). These habitats included soft-bottom mudflats
and sandflats, including beaches, and vegetated soft-bottom flats
(e.g. intertidal seagrass beds, mangroves or saltmarshes), and hard-
bottom reef flats that are exposed for a certain time of the day (i.e.
depending on the tidal regime and lunar cycle). Additionally, we
added studies that describe species utilizing tide pools, tidal creeks
and channels which connect intertidal flat habitats, such as within
large intertidal mangrove and saltmarsh areas (Table 1). We excluded
studies for which it was uncertain if the focal species used the in-
tertidal part of the study resulting in a conservative selection of
119 publications describing intertidal habitat use of elasmobranchs.
For each study, we then extracted observations of species using
one or more of the defined habitats. For each species we then de-
scribed all defined habitats for which habitat use of that species was
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TABLE 1 Definitions of intertidal habitats, with a differentiation of soft- and hard-substrate flats, tidal creeks and tidal pools.

Intertidal habitat: shallow coastal habitat that is influenced by the tidal cycle, emerging during low tide and submerged during high tide

Soft-bottom flats

Sand or mud flats regularly exposed during low tide while submerged during high tide. This

includes vegetated soft-bottom flats (e.g. intertidal seagrass, mangroves or saltmarshes)

Reef flats
Tide pools

Coral or rocky reef flats regularly exposed during low tide while submerged during high tide

A water body isolated during low tide and (partially) connected with surrounding waters during

high tide. These include tide pools and tidal lagoons

Tidal creeks and channels

Creeks and channels which are dependent on tidal flow and connect or flow through intertidal

areas. Creeks and channels can partially or completely fall dry during low tide

Note: Definitions were based on Rafaelli and Hawkins (1999), Mitra and Zaman (2016), and Kaiser et al. (2020).

documented, which life stages of the species use these habitats, and
which behaviour was observed or hypothesized to motivate their
intertidal habitat use (Table S1). Habitats were classified according
to their definitions (Table 1). In instances where a study described
a species using multiple intertidal habitats, all used habitats were
recorded. Life stages (when specified) were classified as neonates,
young-of-the-year (YOY), juveniles or adults. If multiple life stages of
a species were documented to use a habitat, all were documented.
We classified behaviour into four non-exclusive categories: feeding,
refuge, reproduction and thermoregulation. If more than one moti-
vation for intertidal habitat use was hypothesized in the study, all of
these motivations were recorded. We classified feeding behaviour if
authors could determine that the species used the habitat for forag-
ing or predation. Reproduction indicates that the area was used for
mating, parturition or egg-laying and thermoregulation was used if
authors indicated the elasmobranch species use of area to regulate

their body temperature.

3 | INTERTIDAL HABITAT USE BY SHARKS
AND RAYS

We selected 119 studies from 20 different countries covering 6 con-
tinents that adequately described elasmobranchs utilizing intertidal
habitats (Figure S1, Table S1). The large majority of studies were con-
ducted in Oceania (62.5%) and North America (23.3%), whereas the
lowest number of studies were conducted in South America (1.7%),
Africa (4.7%) and Europe (0.4%). This contrasts with the global dis-
tribution of both intertidal areas and elasmobranch species. The
majority of intertidal habitats are located in East Asia (e.g. China,
Malaysia, etc.) and Western Europe (Murray et al., 2019, 2022),
whereas global hotspots for coastal shark and ray biodiversity are
located off the northern and eastern coast of Australia, the Indo-
West Pacific, Japan, China, Taiwan, the southwest Indian Ocean and
western Africa (Derrick et al., 2020, Dulvy et al., 2021; Stein et al.,
2018). These differences are likely due to the relatively higher num-
ber of elasmobranch-focused studies conducted in Australia and
the United States (Momigliano & Harcourt, 2014) or due to limited
(published) research in other regions due to economic (e.g. limited
resources and capacity) and social barriers (e.g. limited integration
and of non-English researchers) (Graham et al., 2022). This imbal-
ance maintains existing knowledge gaps related to the ecology of

elasmobranchs within large intertidal areas, such as the trophic ecol-
ogy and spatiotemporal use of intertidal habitats, and generally how
these habitats contribute to the overall fitness of a (specific life stage
of) elasmobranch species. The lack of studies on intertidal habitat
use of elasmobranchs in European waters can be caused by the great
decline that these species experienced in the region due to overfish-
ing and habitat degradation. For example, once common, elasmo-
branch species are now rare in the Wadden Sea, the largest intertidal
area in the world (Wolff, 2005).

3.1 | Species using intertidal habitats

Selected studies describe a total of 232 observations of elasmo-
branch species using intertidal habitats, with the number of obser-
vations divided equally among sharks (n = 116) and rays (n = 116).
Observations describe intertidal habitat use of 88 elasmobranch
species belonging to 25 different families (Figure 2). The three
most frequently described species are the blacktip reef shark
(Carcharhinus melanopterus, Carcharhinidae; n = 15), sicklefin lemon
shark (Negaprion acutidens, Carcharhinidae; n = 9), and the giant shov-
elnose ray (Glaucostegus typus, Glaucostegidae; n = 9). Most species
described in the selected studies belonged to the families of requiem
sharks (Carcharhinidae, 31.9%), stingrays (Dasyatidae, 23.3%), saw-
fishes (Pristidae, 6.0%), hammerhead sharks (Sphyrnidae, 4.3%) and
houndsharks (Triakidae, 4.3%).

Early life stages use intertidal habitats more compared to adult
elasmobranchs (Figure S2a). The high percentage of neonates (7.4%),
young-of-the-year (YOY, 5.3%) and juveniles (38.5%) compared to
adults (25.7%) using the intertidal suggest that these habitats are im-
portant habitats for early life stages of elasmobranchs, providing both
refuge and feeding opportunities. The discrepancy between juveniles
and adults using intertidal habitats is more evident for large-bodied
shark species (e.g. requiem sharks, hammerhead sharks and nurse
sharks, Ginglymostomatidae) compared to small-bodied sharks (e.g.
houndsharks and longtailed carpetsharks, Hemiscyliidae) and rays
(e.g. stingrays). This suggests that intertidal habitats may be an import-
ant component of coastal nursery areas of these species to minimize
the risks posed by adult conspecifics or other predators (Heupel et al.,
2007; Martins et al., 2018; Speed et al., 2010). Previous studies under-
line the importance of nearshore habitats for early life stages of sharks
(Chin et al., 2016; Knip et al., 2010) and rays (Martins et al., 2018;

95UB017 SUOWILIOD 3A IR0 3|eddde auy Ag pausenob a1e saoife WO ‘@SN JO SaIn1 10} Aeiq1T8UIIUO AB|IM UO (SUO IPUCD-PUR-SWIB}L0D A8 | 1M ARe4q | U1 |UO//SONY) SUORIPUOD PUe SW.B L 38U} 89S *[£202/€0/20] Uo Ariq1TauluO AB|IM 'SPUR|RUIBN 8URIU00D A GELZT 4/TTTT OT/I0p/W00 A3 | 1M Alq 1[eul U0/ SANY WO14 papeo|umoq ‘0 ‘6.62297T



LEURS ET AL.

Hemiscylliidae (3.4%

Triakidae (4.3%)i

7

Sphyrnidae (4.3%)

p=

Sharks (50.0%)
n = 43 (60.5%)

AN

Carcharhinidae (31.9%)

Urotrygonidae (0.9%) 7

Urolophidae (0.9%)

Trygonorrhinidae (0.9%)
Gymnuridae (0.9%)
Rhinopteridae (1.7%)

I

Rays (50.0%)
n = 45 (48.9%)

s 5
g WiLEY-L

Hemigaleidae (0.9%)
Odontaspididae (0.9%)
Scyliorhinidae (0.9%)

Heterodontidae (0.4%)

Orectolobidae (0.4%)
Squalidae (0.4%)
i 0,

J—Stegostomatldae (0.4%)

Rhinidae (2.6%)
Aetobatidae (2.2%)

Rhinobatidae (1.7%)

Rajidae (1.7%)

FIGURE 2 Shark (blue) and ray (red) families for which intertidal habitat use has been confirmed. Percentages indicate the relative
number of observations of a family in the reviewed studies. The different species for which intertidal habitat use was confirmed are
indicated by the different segments (black lines within each family), colours indicate the taxonomic family. The total number of species
confirmed to use intertidal habitats are given for both sharks and rays, with the proportion of threatened species given in parenthesis.

Vaudo & Heithaus, 2012). These results show that early-life stages
possibly rely more on intertidal habitats than adult elasmobranchs.

Elasmobranchs were mostly documented in soft-bottom in-
tertidal habitats (56.9%), with most observations being stingrays
(31.8%, Dasyatidae) and requiem sharks (22.9%, Carcharhinidae)
(Figure S2b). Tidal creeks and channels were mostly used by re-
quiem sharks (61.9%) and sawfishes (11.9%), and reef flats mostly
by requiem sharks (41.2%, Carcharhinidae), stingrays (23.5%,
Dasyatidae) and longtailed carpetsharks (14.7%, Hemiscylliidae).
Tidal pools and lagoons (4.0%) were documented to be used by spe-
cies like the blacktip reef shark, nurse shark (Ginglymostoma cirratum,
Ginglymostomatidae) and shortnose guitarfish (Zapteryx brevirostris,
Trygonorrhinidae).

Sharks and rays use the productive intertidal mainly for feed-
ing, but also as refuge, for reproduction and thermoregulation
(Figure 3a). Elasmobranch species use these highly dynamic habitats
as soon as these become available with the incoming tide, moving in
from connected habitats. Utilization of intertidal habitats by elas-
mobranchs peaks during high tide (Ackerman et al., 2000; Campos
et al., 2009; Carlisle & Starr, 2010; Matern et al., 2000). During re-
ceding tide, elasmobranchs move to adjacent (edge) habitats such
as the shallow subtidal, tidal creeks or channels to seek refuge or
to feed during the low-tide phase (Brinton & Curran, 2017; Campos
et al., 2009; Martins et al., 2020). Some elasmobranch species have
been documented to remain in shallow (semi-)enclosed waterbodies
like tide pools or lagoons during low tide (Figure 3a).
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3.2 | Feeding in intertidal habitats

Most studies described the feeding behaviour of elasmobranchs in
intertidal habitats (32.3%, Figure S2c). Stingrays (57.4%, Dasyatidae)
and eagle rays (10.3%, Myliobatidae) accounted for most feeding ob-
servations by rays, as these species often leave distinctive feeding
pits on intertidal soft-bottom flats (e.g. Hines et al., 1997; O'Shea
et al., 2012; Takeuchi & Tamaki, 2014) (Figure 3a). Of all sharks, in-
tertidal feeding behaviour was mainly described for requiem sharks
(62.1%, Carcharhinidae), houndsharks (24.1% Triakidae) and ham-
merhead sharks (10.3% Sphyrnidae). Feeding activities of elasmo-
branchs may have direct (i.e. removal of prey species) and indirect
effects (i.e. changing biogeomorphology, biogeochemistry) on inter-
tidal habitats.

3.2.1 | Direct trophic effects

In nearshore ecosystems, large-bodied sharks like the great
hammerhead shark (Sphyrna mokarran, Sphyrnidae), tiger shark
(Galeocerdo cuvier, Carcharhinidae) and bull shark (Carcharhinus
leucas, Carcharhinidae), occupy top-predatory niches and can con-
trol the abundance of lower trophic species (Atwood et al., 2015;
Hammerschlag et al., 2019; Heithaus, 2001; Navia et al., 2016). In
coastal areas, large sharks are often defined as generalist predators
(e.g. Hussey et al., 2015; Nowicki et al., 2019), with a diet consist-
ing of large teleost fishes, rays, smaller shark species and sea turtles
(Figure 3b). Depending on the habitat, ontogenetic changes, and in-
dividual specialization, large sharks can also be specialist predators
(Matich et al., 2011). For example, great hammerhead sharks were
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found to be specialized shark and ray predators in eastern Australia
(Raoult et al., 2019). The niches of some shark species are wider and
resilient to (environmental) changes (Munroe et al., 2014). Our re-
sults show that adults of large-bodied shark species rarely use in-
tertidal habitats. This could be explained by the physical constraints
of shallow habitats for large-bodied sharks, and a lack of larger prey.
However, Roemer et al. (2016) shows that adult great hammerhead
sharks venture into shallow waters to feed on small sharks or eagle
rays. This suggests that large sharks—as vagrant predators occupying
atop-predatory position (Heupel et al., 2014; Navia et al., 2016)—may
use shallow habitats like the intertidal opportunistically, but spend
the large majority of time in (adjacent) subtidal waters (Figure 1c).
As large sharks can control prey abundance through top-down pro-
cesses (e.g. Bascompte et al., 2005), the removal of large sharks is
hypothesized to release prey species from predation, causing an in-
crease in their abundance (Atwood et al., 2015; Ferretti et al., 2010;
Myers et al., 2007; Ward & Myers, 2005), but these predator-prey
dynamics need further investigation (e.g. Grubbs et al., 2016).

We found that intertidal habitats are mostly used by early life
stages and small-bodied elasmobranchs (e.g. George et al., 2019;
Knip et al., 2011), which typically occupy a meso-predatory posi-
tion in coastal food webs (Flowers et al., 2021; Navia et al., 2016).
Ray species feeding in intertidal habitats can have a generalist or
specialist feeding strategy. For example, generalist species like the
New Zealand eagle ray (Myliobatis tenuicaudatus, Myliobatidae),
bat ray (Myliobatis californicus, Myliobatidae), the American cown-
ose ray (Rhinoptera bonasus, Rhinopteridae) and Indonesian sharp-
nose ray (Telatrygon biasa, Dasyatidae) consume a wide variety of
prey species as part of their opportunistic feeding strategy (Collins
et al., 2007; Gray et al., 1997, Hines et al., 1997; Lim et al., 2018,).
Specialist meso-predators like the leopard shark (Triakis semifasciata,
Triakidae) feed primarily on a narrow range of prey species, limited to
a diet consisting of a small number of polychaete or bivalve species
(Ackerman et al., 2000). Ajemian and Powers (2012) show that the
feeding strategy of American cownose rays possibly switch between
specialist and opportunistic generalist feeding strategies depending
on location and prey availability. Adult bat rays consume larger and
harder prey (e.g. large bivalves and crustaceans), compared to juve-
nile conspecifics, which have a more generalist feeding strategy and
feed on a wider variety of prey (e.g. small bivalves and shrimp) (Gray
etal.,, 1997). A similar ontogenetic shift was shown for other ray and
benthic shark species (Bethea et al., 2007; Clements et al., 2022; Lim
et al., 2018). Hollensead et al. (2016) describes that juvenile small-
tooth sawfishes (Pristis pectinate, Pristidae) most likely use the edge
of intertidal flats to ambush schools of mullet (Mugilidae) leaving the
intertidal habitat during receding tide. Collectively, meso-predatory
elasmobranchs primarily feed on crustaceans, bivalves, polychaetes
and small teleosts in intertidal habitats during high tide (Ackerman
et al., 2000; Haeseker & Cech, 1994; Talent, 1982) (Figure 3b). These
meso-predators can affect (benthic) prey abundance through direct
predation (O'Shea et al., 2012; Pridmore et al., 1990; Reidenauer
& Thistle, 1981). For instance, a local increase of red stingrays
(Hemitrygon akajei, Dasyatidae) in Japan was directly linked to
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declines in ghost shrimp (Neotrypaea harmandi, Callianassidae) pop-
ulations (Flach & Tamaki, 2001; Takeuchi et al., 2013; Takeuchi &
Tamaki, 2014).

3.2.2 | Indirect effects of elasmobranch predation

Depending on sediment characteristics and water turbidity, feeding
activity of elasmobranchs can be monitored both during high and
low tide. On more coarse sediment and hard-bottom substrates
feeding traces are not preserved, limiting observations of elasmo-
branch feeding to high tide observations (Kanno et al., 2019; Lim
et al., 2018). If water visibility allows these methods can be used to
document feeding activity and the duration of intertidal habitat use
(Kanno et al., 2019).

Feeding activity of elasmobranchs during high tide on soft-
bottom intertidal flats might still be visible during low tide
(Figure 3a). In these areas, the feeding behaviour of stingrays and
eagle rays can leave distinct sediment depressions or excavations,
so-called ‘ray pits’ (e.g. Grant, 1983; Lynn-Myrick, 1996; O'Shea
et al., 2012; Takeuchi & Tamaki, 2014). With their feeding behaviour,
rays can change the biogeomorphology of soft-bottom intertidal
habitats through bioturbation and thereby act as ecosystem engi-
neers (Kristensen et al., 2012). O'Shea et al. (2012) determined that
up to 42% of the soft-sediment habitat in Mangrove Bay (Australia)
is reworked by stingrays every year. On Debidue Flat (United States)
researchers estimate excavation activity by rays to turn over the top
layer of the entire flat every 100 to 1000 days (D'Andrea et al., 2004),
and in Bahia La Choya (Mexico) rays only need about 72 days to over-
turn the entire top layer (Lynn-Myrick, 1996). Differences in these
turnover rates between studies are dependent on ray densities, spe-
cies, perceived risk (discussed in 3.3. ‘Risk effects and avoidance in
intertidal habitats’) and methodological differences across studies
(Flowers et al., 2021). The increased bioturbation by rays can poten-
tially lead to changes in biogeochemistry as a result of bioturbation
effects on grain size and sediment stability (Laverock et al., 2011,
Lohrer et al., 2004; Meysman et al., 2006). Increased bioturbation
can also lead to an increase in primary production in intertidal sys-
tems (Giorgini et al., 2019), and cause changes in benthic species
composition (Thrush et al., 2006). In addition, newly formed exca-
vations by benthic rays can provide new habitats for other organ-
isms that are using the intertidal. As water in ray pits often remains
during low tide, these can act as habitat for smaller, secondary users
like small teleost fish, gastropods and (burrowing) crabs (O'Shea
et al., 2012; Zajac et al., 2003).

3.2.3 | Predation risk effects and avoidance among
elasmobranchs

Shallow, nearshore areas are known to provide refugia for many
(early life stages of) fish species, including elasmobranchs (Knip
et al., 2010), which are prone to predation from large-bodied
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(conspecific) predators in adjacent subtidal waters. Our results
show that early life stages of large-bodied elasmobranchs and small-
bodied elasmobranchs use the intertidal as a refuge when tides
are high (Cerutti-Pereyra et al., 2014; Pierce et al., 2011; Vaudo &
Heithaus, 2011). Especially vegetated intertidal habitats such as man-
groves and seagrass beds are thought to offer increased protection
and lower predation risks, especially in ray species. After feeding ac-
tivity, refuge behaviour and risk aversion was the most common mo-
tivation provided for intertidal habitat use by elasmobranch species
(15.5%, Figure S2c). Among ray species, refuge was mostly reported
for stingrays (50.0%, Dasyatidae) and sawfishes (25.0%, Pristidae).
Shark species using intertidal refugia were mostly young individu-
als of requiem shark (79.1%, Carcharhinidae) and hammerhead shark
species (12.5%, Sphyrnidae). However, authors often provide limited
evidence of active prey avoidance, and the motivation of habitat se-
lection remains an important knowledge gap for shallow (intertidal)
habitats (Flowers et al., 2021; Knip et al., 2010). In addition, the pres-
ence of predators can induce predation risk effects in other, lower
trophic species, causing changes in their behaviour, habitat selec-
tion and limiting foraging time (Flowers et al., 2021; Hammerschlag
etal., 2022; Heithaus & Dill, 2002; Morrissey & Gruber, 1993; Peacor
et al., 2020; Wirsing et al., 2007). The presence of large-bodied pred-
ators in subtidal waters can potentially increase the usage of adjacent
intertidal areas as feeding refugium by meso-predatory species as

soon as these are accessible in the tidal cycle.

3.2.4 | Predation risk effects induced by
elasmobranchs as predators

Besides facing predation risk effects from larger (conspecific) preda-
tors, meso-predatory elasmobranchs may simultaneously induce
predation risk effects among prey communities (Flowers et al., 2021;
Rasher et al., 2017). Meso-predatory rays induce behavioural and
physiological responses among prey species and communities (Flowers
etal., 2021). Ex-situ experiments show that the presence of rays influ-
ences the movement (Barrios-O'Neill et al., 2017) and feeding times of
mussels (Castorani & Hovel, 2016). Sharks and rays utilizing intertidal
habitats are forced to move in coherence with the tide, causing the risk
effects induced by these predators on intertidal prey to be linked with
the tidal cycle (Figure 3c). For example, Rasher et al. (2017) found that
the presence of reef-associated sharks significantly lowered browsing
and grazing of herbivorous fish during times that sharks had access to
the habitat (i.e. high tide). The risk effects for intertidal prey species do
not cease when predatory fish and elasmobranchs lose access to these
habitats, as the predation risk effects induced by terrestrial and avian
predators increases with the lowering tide (Figure 3c).

3.3 | Stranding risk effects and avoidance

Marine predators such as sharks and rays using intertidal habitats
are faced with an additional risk: the risk of stranding upon tidal flat

emergence with the receding tide (Brinton & Curran, 2017; Campos
et al., 2009). When the receding tide sets in, the stranding risk for
sharks and rays seeking refuge or feeding in intertidal habitats in-
creases (Figure 3c) (Wosnick et al., 2022). Sharks feeding in intertidal
habitats are thought to limit use of the intertidal until the incoming
tide reachesits highest levels, leaving the intertidal as soon as the tide
starts to recede, possibly by sensing barometric changes (Campos
et al., 2009; Rasher et al., 2017). For example, brown smoothhound
sharks (Mustelus henlei, Triakidae), a species that is vulnerable to
strandings (Wosnick et al., 2022), show more directed movements
to leave the intertidal upon the turn of the tide (Campos et al., 2009).
To reduce the risk of stranding and/or predation, rays exert directed
tidal movements during receding and incoming tidal phases (Brinton
& Curran, 2017; Davy et al., 2015; Martins et al., 2020). However,
these directed movements could also be motivated due to increased
feeding opportunities (Kanno et al., 2019). Hence, intertidal habitat
utilization by (early life stages of) sharks and rays is a trade-off be-
tween lower predation risk effects, increased feeding opportunities
and the risk effects of stranding (Figures 1 and 3).

3.4 | Reproduction and parturition in
intertidal habitats

Sharks and rays are known to use nearshore habitats for mating (e.g.
Smith, 2005), gestation (e.g. Jirik & Lowe, 2012), parturition (e.g.
Feldheim et al., 2014; Mourier & Planes, 2013) and oviparity (e.g. Day
et al., 2019). Our results show that some sharks and rays use inter-
tidal habitats for reproduction-related behaviour. Among rays, this
has mostly been described for pelagic eagle ray (25.0%, Aetobatidae)
and stingray (16.7%, Dasyatidae) species. Reproductive behaviour
as motivation for intertidal habitat use of sharks has mostly been
described for requiem sharks (46.2%, Carcharhinidae), hammerhead
sharks (23.1%, Sphyrnidae) and houndsharks (15.4%, Triakidae).
Smith (2005) described that leopard sharks mate on intertidal soft-
bottom flats in California. Shortnose guitarfish potentially use tide
pools for parturition (Wosnick et al., 2019). This limited evidence
suggests that some shark and ray species use the intertidal for re-
productive purposes, to maximize mating success, maximize gesta-

tional development and for increased survival of egg cases.

3.5 | Thermoregulation in intertidal habitats

Abiotic factors play animportant role as drivers of distribution, move-
ment and habitat selection in like sharks and rays (Schlaff et al., 2014).
As most shark and ray species are ectotherms, ambient tempera-
tures directly influence metabolic and physiological processes and
are therefore considered one of the main drivers of their distribu-
tion, movement and habitat selection (Bernal et al., 2012; Morrissey
& Gruber, 1993; Schlaff et al., 2014). Elasmobranchs select shallow
coastal waters due to their higher temperature to increase digestion
rates (Papastamatiou et al., 2015), (embryonic) growth rates and to
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shorten gestation times (Jirik & Lowe, 2012; Wosnick et al., 2019).
Our review shows that sharks and rays might select intertidal habi-
tats for thermoregulatory purposes, as intertidal water tempera-
tures are often higher than adjacent subtidal waters (Bridges, 1993;
Hernandez et al., 2002). However, only a limited number of studies
describe behavioural thermoregulation of sharks and rays in inter-
tidal habitats. For stingrays, requiem sharks and houndsharks, two
studies describe thermoregulation in intertidal habitats for each of
the species' groups. Thermoregulation of sawfishes, giant guitar-
fishes (Glaucostegidae), eagle rays, wedgefish (Rhinidae) and round
stingrays (Urotrygonidae) was only described in one study of each
of these families. For example, Jirik and Lowe (2012) describe how
pregnant round stingrays (Urobatis helleri, Urotrygonidae) use inter-
tidal habitats in months of high water temperatures to increase em-
bryonic development. Di Santo and Bennett (2011) describe that the
Atlantic stingray (Hypanus sabinus, Dasyatidae) may use the thermal
variability across habitats to maximize energy uptake by balancing
evacuation and absorption rates. This may cause some ray species
to use warmer habitats like the intertidal to regulate digestion rates.

Differentiating between different drivers of intertidal habitat
use in sharks and rays is challenging due to existing knowledge gaps
caused by the challenges of studying these species in such highly
dynamic habitats. It is likely that intertidal habitat selection is an in-
terplay of different biotic and abiotic drivers, in which abiotic drives
such as salinity, water temperature and emergence time of the hab-

itat likely play a key-role.

3.6 | Physiological adaptations to the challenges of
intertidal habitat use

The reason sharks and rays select intertidal habitats is equivocal,
with the most likely motivation for intertidal habitat selection being
a combination of lower predation risk effects, and increased feed-
ing opportunities. However, elasmobranchs using these shallow and
highly dynamic habitats are also faced with extremes in environmen-
tal factors like fluctuations in temperature, salinity, pH and oxygen
levels (Lam et al., 2005). These challenges require specific physi-
ological adaptations to enable an organism to use intertidal habitats.
Intertidal habitats are often located in estuaries with associated
fluctuations in salinity due to freshwater outlets (Murray et al., 2019)
and high evaporation rates (Lam et al., 2005; Wheatly, 1988). Our
overview shows that species using intertidal habitats are often eu-
ryhaline species, tolerating wide salinity ranges (Martin, 2005). For
example, we show that euryhaline species such as the bull shark,
the speartooth shark (Glyphis glyphis, Carcharhinidae), stingray spe-
cies including the Atlantic stingray (Hypanus sabinus, Dasyatidae) and
sawfish species like the largetooth sawfish (Pristis pristis, Pristidae)
often use intertidal areas (De Vlaming & Sage, 1973; Martin, 2005).
These species are able to tolerate wide ranges of salinities due to
their ability to secrete solutes and therefore maintain osmolarity in
habitats with lower salinities or even with large freshwater influxes
(Ballantyne & Robinson, 2010; Chew et al., 2006). Some species of
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elasmobranchs have higher temperature tolerances compared to
other species or even compared to conspecifics in other life stages.
This allows these species to adapt to the high temperature fluctua-
tions of intertidal habitats. For example, juvenile ribbontail stingrays
(Taeniura lymma, Dasyatidae) have a small thermal niche with high
temperature preferences to sustain high temperature fluctuations in
their (intertidal) nursery areas. Sustaining these high temperatures
can separate juveniles from older conspecifics in deeper and cooler
waters (Dabruzzi et al., 2013). Another example of how some elasmo-
branch species is adapted to use intertidal habitats is the use of tide
pools and intertidal reef flats by the epaulette shark (Hemiscyllium
ocellatum, Hemiscylliidae). Oxygen levels in these tide pools can drop
to as low as 30% of air saturation during low tide phases (Kinsey &
Kinsey, 1967). Epaulette sharks have a high hypoxic tolerance, sus-
taining oxygen levels as low as 5% of air saturation without serious
functional impairments (Wise et al., 1998) or even anoxic conditions
for up to one hour (Nilsson & Ostlund-Nilsson, 2006; Renshaw et al.,
2002). Moreover, as intertidal habitats force organisms continuously
to move in coherence with the tide, this may select more mobile spe-
cies (e.g. small shark species, juvenile sharks) or species morphologi-
cally adapted for to use shallow (benthic) habitats to be able to move
in proximity to the flood line (e.g. benthic rays). Our review shows
that the majority of species using intertidal habitats are either ben-
thic rays or small-bodied/juvenile mobile shark species.

4 | ECOLOGICAL INTERACTIONS IN
INTERTIDAL HABITATS: A SHARK AND RAY
PERSPECTIVE

Traditionally, ecological interactions in the intertidal have been con-
sidered from a terrestrial and shorebird perspective, the low-tide
predators of intertidal areas (Beninger, 2019). Shorebirds occupy a
central niche in intertidal food webs and are considered one of the
most important predator guilds in the intertidal (Kuwae et al., 2012;
Mathot et al., 2019). Through this global synthesis, we have shown
that it is very likely that (meso-)predators such as sharks and rays
(i.e. high-tide predators) occupy a similar central niche in intertidal

food webs and should therefore be considered in intertidal ecology.

4.1 | Benthic primary consumers

Within the intertidal, the most abundant and common prey species
groups are crustaceans, bivalves, polychaetes and benthic teleosts
(Jing, Ma, et al., 2007; Philippe et al., 2016; Pridmore et al., 1990)
(Figure 3b). These prey species occur in high-density patches or are
dispersed across intertidal habitats, creating distinct feeding land-
scapes for predators. These prey species are accessible to avian and
terrestrial predators during low-tide phases and are accessible to
meso-predators like benthic rays, small-bodied sharks and teleosts
during high tide (Figure 3b) (Smith & Merriner, 1985). The duration
that these prey species are accessible to each of these predatory
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guilds depends on how long the habitat is exposed or submerged,
which is determined by the relative elevation of the habitat and the
tidal amplitude. Hence, low intertidal habitats (i.e. low elevation)
are accessible for longer periods of time to marine predators as the
habitat is submerged during most of the tidal cycle. Contrastingly,
habitats with a relatively high elevation are exposed most of the tidal
cycle and prey occurring in these habitats are therefore more acces-

sible to avian and terrestrial predators (Figure 1c).

4.2 | Avian and mammalian predators

Shorebirds select intertidal habitats for feeding opportunities along
their migratory flyways and depend on the resources provided by
these intertidal areas to fuel their long migrations (Ens et al., 1994;
lwamatsu et al., 2007; Jing, Kai, et al., 2007; Wanink & Zwarts, 1993).
These shorebirds can have a generalist feeding strategy, such as
sanderlings (Calidris alba) and American golden plovers (Pluvialis
dominica, Charadriidae) (Faria et al., 2018; Lourenco et al., 2015), or a
more specialist strategy, such as bar-tailed godwits (Limosa lapponica,
Scolopacidae) and red knots (Calidris canutus, Scolopacidae) (Van Gils
et al., 2012; Zharikov & Skilleter, 2003). Similar to benthic ray spe-
cies using the intertidal, these shorebirds occupy a meso-predatory
niche in the intertidal food web (Beninger, 2019; Buchanan, 2012;
Kuwae et al., 2012), and are in turn preyed upon by bird-of-prey spe-
cies (Page & Whitacre, 1975; Van Den Hout et al., 2008) (Figure 3b).

The impact of meso-predatory rays on prey populations and
community composition is not well understood (Flowers et al., 2021).
Some studies indicate no effect of ray foraging on prey abundance
(Ajemian et al., 2012), while other studies show that prey densities
were negatively impacted by combined predation effects of shore-
bird and rays (Thrush et al., 1994), or by predation effects of rays
alone (Peterson et al., 2001). However, differentiating between
predation effects in a multiple-predator system remains challeng-
ing and can cause predation effects to be wrongly attributed to a
specific species (Flowers et al., 2021; Grubbs et al., 2016). Effects
of shorebirds predation have been studied extensively and are
better understood (Figure 3b). Shorebirds can locally deplete prey
species (Zharikov & Skilleter, 2003) and change benthic community
composition (Mendonca et al., 2007; Thrush et al., 1994). A poten-
tial overlap in resource use might cause indirect competition by
means of common resource depletion with elasmobranch predators
(Figure 4a). However, it is likely that some prey species compen-
sate depletion with increased reproduction and survival, potentially
masking the effects of resource depletion (Kalejta, 1993). The ef-
fects of shorebirds on intertidal prey species can be considered to
differ seasonally as many shorebird species are migratory and use
intertidal areas as (wintering) stopover sites (Ens et al., 1994; Wanink
& Zwarts, 1993).

Benthic rays may also change the foraging landscape for other
intertidal predators. For example, sediment depressions, created
by rays while feeding, provide habitat for prey species (e.g. O'Shea
et al., 2012) and change the bio-geomorphology of the intertidal

habitat (e.g. D'Andrea et al., 2004). Similarly, depressions created by
greater flamingos and fiddler crabs, in combination with hydrody-
namic forces on an intertidal flat resulted in higher concentrations
of organic matter and biofilms, promoting resource availability for
other taxa onintertidal habitats (EI-Hacen et al., 2019). The mosaic of
microhabitats created by benthic rays can therefore be expected to
promote resource availability in intertidal habitats, indirectly facili-
tating other (intertidal) predatory guilds like shorebirds. Bioturbation
and the creation of new habitat by rays on a relatively large scale can
thus be expected to have an important ecological role in (intertidal)
soft-bottom ecosystems.

Although documented observations are scarce, some ter-
restrial mammals use the intertidal during low tide (Carlton &
Hodder, 2003). For example, coyotes (Canis latrans, Canidae) have
been observed feeding on brachyuran crabs and polychaetes
(Carlton & Hodder, 2003; Rose & Polis, 2018), and opossums and
rodents have been documented to consume brachyuran crabs, bi-
valves and gastropods (Carlton & Hodder, 2003). Hence, it is plausi-
ble that terrestrial mammals consume similar prey species during low
tide compared to elasmobranch predators during high tide, resulting
in potential trophic niche overlap between these predatory guilds.

Avian and mammalian predators are also known to feed on
sharks and rays within coastal systems. For example, coyotes scav-
enge stranded or hunt live stingrays along the coast of the Gulf of
California (Rose & Polis, 2018). Seabirds such as the Caspian tern
(Hydroprogne caspia, Laridae) and great blue heron (Ardea Herodias,
Ardeidae) are known to hunt newborn leopard sharks, brown
smoothhound sharks and Atlantic stingrays (Ajemian et al., 2011;
Russo, 2015). Gastropods and sea gulls were found to be the
main predator of (stranded) egg cases of skates and sharks (Cox &
Koob, 1993; Seguel et al., 2022). Given that intertidal areas provide
an important shallow-water habitat for elasmobranchs with an ele-
vated risk of stranding, and the importance of these habitats to avian
and mammalian species, it is likely that these species groups predate
or scavenge on elasmobranchs in the intertidal. How important elas-
mobranchs are as a food source to these predators or elasmobranchs

are only scavenged opportunistically needs more investigation.

4.3 | Humans as intertidal predators

The consumptive effects of (local) human populations should also
be considered when determining the impact of predators on benthic
prey species (Castilla, 1998; Hockey & Bosman, 1986). Traditionally,
humans have targeted shellfish and polychaetes on soft-bottom
intertidal flats for consumption and as fishing bait respectively
(Beninger, 2019; Watson et al., 2017). de Boer and Longamane (1996)
determined that consumption of intertidal prey in Mozambique by
both shorebirds and humans was responsible for 18% of the annual
biomass removal. However, the authors of this study neglected the
consumption of intertidal prey by high-tide predatory guilds like
elasmobranchs and teleosts. The intertidal is thus used by human
communities around the world for the extraction of food sources
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FIGURE 4 Conceptual overview of the influences that elasmobranch overexploitation in intertidal areas can have on low-tide predators
like shorebirds, depending on the type of interaction (competition or facilitation) and assuming that decreases in top-predator abundance
will lead to increases in mesopredators. (a) the relative abundance of marine top-predators (e.g. large sharks; blue), marine meso-predators
(e.g. rays; red) and terrestrial meso-predators (e.g. shorebirds; brown) when there is no interaction between predatory guilds (left),
competition (middle) or facilitation (right). In addition, the relative changes in ecological importance of elasmobranchs (green) and the
bio-geomorphology of intertidal habitats (dark brown) are given. (b) changes in a simplified intertidal food web between different predator
exploitation states (with marine top-predators in blue, terrestrial top-predators in dark brown, marine meso-predators in red, terrestrial
meso-predators in brown, primary consumers in light green rand primary producers in green).

(Beninger, 2019; Murray et al., 2019) which has both a direct im- 5 |
pact (i.e. resource extraction) and indirect (i.e. disturbances of other

predators or bioturbation resulting from extraction activities) impact

on these systems. Hence, both trophic and non-trophic effects of

these activities should be considered in the field of intertidal ecol-

ogy (Beninger, 2019).

thropogenic disturbances.

ELASMOBRANCH INTERTIDAL
HABITAT USE IN THE ANTHROPOCENE

The role of elasmobranch contribution to intertidal ecosystem func-

tionality potentially faces rapid changes due to a combination of an-
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5.1 | Elasmobranch removal from intertidal areas

Coastal areas harbour a high diversity of elasmobranch species in-
cluding many endemic species with unique ecological roles, many of
which are now severely threatened (Stein et al. 2018). These elasmo-
branch species face ongoing population declines due to overfishing
and habitat degradation (Dulvy et al., 2021; Knip et al., 2010). Sharks
and rays in intertidal areas are targeted by (local) fisheries in the in-
tertidal and adjacent shallow subtidal waters (e.g. Adkins et al., 2016;
Tobin et al., 2014; White et al., 2013). In addition, these mobile spe-
cies are also at risk of being captured by industrial fisheries while
migrating away from these coastal areas (Leurs et al., 2021). These
activities impact intertidal predator abundance and their potential
ecological function in intertidal areas (Lemrabott et al. in prep., Leurs
et al., in prep.). Of all 88 species that were found to use intertidal
habitats, 54.5% are currently threatened with extinction (Figure S3).
In total, 21 species are listed as Vulnerable, 16 as Endangered and
11 as Critically Endangered on the IUCN Red List. Two species have
been classified as Data Deficient, and thus their population status
and trends are unknown. The high proportion of threatened species
using intertidal habitats suggests that, if causes of population de-
clines are not reversed, some species might disappear from coastal
ecosystems. For example, in the Dutch part of the Wadden Sea, rays
were like the common stingray (Dasyatis pastinaca, Dasyatidae) and
thornback ray (Raja clavata, Rajidae) were once common, but have
almost disappeared completely due to combined effects of habi-
tat destruction, overexploitation, and pollution (Wolff, 2005). The
removal of elasmobranchs from intertidal areas can have different
effects depending on the type of interaction (i.e. competition or fa-
cilitation) between low-tide and high-tide meso-predators (Figure 4).

The effects of large-bodied shark removal from marine ecosys-
tems are under continuous debate and are likely highly context-
dependent. Studies on coastal marine systems conclude that the
removal of large-bodied sharks has been linked to population in-
creases of meso-predatory species (i.e. meso-predator release),
causing an increase of meso-predation on lower trophic prey species
(Ferretti et al., 2010; Heithaus et al., 2008; Ruppert et al., 2013) or
changes in the diet of prey species (Barley et al., 2017). Other studies
indicate that shark removal does not impact meso-predatory species
like cownose rays or coral reef fish (e.g. Casey et al., 2017; Grubbs
et al., 2016). For example, on predator-rich coral reefs, large shark
removal did not influence prey species possibly due to the presence
of large teleost predators that consumed similar prey, making large
sharks ecologically redundant (Barley et al., 2020). Ecological redun-
dancy may be common in predator-rich ecosystems in which preda-
tors are more likely to share the limited number of available trophic
niches (Finke & Denno, 2004; Frisch et al., 2016). In these rich sys-
tems, safeguarding ecosystem functioning does not only hinge on the
conservation of sharks, since cascading effects of shark removal can
be reduced if other predator species with a similar niche are present
(Barley et al., 2020). However, predator richness in intertidal areas is
expected to be low due to challenges and constraints associated with
intertidal habitat use (e.g. risk of stranding, need for physiological

adaptations), making it less likely that large-bodied sharks are eco-
logically redundant predators in these systems. In addition, current
exploitation rates in coastal areas cause whole functional groups (i.e.
large-bodied sharks and teleosts, high trophic level species) to be
removed, possibly enabling a release of meso-predators due to the
removal of multiple non-redundant species groups. Therefore, the
removal of large-bodied sharks from intertidal areas can potentially
lead to an increase in predation pressure on lower trophic organisms
caused by meso-predatory elasmobranchs (Figure 4).

These meso-predatory elasmobranchs may use the same intertidal
prey species as terrestrial/avian meso-predatory species. An increase
of predation by marine meso-predators can therefore intensify com-
mon resource depletion and possibly lead to interspecific competition
between species of both guilds (Figure 4). If overexploitation of elas-
mobranchs continues, and increasingly also targets meso-predatory
rays (e.g. Moore et al., 2019), the abundance of these species is also ex-
pected to decline (i.e. ‘fishing down the food chain’, Pauly, 1998). This
may result in lower resource depletion by these meso-predatory rays,
possibly increasing resource availability for other predatory guilds.

If benthic rays do not overlap or compete for resources with
other meso-predatory guilds on intertidal habitats, or if these ben-
thic ray species can be considered trophically redundant, their role
as ecosystem engineers (i.e. changing biogeomorphology of inter-
tidal habitats) can still be important in intertidal areas (Figure 4). An
increase in benthic rays, and associated bioturbation due to feeding
and excavation activity, may cause changes to the biogeomorphol-
ogy and biogeochemistry of soft-bottom intertidal flats (Laverock
et al., 2011; Lohrer et al., 2004; Meysman et al., 2006). In addition,
increased bioturbation can increase primary and secondary pro-
duction in intertidal habitats (Giorgini et al., 2019), affect the dis-
placement of prey species (VanBlaricom, 1982), and provide newly
created microhabitats to other (prey) species like brachyuran crabs
(O'Shea et al., 2012). Increasing bioturbation has caused shifts in
dominant species in benthic communities on soft-bottom intertidal
habitats, can impact species richness of these microbenthic com-
munities (Berkenbusch et al., 2000; Thrush et al., 2006), and can
negatively impact habitat-building species like seagrass light may
be limited in systems with a higher turbidity (Govers et al., 2014;
Suykerbuyk et al., 2016). By changing the landscape heterogeneity
of intertidal habitats and changing benthic communities, benthic
rays may indirectly facilitate other predatory guilds using intertidal
habitats, such as migratory shorebirds, who rely on prey species like
polychaetes and crustaceans during their stay on wintering grounds
(Piersma, 2012). However, if continued overexploitation of elas-
mobranchs also impacts benthic ray species, the effects of benthic
rays on sediment dynamics will likely change (O'Shea et al., 2012).
This may lead to changes in the habitat heterogeneity and sediment
dynamics of intertidal habitats due to decreased bioturbation. This
will in turn also affect biogeochemistry, and likely cause changes
in benthic community composition (Giorgini et al., 2019; Thrush
et al., 2006). Hence, exploitation may negatively impact the role of
benthic rays as facilitators for other predatory guilds use of intertidal
habitats (Giorgini et al., 2019).
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5.2 | The loss of intertidal habitats

Sharks and rays can have an important ecological role within marine
food webs and our review shows that this includes a pivotal role in
intertidal food webs. Conversely, intertidal habitat also plays an im-
portant role in the lifecycle of coastal shark and ray species. Recent
estimates show that the areal extent of soft-bottom intertidal areas
has declined by 16% between 1984 and 2016, indicating that in-
tertidal habitats are threatened by human-induced stressors such
as coastal development, coastal erosion and sea level rise (Murray
et al., 2019). Galbraith et al. (2002) estimated that under a global
warming scenario of 2° C, between 20 and 70% of intertidal habitat
would be lost to sea level rise. Our review shows that, in addition to
shorebirds and other terrestrial predators, the intertidal is especially
important to early life stages of many coastal elasmobranch spe-
cies. These elasmobranchs most likely select intertidal habitats as
a trade-off between feeding opportunities and lower predation risk
effects. Even if elasmobranchs do not directly use intertidal habitats
such as saltmarshes, these habitats can still provide trophic benefits
elasmobranchs using habitats in the near vicinity to the intertidal
(Niella et al., 2022). Sea level rise will make current intertidal habitats
more accessible to marine predators, including larger-bodied preda-
tors, which could threaten the role of intertidal habitats as a feed-
ing refugium for early life stages and small-bodied elasmobranchs. In
addition to changing intertidal habitats to (shallow) subtidal habitats,
sea level rise possibly also influences the duration for which inter-
tidal habitats are accessible to either low-tide or high-tide predators.

Globally sea temperatures are increasing, and the ocean is be-
coming more acidic (i.e. Ocean Acidification) due to global climate
change (IPCC, 2007). As a result, temperatures in intertidal habitats
are also expected to increase, likely making intertidal habitats less
suitable for many marine species with limited temperature tolerance
ranges (IPCC, 2007). This might include not only elasmobranchs
(Gervais et al., 2018; Lear et al., 2019) but also intertidal prey spe-
cies that are sensitive to heat stress due to elevated sea water tem-
peratures (Raymond et al., 2022). In addition, many intertidal prey
species like polychaetes, crustaceans and bivalves are negatively
impacted by ocean acidification (Ries et al., 2009). Continued tem-
perature increases and acidification can therefore be expected to
negatively impact intertidal prey availability, and associated inter-
action between low-tide and high-tide predatory guilds. The loss of
intertidal habitat or the deterioration of habitat quality will therefore
not only be a risk to marine species, but also to other terrestrial/
avian species (Galbraith et al., 2002), and their mutual ecological in-
teractions. This emphasizes that the conservation of intertidal areas
should be considered from both a high-tide and low tide perspective
and that the importance of this habitat is recognized for both marine
and terrestrial/avian species in the future.

The decline of intertidal areas around the world, given their
ecological value, is alarming. Furthermore, the first global assess-
ment of the status of these ecosystems was only conducted in 2019
(Murray et al., 2019, 2022). The presented ecological importance
of intertidal areas for both (migratory) shorebirds and vulnerable
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elasmobranchs should be considered when assessing the risk
of collapse of intertidal ecosystems under the IUCN Red List of
Ecosystems (Keith et al., 2015). For example, intertidal areas have
been considered as a critical habitat in the United States for the
critically smalltooth sawfish and have been included in manage-
ment plans of these species (Strickland, 2009). Although intertidal
habitats are recognized to be vital habitat for wading shorebirds,
and their decline in the Yellow Sea initiated a situation analysis by
IUCN (MacKinnon et al., 2012), intertidal habitats should also be
considered as important habitat in risk assessments for coastal
sharks and rays.

6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Although the available information on intertidal habitat use by elas-
mobranchs is limited, our synthesis shows that these habitats are
important to a variety of species in this highly threatened species
group. We show that elasmobranchs play an important trophic role
in intertidal ecosystems. and that these areas provide important
habitats for many coastal elasmobranch species at the same time.
In addition, we provide novel insights into possible ecological in-
teractions in intertidal systems that include the functional role of
elasmobranchs. This emphasizes the importance of an integrative
perspective on intertidal food webs that includes both high-tide
(e.g. elasmobranchs) and low-tide (e.g. terrestrial and avian species)
predators. Furthermore, we identified the ongoing decline of these
habitats as a serious threat to elasmobranchs and their ecological
interactions with low-tide predator guilds. We propose that future
research and conservation efforts focuses on:

1. Determining the motivation for sharks and rays to use these pro-
ductive, but dynamic and challenging habitats. This contributes
to the understanding of how important intertidal habitats are
for the lifecycle of specific elasmobranch species, and further
elucidates their ecological role in these habitats.

2. Studying how different predator guilds (indirectly) interact in
intertidal habitats. Understanding these ecological interactions
can improve targeted conservation efforts of these habitats by
understanding how population trends of different predatory
guilds might affect ecosystem functioning. It will be important to
consider the (a) possible ecological redundancy of elasmobranch
species, (b) influences of elasmobranchs on (intertidal) prey popu-
lations and (c) potential niche overlap between high-tide and low-
tide predators.

3. Determining how anthropogenic stressors such as overexploita-
tion, habitat degradation, and climate change impact predatory
guilds in intertidal areas.

4. Considering the ecological importance of these habitats from
both a low- and high-tide predator perspective, using an approach
that integrates the ecology of the diverse species group that use
these habitats.
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