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Isolation of crenarchaeol and its isomer from marine surface sediments, followed by ether cleavage and
GC-MS characterization using supersonic molecular beam (SMB) ionization of the biphytanes formed,
revealed that the crenarchaeol isomer comprises a tricyclic biphytane that is stereochemically different
from the tricyclic biphytane of crenarchaeol. This isomeric tricyclic biphytane was also released from the
crenarchaeol isomer in extant Thaumarchaeotal biomass. Reinterpretation of previously obtained '3C
NMR data of the crenarchaeol isomer suggested that the cyclopentane moiety adjacent to the cyclohexyl

Ic(z r‘;‘;orrcf;eol moiety of the tricyclic biphytane of the crenarcheaol isomers possesses the unusual cis stereochemistry in
Structural determination comparison to the trans stereochemistry of all cyclopentane moieties in crenarchaeol. This stereochem-
TEXss ical difference likely affects the packing of lipid membranes of Thaumarchaeota and therefore provides a
Archaea biophysical explanation for the role of the crenarchaeol isomer in the TEXgg palaeothermometer based on
Thaumarchaeota fossilized Thaumarcheotal lipids.

GDGTs © 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Glycerol dibiphytanyl glycerol tetraethers (GDGTs) form the
core membrane lipids of many archaea and can therefore be used
as biomarker lipids. A ubiquitous group of archaea in marine envi-
ronments (e.g. Karner et al., 2001) are the Thaumarchaeota, which
perform nitrification, i.e. oxidation of ammonium (Kénneke et al.,
2005; Wuchter et al., 2006). Their membrane lipids contain a
specific GDGT, called crenarchaeol (see Fig. 1 for structures), con-
taining an uncommon cyclohexane moiety in addition to four
five-membered rings (Sinninghe Damsté et al., 2002). So far, cre-
narcheaol has only been found in cultures of Thaumarchaeota
(see for a review Schouten et al., 2013b) but not in other archaeal
cultures, indicating that it can be used as specific marker for Thau-
marchaeota. This is confirmed by studies of the marine water col-
umn where the abundance of specific genes of Thaumarchaeota
and crenarchaeol containing polar head groups show the same
depth and seasonal profiles (e.g. Pitcher et al., 2011a, 2011b).

Thaumarchaeotal GDGTs find an application in paleoceanogra-
phy and paleoclimatology since their fossilized GDGTs in both
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marine and lacustrine sediments are widely used in TEXgg
palaeothermometry (Schouten et al., 2002). Thaumarchaeota regu-
late the chemical composition of their membrane to influence its
physical properties to optimally function at a specific temperature.
The TEXgs palaeothermometer is based on the fractional abun-
dances of four GDGTs that typically occur in lower abundances
than crenarchaeol and GDGT-O0 (i.e. a GDGT with no cyclopentane
moieties). These four GDGTs are GDGT-1, -2, -3, and an isomer of
crenarchaeol, which typically occurs in low abundance relative to
crenarchaeol (i.e. up to 5%), although in some Thaumarchaeotal
species they can be much more abundant (Pitcher et al., 2010;
Sinninghe Damsté et al., 2012). The crenarchaeol isomer plays an
important role in the TEXgg proxy as its abundance increases sub-
stantially in tropical regions and plays a key role in reconstructing
sea surface temperature from past greenhouse periods (e.g. O'Brien
et al., 2017).

The crenarchaeol isomer is characterized by a later retention
time than crenarchaeol but with an identical mass spectrum as
obtained by atmospheric pressure chemical ionization (APCI) mass
spectrometry (Sinninghe Damsté et al., 2002). It has been proposed
to be a so-called regioisomer of crenarchaeol, i.e. where the glyc-
erol units are not in a parallel but an anti-parallel configuration
or vice versa, because the carbon signals in its '3C NMR spectrum
were identical to those in the >*C NMR spectrum of crenarchaeol
(Sinninghe Damsté et al., 2002; Schouten et al., 2013b). Recently,
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Fig. 1. Chemical structures of components mentioned in the text. The identification of the structure of crenarchaeol is based on the work of Sinninghe Damsté et al. (2002). It
shows both possible regioisomers with the parallel and anti-parallel stereoisomerism since it was not possible to discern this based on detailed NMR studies. Based on the
tentative identification of partial degradation products of crenarchaeol in sediments, Liu et al. (2018) have proposed that the parallel arrangement predominates. The
structure of the crenarchaeol isomer is tentatively identified here and differs from that of crenarchaeol in that the cyclopentane moiety adjacent to the cyclohexyl moiety has
the opposite stereochemistry (cis instead of trans). The structures of the BPs that can be formed from these GDGTs are also indicated.

however, Liu et al. (2018) presented data based on the tentative
identification of presumed partial degradation products of both
crenarchaeol and its isomer indicating that both possess predomi-
nantly the parallel configuration. Liu et al. (2018) also character-
ized the biphytane (BP) moieties of the crenarchaeol isomer and
suggested that it may possess a different ring configuration of
the tricyclic BP. Here, we have repeated the experiments of Liu
et al. (2018) on purified (>95%) crenarchaeol and its isomer and
studied the structure of these BPs by gas chromatography-mass
spectrometry (GC-MS) using supersonic molecular beam (SMB)
ionization, which is a much softer ionization technique than the

commonly used electron impact ionization (Fialkov et al., 2008).
In addition, we re-examined our previously obtained NMR data
to evaluate the hypothesis of Liu et al. (2018) that the structure
of the crenarchaeol isomer is characterized by a different ring con-
figuration compared to crenarchaeol.

2. Materials and methods

Crenarchaeol isomer was previously isolated from Arabian Sea
sediments as described by Sinninghe Damsté et al. (2002). Crenar-
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chaeol was isolated from Arabian Sea surface sediments following
techniques described previously (Schouten et al., 2013a). Their
purity was checked by dissolving them in hexane/propanol
(99:1, v/v), filtered over a 0.45 um polytetrafluorethylene filter,
and analysis by high performance liquid chromatography/APCI
mass spectrometry (HPLC/APCI-MS) for GDGTs using a method
described elsewhere (Hopmans et al., 2016) and by NMR (see
Schouten et al., 2013a).

Aliquots of the isolated crenarchaeol and the crenarchaeol
isomer were subjected to ether cleavage (57% HI) as described by
Lengger et al. (2014). The resulting alkyl iodides were reduced to
hydrocarbons with H,/PtO, (Kaneko et al., 2011), which were ana-
lyzed with gas chromatography (GC) after on-column injection on
an Agilent 7890B GC instrument and in splitless mode with GC-MS
using an Agilent 7890A GC instrument equipped with a Agilent
5975C VL MSD detector. A CP Sil 5CB column was used (25 m X
0.32 mm i.d.; film thickness 0.12 um; He carrier gas). Samples
were injected at 70°C and the GC oven was programmed at
20°Cmin~! to 130 °C and increased at 4 °C min~! to 320 °C (held
10 min).

GC-SMB-MS analysis was carried out with an Agilent 7890A GC
instrument, an Aviv Analytical 5975-SMB 101-09 SMB interface
(cf. Fialkov et al., 2008) and an Agilent 5975C MSD. A fused silica
Zebron ZB-1HT Inferno (25 m x 0.32 mm; 0.1 pm film thickness)
was used with He as a carrier gas at a constant flow rate of
2 ml min~'. Samples (1 ul) were injected on column at 70 °C (held
1 min). The oven temperature was then ramped to 130 °C and the
temperature was increased to 320 °C (held 1 min) at 3 °C min~".
The temperature of the transfer line of the SMB interface was
320 °C and He make up gas was added at a flow of 80 ml min~.
The compounds were ionized in a fly-through dual cage electron
ionization (EI) source at both 70 and 20 eV. The MSD was run in full
scan mode over the range m/z 50-600.

3. Results and discussion

Crenarchaeol and the crenarchaeol isomer, isolated from
Arabian Sea surface sediments, were subjected to ether cleavage
with HI treatment followed by reduction of the formed BP iodides
by H,/PtO, (Kaneko et al., 2011; Lengger et al., 2014). The hydro-
carbons formed were analyzed by GC and GC-MS. The products
of crenarchaeol were a bicyclic (I) and tricyclic (II) BP in a 1:1 ratio
(Fig. 2a) and their EI mass spectra were in good agreement with
those reported previously (Schouten et al., 1998). On the basis of
the full structural identification of crenarchaeol by two dimen-
sional NMR spectroscopy (Sinninghe Damsté et al., 2002), they
can be unambiguously identified as the bicyclic BP I, containing
two cyclopentane moieties, and the tricyclic BP II, containing one
cyclohexane and two cyclopentane moieties (see Fig. 1 for struc-
tures). GC-SMB-MS analysis was applied to confirm the molecular
weight of the bi- and tricyclic BPs and to provide more details on
high molecular weight fragmentation products. Fig. 3a shows the
20 eV mass spectrum of the bicyclic BP L. It reveals a dominant
molecular ion at m/z 558 and abundant fragments ions at m/z
390 (M+ —168; —C12H24), 362 (M+ —196; —C14H28), 194 (C14H28),
and 166 (Ci,Hy4). These fragmentations are related to cleavages
of relatively weak C—C bonds with associated hydrogen transfer
as often is observed in “cold” EI mass spectra as obtained with
the SMB ionization technique (Fialkov et al., 2008). The 20 eV
SMB mass spectrum of the tricyclic BP Il generated from crenar-
chaeol is shown in Fig. 3b. It reveals a molecular ion at m/z 556,
an M™ —15 fragment ion at m/z 541 and abundant fragments ions
at m/Z 292 (M+ —264: _C]9H36), 262 (M+ —294: _C21H42), and 164
(Cy2H33). The loss of a methyl and the formation of the two most
abundant fragments ions can all be related to cleavages of C—C
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Fig. 2. Partial gas chromatograms revealing the distributions of the BP released
from (a) isolated crenarcheaol, (b) isolated crenarchaeol isomer, and (c) the GDGTs
in the Bligh Dyer extract of the thermophilic Thaumarchaeote “Ca. Nitrosotenuis
uzonensis”. Key: x and y are isomeric bicyclic BPs most likely derived from GDGT-4,
roman numerals refer to the structures of the BPs shown in Fig. 1. BP IV is an isomer
of BP III (see text).

bonds of the only quaternary carbon atom in the tricyclic BP II
(Fig. 3b). This is fully consistent with the structural identification
of crenarchaeol (Sinninghe Damsté et al., 2002), in which BP II
forms one of the alkyl moieties, and, in fact, confirms the position
of the methyl group attached to the cyclohexane moiety. In the
70 eV El spectrum of BP I (Schouten et al., 1998), the m/z 292 frag-
ment ion is only very minor, probably because of the much more
extensive fragmentation under these conditions (cf. Fialkov et al.,
2008).

When the crenarchaeol isomer was subjected to ether cleavage
and subsequent hydrogenation of the formed iodides, three BPs
were formed (Fig. 2b). The first peak was the bicyclic BP I (50%),
which had an identical EI and 20 eV SMB spectrum (Fig. 3b) and
retention time (Kovats retention index RI=3758) as determined
for BP I derived from crenarchaeol. The two other BPs (labeled III
and 1V) eluted later (RI=3871 and 3858) than the tricyclic BP II
formed from crenarchaeol (RI=3826). This confirms the results
reported by Liu et al. (2018), who observed two late-eluting BPs
formed from the crenarchaeol isomer enriched from a Cretaceous
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Fig. 3. 20 eV SMB mass spectra of BPs I-IV released by ether cleavage of GDGTs. The m/z 400-600 range is expanded revealing the molecular ion and loss of the methyl group
attached to the quaternary carbon atom of the cyclohexane moiety. For details of BPs with roman numerals I-III see Fig. 1.

black shale from the proto North Atlantic Ocean. A slight difference
between our results and those of Liu et al. (2018) is that in their
ether cleavage mixture of the crenarchaeol regioisomer tricyclic
BP 1V is slightly more abundant than BP IIl, whereas in our case
the later eluting BP III is more dominant (i.e. 60% of the tricyclic
BPs; Fig. 2b). Both BP Il and IV had identical 70 eV EI mass spectra,
which were virtually identical to those of BP II, in agreement with
the results of Liu et al. (2018). Both these authors and we were,
however, not able to conclusively confirm the molecular weight
of these BPs. Therefore, GC-SMB-MS analysis was applied to deter-
mine the molecular weight of these BPs. The 20 eV SMB mass spec-
trum of these BPs (IIl and IV) are shown in Fig. 3¢ and d. They
reveal a molecular ion at m/z 556, an M —15 fragment ion at
m/z 541 and abundant fragments ions at mfz 292 (M" —264;
_C19H35), 262 (M+ —294; _C21H42), and 164 (C]2H22), and are vir-
tually identical to that of BP II derived from crenarchaeol. This is
consistent with our earlier report on HI cleavage of the crenar-
chaeol isomer (Schouten et al., 2002), although in that case no
mention was made of two tricyclic BP isomers with a different
retention time. Our data, however, contradicts the interpretations
of Liu et al. (2018), who pointed out that there were some
differences in the high molecular weight area of their 70 eV mass

spectra (the insets in their Fig. 6). Based on our own 70 eV EI
and, in particular, 20 eV SMB mass spectra we are inclined to con-
clude that the ions shown by Liu et al. (2018) (which all represent
<0.1% of the base peak) represent background and cannot be
interpreted to reveal structural differences between the different
tricyclic BPs.

To check if the unusual BP IIl and IV were also formed from the
crenarchaeol isomer present in extant biomass, we subjected the
Bligh Dyer extract of “Ca. Nitrosotenuis uzonensis”, a nitrifying
Thaumarchaeote enriched from a thermal spring (Lebedeva et al.,
2013), to ether cleavage. This archaeon produced equal amounts
of crenarchaeol and its isomer under certain growth conditions,
together contributing 60% of the GDGTs (Palatinszky and Sinninghe
Damsté, unpublished results). In addition to BP I, both BP II and III
were formed in equal amounts (Fig. 2¢) but, surprisingly, BP IV was
not detected.

Liu et al. (2018) indicated that the identification of two addi-
tional tricyclic BPs IIl and IV from the crenarchaeol isomer dis-
proves the earlier suggestion that it may represent a regio isomer
of crenarchaeol (Sinninghe Damsté et al., 2002). This suggestion
was based on the isolation of two GDGT-4 isomers from the
archaeon Sulfolobus solfataricus that were well separated by LC
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but showed identical '3C NMR spectra (Sinninghe Damsté et al.,
2002). Grdther and Arigoni (1995) previously showed by specific
chemical degradation that regio isomers of GDGTs exist in a num-
ber of archaea. Comparison of the '>C NMR data of crenarchaeol
and its isomer revealed nearly identical spectra (Schouten et al.,
2013b), in line with the suggestion that the crenarchaeol isomer
is a regio isomer although it remained unclear which of the two
had the parallel configuration. The findings of Liu et al. (2018),
which are confirmed here, are clearly not in line with this sugges-
tion since ether cleavage should then result in the generation of
identical BPs from both crenarchaeol and its isomer. This prompted
a critical re-evaluation of the '>*C NMR data obtained in 2002 for
the crenarchaeol isomer. At that time only 0.3 mg of the isomer
was isolated using a slightly less evolved separation procedure
than applied here for crenarchaeol and even though Attached
Proton Test (APT) spectra were accumulated for a number of days,
the signal to noise ratio was low. Nevertheless, when the data are

compared with those of crenarchaeol (Table 1), it becomes evident
that for most of the carbon atoms the '3C chemical shifts and mul-
tiplicities are the same. This also holds for most of the carbon
atoms of the cyclohexane moiety (i.e. A12’, A13’, A14/, A15, A19,
A20’), indicating that the position of this ring and its stereochem-
ical configuration must be the same as in crenarchaeol. This is in
good agreement with the SMB-MS data that reveal only fragment
ions related to cleavages of C-C bonds of the quaternary carbon
atom (A15’) of the cyclohexane moiety for all three tricyclic BPs
(Fig. 3). However, the 13C chemical shifts of the cyclopentane moi-
ety adjacent to the cyclohexane moiety and carbon A11’ of the
cyclohexane moiety differ by 0.06-2 ppm from the corresponding
moieties of this cyclopentane moiety in crenarchaeol (Table 1).
These assignments are tentative since they were not confirmed
by HMBC and HMQC experiments as in case of the structural
assignments of the 'C carbon atoms of crenarchaeol (Sinninghe
Damsté et al., 2002). Nevertheless, this observation strongly

Table 1
Revised assignment of >C chemical shifts of the crenarchaeol isomer and comparison with those of crenarchaeol.
Carbon number? 13€ shifts (ppm)® AC
Crenarchaeol Crenarchaeol isomer®
CH; CH, CH C CH; CH, CH C
A1B1 70.09 70.06
A1,B1 68.56 68.58
A2,B2 36.58 36.54
A2',B2 37.03 37.05
A3,B3,B3’ 29.71 29.76
A3 29.71 29.72
A4,A4' B4,B4 37.23 37.25
A5,B5,B5 25.86 25.85
A5’ 25.86 25.92 0.06
A6,A6',B6,B6 37.13 37.15
A7,B7,B7 39.08 39.08
A7 38.85 39.18 0.33
A8,B8,B8’ 33.36 33.37
A8 33.30 33.37 0.07
A9,B9,BY 31.18 31.20
AY 31.23 31.54 0.31
A10,B10,B10’ 44.74 44.78
A10/ 45.66 46.93 1.27
A11,B11,B11 38.18 38.20
A1l 39.08 37.64 1.44
A12,B12,B12 35.68 35.70
A12 32.11 32.14
A13,B13,B13’ 24.39 24.42
A13 22.24 22.25
Al4 37.39 Nd"
A14 43.97 43.95
B14,B14/ 37.56 37.61
A15 33.54 33.59
A15 33.04 33.03
B15,B15 33.07 33.09
A16 29.97 Nd
A16 37.64 37.64
B16,B16 34.22 34.24
A17,A17'B17,B17' 19.74 19.77
A18,B18,B18’ 35.93 35.97
A18 36.43 38.47 2.04
A19,B19,B19 17.73 17.73
A19 43.94 43.87 0.07
A20,B20,B20 19.93 19.88
A20' 22.39 22.38
Cc1,cr 63.06 63.08
C2,c2' 78.36 78.39
3,3 71.11 71.15

2 Numbers refer to carbon atoms indicated in Fig. 1.

b As determined by an APT spectrum measured in CDCl; on a Bruker DRX600; chemical shifts are reported relative to tetramethylsilane (TMS); assignments of the
crenarchaeol isomer are tentative since they have not been backed up with 2D NMR techniques.

¢ The difference in shift when >0.05 ppm (which is the error in the shift values).
4 Data previously published bySinninghe Damsté et al. (2002).

¢ Data previously published by Schouten et al. (2013a, 2013b) and re-evaluated here.

f Nd = not detected; signal to noise ratio was too low to assign this carbon atom.
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suggests that there must be a difference in the structure of
the cyclopentane moiety adjacent to cyclohexane moiety. Since
the shifts for carbon atoms A1, A2’, A3’, A4, A5, A6/, and A17’ are
hardly affected (Table 1), the position of the cyclopentane moiety
within the isoprenoid carbon skeleton should remain the same. This
would also be in line with the known biosynthetic capabilities of
archaea since cyclopentane moieties in GDGTs are only known to
occur at two positions, i.e. by ring closure of carbon atoms A10
and A18, and A6 and A17 (e.g. Schouten et al., 2013b and references
cited therein). However, this latter position of a cyclopentane moi-
ety is only observed in (hyper)thermophilic archaea, in combina-
tion with the presence of four cyclopentane moieties in the more
“common” position. Hence, a different position for the cyclopen-
tane moiety is also unlikely from the biosynthetic point of view.

A possibility that remains is that the cyclopentane moiety adja-
cent to the cyclohexane possesses a different stereochemistry. The
stereochemistry of cyclopentane moieties in GDGTs has been
shown to be trans (Sinninghe Damsté et al., 2002), so the crenar-
chaeol isomer could possess the cis stereochemistry for the
cyclopentane moiety adjacent to the cyclohexane moiety. Indeed,
reported '3C chemical shifts for cis and trans 1,3-
methylcyclopentane (Christl et al., 1971) are different and the
shifts of C-2 (corresponding to A18’) shift ca. 2 ppm to lower field,
just as is observed for A18’ (Table 1). This change in stereochem-
istry of the cyclopentane moiety may also explain the change of
the chemical shift of A11’ (Table 1), the carbon atom of the cyclo-
hexane ring to which the cyclopentane moiety is attached. Hence,
based on the current data it seems likely that the crenarchaeol iso-
mer contains a tricyclic BP where the stereochemistry of the
cyclopentane moiety adjacent to the cyclohexane is not trans but
cis. This may affect the physical properties of the tricyclic BP in
such a way that it elutes substantially later on a GC column, while
it would likely also affect the retention time on the LC.

A problem that remains, however, is that in cases where the cre-
narcheaol isomer present in sediments was subjected to ether
cleavage, two, partially separated, tricylic BPs are formed upon
ether cleavage of the crenarchaeol isomer rather than one
(Fig. 2b). Liu et al. (2018) suggested that this may be explained by
the presence of two crenarchaeol isomers that are not separated
by LC in addition to crenarchaeol, each with a unique, although
unknown, tricyclic BP moiety. Although this is a hypothetical possi-
bility, two observations argue against this suggestion. Firstly, the
13C NMR data of the crenarchaeol isomer should then be (even)
more complicated as it contains a mixture of two GDGTSs resulting
in two unique subsets of '3C shifts of carbon atoms of the cyclopen-
tane moiety adjacent to the cyclohexane moiety, which is not
observed. Secondly, as argued before, a change in the position of
the cyclopentane moiety would substantially affect the '3C NMR
spectrum. Alternative explanations may be offered. Firstly, the
stereochemistry at position A11’ may be reversed, resulting in
two potentially GC-separable isomers. This isomerization may pro-
ceed during the strongly acidic conditions applied during the ether
bond cleavage reaction (with either HI or BCl3), which may abstract
the proton at carbon A11’. This would explain the discrepancy
between the generation of two GC-separable isomeric tricyclic
BPs (both with the cis stereochemistry of the fourth cyclopentane
moiety) and the >C NMR spectrum not revealing two different tri-
cyclic BP moieties. In contradiction with this possibility, such an
isomerization would then also be expected to take place during
ether cleavage of crenarchaeol itself where apparently only one tri-
cyclic BP is generated (Fig. 2a). However, the height of its GC peak is
typically lower than that of the bicyclic BP I (Schouten et al., 1998;
Liu et al., 2018; this work), but the peak area is generally similar to
that of BP I. This apparent broadening of the BP Il peak may be due
to an incomplete separation of two isomers. Alternatively, the pres-
ence of two isomers needs to be explained by the presence of other

diastereoisomers. Each tricyclic BP has 10 chiral centers and, hence,
in theory, many diastereoisomers exist. Not all of these will be sep-
arable by GC but there are examples where diastereomers can be
separated by GC (e.g. 13,16-dimethyloctacosane, Chappe et al.,
1980; Cy5 highly branched thiophene; Sinninghe Damsté et al.,
1989). In contrast with this explanation, BP IV was not detected
in the experiment with the GDGTs of “Ca. Nitrosotenuis uzonensis”
(Fig. 2c), which excludes the possibility that it is formed through
isomerization during the ether cleavage reaction. Perhaps, this iso-
merization takes place in the sediment as all other experiments
have been performed on GDGTSs present in sediments. More exper-
imental work is clearly required to test this.

Summarizing, based on our analyses and reinterpretation of the
NMR data of the crenarchaeol isomer, we agree with Liu et al.
(2018) that the crenarchaeol isomer used in the TEXgg palaeother-
mometer is not the regioisomer of crenarchaeol. Most likely, it rep-
resents an isomer in which the cyclopentane moiety adjacent to
the cyclohexane moiety possesses the uncommon cis stereochem-
istry. Our data on “Ca. Nitrosotenuis uzonensis” demonstrate that
this unusual stereochemistry is already present in living archaeal
cells and is not a product of diagenesis. Indeed, some thermophilic
Thaumarchaeota (Pitcher et al., 2010) and soil Thaumarchaeota
grown at high temperature (Sinninghe Damsté et al., 2012) contain
the crenarchaeol isomer in relatively high amounts (up to 24% of
the core lipids), suggesting that production of the crenarchaeol iso-
mer is a biological adaptation especially to high temperature. Mar-
ine Thaumarchaeota also produce higher fractional abundances of
the crenarchaeol isomer at higher temperatures (Kim et al., 2010),
explaining why it is used in the TEXgs paleothermometer
(Schouten et al., 2002). Apparently, the change in the stereochem-
ical structure of the specific cyclopentane moiety results in differ-
ent physical properties of the crenarchaeol isomer affecting the
overall membrane fluidity in such a way that it makes the mem-
brane more suitable for use at higher temperatures. This interpre-
tation actually provides a better explanation for the observed
relationship of the crenarchaeol isomer with temperature than if
it would represent the regioisomer since variations in the frac-
tional abundance of regioisomers are much less likely affecting
the packing of the membrane than the stereochemistry of bulky
groups in the alkyl chains of the GDGTs. Similar to the proposition
of the cyclohexane ring being an adaptation of GDGT membranes
to mesophilic temperatures (Sinninghe Damsté et al., 2002), the
introduction of a cis-configuration could allow for better packing
of the Thaumarchaeotal membrane at higher temperatures.
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