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ABSTRACT

Until recently, Limosa limosa melanuroides was thought to be the only subspecies of Black-tailed Godwit in the East
Asian-Australasian Flyway. For this reason, all previous occurrences and counts of Black-tailed Godwits in the
flyway have been assigned to melanuroides. However, a larger-bodied subspecies, bohaii, has recently been
discovered in the flyway. As a result, the occurrence of Black-tailed Godwits in the flyway needs to be recon-
sidered such that the specific distribution of each subspecies becomes known. To this end, we developed a simple
discriminant function to assign individuals to subspecies based on their bill and wing length. Cross-validation
with individuals known to be bohaii or melanuroides, based on molecular analysis, showed the developed func-
tion to be 97.7% accurate. When applied to measurements of godwits captured at 22 sites across 9 countries in
East-Southeast Asia and Australia, we found that bohaii and melanuroides occurred at most sites and overlapped in
their distribution from Kamchatka to Australia. We examined photos from all along the flyway to verify this
surprising result, confirming that both subspecies co-occur in most locations. Based on these results, we
hypothesise that bohaii and melanuroides from the west of their breeding ranges mostly migrate over Chinese
mainland. Birds of both subspecies from the east of their ranges are expected to migrate along the Pacific Ocean.
We encourage ringing groups in East-Southeast Asia and Australia to use this simple method to keep adding
knowledge about Black-tailed Godwits in the East Asian-Australasian Flyway.

1. Introduction

subspecies is often challenging due to subtle differences in morphology,
plumage colour or songs (Clayton, 1990; Inouye et al., 2001; Wojczula-

Obtaining information on the distribution of different avian nis-Jakubas et al., 2011). This can be even more complicated for
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migratory animals that occur at multiple sites throughout the year. Such
knowledge on the distribution of subspecies and populations, however, is
essential to understand morphological variation, selective pressures, and
phylogenetic relationships (Piersma and Baker, 2000; Phillimore and
Owens, 2006). When such information is scarce, it also becomes very
hard to assess population trends and develop conservation strategies
(Chan et al., 2019a; Smith et al., 2020).

This problem is now relevant in the case of Black-tailed Godwits
(Limosa limosa), a long-distance migratory shorebird, in the East
Asian—Australasian Flyway (EAAF), where recently a new and large-
bodied subspecies named bohaii has been discovered (Zhu et al,
2021a). Bohaii godwits breed in the Russian Far East subarctic region and
share the EAAF with melanuroides godwits that breed further south in the
steppes of Mongolia and Inner Mongolia, China (Zhu et al., 2022). Pre-
viously, melanuroides was thought to be the only godwit subspecies in this
flyway (Zhu et al., 2021a, b). For this reason, all previous occurrences
and counts of Black-tailed Godwits in the EAAF were attributed to mel-
anuroides alone. As a result, there is a real need to update our knowledge
on the distribution of both subspecies in the EAAF to make new popu-
lation estimates, fill knowledge gaps and design conservation strategies.

In recent years, satellite tracking has become a leading method for
obtaining the annual distributions of migratory animals (Zhu et al.,
2021b; Kuang et al., 2022). It represents a powerful but expensive
method and is often limited to a few individuals from one spot rather
than including many birds from multiple locations (Lindberg and Walker,
2007). Our study aims to provide the first information on the
non-breeding distributions and potential migratory corridors of both
godwit subspecies by using morphological information. Morphological
measurements of godwits are available from 22 ringing sites across 9
countries in the EAAF. To analyse this data set, we developed a simple
discriminant function that can distinguish between the two subspecies on
the basis of the individual's bill and wing length.

Discriminant functions have been widely used in species classification
(Genovart et al., 2003; Santiago-Alarcon and Parker, 2007; Izenman,
2013). Gunnarsson et al. (2006) demonstrated that this method can also
be used to reliably predict the sex of individual islandica godwits. Since
the differences between godwit subspecies are more significant than the
previously analysed sexual size differences, we expect that a discriminant
function will also be able to predict subspecies reliably (Zhu et al., 2020,
2021a). We validated the accuracy of our discriminant function by
checking its performance on individuals known to be bohaii or melanur-
oides through molecular analysis (see Zhu et al., 2021a). Our discrimi-
nant function provides an accessible and affordable tool to keep adding
knowledge about godwits in the EAAF that will hopefully help design
effective conservation strategies, as this flyway continues to face threats
from human-caused habitat destruction (Szabo et al., 2016).

2. Methods
2.1. Discriminant function analysis

To develop our discriminant function, we used reference measure-
ments from Black-tailed Godwits (hereafter ‘godwits’), for which the
subspecies was genetically determined using a genetic marker from
mitochondrial DNA (see Zhu et al., 2021a). Godwits have reversed sexual
size dimorphism (Engelmoer and Roselaar, 1998; Zhu et al., 2020).
Fortunately, our reference dataset for both subspecies contained a
near-equal number of males and females which minimises the potential
for bias as a result of the existing sexual dimorphism (bohaii: 219 and
243; melanuroides: 859 and 873). Samples of bohaii were collected in
Bohai Bay, China (39.2° N, 118.0° E) and melanuroides samples in
Roebuck Bay, Australia (17.9° S, 122.3° E). To limit the potential for
measurement errors, the same team performed ringing and measuring at
each site (led by B.-R. Zhu in Bohai Bay and C.J. Hassell in NW Australia).

These reference measurements were checked for normality with a
Shapiro-Wilk Test (p > 0.11), for homogeneity with variance-covariance
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matrices (% = 93.979, df = 1980, p = 1). The two linear dimensions with
the lowest collinearity and variance inflation factor (VIF = 3.1) were
selected using R-packages “covTestR” and “car”, namely bill and wing
(the flattened wing chord). Next, we normalised the reference data to
minimise the effect on the model caused by the scale or unit of the pre-
dictors and randomly split the reference data into a training set (80%)
and a testing set (20%; Picard and Berk, 1990). We then obtained the
discriminant function by fitting a linear model to the bill and wing
lengths in the training set with the function ‘lda’ from the R-package
“MASS”.

We cross-validated the performance of the resulting discriminant
function by applying it to the testing set. This method is proven to be
more precise than re-substitution or sample splitting (Dechaume-Mon-
charmont et al., 2011). Lastly, to estimate the error rate of the function
when discriminating subspecies, we examined the discriminant function
using 50 samples (each sample: n = 217) that were resampled by boot-
strapping from the reference data. The resulting prediction accuracy and
95% confidence interval (CI) are reported (Shinmura, 2015).

2.2. Predicting and mapping the non-breeding distributions

To investigate the non-breeding distribution of both subspecies in
East-Southeast Asia and Australia, we applied our discriminant function
to the ringing data (e.g., biometric measurements, ringing dates, loca-
tions and ring numbers) of 994 adults captured at 22 ringing stations in 9
countries (Fig. 1; Appendix Table S1). We set the western border of our
data collection area in Thailand (ca. 95° E) for two reasons: (1) this is the
westernmost site where both subspecies have been confirmed to occur
through molecular methods (Zhu et al., 2016-2018 unpubl. data, 2021a);
(2) at sites further west, e.g., in Bangladesh, India and Sri Lanka, there is
anecdotal evidence suggesting the occurrence of L. L limosa, which is
similar in body size to bohaii and would therefore influence our non-
breeding range predictions (Zhu et al., 2020). We classified each ring-
ing site as a stopping or non-breeding site by the month in which the
ringing work was conducted, i.e., spring (April-June), autumn (July-
—October) and winter (November-March; Fig. 1).

If a bird was expected to belong to the bohaii subspecies, but the
ringing site was not previously known as a bohaii-site from satellite
tracking, i.e., Russia or Australia (see Zhu et al., 2021b). We performed
additional checks for the possibility of their occurrence by examining
photos of godwits taken in those regions. Godwit photos from Kam-
chatka, Russia, were collected from the local ringing group, and photos of
non-breeding godwits in Australia were collected from eBird (htt
ps://ebird.org/home) and individual researchers. The godwit photos
were assessed by B.-R. Zhu and K.K.-S. Leung who have the most expe-
rience with identifying bohaii in the field. We first shuffled the photos and
concealed their locations to reduce potential bias. Then, both examiners
verified the photos independently and their results were cross-checked
and turned out to be identical. As a result, 75 photos were examined
(Fig. 1).

We collected additional information about the presence of Black-
tailed Godwits in regions beyond our sampling sites, i.e., the Korean
Peninsula, Japan, Taiwan of China, the Philippines and Australia by
interviewing bird watchers, photographers and shorebird researchers
along the flyway. When the presence of godwits was reported, we also
collected and examined photos from these sites. We present the predicted
proportion of each subspecies in the ringing stations on a map using Qgis
3.1.6, sightings of godwits from the interviews were also marked out.

3. Results

The discriminant analysis yielded the following function with a cut-
off value of 13 (also see Fig. 2):

Discriminant coefficient = —2.1 x bill + 0.86 x wing +13
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Fig. 1. Predicted non-breeding distributions of bohaii and melanuroides. Sightings of bohaii type godwits confirmed by photos are shown with stars. Stopping sites are
marked with black outlines, and non-breeding sites are white. Mai Po Nature Reserve (black and white outline) was the northernmost non-breeding site for both
subspecies and also a stopping site for melanuroides. The known breeding range of bohaii (ca. 61-66° N) is shown in light blue and that of melanuroides (ca. 42-52° N)

in orange (adapted from Zhu et al., 2022). Ring stations and countries are in bold.

An individual is predicted to be bohaii when the discriminant coeffi-
cient is less than 0 and melanuroides when it is greater than 0. The cross-
validation of this function on our testing set (n = 44) showed it to be
97.7% accurate in predicting subspecies. The prediction accuracy of the
discriminant function on the bootstrapped samples was 97.0% (95% CI:
95.7-98.3%, n = 2357) for bohaii and 95.5% (95% CIL: 95-96.1%, n =
8493) for melanuroides.

Out of the 22 ringing stations that provided biometric data on god-
wits, Mai Po Nature Reserve in Hong Kong, China (ca. 22° N) was the
northernmost non-breeding site of both subspecies (Fig. 1; Appendix
Table S1). The morphological data showed that bohaii was captured at
nine ringing stations in six countries and that melanuroides was captured
at all ringing stations (Fig. 1; Appendix Table S1). Moreover, the distri-
bution of the two subspecies overlapped in six countries, i.e., Russia,
Mongolia, China, Vietnam, Thailand and Australia (Fig. 1; Appendix
Table S1).

The discriminant function identified bohaii occurred at sites not pre-
viously known from satellite tracking: Kamchatka, Russia, Nudgee Beach,

Australia and Roebuck Bay, Australia (Fig. 1; Appendix Table S1; Zhu
et al., 2021b). In Kamchatka, 6% of the measured birds (four in total)
were identified as bohaii. This was 14% in Nudgee Beach (three birds)
and 5% in Roebuck Bay (28 birds). These proportions are higher than the
model's average error rate (3%) in discriminating bohaii and thus support
the presence of bohaii at these new locations. To verify this finding, we
examined photos of one of the four godwits predicted to be bohaii in
Kamchatka and both examiners agreed that the individual was bohaii.
Similarly, we also identified numerous bohaii type individuals in photos
from near Nudgee Beach and Roebuck Bay (see Appendix Table S2 for
details).

Additionally, amongst photos from bird watchers, photographers and
researchers, we found bohaii type godwits together with melanuroides
type godwits in Rason (North Korea, N. Moores, pers. comm.),
Chungcheongnam-do (South Korea, H-K. Nam, pers. comm.), Okinawa
and Hiroshima (Japan, T. Kawasumi pers. comm.), Tainan (China, B.
Chen, pers. comm.), Bulacan (the Philippines, I. Dy, pers. comm.) and the
Gulf of Carpentaria, Australia (R. Jaensch, pers. comm. Fig. 1).
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Fig. 2. (A) average bill and wing length (95% CI) of bohaii and melanuroides. The results of the Student t-tests are displayed in the bottom left. (B) subspecies
assignment of all individuals from our reference dataset based on the discriminant function (top left; black = melanuroides, grey = bohaii). The dashed line indicates the
cut-off value (13). (C) the probability of correct subspecies prediction at different discriminant coefficients. The sample size for all figures: bohaii: 45, melanur-

oides: 172.

4. Discussion

We developed a discriminant function based on the bill and wing
length, which was >95% accurate in assigning godwits captured
throughout the EAAF to either the bohaii or melanuroides subspecies. It is
worth noting that the difference in body size between the analysed
godwit subspecies is greater than the sexual dimorphism within the
subspecies (Zhu et al., 2020, 2021a). Therefore, even without consid-
ering an individual's sex, the discriminant function was able to assign it to
subspecies with high accuracy. We applied this function to godwits
captured at 22 sites across 9 countries in East-Southeast Asia and
Australia. We found that bohaii and melanuroides co-occurred in most
sampled sites except for the stopping site in Rudong, China and the
non-breeding sites in Malaysia, Singapore, and Indonesia, where only
melanuroides godwits were captured (Fig. 1). The overlap in the distri-
bution of bohaii and melanuroides extends as far south as Australia. Pre-
viously, only the latter was thought to occur here (Fig. 1; van Gils et al.,
2020).

The discriminant function revealed that bohaii has stopping sites in
Chinese mainland and non-breeding sites in Thailand. This is consistent
with previous satellite tracking results (Zhu et al., 2021b) and supports
the subspecies assignment based on our function. Surprisingly, the
discriminant function also uncovered some godwits captured in Kam-
chatka, Russia and Australia to be bohaii. These sites are outside of
bohaii's previously known distribution. Still, the number of godwits
assigned as bohaii in these sites was higher than expected on the basis of
the function's error rate. In addition, our examination of photos from
these regions also confirmed the occurrence of bohaii here. Therefore, we
conclude that the actual distribution of bohaii is larger than previously
identified via tracking (Zhu et al., 2021b). This is further supported by

photos from the Korean peninsula, Taiwan of China and the Philippines,
which also include bohaii in addition to melanuroides. Noteworthy is that
photos from the southeastern Gulf of Carpentaria, Australia even indi-
cated that bohaii is the dominant non-breeding population there (R.
Jaensch, pers. comm.).

Based on these results, we hypothesise that bohaii from the west of
their breeding range (e.g., the Lena and Vilyuy River basins, see Fig. 1
and Zhu et al., 2022) predominantly migrate over Chinese mainland. In
contrast, bohaii from the east of their range (e.g., the Kolyma River basin)
are expected to predominantly migrate along the Pacific Ocean via the
Kamchatka Peninsula, Japan, Korean Peninsula, Taiwan of China and the
Philippines to Australia (Fig. 1). We believe that the same is true for
melanuroides, i.e., an inland corridor is mainly used to reach their western
range and an oceanic corridor is used to reach their eastern range (see
Fig. 1 and Zhu et al., 2022). This idea is supported by two satellite tagged
adult melanuroides godwits from the west of their range in Chukh Lake,
Mongolia. They migrated from inland China, over the Himalayas, and
overwintered on the Indian subcontinent (Bangladesh and Sri Lanka;
Tserenbat and Purev-Ochir, 2019-2020, unpubl. data). There is no
published information about the eastern breeding locations of melanur-
oides that use the Kamchatka Peninsula as a stopping site. However, they
are likely to breed in Chukotka or on islands in the Bering Strait (Lappo
et al., 2012). Furthermore, molecularly determined melanuroides from
Northwest Australia, were sighted in Taiwan, Lianyungang and Kam-
chatka (Chan et al., 2019b; Hassell et al., 1998-2019 unpubl. data),
suggesting an oceanic migratory corridor for the eastern breeding pop-
ulation of this subspecies.

While the geographical and ecological characteristics of the breeding
grounds of these two Asian godwits subspecies are considerably different
(Zhu et al., 2022), their non-breeding distributions overlap to a large
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extent. This pattern is also seen in islandica and limosa in the East-Atlantic
Flyway (Gill et al., 2007). Outside their core breeding grounds in Iceland
and the Netherlands, the two subspecies co-occur from the UK to
Morocco during the non-breeding season (Lopes et al., 2013; Verhoeven
et al., 2021). That said, islandica is primarily found in intertidal habitats
while limosa mostly uses rice fields (Alves et al., 2010). The same might
be the case for bohaii and melanuroides in Southeast Asia. For example, in
Thailand, tracked bohaii rarely used saline habitats. In contrast, large
groups of melanuroides type godwits were recorded on the Samut Prakan
coast near Bangkok (Zhu et al., 2016-2018 unpubl. data, 2021b).

We encourage ringing groups in East-Southeast Asia and Australia to
use this accessible and effective method to examine their data and
contribute to our collective knowledge of Black-tailed Godwits, such as
their non-breeding range. However, we caution against using this
method when subspecies of similar body sizes co-occur, e.g., in Myanmar,
Bangladesh, India and Sri Lanka, where limosa and bohaii may co-exist,
we recommend using the genetic markers already developed and
applied in four godwit subspecies to assess population structure (Lopes
et al., 2013; Zhu et al., 2021b).
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