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Recent analyses of metabolic rates in fishes, echinoderms,
crustaceans and cephalopods have concluded that bathymetric
declines in temperature- and mass-normalized metabolic
rate do not result from resource-limitation (e.g. oxygen or
food/chemical energy), decreasing temperature or increasing
hydrostatic pressure. Instead, based on contrasting bathymetric
patterns reported in the metabolic rates of visual and non-
visual taxa, declining metabolic rate with depth is proposed to
result from relaxation of selection for high locomotory capacity
in visual predators as light diminishes. Here, we present
metabolic rates of Holothuroidea, a non-visual benthic and
benthopelagic echinoderm class, determined in situ at abyssal
depths (greater than 4000 m depth). Mean temperature- and
mass-normalized metabolic rate did not differ significantly
between shallow-water (less than 200m depth) and bathyal
(200-4000m depth) holothurians, but was significantly lower
in abyssal (greater than 4000m depth) holothurians than
in shallow-water holothurians. These results support the
dominance of the visual interactions hypothesis at bathyal
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depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions
contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression
assuming power or exponential models indicates that in situ hydrostatic pressure and/or
food/chemical energy availability are responsible for variation in holothurian metabolic
rates. Consequently, these results have implications for modelling deep-sea energetics and
processes.

1. Introduction

Accurately constraining in situ metabolic rates of deep-sea organisms is essential to understanding
global carbon cycling [1-4], which itself underpins global climate modelling [5]. Metabolic rates in
the deep sea are widely perceived to be low as a result of the low temperature that prevails at
depth [6]. However, analysis of bathymetric variation in metabolic rates in diverse marine taxa (fishes,
echinoderms, crustaceans, cephalopods) indicates that temperature- and mass-normalized metabolic
rates decline strongly with depth in visual pelagic taxa, but not in non-visual pelagic or benthic
taxa ([6-13], but see [14]). The ‘visual-interactions hypothesis’ has been proposed to explain this
pattern [15], where high metabolic demand results from positive selection for locomotory capacity
among visual pelagic predators inhabiting well-lit oceanic waters, and reduced energy expenditure
results from relaxation of this selection pressure when predation becomes increasingly limited by light
availability.

The potential for any influence of resource limitation (e.g. food/chemical energy or oxygen) or
adaptation to low temperature or high hydrostatic pressure on bathymetric trends in metabolic rate
have been considered and rejected [6]. Previous explorations of bathymetric influences on metabolic
rate have rarely included metabolic rates from abyssal depths (>4000m). Instead, these analyses have
been dominated by metabolic rates from less than the maximum depth of light penetration (less
than 1000 m) [16], confounding capacity to distinguish environmental influences owing to significant
covariance in environmental factors (e.g. hydrostatic pressure, temperature, oxygen, food/chemical
energy availability, light availability). Despite the plausibility of conclusions drawn by studies examining
bathymetric trends in metabolic rate, previous analyses must be regarded with some caution until
additional deep-sea metabolic rates reduce the bias towards shallow-water metabolic rates.

Moreover, the limited metabolic rates reported for deep-sea species are predominantly obtained from
experiments conducted at shallow-water pressures, but at least some deep-sea taxa are sensitive to
depressurization [17]. While abyssal-adapted organisms demonstrate low-pressure intolerance through
mortality (e.g. [18,19]), some bathyal fauna may tolerate recovery from approximately 2000 m (e.g. [20]).
Even these apparently low-pressure tolerant bathyal species demonstrate pressure-dependent shifts in
metabolic rate. For example, metabolic rate is depressed following depressurization in hydrothermal
vent shrimp Mirocaris fortunata sampled at 1617 m depth [20]. Pressure-related shifts in M. fortunata’s
metabolic rate are not transient or overcome by acclimation to surface pressure: metabolic rate in
M. fortunata declines further with sustained exposure to surface pressure (cf. [20,21]), suggesting
continuing acclimation. Further, hyperbaric adaptations in mitochondrial function and density may
not be detectable at surface pressure: intraspecific cold adaptations in mitochondrial function and
density in the killifish Fundulus heteroclitus are not apparent when individuals are acclimated to warm
temperatures [22]. Consequently, metabolic rates measured at surface pressure may be unrepresentative
of deep-sea in situ rates, inhibiting accurate assessment of bathymetric trends in metabolic rate that
support the visual interactions hypothesis.

The visual interactions hypothesis predicts that there should be no decline in temperature- and mass-
normalized metabolic rate with depth in a taxon that is not influenced by visual interactions [7]. The
benthic and benthopelagic holothurian lifestyle is not dependent on visual-locomotor interactions with
prey or predators at any depth [10,23]. Consistent with the visual interactions hypothesis, previous
exploration of metabolic rate in holothurians reported that holothurian metabolic rate is not depth-
dependent [10]. However, only 3 of the 26 metabolic rates were from depths greater than 1300 m, limiting
statistical power to identify any bathymetric trend. Therefore, the aim of this study was to measure
metabolic rates in abyssal holothurians i sifi, and thus extend the available holothurian metabolic rates
and allow reassessment of bathymetric trends in holothurian metabolic rate. Extending available deep-
sea holothurian metabolic rates also increases the capacity to identify potential environmental influences
(hydrostatic pressure, oxygen, food/chemical energy availability, light availability) on metabolic rate.
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2. Methods
2.1. Study site

In situ respiration rates of abyssal Holothuroidae were determined during the RV Sonne Joint Program
Initiative Oceans — Ecological Aspects of Deep-Sea Mining cruise to the Peru Basin (SO242-2), between
August and September 2015. Deployments were made within undisturbed or reference areas in the
DISturbance and reCOLonization (DISCOL) experimental area in the abyssal Peru Basin (see [24])
(table 1). The DISCOL region is a site with low organic matter flux [25] and there was no visual evidence
of recent organic matter pulse at the deployment sites.

2.2. Respirometry equipment

Respiration rates were measured using the benthic incubation chamber system 3 (BICS3) previously
described by Hughes et al. [10]. In brief, the system comprised two units, with each unit composed of two
watertight acrylic respirometry chambers housed within an external aluminium protective frame. Each
watertight chamber had a 15.381 capacity and contained a 6000 m depth-rated oxygen optode (Oxygen
Optode 3975; Aanderaa, Norway) to continuously measure oxygen concentration (umol 1=1). The optode
was connected to an RBR XR-420CTDm logger, which also measured and logged conductivity (mScm™1),
temperature (°C) and hydrostatic pressure (dbar). Each chamber contained a KUM K/MT 111 motor-
driven stirrer. The system was deployed on a GEOMAR ROV elevator platform. The GEOMAR ROV Kiel
6000 was used to collect individual holothurian specimens from the sediment using a suction sampler.
Holothurians were retained at the front of the suction hose during transport to the BICS3. Upon arrival,
the holothurian specimen was gently deposited into one of the respirometry chambers, after which the
lid was closed to seal the chamber.

2.3. Respirometry measurements

Four deployments, each of four respirometry chambers, resulted in oxygen consumption rates from
13 individual holothurians of eight putative species (two Amperima spp., two Benthodytes spp. and
Benthodytes typica, Mesothuria sp., Peniagone sp. and Paelopatides sp.) and three background seawater-
only incubations. To reduce potential effects from stress associated with collection and transfer to the
respirometer, the rate of oxygen consumption was assessed over a period of at least 70 h, beginning 24 h
after closure of the last respirometry chamber and ceasing at the commencement of elevator platform
recovery. Holothurians were collected intact aboard, and body length and width were measured.
Samples were stored at —20°C for subsequent biomass analysis.

Oxygen saturation within respirometry chambers decreased by less than 4% and oxygen depletion
was approximately linear (p <0.05, 2 > 0.855) suggesting that holothurian oxygen consumption rates
were not affected by oxygen depletion within the respirometry chambers. Oxygen saturation within the
background chambers decreased by 0.4% +0.1 (mean+s.d.). Probes were tested for drift subsequent
to deployments and no drift was observed. The oxygen consumption of each individual holothurian
(R, umol O h=1) (table 1) was calculated from the mean rate of decrease in oxygen concentration within
the holothurian respirometry chamber seawater (AO, 1y, pmol Op 171 h~1), the mean rate of decrease
in oxygen concentration within the background chambers (AO, g, pmol Oy 171 h™1), the volume of the
respirometry chamber (V¢, 1), and the volume of the holothurian (Vy, ) as:

R=AO0y-(Vc —VH)— AOy5 - (Vc — Vh).

2.4. Comparative metabolic rates

To complement the unique respiration rates of abyssal holothurians with respiration rates from shallower
areas, published comparative metabolic rates were compiled using an adaptation of Hughes et al. [10]
criteria:

1. Metabolic measurements were made using post-larval holothurians, minimizing variation in
metabolic rates owing to ontogenetic effects;

2. Holothurians were acclimated to a specified experimental temperature that fell within the
temperature range experienced by the species in its natural habitat;
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3. Holothurian individual oxygen consumption rates were available either directly, or were
possible to derive by calculation;
4. Holothurian masses were provided as wet mass.

Physiological activities such as locomotion or feeding may significantly affect metabolic rate.
Consequently, metabolic rates of non-growing, resting, post-absorptive animals (standard metabolic rate)
are distinguished from metabolic rates of organisms engaging in routine activity (routine metabolic
rate) [26]. The published literature typically did not discriminate between standard metabolic rate
and routine metabolic rate, therefore the comparative metabolic rates were interpreted as representing
routine metabolic rates to facilitate comparison with the routine metabolic rates reported in this study
[10]. Adopting this assumption may be a relatively conservative approach: deep-sea holothurians were
not starved prior to in situ measurements and reported metabolic rates are therefore routine metabolic
rates. Employing routine metabolic rates, which exceed standard metabolic rates, may decrease rather
than increase any bathymetric decline. When metabolic rates were reported for a range of wet masses,
the mean metabolic rate was determined for size categories 0.1 to <1g, 1 to <10g, 10 to <100g, 100 to
<500g, 500 to <1000 g and 1000 to <1500 g, following Hughes et al. [10].

Holothurian collection depth (CD) was used to assess the influence of depth on metabolic rate.
Holothurians collected intertidally were assigned a CD of 10m as a conservative approach to avoid
distortions in using logarithm-transformed depths in regressions [7]. Holothurians collected by diver
were assigned a CD of 10m, when CD was not reported. Where a depth range was reported in a
publication, CD was taken as the mid-depth.

2.5. Metabolic rate temperature- and mass-normalization

Comparative metabolic rates were measured at experimental temperatures ranging from —1.2°C to
27°C, with total wet mass ranging from 0.6 to 1260.0g. All metabolic rates were temperature- and
mass-normalized to isolate depth-dependence from these confounding factors. Metabolic rates were
temperature- and mass-normalized as described below, using temperature- and mass-dependence
relationships determined from shallow-water holothurians to avoid incorporating any depth effects
within the normalization.

Metabolic rate temperature-scaling is described by the exponential function R= feS’T, where f
is a size-independent normalization constant, and ¢ is a scaling coefficient that represents the
gradient of the linear relationship between temperature (T, °C) and R following natural logarithmic
transformation of R [27]. Metabolic rate temperature-dependence was therefore assessed by linear
regression of temperature and natural log-transformed metabolic rate. Shallow-water holothurian
metabolic rate depended on temperature across a temperature range of —1.2°C to 27°C (figure 1):
R=4.702 - 0070 (F; 30 =8.796, p=0.005, > =0.196, n = 38). Consequently, all comparative metabolic
rates were temperature-normalized using a Q19 adjustment:

T-T)/10
RTN=R'Q10§\] o,

where Rry is the temperature-normalized metabolic rate (umol O, h1) at the normalization temperature
(TN, °C). The Qqp value of 2.12 (§=0.075) derived from the shallow-water holothurian comparative
metabolic rates was similar to the mean echinoderm Q1 value of 2.15 (¢ =0.077) derived by Hughes
et al. [10]. All metabolic rates were normalized to 2.5°C (approximating the 2.63°C median temperature
of deep-sea holothurian metabolic rate assessments) to reduce the potential for artefacts arising owing to
differences in the temperature sensitivity of metabolic rates in shallow-water and deep-sea taxa.
Metabolic rate mass-scaling is described by the power function R = jM* where j is a mass-independent
normalization constant, and k is a scaling coefficient that represents the gradient of the linear
relationship between mass (M, g) and R following logarithmic transformation [27,42]. Metabolic rate
mass-dependence was therefore assessed by linear regression of log-transformed M and Rtn. Shallow-
water holothurian Rty depended on mass (figure 1): Rty =0.5436 - M0-5858 (F1,36 =103.000, p <0.001,
12 =0.741, n =38). Consequently, all comparative Ry were mass-normalized using a mass adjustment:

logRtMN = logRTN + k(logMN — logM),

where Rty is the temperature- and mass-normalized metabolic rate at the normalization temperature
(TN, °C) and mass (M, g). The k value (0.5858) derived from the shallow-water holothurian comparative
metabolic rates was used. All metabolic rates were normalized to 70g (approximating the 66.3 g
median mass of deep-sea holothurian metabolic rate assessments) to reduce the potential for artefacts
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Figure 1. (a) Shallow-water holothurian metabolic rate (R) as a function of temperature (7). Shallow-water holothurian metabolic
rate increases significantly with increasing temperature assuming an exponential function (solid line: R = 4.702 - e®T; F, 3; — 8.796,
p = 0.005,r* = 0.196). (b) Shallow-water holothurian temperature-normalized metabolic rate (Rry) as a function of mass (M). Metabolic
rate data were normalized to a temperature of 2.5°C using a shallow-water-holothurian-derived Qyq of 2.12. Shallow-water holothurian
metabolic rate increases with increasing mass assuming a power function (solid line: Rry = 0.5436 - M®3%8; F, 36 =103.000, p < 0.001,
r? = 0.741). Data from [13,28—-41].

arising from differences in the mass-dependence of metabolic rates in shallow-water and deep-sea taxa.
Subsequently, species-specific mean metabolic rates were calculated.

2.6. Metabolic rate depth-dependence

Statistical differences between Rry in shallow-water (less than 200m depth), bathyal (200-4000 m
depth), and abyssal (greater than 4000m depth) holothurians were assessed using Kruskal-Wallis
one-way analysis of variance by ranks.

2.7. Distinguishing environmental factors contributing to variation in metabolic rate

Multiple environmental factors covary with depth, such as in situ hydrostatic pressure (H, MPa), annual
mean oxygen concentration (Oz, umol 11, monthly mean food availability (F, mgCorg m~2 d=1) and
daily peak light availability (L, W m~?2). Data for both environmental factors and biological responses are
typically few and consequently distinguishing the relative contributions of environmental factors to any
bathymetric variation is challenging and seldom attempted (e.g. [6]).

The potential contributions of environmental factors (H, Oy, F and L) to variation in metabolic rate
were initially explored independently, through linear regression and nonlinear regression assuming
exponential (ue”P , where u is a normalization constant, v is a scaling coefficient and P is the
environmental factor) and power (wP?, where w is a normalization constant, z is a scaling coefficient
and P is the environmental factor) functions. Exponential and power functions were selected based
on visual inspection of the metabolic rates since there was no preference for model selection based on
physiological theory. Nonlinear regressions were assessed by linear regression of factors and natural
log-transformed Rty (exponential function), or by linear regression of log-transformed factors and log-
transformed Ry (power function). Where environmental data for the collection site were unavailable,
environmental data were modelled.

Hydrostatic pressure (H) is described by the function:

H=p-g-h,

where p is the fluid density, g is gravitational acceleration and / is the fluid height/depth (m). Both p and
g vary minimally and H therefore depends predominantly on depth. Depth is typically derived from H
and therefore these parameters were effectively indistinguishable.

O, was estimated using the statistical mean oxygen concentration determined by the National
Oceanographic Data Center (NODC) climatological analysis and described in the World Ocean Atlas
2013 [43]. The NODC climatological analysis is prepared on a one-degree grid and at 102 depth levels
between the surface and 5500 m depth. Where mean oxygen concentration was unavailable for the
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appropriate depth at the holothurian collection location, mean oxygen concentration for the appropriate
depth in closest geographical proximity was used.

F at depths within the export zone was estimated using the statistical mean net primary
production (NPP) determined by constructing a 12-year (2003 to 2014) monthly climatology using the
ocean productivity database (www.science.oregonstate.edu/ocean.productivity), which is derived from
MODIS satellite data based on the standard vertically generalized production model [44]. The ocean
productivity database is prepared on a one-sixth-degree grid. Where NPP was unavailable for the
appropriate holothurian collection location, NPP in closest geographical proximity was used. Export
zone depth was estimated following Lutz et al. [45]. Mean monthly F at depths below the export zone
was estimated from the NPP climatology using particulate organic carbon (POC) flux to the seafloor
derived using Lutz ef al.’s [45] model. Sea surface temperature (SST) was estimated using statistical
mean temperature determined by the NODC climatological analysis and described in the World Ocean
Atlas 2013 [46], at the approximate holothurian collection location and depth. Lateral transfer typically
enhances POC flux in submarine canyons relative to adjacent open slopes [47—49]. For example, organic
matter availability is 5-30 times higher in the tidal Western Iberian Margin Nazaré canyon than on
the open slope [50]. Elevated organic matter has significant ecological impacts on canyon benthic
communities (e.g. [51]). Consequently, F at holothurian collection locations within submarine canyons
was estimated by multiplying the POC flux derived using Lutz et al.’s [45] model by 17.5 (the mid-range
value for enhanced organic matter availability in canyons presented by Garcia et al. [50]). The potential
effect of multiple components of F (maximum, minimum, mean and standard deviation) were explored.

L was estimated using maximum insolation at each holothurian collection location calculated
according to Lumb [52] using the solar vector [53], and exponential depth-decay functions presented
for coastal and oceanic waters by Lalli & Parsons [54], while assuming no light penetrates to depths
below 1000 m [16]. The potential effect of multiple components of L (maximum, minimum and mean)
were explored.

Subsequently, the potential effect of environmental factors was explored together, through multiple
nonlinear regression assuming exponential and power functions, using the components of F and L with
strongest explanatory power (r?) (Fymax and Lyax)-

2.8. Sensitivity analysis

Statistical sensitivity to temperature- and mass-scaling parameters (g and k) was assessed using
alternative values employed by Hughes et al. [10] (respectively, 0.077 and 0.81). Sensitivity to hydrostatic
pressure derived from capture depth parameter was assessed using the minimum depth of occurrence
approach with values derived from OBIS [55]. Sensitivity to the canyon POC flux multiplier was assessed
using the lower and upper range values for enhanced organic matter availability in canyons (5 and 30)
presented by Garcia et al. [50], but also by eliminating the canyon POC flux multiplier. Sensitivity to the
differentiated coastal and oceanic light decay model was assessed by deriving L using only the coastal
model or the oceanic model.

3. Results

3.1. Insitu oxygen consumption measurements and comparative metabolic rates

Oxygen consumption measurements made at abyssal depths using 13 specimens from eight putative
species (table 1) extended the maximum collection depth of holothurian metabolic rates from 3639.6 to
4196.5m (electronic supplementary material, table S1). A further 22 additional holothurian metabolic
rates from 10 species were identified from the literature. Once mean metabolic rate was determined
for size categories for each species, 33 additional holothurian metabolic rate data were added to the 26
metabolic rates reported by Hughes et al. [10], increasing the number of species with reported metabolic
rates from 17 to 35 [10,13,28-41,56-59].

3.2. Metabolic rate depth-dependence

Rymn did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200-4000 m
depth) holothurians, but was significantly lower in abyssal holothurians (greater than 4000 m depth) than
in shallow-water holothurians (F23; =5.808, p < 0.007) (figure 2).

~
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Figure 2. Temperature- and mass-normalized holothurian metabolic rate (Ryyy) over collection depth ((D). Metabolic rate data were
normalized to a temperature of 2.5°C using a shallow-water-holothurian-derived Q;y 0f 2.12, and to a standard total wet mass (M) of 70 g
using a shallow-water-holothurian-derived mass-scaling coefficient of 0.5858. Blue circles represent shallow-water data (from [13,28—
41]), black circles represent deep-sea data (from [10,13,56—59]) and open circles represent data from this study.
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Figure 3. Temperature- and mass-normalized holothurian metabolic rate (Ryyy) as a function of in situ hydrostatic pressure (H), oxygen
concentration (0,), food availability (Fyax) or light availability (Lyax). Metabolic rate data were normalized to a temperature of 2.5°C
using a shallow-water-holothurian-derived Qo 0f 2.12, and to a standard total wet mass (M) of 70 g using a shallow-water-holothurian-
derived mass-scaling coefficient of 0.5858. Blue circles represent shallow-water data (from [13,28—41]), black circles represent deep-sea
data (from [10,13,56—59]) and open circles represent data from this study.

3.3. Distinguishing environmental factors contributing to variation in metabolic rate

Multiple nonlinear regression assuming an exponential function indicated that H, O, FMax and Lyax
were not collinear (variance inflation factor <5.0) and that the exponential function incorporating H,
O, Fpmax and Lyax explained 66.3% of the variation in holothurian Ry (Faz0 =14.724, p <0.001,
12 =0.663, n = 35), but also indicated that only H significantly affected Rrvn (H p < 0.001, O, p =0.050,
Fyax p=0.848, Lyax p=0.518) (figure 3) (table 2). Nonlinear regression assuming an exponential
function indicated that H explained 60.6% of the variation in holothurian Rty (F1,33 =50.655, p < 0.001,
2 =0.606, n=35).

In contrast, multiple nonlinear regression assuming a power function indicated that H and Lyax
were collinear (variance inflation factor > 5.0). Consequently, multiple nonlinear regressions assuming a
power function were performed with either H or Lyjax removed. Multiple nonlinear regression assuming
a power function indicated that H, O, and Fypax were not collinear (variance inflation factor < 5.0) and
that the power function incorporating H, O, and Fypax explained 54.2% of the variation in holothurian
Rrmn (Fz31 =12.233, p < 0.001, 2 =0.542,n= 35), but also indicated that only Fypax significantly affected
Rrmn (H p=0.234, Oy p=0.344, Fpax p=0.011) (figure 3) (table 2). Similarly, multiple nonlinear
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Table 2. Sensitivity analysis of statistical significance of factors (H = hydrostatic pressure; Fyax = maximum mean monthly food
availability; 0, = annual mean oxygen concentration; NS = non-significant) affecting variation in holothurian metabolic rate
depending on model selection and parametrization. Parameters selected for initial analysis are highlighted in bold.

parameter
temperature  mass hydrostatic canyon POC light depth-
scaling (g) scaling (k) pressure flux multiplier decay function
0.075/0.077  0.5858/0.81 capture depth/minimum  1/5/17.5/30 coastal/coastal &
depth of occurrence oceanic/oceanic
exponential  H/H H/H H/H and 0, Hand 0,/Hand 0,/H/H  H/H/H
power Fuax/Fuax Fuax/Fuax - Fuax/H and Fyay NS/NS/Fyax/Fax Fuax/Fuax/Frnx

regression assuming a power function indicated that O, Fpax and Lyax were not collinear (variance
inflation factor < 5.0) and that the power function incorporating Oz, Fpax and Lyiax explained 52.6% of
the variation in holothurian Ry (F331 =11.486, p < 0.001, 2 =0.526, n = 35), but indicated that only
Fmax significantly affected Ryvyn (O2 p=0.266, Fpax p=0.004, Lyax p=0.533) (figure 3) (table 2).
Nonlinear regression assuming a power function indicated that Fypjax explained 48.8% of the variation
in holothurian Rty (F1,33 =31.435, p <0.001, 2 =0.488, n = 35).

3.4. Sensitivity analysis

Statistical analysis was predominantly robust to alternative values for parameters (table 2). Statistical
analysis was robust to the alternative g value for temperature-scaling, regardless of the descriptive
function assumed. Similarly, statistical analysis was robust to the alternative k value for mass-scaling,
regardless of the descriptive function assumed. Statistical analysis employing the alternative depth
parameter indicated that O, significantly affected Ryyvn as well as H, assuming an exponential function,
and that H significantly affected Rrvn as well as Fyrax assuming a power function. Statistical analysis
was robust to increasing the canyon POC flux multiplier. However, statistical analysis employing
decreased canyon POC flux multipliers indicated that O, significantly affected Rrvn as well as H,
assuming an exponential function. Further, statistical analysis employing decreased canyon POC flux
multipliers indicated that no factors significantly affected Rty assuming a power function. Statistical
analysis was robust to the light decay model, regardless of the descriptive function assumed.

4. Discussion

Metabolic rates of abyssal Holothuroidea were determined in situ and synthesized with other available
holothurian metabolic rates to explore bathymetric trends in temperature- and mass-normalized
metabolic rate. Mean temperature- and mass-normalized metabolic rate did not differ significantly
between shallow-water (less than 200 m depth) and bathyal (200-4000 m depth) holothurians, but was
significantly lower (82%) in abyssal holothurians (greater than 4000 m depth) than in shallow-water
holothurians. Methodological approaches may contribute to this difference. Deep-sea holothurians
were not starved prior to in situ measurements and the metabolic rates reported in this study are
therefore interpreted as routine metabolic rates. Routine metabolic rates are greater than standard
metabolic rates, but the published comparative metabolic rates typically did not discriminate between
routine and standard metabolic rate. Comparative metabolic rates were therefore interpreted as
representing routine metabolic rates to allow statistical analysis. Adopting this assumption is a
relatively conservative approach that may diminish bathymetric differences in metabolic rate rather
than enhancing them. It is possible that metabolic rates reported in this study represent standard
metabolic rates: holothurians may have ceased routine activities in response to sampling and transfer
to respirometer chambers. Further, both starting oxygen concentrations (greater than 129 umol1~1) and
ending oxygen concentrations (greater than 117 umol1~!) were low, which may have affected metabolic
rates: holothurians are typically oxyconformers (e.g. [60]). However, holothurians were observed at
different positions within respirometer chambers during the 96 h incubation period and faecal matter
was collected from respirometer chambers following incubation, suggesting that holothurians engaged
in both movement and digestion. Oxygen depletion was approximately linear (p <0.05, r> > 0.855)
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during the >70h of oxygen concentration sampling that followed the 24h post-sampling recovery
period, suggesting both that activity did not differ significantly during the incubation period and that
holothurian oxygen consumption rates were not affected by oxygen depletion within the respirometer
chambers. Further, while holothurians are typically oxyconformers, they are capable of maintaining
relatively high metabolic rate (68% of normoxic metabolic rate) down to oxygen concentrations of
approximately 90 umol 1! [60]. Nonetheless, it is possible that low environmental oxygen concentration
contributed to low metabolic rate in abyssal holothurians.

There was notable overlap between the wide-ranging metabolic rates in shallow-water and bathyal
deep-sea holothurians (figure 2). Differences in oxygen concentration and food availability may
contribute to the dispersion in shallow-water holothurian metabolic rates (figure 3). Similarly, oxygen
concentration and food availability may contribute to the elevated metabolic rate reported in Zygothuria
lactea at 2226 m relative to other deep-sea holothurians. In contrast, the high metabolic rate reported
in Cucumaria frondosa at 1047.5m may result from proximity to the species bathymetric range limit.
Metabolic rate has been reported to increase significantly in the bathyal lithodid crab Lithodes maja as
hydrostatic pressure approaches the species 790 m bathymetric range limit [61] and similar responses
are expected in other taxa, including holothurians. C. frondosa typically occurs at depths shallower than
500m and there is only a single record of this species occurring deeper than 900 m [55]. Nonetheless,
the absence of significant difference between metabolic rate in shallow-water and bathyal holothurians
support the dominance of the visual interactions hypothesis at bathyal depths.

In contrast, significantly lower metabolic rate at abyssal depths in this non-visual benthic and
benthopelagic echinoderm class suggests that environmental factors contribute to variation in metabolic
rates. Although multiple potential factors (oxygen, food/chemical energy, light availability) vary
with depth, sufficient holothurian metabolic rates were available to explore the influence of these
factors without confounding by collinearity. Statistical exploration of the environmental influences on
holothurian metabolic rates indicate that hydrostatic pressure or food/chemical energy availability
drive bathymetric variation in holothurian metabolic rate. Which factor is causative of the variation
in holothurian metabolic rate depends on the model selected, i.e. exponential or power function,
and there is currently no preference for model selection based on physiological theory. The potential
influences on metabolic rate of previously considered and rejected environmental factors (hydrostatic
pressure or food/chemical energy availability) demand a fundamental reassessment of assumptions
regarding environmental influences on metabolic rates in the deep sea. However, unconsidered
environmental factors may contribute to differences in metabolic rate between shallow-water and abyssal
holothurians. For example, the absence of wave action and hard substratum in abyssal environments
may relax the requirement for robust bodies in holothurians which may influence metabolic
rate. Further, the analyses presented here represent interspecific comparisons along environmental
gradients, precluding any assessment of whether these environmental influences are ecological or
evolutionary. Accurately assessing the ecological effects of resource limitation requires intraspecific
comparison along an environmental gradient in the absence of intraspecific genetic variation. Accurately
assessing adaptation to resource limitation requires intraspecific comparison along an environmental
gradient with intraspecific genetic variation, or interspecific comparison along an environmental
gradient.

Food/chemical energy may explain 48.8% of variation in metabolic rate among holothurians. There
is significant evidence that lower food/chemical energy intake and related activities can result in lower
metabolic rate owing to reduced metabolic machinery related to foraging activities and food processing
(see [62] and references cited therein). For example, differences in landscape-scale distribution in food
between environments (e.g. shallow-water, bathyal, canyon, abyssal) may require differences in foraging
strategies and thus in locomotory energy commitment. Such flexibility allows for the possibility of
positive selection on metabolic rate driven by food/chemical energy intake and related activities. The
influence of chemical energy availability on metabolic rate may mediate the role of chemical energy in
driving biodiversity patterns in the deep sea [63,64]. However, hydrostatic pressure offered the strongest
explanatory power for the bathymetric variation in metabolic rate in holothurians, potentially explaining
60.6% of metabolic rate variation.

Previous studies have asserted that hydrostatic pressure cannot drive adaptation in metabolic rates
(e.g. [6,12]). However, metabolism is a complex process resulting from a network of enzyme-mediated
reactions which are affected by hydrostatic pressure [65] and hydrostatic pressure affects metabolic rate
in at least some deep-sea species [61]. Although evidence is limited by the relative paucity of studies,
fundamental hyperbaric metabolic adaptations have previously been reported in deep-sea bacteria, for
example in the cytochrome respiratory system [66,67]. While adaptations in metabolic capacity may
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allow organisms to moderate hyperbaric impacts [6], such adaptations may also influence metabolic rate.
Consequently, it has been proposed that hydrostatic pressure has a critical role in driving bathymetric
variation in metabolic adaptations in the deep sea [17,61,68], similar to temperature’s role in driving
latitudinal patterns in metabolic adaptations (see [69,70]). Oxygen supply influences metabolic rate too
(see [62]), offering a mechanism through which environmental oxygen concentration may positively
select for reduced metabolic rate.

Significantly lower abyssal metabolic rate in a dominant deep-sea megafauna taxon (abundance
and biomass) [16] has implications for modelling of deep-sea processes. For example, estimates of
deep-sea respiration and links with community dynamics may be invalid because these estimates
assume metabolism does not depend on depth or factors that vary with depth (e.g. [2,12]). Instead,
mean temperature- and mass-normalized metabolic rate was 82% lower in abyssal holothurians than
in shallow-water holothurians (figure 2). Since deep-sea communities represent a critical component
of global biogeochemical cycling [1,3,4,12], erroneous assumptions regarding deep-sea metabolic rates
may affect the accuracy of biogeochemical cycle models [5]. Resolving whether hydrostatic pressure
or food/chemical energy availability is the dominant driver of bathymetric variation in holothurian
metabolic rate in the deep sea, and confirming that temperature does not contribute to depth-related
variation, may be achieved by assessing metabolic rates of holothurians present at hadal depths [71]
in situ. Seafloor sediments in ocean trenches can have higher organic matter concentrations than
surrounding abyssal depths [72], but with similar oxygen concentrations [43] and temperatures [46].
Therefore, assessing metabolic rates of hadal holothurians will provide a test of the importance of
hydrostatic pressure and food/chemical energy on metabolic rate. Increased metabolic rate in hadal
holothurians relative to abyssal holothurians would support the food/chemical energy constraint
hypothesis, whereas decreased metabolic rate in hadal holothurians would support the influence of
hydrostatic pressure. In contrast, comparable metabolic rate in hadal holothurians would support
the oxygen constraint or temperature hypotheses. Such measurements will be key to understanding
environmental influences on metabolic rate in the deep sea.
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