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Abstract
The expanding development of offshore wind farms brings a growing concern about the human impact on seabirds. To assess 
this impact a better understanding of offshore bird abundance is needed. The aim of this study was to investigate offshore bird 
abundance in the breeding season and model the effect of temporally predictable environmental variables. We used a bird 
radar, situated at the edge of a wind farm (52.427827° N, 4.185345° E), to record hourly aerial bird abundance at the North 
Sea near the Dutch coast between May 1st and July 15th in 2019 and 2020, of which 1879 h (51.5%) were analysed. The 
effect of sun azimuth, week in the breeding season, and astronomic tide was evaluated using generalized additive modelling. 
Sun azimuth and week in the breeding season had a modest and statistically significant (p < 0.001) effect on bird abundance, 
while astronomic tide did not. Hourly predicted abundance peaked after sunrise and before sunset, and abundance increased 
throughout the breeding season until the end of June, after which it decreased slightly. Though these effects were significant, 
a large portion of variance in hourly abundance remained unexplained. The high variability in bird abundance at scales rang-
ing from hours up to weeks emphasizes the need for long-term and continuous data which radar technology can provide.

Introduction

The Dutch Continental Shelf (DCS) of the North Sea is 
home to ecologically diverse avian species that fluctuate in 
number and composition year-round (Camphuysen and Leo-
pold 1994; Fijn et al. 2018) and utilize the intertidal, coastal, 
and pelagic areas of the DCS to roost and forage. The DCS 
is also heavily exploited through human activities including 
fisheries, shipping, gas extraction, and increasingly wind 
farm development (Rijksoverheid 2015). As wind farm 
development is expanding on the North Sea, especially in 
coastal waters, the concern for its effect on birds utilizing the 
area has grown, as is seen in the growing field of research 

(Desholm and Kahlert 2005; Hüppop et al. 2006; Garthe 
et al. 2017; Thaxter et al. 2018; Vanermen et al. 2019). In 
spring and summer central place foraging colonial seabirds, 
such as gulls and terns, commute regularly between breeding 
sites onshore and foraging grounds at sea (Wetterer 1989; 
Fryxell and Lundberg 1998). Due to this foraging strategy, 
coastal seabirds may have recurrent encounters with off-
shore wind farms by which they may be impacted (Drewitt 
and Langston 2006; Lindeboom et al. 2011). Additionally, 
a meta-analysis by Dierschke et al. (2016) on interactions 
between seabirds and wind farms on the North Sea identified 
species that appear to be generally attracted towards wind 
farms, including the lesser black-backed gull (Larus fuscus) 
and the European herring gull (Larus argentatus), which 
are among the most abundant species on the DCS around 
this time of year (Camphuysen and Leopold 1994), further 
increasing concern for these species.

While it is clear birds are impacted by offshore wind 
farm development, the scope of this impact is difficult to 
assess as information on temporal fluctuations of offshore 
bird abundance is lacking due to inherent limitations of 
various monitoring techniques. On the North Sea, visual 
observations through ship surveys (Camphuysen and Leo-
pold 1994), airplane surveys (Fijn et al. 2018), and stations 
along the coast (Camphuysen and Dijk 1983) have been 
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used to determine bird species distribution and abundance 
year-round. This provides information on a broad range of 
species active during daylight hours and this information 
has been combined into global species distribution maps 
(Halpin et al. 2009). However, due to the often high logistic 
costs of ship and aerial surveys, and the obvious geographi-
cal constraints of coastal bird monitoring, large temporal 
and/or spatial gaps exist that can make accurate offshore 
distribution estimations difficult. Radar is a remote sensing 
technology which has been applied to monitor avian abun-
dance and flight characteristics at sea (Lack 1959; Hüppop 
et al. 2006; Plonczkier and Simms 2012; Fijn et al. 2015). 
Although limited in range, bird radar can monitor bird abun-
dance and flight characteristics within an observation area 
at a high spatio-temporal resolution for extended periods of 
time, enabling research on factors that influence both short- 
and long-term temporal patterns in offshore abundance. In 
particular, the effect of highly predictable external variables 
on bird abundance is of interest, as their predictable nature 
can structurally affect bird behaviour and can be taken into 
account when assessing bird-wind farm interactions.

Three external variables that are highly predictable and 
have been noted to affect the behaviour of coastal seabirds 
are daylight availability, the time of year, and the tide. Day-
light availability is important for visual foragers and the 
daily rhythm of animals, including central place foragers 
such as seabirds (Fryxell and Lundberg 1998; Shealer 2002). 
The time of year affects the breeding stage of animals. Dur-
ing the different breeding stages, some species may adjust 
their foraging effort and behaviour. For example, lesser 
black-backed gulls from coastal breeding colonies in the 
Netherlands (Camphuysen et al. 2015) and the UK (Thaxter 
et al. 2015) have been found to increase the proportion of 
time spent at sea during chick-rearing, and some herring 
gulls on Texel switch to marine diets during chick-rearing 
(van Donk et al. 2017). Lastly, the tide impacts the sea cur-
rents and can create foraging opportunities at sea through 
upwelling. For example, the common tern (Sterna hirundo) 
and roseate tern (Sterna dougallii) use upwelling caused by 
tidal currents to access prey (Urmy and Warren 2018).

The aim of this study is to investigate hourly fluctuations 
in non-migratory aerial bird abundance (henceforth, bird 
abundance) near an offshore wind farm and analyse the effect 
of the aforementioned external variables with predictable 
temporal variation on this abundance (daylight availability, 
time of year, and tide). Particularly, we are interested in local 
movements of birds at sea during the breeding season, when 
colonial seabirds forage and commute between their colonies 
and the feeding areas at sea. We use a bird radar system posi-
tioned at the edge of Luchterduinen offshore wind farm to 
measure hourly bird abundance and model the effect of sun 
position, week in the breeding season, and astronomic tide. 
We have the following expectations, based on the existing 

literature (see previous references): (1) offshore bird abun-
dance will be higher during daylight hours than during night, 
(2) abundance will be higher in the later stages of breed-
ing than at the start of breeding, and (3) abundance will be 
higher between low and high tide, when the tidal current is 
strongest and might create foraging opportunities through 
increased upwelling. The external variables are all highly 
regular and could be used to better predict offshore bird 
abundance on the North Sea during the breeding season if 
found to have a significant impact on bird abundance.

Methods

Radar measurements

Bird flight was monitored by a bird radar system (Robin-
Radar 3D Fixed) consisting of a vertically rotating X-band 
antenna (25Kw, Furuno Marine) and horizontally rotating 
S-band antenna (60Kw, Furuno Marine) both rotating at 0.75 
rotations s−1. The system was mounted on the service plat-
form of turbine 42 (52.427827° N, 4.185345° E) situated 
at the edge of Luchterduinen, 25 km from the coast near 
IJmuiden (Fig. 1).

The measurements of the radar system were automati-
cally processed to create tracks of birds using proprietary 
software developed by RobinRadar. The radar software 
had clutter filters to reduce the probability of non-avian 
scatters being erroneously tracked as birds. These filters 
were applied dynamically in each radar image to remove 
unwanted reflections caused by landscape features, waves or 
rain, and information on filtering was stored per image. Each 
track was classified by the software based on its properties: 
tracks with a maximum average airspeed below 36.1 m s−1 
and a signal-to-noise ratio typical for birds (between − 10 
and 65) were categorised as birds. Airspeed was calculated 
by the proprietary software using wind speed and direction 
measured at the radar (AIRMAR 150WX WeatherStation). 
In situations where multiple birds flew closely together in 
a flock, the radar was not able to distinguish and track indi-
vidual birds. In this case, the group of birds was tracked as 
a single object and given a tag to indicate the object consists 
of a flock of birds. It was impossible to find out the num-
ber of birds belonging to these flocks, and therefore tracks 
with a flock tag were treated as single observations in this 
study. The resulting tracks were stored in a centralized spa-
tial database.

Radar data were collected in the years 2019 and 2020. 
The relevant period within these years was chosen to match 
the breeding period of the most abundant species. Based on 
species observation data taken from the European Seabird at 
Sea database (ESAS 5.0, accessed 16-02-2021, Camphuysen 
et al. 2004; Reid and Camphuysen 1998) near the wind farm 
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(51.8° N–53° N, 3.7° E–4.7° E, Fig. 1) in the months of 
May, June and July, the lesser black-backed gull was found to 
be the most prevalent species by far in this part of the North 
Sea (56.8% of observations, see Online Resource 1). This 
was also confirmed by species observation reports made at 
the nearby OWEZ wind farm (Krijgsveld et al. 2011) and 
before the construction of Luchterduinen (Gyimesi et al. 
2019) during spring and summer. The lesser black-backed 
gull was therefore designated as the key species for deciding 
our period of interest. Based on field observations of egg-
laying and fledging at colonies along the North Sea coast 
(Camphuysen and Gronert 2010; Cottaar et al. 2018, 2020) 
we selected the period of May 1st to July 15th as the breed-
ing season.

The bird detection probability of the radar is not equal 
over the whole radar observation window. The reflective 
size of a bird and thus its detection probability changes 
with range to the radar and position within the radar beam 
(Schmid et al. 2019). To account for this, data was selected 
from an area in which detection probability would be rela-
tively homogeneous based on the properties of the radar and 
the position of the radar system relative to the wind farm. To 
account for detection loss occurring because of a decrease 
in radar beam power with range, the maximum range from 
the radar was set at 2000 m. Beyond this range, the detection 
probability for small birds (< 62.5 g) drops below 80% at 

certain scanning altitudes (Online Resource 2). On the other 
hand, the high power of the radar beam at close range can 
produce false-positive bird tracks caused by other features 
reflecting the radar beam. Therefore, the minimum range for 
track inclusion was set at 1000 m. Detection rate at different 
azimuth angles (scanning angle of the horizontal radar) dif-
fered because of turbine placement of the wind farm. As the 
radar itself was installed on the service platform of a wind 
turbine, the radar beam was blocked by the turbine between 
275° and 346° degrees. Additionally, the other turbines in 
the wind farm were situated roughly between 80° and 260°, 
creating a zone in which bird detection is impaired around 
each turbine. To avoid detection bias in these regions, data 
were sampled from an azimuth angle between 22.5° and 
60.7° at 1000 to 2000 m from the radar, resulting in a 1 km2 
area of open sea North-East of the radar (Fig. 1). Only tracks 
which occurred (partially or entirely) within this area were 
analysed in this study. The radar detects birds reliably up 
to an altitude of 300 m for small birds (< 62.5 g) and up 
to an altitude of 600 m for larger birds (500 g, see Online 
Resource 2). The radar system only measures birds in flight, 
leaving birds floating on the water unseen. Note that detec-
tion probability can also change with the aspect and shape of 
tracked birds (Bruderer 1997); however, there is no way to 
account for this in the data as we cannot quantify the aspect 
of the targets.

Fig. 1   Overview of the sample area and Luchterduinen offshore wind 
farm (box) and the position of the radar in relation to the coast of the 
Netherlands (map). Map: tidal water height was measured at Hoorn 
platform (blue dot, 52.92464° N, 4.15° E), ERA5 data was sampled 
from the nearest grid cell between 52.375° N–52.625° N and 4.125° 
E–4.375° E (blue dotted square), and ESAS5.0 species observa-

tion data were sampled between 51.8° N–53° N and 3.7° E–4.7° E 
(dashed black square). Box: black dots show the individual turbines, 
the red dot shows the turbine that has the radar-system installed 
(52.42783° N, 4.18535° E). The 1 km2 area of interest is shown in red 
with black lining; it is delimited by the 1000 and 2000 m ranges and 
the 22.5° and 60.7° azimuth angles from the radar
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Environmental data

Astronomic tide was retrieved from the nearest observa-
tion station at Hoorn Platform (52.92064° N, 4.09822° E, 
approximately 55 km northwest of the study site, Fig. 1) 
from the Rijkswaterstaat public database (Rijkswaterstaat 
2020, accessed 19 October 2020), which contained astro-
nomic tide acquired through harmonic analysis as water 
height in centimetres above Mean Sea Level (cm—MSL). 
Tidal information was retrieved at the half-hour mark each 
hour (xx30 h) to best reflect average tidal height for each 
hour (xx00–xx59 h).

For data filtering purposes, we extracted wind data to 
independently calculate air speed of the radar tracks (see 
Radar data processing). Hourly wind data were acquired 
from the ECMWF (European Centre for Medium-Range 
Weather Forecasts) ERA5 reanalysis data (Hersbach et al. 
2018; Hersback et al. 2020, accessed 15 September 2020). 
Wind conditions are described by u- and v-components 
(both in m s−1), where the u-component is the zonal wind 
(wind from the west is positive) and the v-component is the 
meridional wind (wind from south is positive). The u- and 
v-components have a temporal resolution of 1 h and spatial 
resolution of 0.25° latitude and longitude, and were sam-
pled from the grid cell closest to the study area (52.375° 
N–52.625° N and 4.125° E–4.375° E, Fig. 1). Wind compo-
nents were selected from the lowest atmospheric layer, 10 m 
above the sea surface, to match both the properties of the 
radar observations and known flight heights of the relevant 
bird species: we expected flight altitudes of most species to 
be close to the sea surface during local movements (John-
ston et al. 2014; Corman and Garthe 2014; Ross-Smith et al. 
2016; Borkenhagen et al. 2017).

Radar data processing

Each track created by the radar software included at least 
five track points and several track properties: geolocation 
plus timestamp (UTC) per track point and track direction 
based on a vector drawn from the starting point to the end 
point of the track (radians). Per track, straight line displace-
ment (m) was calculated as the great circle distance between 
the first and last track point, and the track length (m) was cal-
culated as the sum of the great circle distance between con-
secutive track points. Ground speed per track was calculated 
as track length divided by track duration (m s−1). Airspeed 
per track was calculated using ground speed, track direction 
and hourly u- and v-wind components nearest to the first 
timestamp of the track according to Shamoun-Baranes et al. 
(2007). Track straightness was calculated by dividing the 
straight line displacement by the track length. Tracks with 
airspeed < 5 m s−1 were removed as nearly all seabird species 
fly at higher airspeeds (Spear and Ainley 1997; Alerstam 

et al. 2007; Shamoun-Baranes et al. 2016). Additionally, 
manual data exploration indicated static reflections from 
nearby vessels or structures created stationary, long-lasting, 
false-positive bird tracks. To identify these clutter tracks, we 
calculated the displacement over time (m s−1) by dividing 
straight line displacement by the track duration. Through 
visual inspection, the tracks falling in the 0.1st percentile 
of displacement over time (0.08 m s−1) were identified as 
clutter and removed.

To analyse bird abundance throughout the breeding sea-
son, we calculated the total number of tracks occurring in the 
area of interest per hour (from here on reported as birds h−1). 
All tracks occurring between xx00 and xx59 h were included 
in hour xx. Sun position (azimuth angle, extracted using the 
suncalc package v0.5.0; Thieurmel and Elmarhraoui 2019) 
and astronomic tide (cm—MSL) were collected at the half-
hour mark (xx30 h) to reflect the average conditions within 
that hour. During the study period, the radar was occasion-
ally not operational and hours in which the radar was (par-
tially) offline were not included in the analysis. Furthermore, 
during exploratory analysis it became clear that birds were 
no longer detected by the radar when the clutter filter of the 
radar was highly active. Therefore, to reduce the chance of 
analysing artificial lows in bird abundance caused by high 
filter activity, we removed all hours with an average filter 
activity above a set threshold of 0.240 (elaboration available 
in Online Resource 3).

Though we designated a sampling period (May 1st–July 
15th) in which we expected to observe predominantly local 
movements of species that breed in the region, migration 
might still occur. These events fall outside the scope of this 
research and could strongly impact measured hourly abun-
dance. Therefore we chose to remove these occurrences. We 
identified moments of migration in our dataset by looking 
at the hourly average flight characteristics. We first calcu-
lated the mean hourly track direction (radians), the hourly 
mean of track straightness (0–1), and the circular uniformity 
of hourly track direction (0–1). This last characteristic was 
calculated by treating the flight direction of each observation 
as a unit vector, calculating the resultant vector of all vec-
tors in the hour combined, and dividing the resultant vector 
by the number of observations using the circular package 
(v0.4–93; Lund and Agostinelli 2017). We identified migra-
tion events as hours of relatively high bird abundance and 
with relatively high directional uniformity compared to the 
total data sample, and with straight flight paths on average. 
The following criteria were used to identify migration hours: 
hourly abundance > mean of data (114 birds h−1), uniformity 
of hourly flight direction > 90th percentile of data (0.60), 
and mean track straightness > median of data (0.78). Within 
these migration hours, tracks with straightness > 0.78 and a 
track direction within a 45° window around the hourly mean 
track direction were removed.
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After applying the aforementioned selection criteria, 1879 
hourly values of bird abundance remained (based on 208.372 
tracks). This data formed the basis for further analysis. In 
general data availability was slightly higher from 22:00 to 
8:00 local time (55.6% of hours available) than between 
08:00 and 22:00 (48.5% of hours). Hourly abundance was 
available for 123 out of 152 observations days, with 29 days 
that were completely observed (24 observation hours d−1). 
Over the breeding season of 1824 observation hours per 
year, 417 h were not covered in either season (overview 
available in Online Resource 4), in particular, week 2 (May 
8th–14th), week 3 (May 15th–22nd), and week 9 (June 
26th–July 2nd) missed more than a third of the observa-
tion hours (80, 60, and 96 observation hours out of 168 h, 
respectively). Together with the hours the radar was offline, 
in total 48.5% of the hours were excluded from the analysis. 
For a summary of data retained after each selection step and 
the total number of tracks per season, see Table 1.

Data analysis

To model the effects of the environmental variables on 
hourly bird abundance and test for the significance of 
these effects, generalized additive models were fitted to 
the data using the mgcv package (v1.8–32; Wood 2020). 
Hourly bird abundance (birds h−1) was used as the depend-
ent variable, with predictors sun azimuth (cyclic P-spline 
smoother, k = 9 to prevent overfitting), week in the breed-
ing season (thin plate regression spline smoother) and tidal 
water height (thin plate regression spline smoother), and 
year as a random effect (model A). Collinearity among 
predictors was calculated using the Pearson product-
moment correlation coefficient to verify no interaction 
between the predictors existed and they could be added 

as individual effects. We assumed a quasi-Poisson distri-
bution for the model error, which was verified with the 
model residuals after fitting the model and did not require 
any adjustment. As we used abundance data collected over 
time, we tested for temporal auto-correlation of the model 
residuals. Model residuals were highly auto-correlated and 
thus a new model was fit including the previous hourly 
abundance added as an auto-regressive term (thin plate 
regression spline smoother, k = 4 to prevent overfitting) 
to account for temporal auto-correlation (model B). 103 h 
of data without known previous hourly abundance (due 
to gaps in the data) were excluded from model B. We 
checked whether each predictor contributed to the models 
by creating sub-models with one predictor removed and 
comparing for lower AIC-scores (Burnham and Anderson 
2004). If a sub-model scored better, we would use this 
model instead of the complete model and tested whether 
further model-reduction would be warranted by repeating 
the process. The modelling outputs of both model A and B 
were explored further for the individual predictor effects, 
which were approximated by subtracting the explained 
deviance from the sub-model without the predictor from 
the deviance explained by the complete model. Due to a 
large observed decrease in effect size of all environmental 
predictors with the addition of the auto-regressive term in 
model B, we sampled and analysed 10.000 random sub-
samples of the data (n = 300) where all data points were 
at least 5 h apart and modelled the effect of environmental 
predictors (same as model A) on these subsamples. We 
inspected the mean and standard deviation of the model 
outputs as well as remaining auto-correlation to confirm 
temporal auto-correlation for these models was highly 
reduced. All analyses were performed in R version 4.0.0 
(R Core Team 2020).

Table 1   Overview of bird 
tracks measured by radar during 
the study period in 2019 and 
2020, the amount of tracks 
removed per processing step, 
the remaining tracks, including 
an overview of the number of 
measurement hours per season, 
the hours the radar was offline 
or the filter threshold was 
exceeded, and the final number 
of hours from which were 
analysed further. Processing 
steps are listed in order of 
processing. Percentages are 
based on the number of raw 
tracks or total hours per year

2019 2020

# of tracks % of total # of tracks % of total

Information on number of tracks
 Total tracks 109,641 100 119,766 100
 Non-bird tracks (air speed < 5 m s−1 or in 

0.1st perc. displacement over time)
− 4492 4.1 − 2797 2.3

 Tracks during offline hours − 2742 2.5 − 46 < 0.1
 Tracks during hours of high filter activity − 4330 3.9 − 3999 3.3
 Migration tracks − 846 0.8 − 1783 1.5
 Remaining tracks 97,231 88.7 111,179 92.8

Information on number of measurement hours
 Total hours 1824 100 1824 100
 Radar offline − 227 12.4 − 340 18.6
 Filter activity above threshold − 598 32.9 − 604 33.1
 Remaining hours 999 54.8 880 48.3



	 Marine Biology         (2021) 168:150 

1 3

  150   Page 6 of 13

Results

Hourly bird abundance

Hourly bird abundance varied between 0 and 1423 birds 
h−1 in 2019 (Fig. 2) and 0 and 840 birds  h−1 in 2020 
(Fig. 3). Mean hourly abundance in 2019 was 99 birds h−1 
(95% confidence interval = 93–107 birds  h−1) and 129 
birds h−1 (95% confidence interval = 119–136 birds h−1) 
in 2020.

Effect of external variables

Collinearity among environmental predictors was low (Pear-
son product-moment correlation coefficients: sun azimuth 
and week in the breeding season = 0.028, sun azimuth and 
tidal water height = 0.075, week of the breeding season 
and tidal water height = 0.002) and no interactions were 
assumed. Model A showed a high amount of temporal auto-
correlation in the residuals, which was removed in model 
B. For both model A and B the full model scored the best 
(lowest AIC score). Model A is described further in Online 
Resource 5. Model B is described further below (Table 2), 

Fig. 2   Overview of hourly bird 
abundance in 2019 (in dark red) 
per month, with kernel density 
distribution of the data (bottom-
right corner). Grey columns 
show hours in which filter activ-
ity was too high for accurate 
recordings, while black columns 
show hours the radar was 
offline. The Y-axis of all figures 
is limited to 800 birds h−1 for 
better interpretation; one outlier 
(2019-06-14 1600, 1423 birds) 
is therefore capped to 800 birds. 
The horizontal black lines in the 
density distribution graph show 
the mean (black line) and 90th 
percentile (dashed black line) of 
the distribution
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Fig. 3   Overview of hourly bird 
abundance in 2020 (in dark 
blue) per month, with kernel 
density distribution of the data 
(bottom-right corner). Grey 
columns show hours in which 
filter activity was too high for 
accurate recordings, while black 
columns show hours the radar 
was offline. The Y-axis of all 
figures is limited to 800 birds 
h−1 for better interpretation; 
two outliers (2020-06-10 0500, 
810 birds; 2020-06-20 0900, 
840 birds) are therefore capped 
to 800 birds. The horizontal 
black lines in the density dis-
tribution graph show the mean 
(black line) and 90th percen-
tile (dashed black line) of the 
distribution

Table 2   Overview of the generalized additive model output for model 
B, including parameter estimates for the intercept and random effect 
(year), and the estimated degrees of freedom (edf) and estimated 

deviance explained for the environmental predictors and auto-regres-
sive term (previous hourly abundance), (n = 1776)

Parametric coefficients Estimate Edf Est. dev. explained p value

Intercept 4.534  < 0.001
Year = 2020 0.024 0.9% 0.503
Smooth terms
Sun azimuth 4.927 1.1%  < 0.001
Week of the breeding season 3.416 0.7%  < 0.001
Tidal water height 1.297  < 0.1% 0.576
Previous hourly abundance 2.976 33.8%  < 0.001
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with a focus on the environmental predictor effects that 
were significant. Bird abundance was significantly related 
to sun azimuth (p < 0.001) and week of the breeding season 
(p < 0.001), but not to astronomic tide (p = 0.576). The com-
plete model explained 52.1% of data deviance (R2 = 0.48). 
Of the three environmental predictors, sun azimuth had the 
strongest estimated effect on hourly bird abundance (1.1% of 
deviance), followed by week of the breeding season (0.7%), 
and tide (< 0.1%, non-significant). Year as a random effect 
was not significant and accounted only for 0.9% of deviance. 
Previous hourly abundance to account for temporal auto-cor-
relation was highly significant, with an estimated effect of 
33.8% of deviance. The effect size estimate and confidence 
intervals (2*standard error) of the significant environmental 
predictor effects are visualized in Fig. 4. The effect of sun 
azimuth (Fig. 4A) showed two peaks in predicted number 
of birds h−1 during the day, one in the morning after sunrise 
(129 birds h−1) and a second, smaller peak in the afternoon 
(115 birds h−1) and lowest predicted abundance after sunset 
(93 birds h−1). The effect of week of the breeding season 
(Fig. 4B) showed a slight increase in mean predicted bird 
abundance from the last weeks of May to late June (week of 
June 19th), rising from 85 birds h−1 to 108 birds h−1. After 
this peak hourly abundance dropped to a mean predicted 100 
birds h−1 in the last week of July.

The range of generalized additive model output for 
the sub-sample models is depicted in Table 3. The sub-
sample models explained (22.0 ± 3.7%) of deviance in 
the data (R2 = 0.18 ± 0.04), while temporal auto-corre-
lation was strongly reduced (ACF = 0 for time lag 1–4 h, 
ACF = 0.14 ± 0.10 for time lag = 5 h). The distribution of the 
size and significance per individual effect for the environ-
mental predictors was similar to model A (Online Resource 
5).

Discussion

In this study, we show that hourly bird abundance near an 
offshore wind farm can strongly fluctuate and a portion of 
variance is explained by daylight availability (operational-
ized by sun azimuth) and time of the year (operationalized 
by week in breeding season), but not by astronomic tide. 
The results support our expectation that observed patterns 
of offshore bird abundance reflect both diurnal and seasonal 
processes throughout the breeding season, though most vari-
ability could not be explained by the temporally predictable 
environmental variables explored.

We expect the most abundant species near Luchterduinen 
are central place foragers (namely lesser black-backed gull, 
herring gull, and great cormorant (Phalacrocorax carbo), 
Online Resource 1) and our results support our expecta-
tion that these birds mainly undertake their foraging bouts 

after sunrise when daylight can aid them in their foraging. 
The drop in bird abundance throughout the day might indi-
cate some birds return to their colony earlier than others. 
Indeed offshore foraging trip duration of several seabird 
species common in the breeding season varies greatly: 
lesser black-backed gull 8.0 ± 6.3 h (Garthe et al. 2016) 
and 8.3 ± 10.2 h/6.9 ± 11.9 h (long trips for males/females, 
Camphuysen et al. 2015), Sandwich tern 2.3 ± 1.1 h (Fijn 
et al. 2017). If most birds fly out from their colony around 
sunrise to undertake foraging bouts of several hours at sea, 
a decrease in their abundance throughout the day would be 
expected. The second peak in abundance before sunset might 

Fig. 4   Smoothed effects of the significant individual predictors in the 
hourly abundance model B (n = 1776). Left Y-axis shows hourly bird 
count (black dots/boxplots), whereas the right Y-axis shows predicted 
hourly bird count (purple line = mean, area = mean ± 2·se). a Effect of 
sun azimuth, in radians from South (X-axis). Sunrise occurs between 
Azimuth = -0.73π and -0.64π, sunset between Azimuth = 0.64π and 
0.73π, indicated by the grey areas. b Effect of week in the breeding 
season, date indicates the first day of each week (X-axis)
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be caused by an increase in the flux of birds returning to 
the coast from farther at sea, or by birds also foraging in 
the evening which is supported by Schwemmer and Garthe 
(2005) who found a higher proportion of foraging lesser 
black-backed gull over the North Sea both in the morning 
and evening hours. Though we considered the breeding birds 
on the Dutch coast to be diurnal, with peaks in offshore 
activity during the day, there was activity recorded during 
the night as well. Several gull species such as the lesser 
black-backed gull and herring gull are known to be out at 
sea during the night (Camphuysen et al. 2015) and forage on 
fishery discards during the night (Garthe and Hüppop 1996; 
Garthe et al. 2016). We note that these studies are species 
specific, whereas our results depict a general trend in bird 
abundance, reflecting a combined activity pattern for all spe-
cies observed in the study area.

In some species breeding stage can affect foraging behav-
iour (e.g. Sandwich tern (Fijn et al. 2017), and lesser black-
backed gulls (Thaxter et al. 2015)). However, whether these 
changes affect the overall distribution of birds offshore has 
not been confirmed by observations and remained unclear. 
Our results show that after a period of relatively low hourly 
abundance in May, offshore bird abundance increases from 
the end of May to the end of June (Fig. 4B, Online Resource 
5). This aligns with our expectations that offshore bird abun-
dance increases throughout the breeding season, based on 
the assumption that coastal seabirds breeding in the region 
shift to a more marine diet during the chick-rearing period 
(Spaans 1971; Annett and Pierotti 1989), which for lesser 
black-backed gulls begins around the end of May (Cam-
phuysen and Gronert 2010; Cottaar et  al. 2018, 2020). 
We expected offshore bird abundance to increase further 
throughout July, yet we observed a decrease in abundance 
from the end of June (Fig. 4B). The decrease sets in before 
we would expect to see an effect from the first fledglings 
in nearby colonies, which starts in the second week of July 
(Camphuysen and Gronert 2010). It is possible there is a 
decrease in foraging effort within colonies as more breeding 
pairs experience breeding failure. In the lesser black-backed 
gull colony on Texel on average 70.3% of eggs hatch per 

season while only 23.7% of the hatchlings fledge (Cam-
phuysen and Gronert, 2010, updated to 2020 (unpublished 
data, Online Resource 1)), and failed breeders might spend 
less time foraging due to a decrease in energy demands. An 
alternative explanation for the seasonal patterns observed 
in this study may be a seasonal fluctuation in offshore food 
availability. Herring gulls and lesser black-backed gulls in 
the region forage on fishery discards during the breeding 
season (Camphuysen 1995; Tyson et al. 2015; van Donk 
et al. 2017) and temporal and spatial fluctuations in fish-
ery activity may influence bird abundance at sea. In lesser 
black-backed gulls on a colony in Texel, foraging trips dif-
fer between the period of incubation of the eggs and chick 
rearing (Camphuysen et al. 2015): foraging trip duration 
decreased during chick rearing compared to egg incuba-
tion, while the trip range increased as well as the propor-
tion of time spent at sea. The start of the increase in abun-
dance modelled in this study roughly aligns with the median 
hatching date of lesser black-backed gulls recorded on Texel 
(Camphuysen and Gronert 2010; Camphuysen et al. 2015) 
and might be caused by this shift in behaviour.

Opposed to our expectation, we found no effect on the 
tide on offshore bird abundance. We expected bird abun-
dance to be highest between low and high tide when the 
tidal current might cause increased turbulent mixing in the 
wake of the wind park (Schultze et al. 2020) and provide 
temporary foraging opportunities. Our results indicate that 
if this effect is present, it did not affect foraging opportu-
nities enough to significantly affect bird abundance, nor 
was there any other effect of tidal water height found. 
For this study we used astronomic tide measured 55 km 
from the study site (Fig. 1) which was the closest offshore 
location for which this information was available. Given 
the dynamic tidal current patterns in the North Sea (Sün-
dermann and Pohlmann 2011), this information will not 
represent the situation at the study site perfectly. Local 
tidal information was not available for this study, so there 
is room for improvement in investigating the relation 
between the tide and bird abundance offshore.

Table 3   Overview of the generalized additive model output for the 
subsample models (subsamples = 10,000, observations per sub-
sample = 300), including parameter estimates for the intercept and 
random effect (year), and the estimated degrees of freedom (edf) 

and estimated deviance explained for the environmental predictors 
(mean ± standard deviation). Note that the standard deviation on esti-
mated deviance explained is the same for all terms, as this is depend-
ent on a single variable (the deviance explained by the full model)

Parametric coefficients Estimate Edf Est. dev. explained p value

Intercept 4.555 ± 0.063 < 0.001 ± 0.001
Year = 2020 0.015 ± 0.081 4.2 ± 3.7% 0.265 ± 0.248
Smooth terms
 Sun azimuth 4.033 ± 1.154 9.0 ± 3.7% 0.004 ± 0.018
 Week of the breeding season 3.464 ± 0.792 12.3 ± 3.7% 0.001 ± 0.004
 Tidal water height 2.051 ± 1.599 4.0 ± 3.7% 0.380 ± 0.274
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When working with count data in ecology, temporal 
auto-correlation is a common phenomenon when sampling 
counts at a high temporal resolution and was also found in 
our initial model (model A). Accounting for temporal auto-
correlation in the residuals is generally considered prefer-
able, as otherwise the model effects might be inflated. In 
model B, the auto-regressive term (previous hourly bird 
abundance) had the greatest effect in predicting hourly abun-
dance by far, at an estimated 32.5% of deviance explained. 
Though this model was successful in removing temporal 
auto-correlation in the residuals, we believe the addition of 
this auto-regressive term in the model may have deflated 
the effect of our environmental predictors (Table 2) which 
were much lower than in model A (Online Resource 5). 
As we investigate temporally varying predictor variables 
(which are themselves auto-correlated beyond the hourly 
scale), disentangling the relation between these and the 
autoregressive term is not straightforward. Temporal auto-
correlation can also be negated by sub-sampling the data so 
that temporal auto-correlation decreases severely, however 
this decreases data availability for the model, and therefore 
the output becomes less reliable. By re-sampling the data 
many times and investigating the range of the model outputs, 
we believe we can still get close to the actual relationship 
between hourly abundance and the environmental predictors, 
while accounting for temporal auto-correlation. The out-
come (Table 3) shows that both sun azimuth and week of the 
breeding season have clear significant effects and tide does 
not, and the effect size is close to the original model (model 
A, Online Resource 5). Therefore, we expect the actual size 
of the effect of the predictors on bird abundance will prob-
ably lie closer to model A presented in Online Resource 5 
than model B (Table 2; Fig. 4). Note that though the size of 
the effects of model A and B differs, the pattern of the effects 
is very similar, and we believe these to be accurate for both 
significant predictors.

The bird observations used in this study were captured 
by a radar system installed near the Dutch West coast. Com-
pared to the size of the North Sea, the sampling area for the 
dataset was small (Fig. 1), and thus our findings may also 
be limited to a specific area on the North Sea. The foraging 
range of coastal seabirds can differ between (Thaxter et al. 
2012) and within species (Redfern and Bevan 2014), and 
spatial preference can even differ per year within the same 
colony, as seen in Sandwich terns (Fijn et al. 2017). There-
fore, temporal patterns in bird abundance offshore may differ 
spatially in relation to distance to nearby breeding colonies, 
the foraging strategies prevalent within those colonies, and 
per year. The difference in the average seasonal abundance 
between the years 2019 and 2020 was large (103 birds h−1 
in 2019 and 134 birds h−1 in 2020), and the effect of year 
as a random effect in the model was significant in model 
A (Online Resource 5), but not in model B, which had an 

auto-regressive term to account for temporal auto-correla-
tion (Table 2). The significance had a wide spread in the 
models of the sub-samples (0.265 ± 0.248, Table 3) indicat-
ing a high level of uncertainty on the impact of this factor. 
Additionally, gaps in the data can cause increased uncer-
tainty in the models if data is unavailable for one or both 
years. To separate yearly variability from repeating seasonal 
patterns and cover the full study period despite the gapped 
data, multiple years of continuous monitoring are required to 
illuminate underlying patterns and mechanisms in bird dis-
tribution offshore. This shows long-term monitoring is vital 
to understanding the variability in bird abundance offshore, 
as has been noted before for tracking studies (Thaxter et al. 
2015). Additionally, the question remains whether the find-
ings in this study reflect patterns and processes in other parts 
of the North Sea. The inclusion of abundance data from 
different regions of the North Sea might reveal spatial com-
ponents affecting the temporal patterns of birds offshore and 
further reveal the underlying processes that lead to observed 
patterns. For example, central foragers have a foraging range 
around their colony (Camphuysen et al. 2015; Garthe et al. 
2016), and we suspect the daily observed abundance will 
differ with distance to shore and/or distance to nearest sea-
bird colonies. Ideally, these data should cover long periods 
of time as well, and bird radars could fulfil a role here to 
acquire year-round abundance patterns in multiple locations. 
Finally, the integration of the measured abundance from 
bird radar with the intricate biological information which 
can be gained from bio-logging data would strengthen our 
capacity to understand the underlying processes influencing 
bird flight behaviour and distributions offshore (Bauer et al. 
2019), also in relation to solving potential conflicts including 
wind energy and aviation safety (Shamoun-Baranes et al. 
2018), and merits future exploration.

The radar used in this study dynamically applies a filter 
over its observed area to prevent clutter (caused by, e.g. rain-
fall or high waves) from contaminating bird measurements, 
and therefore, birds flying in range of the radar might be 
filtered out during periods of high filter activity. In our study 
period, 33% of all hours could not be studied because filter-
ing activity was estimated to be too high to yield accurate 
results (Table 1, additional elaboration in Online Resource 
3). In general, these filters become increasingly active as sea 
state increases or precipitation occurs; thus, our results do 
not reflect bird abundance when sea state is high and during 
precipitation. Even when filter activity is low, some birds 
could still be filtered out by the radar software and cause an 
underestimation of observed bird abundance. Improvements 
in post-processing of the radar data could allow us to include 
data from a wider array of circumstances; including a larger 
sampling area and sampling during high filter activity.

Understanding temporal variation in bird abundance at 
sea can have important implications for wildlife management 
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and estimating the impact of anthropogenic development in 
an area such as wind farm development, and can improve 
species distribution estimations at sea. On the DCS the 
Dutch government plans to produce 11.5GW of offshore 
wind energy by the end of 2030 (Rijksoverheid 2019) 
and the cumulative effect of this development on offshore 
birdlife is difficult to predict. A commonly used method to 
analyse the impact of wind farms is to determine collision 
risk through modelling (Masden and Cook 2016). These 
models incorporate turbine measurements, weather condi-
tions, bird morphometrics, flight speed and altitude, and bird 
abundance estimations to calculate collision risk for a spe-
cific wind farm. The specific methods these models employ 
can differ, but the majority assumes a linear relationship 
between bird abundance and collision risk. Our data show 
bird abundance can fluctuate greatly on both an hourly and 
seasonal scale, and both spatial planning and impact assess-
ments should address temporal variation in bird occurrence. 
Long-term monitoring to provide wide temporal coverage 
is therefore needed to understand the range and causes of 
these fluctuations in bird abundance, which can improve the 
temporal accuracy of collision risk models to better inform 
policymakers. For example, predictions of collision risk can 
be used to initiate temporary shutdown of turbine during 
periods of high collision risk and with better temporal bird 
abundance estimations wind farm uptime can be maximized 
without endangering large numbers of birds.

This study shows that two of the three predictable exter-
nal variables evaluated in this study, sun azimuth and week, 
affect bird abundance on the North Sea during the breeding 
season. The third variable, astronomic tide, appears to have 
no effect. The diurnal pattern in bird abundance shows a 
distinctive peak in the morning another lower peak later in 
the afternoon before sunset while it is constantly low dur-
ing night. The pattern over the breeding season shows an 
increasing trend until the end of June, after which bird abun-
dance decreases. Most of the observed variance in hourly 
bird abundance could not be explained by our investigated 
environmental variables, and thus other factors have to be 
considered such as indicators of resource availability or 
weather conditions. Due to its capability to monitor bird 
movements in an area for extended periods of time, bird 
radar monitoring can allow us to discover general patterns 
in bird movement and, when accounting for its limits, bird 
radar can continue to play a role in improving our knowledge 
of the spatial and temporal distribution of birds offshore.
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