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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Endmember extraction and soft
modeling in hyperspectral Raman im-
aging are compared.

• Three simulated cases, a pharmaceutical
sample, and plastic foils were studied.

• VCA outputs can be used as initializa-
tion for MCR-ALS.

• Pure pixels are required for extracting
pure variables by VCA, but not for MCR-
ALS.
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A B S T R A C T

Hyperspectral Raman imaging not only offers spectroscopic fingerprints but also reveals morphological infor-
mation such as spatial distributions in an analytical sample. However, the spectrum-per-pixel nature of hyper-
spectral imaging (HSI) results in a vast amount of data. Furthermore, HSI often requires pre- and post-processing
steps to extract valuable chemical information. To derive pure spectral signatures and concentration abundance
maps of the active spectroscopic compounds, both endmember extraction (EX) and Multivariate Curve Resolu-
tion (MCR) techniques are widely employed. The objective of this study is to carry out a systematic investigation
based on Raman mapping datasets to highlight the similarities and differences between these two approaches in
retrieving pure variables, and ultimately provide guidelines for pure variable extraction. Numerical simulations
and Raman mapping experiments on a mixture of pharmaceutical powders and on a layered plastic foil sample
were conducted to underscore the distinctions between MCR and EX algorithms (in particular Vertex Component
Analysis, VCA) and their outputs. Both methods were found to perform well if the dataset contains pure pixels for
each of the individual components. However, in cases where such pure pixels do not exist, only MCR was found
to be capable of extracting the pure component spectra.
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1. Introduction

Raman spectroscopy, as an optical scattering technique, is widely
used to investigate the chemical structure of compounds, based on
molecular bond vibrations [1]. Each compound exhibits a distinctive
combination of bond vibrations, depicted in the measured Raman
spectrum, which can be further leveraged for the identification and
quantification of chemical compounds. Consequently, Raman spectros-
copy has swiftly found applications in various fields: for instance in
chemistry for monitoring chemical reactions and studying molecules
[2], in biomedical science for disease diagnosis [3,4], and in material
sciences for characterizing polymorphism [5] or detecting impurities
and defects [6].

In a Raman spectrum, chemical changes are readily distinguishable
through the emergence of new peaks, peak shifts, or alterations in
relative peak intensities. Analysing a sample through single-point
Raman measurements is a subjective and labour-intensive task, suit-
able for pure samples or for situations where the location of the com-
pound of interest is known. A more comprehensive and objective
assessment of a heterogeneous sample can be achieved by integrating
micro-Raman spectroscopy with a controllable x-,y-stage, allowing the
measurement of the entire area of interest in a mapping (raster scan-
ning) approach [7,8]. Therefore, hyperspectral imaging (HSI) amal-
gamates the advantages of both spectroscopy and microscopy.

Utilizing the additional spatial information offered by concentration
abundance maps, one can derive the location of the target compounds or
potential impurities and extract morphological parameters such as
shapes, sizes, and patterns. However, Ramanmapping experiments yield
thousands of spectra per acquisition, making it impractical to manually
inspect the spectra for variations within such large datasets.

For exploratory analysis, one simple approach is to generate
straightforward distribution maps by selecting the intensity of a peak
changing in the spectrum or the ratios between two peaks [9–13].
However, this method is only suitable when the compound of interest is
known and exhibits a sufficiently unique Raman peak in the spectrum. It
can be a challenging endeavour to create distribution maps for unknown
compounds if neither the locations nor the Raman spectra of the com-
pounds are known.

Random [14] or rational selection [15] of a subset of spectra from the
pool of the recorded spectra is suggested in the literature against the
curse of dimensionality in HSIs. After a representative subset selection,
further data processing can be concentrated on the smaller version of the
recorded hyperspectral arrays [16]. Unsupervised unmixing algorithms
offer a solution for analysing large HSI data by exploring the entire
dataset for unique spectra without user subjective constraints. The only
requirement is to define the expected number of unique compounds.

Endmember extraction algorithms can be divided into convex ge-
ometry and statistical methods [17]. The convex geometry-based
methods are favoured in the Raman community, and in this contribu-
tion, we will therefore primarily focus on these. The methods can be
further divided into simplex volume and orthogonal projection methods,
where N-FINDR is the most used method in the first case, and vertex
component analysis (VCA) in the second case.

Bergner et al. [18] used N-FINDR on hyperspectral Raman images to
visualize nuclei in brain tissue, whereas Chernenko and colleagues [19]
used VCA to map the intracellular distribution of liposomes. Further-
more, Lochocki et al. used VCA to image amyloid deposits in Alz-
heimer’s Disease human brain tissue [3]. Both methods have in common
that they assume the presence of pure compound spectra in the dataset
and they use principal component analysis (PCA) to reduce the variable
dimensionality (wavenumbers) and reveal the variance within the
dataset. Depending on the number of components (N) to be extracted,
each spectrum is projected on an N-1 dimensional normalized orthog-
onalized space surrounded by loadings [17]. Schmidt et al. provided a
GUI widget for analyzing hyperspectral Raman images that combines
multiple spectral pre-processing methods with various endmember

unmixing algorithms [20]. Endmember extraction operates under the
assumption that the dataset primarily comprises mixed spectra of
compounds and that the pixels corresponding with the pure compounds
exhibit the highest variance within the dataset [17].

On the other hand, Multivariate Curve Resolution [21] is a soft
mathematical modeling technique that aims to extract the compound
spectra and relative concentrations [22] under chemico-physical con-
straints [23]. Although in the literature [20] MCR is sometimes also
referred to as an endmember technique, it is based on different mathe-
matical principles and in this paper we will regard it as a separate type of
approach. MCR is a mixture analysis technique with no assumption
about the data except bilinearity and it is widely employed to analyze
data from different fields [23].

Whereas MCR and endmember approaches are both extensively
utilized in the literature, as far as we know there has been no compre-
hensive report exploring their similarities and differences based on
bilinear data structure. This contribution aims to expand our under-
standing of when to employ geometrical endmember extraction or soft
mathematical modeling techniques for unsupervised unmixing of
Raman hyperspectral maps. The study utilizes Raman maps of simulated
samples, mixed pharmaceutical powders, and overlapping polymer foils
as test cases.

2. Theory

2.1. Bilinear data sets

Typically, the data responses gathered from various spectroscopic
systems represent a linear combination of pure variables [23]. Then, the
collected responses can be arranged in a data table or data matrix
denoted as DI,J. Therefore, the problem of mixture analysis can be
mathematically modelled in an element-wise manner, expressing it as a
linear combination of N sources of data variation. Each source is defined
by the sum products of two factors:

di,j =
∑N

n=1
ci,nsn,j+ ei,j (1)

Here, di,j represents the data entries measured at matrix row i (sample)
and matrix column j (variable), while ei,j accounts for the residual data
variance not explained by the model, representing the noise contribu-
tion. N denotes the number of components contributing to the bilinear
data decomposition. The identical model can be expressed in linear
algebra matrix form as follows:

DI,J = CI,nSTn,J+EI,J (2)

The data matrix DI,J (I is the number of samples and J is the number
of columns) can be decomposed into the factor matrices CI,n and STn,J.
Finally, EI,J is the residuals matrix that contains the unexplained part of
the data by the bilinear model.

In the case of HSIs, the three-dimensional hyperspectral imaging
data cube D(X,Y, J), should be unfolded column-wise onto a two-
dimensional data matrix of dimensions D(X.Y, J), where X and Y are
the numbers of pixels in the x-and-y directions indicating spatial reso-
lution and J shows the number of measured wavelengths. In the HSI
domain, CI,n is the matrix of unfolded abundance maps and STn,J contains
pure spectral variables.

2.2. Principal component analysis

Principal components analysis (PCA) is a multivariate statistical
technique [24] used for bilinear decomposition, where the factors are
constrained to be orthogonal, normalized, and subject to maximum
variance constraints. This process yields orthogonal scores (XI,n) and
loadings (YTn,J)
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DI,J = XI,nYT
n,J +EI,J (3)

The truncated PCA decomposition provides a condensed represen-
tation of the data variance in a lower-dimensional space. Analyzing the
score profiles and their bivariate plots unveils similarities and clusters
among the samples (rows of the data matrix) within the new vector
space. Simultaneously, the loadings and their plots elucidate the nature
of the principal components and their associations with the variables
measured in the system. A widely used approach for conducting PCA
involves employing fast Singular Value Decomposition (SVD), as
described by the equation:

DI,J = UI,NΛN,NVT
N,J+ ẼI,J (4)

Orthonormal UI,N and VT
N,J are eigen-vectors and ΛN,N is the diagonal

matrix of the singular values giving the relative importance of each of
the components, while weighted scores XI,N = UI,NΛN,N and orthonormal
loadings are YTN,J = VTN,J.

2.3. Endmember extraction

Taking a geometrical approach to the bilinear data set (also bilinear
decomposition), measured spectral pixels can be represented as points in
the row space of the data set. These points lie in a simplex embedding all
the measured data points, with the simplex vertices corresponding to
pure/purest spectral pixels [25]. However, all the interior data points
that are mixtures are linear combinations of the simplex vertices, they
do not carry additional information for linear spectral unmixing [15].
Scheme 1 illustrates a hypothetical example of the data structure for a
three-component dataset, where the data cloud (cloud with blue di-
amonds) is embedded within the pure profiles represented by red dots.

The spectral “point cloud” (e.g. the blue cloud in Scheme 1) is
assumed to have a shape similar to a simplex, with the spectra of the
purest compounds situated at the vertices of the simplex [26].

In mathematical terminology, a k-simplex is a k-dimensional convex
hull with k + 1 vertices. For three-component chemical data sets, three
pure spectra together with the origin (0,0,0) form the simplex

(tetrahedron) in three-dimensional space (see Scheme 1). To remove
intensity ambiguity and fulfil the convex linear combination require-
ment, a normalization step is conducted [27]. After proper normaliza-
tion, the data space can be illustrated in a lower-dimensional subspace e.
g., three-component cases can be represented in two-dimensional space,
and with two-dimensional representation, three pure spectra are enough
to create a simplex (triangle).

Both N-FINDR and Vertex component analysis (VCA) search for the
vertices of the simplex. In the following examples, we unmixed the
dataset (mostly) for three spectral profiles, this is done by fitting the PC
data cloud in a 2-simplex within 2-dimensional subspace to find the
three vertices; to simplify k + 1 vertices are plotted in a k-simplex in a k-
dimensional space. N-FINDR initiates its algorithm with a random
starting point. It then iteratively expands a simplex within the Principal
Component (PC) plot until the simplex achieves its maximum volume
[28]. However, with the iteratively growing simplex in multiple di-
mensions, the computational complexity of N-FINDR is significantly
higher, by up to two orders of magnitude, compared to VCA [29].
Therefore, VCA was used exclusively in this study. VCA determines the
vertices of the simplex by iteratively projecting the data points of the
simplex onto a direction [29]. The extremes of the projection correspond
to the pure/purest spectra, and the next vertices are determined by
projecting data onto new directions orthogonal to the subspace of the
already determined endmembers until all endmembers are found.

2.4. Multivariate curve resolution

Mathematically, a bilinear map can be decomposed using multivar-
iate curve resolution into two smaller matrices titled component
matrices [30]. The objective function of the bilinear model factor
decomposition to be minimized is:

min
const
C,ST

⃦
⃦
⃦DI,J − CI,nSTn,J

⃦
⃦
⃦ (5)

The objective function is the Frobenius norm of the difference between
raw and reconstructed data sets. However, for bilinear model factor
decomposition, various optimization schemes under predefined con-
straints can be implemented [23]. Alternating least squares is one of the
flexible and frequently used algorithms. Besides, several constraints are
imposed and non-negativity is the minimal constraint in bilinear factor
decomposition [31].

MCR-ALS can start a decomposition with the rational or random
initialization of one of the factors (either CI,n or SJ,n). Then the uncon-
strained iterating least squares solutions for CI,n and SJ,n are:

CI,n = DI,J × pinv
(
STn,J
)
& STn,J = pinv(C)×DI,J (6)

where pinv is the pseudoinverses operation. The ALS algorithm, how-
ever, readily allows for incorporating constraints to achieve optimal
recovery of physically meaningful profiles in both CI,n and SJ,n factor
matrices. Commonly applied constraints include non-negativity for both
concentration and spectral profiles, sparsity for abundance maps.

It should be noted that selectivity plays a dominant role in the end-
member extraction. In the following, the concept of selective pixels is
emphasized. Each row of the HSI data set can be expressed based on Eq.
(1) as:

ri,:
̅→

= ci,1* S1
̅→

+ ci,2* S2
̅→

+ ci,3* S3
̅→ (7)

where ri,:̅→ is one of the data rows (e.g., a spectrum recorded at a specific
x-y-pixel), and ci,1 and ci,2 are the concentration of the first and second

chemical component for the ith pixel. Besides, Sn
̅→

(n = 1, 2,3) is the
spectral profile of the components. In the event that ci,2 and ci,3 are zero
for a specific pixel, then the data rows contain the pure spectral profile of

Scheme 1. A graphical illustration of a bilinear data set in the principal
component (PC) space. Blue diamonds denote data rows within the data cloud,
surrounded by pure spectra (S1, S2, and S3). The linear combination of these
pure spectral profiles generates mixtures in a hypothetical dataset, where the
coefficients are concentrations. The pure spectra correspond to real-world
Raman spectra. x1, x2, and x3 are the first, second, and third scores calculated
from Eq. (4).
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S1
̅→. The same reasoning applies to the pure spectral profiles of the
second and third components.

2.5. Rotational ambiguity

Bilinear factor decomposition under the minimal assumption of non-
negativity has non-unique solutions in many cases [32]. In the presence
of rotational ambiguity, there are several possible solutions that fulfill
the imposed constraints during factor decomposition (i.e., non-
negativity) and equally fit the data set under study [23]. The extent of
the rotational ambiguity can be visualized through a transformation
matrix, TN,N which transforms U and V from the PCA loadings to phys-
ically interpretable concentrations and spectral profiles based on Eq. (8),

SJ,n = Tn,nVTn,J

CI,n = UI,nΛn,nT− 1
n.n (8)

The extent of the rotational ambiguity implies that any invertible
matrix Tn,n such as Tn,nT− 1

n,n = In,n transforms an orthonormal loading
(VJ,n) and score (UI,n), respectively, to a solution SJ,n and CI,n.

For several reasons, rotational ambiguity is likely to occur in the field
of hyperspectral imaging. A single data matrix is studied, whereas in
multi-set analysis there are several data matrices appended into an
augmented matrix, and constraints can be applied that connect the
profiles in both data dimensions from matrix to matrix. This is not
possible in single-matrix hyperspectral imaging. Spectra are overlapped,
as may occur with Raman spectra of structurally related chemical
components. Also, concentration profiles may be overlapped, as occur-
ring in some of the simulations or experimental data. Finally, MCR-
BANDs [33] is used in this contribution to estimate the extent of
feasible solutions associated with the components in both simulated and

experimental data sets.

3. Materials and methods

3.1. Data sets for numerical simulation

To emphasize the key findings of this research, numerical simula-
tions were conducted on three distinct cases. These simulations mirror
real-world hyperspectral Raman imaging scenarios, incorporating
abundance maps (depicted in Fig. 1) and spectral profiles (refer to
Fig. S1 in the Supporting Information) for mixtures of three components.

In Simulated Case (I), the abundance maps show selective pixels for
each species. Each panel in Fig. 1 represents a abundance map for the
components, with the last panel in the rows illustrating the mean image
of that simulated dataset. Cases (II) and (III) have partially selective and
severely overlapped concentration abundance maps, respectively. In
case (II), there are selective pixels for the first abundance map (see Fig. 1
second row-C1) however, C2 and C3 show severely overlapped abun-
dance maps with no pure pixels. In case (III), illustrated in the third row
of Fig. 1, there is a total overlap between all three abundance maps, and
they only differ in relative intensity.

These HSI data sets were simulated to illustrate the difference be-
tween endmember extraction and curve resolution for the recovery of
pure information. Besides, homoscedastic noise with zero mean and
standard deviation of 0.05 maximum value of the data set was added to
the simulated cases. The simulated data sets correspond to a three-
component multivariate Raman mapping. For each component, the
distribution maps correspond to a spot, as shown in Fig. 1. The Raman
spectra of components are shown in Fig. S1. The mean image of the data
is shown in the last column of Fig. 1. The simulated hyperspectral data
set is of dimensions 50 × 50 pixels by 1101 variables and the unfolded
two-way data matrix of 2500 pixels and 1101 pseudo spectral channels.

Fig. 1. Concentration abundance maps for the simulated numerical experiments, showing increasing levels of overlap. The first row shows the abundance map of the
first, second, and third components in simulated case (I). The last abundance map illustrates the mean image of the simulated data set. The second and third rows
highlight the abundance maps of the same components in cases (II) and (III), respectively. For clarity, the boundary of each component is highlighted by a
white outline.
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Note that deliberate consideration was given to the inclusion or exclu-
sion of pure pixels in these simulated cases.

3.2. Real experiments

3.2.1. APC data set
A pharmaceutical test sample containing three components; aspirin

(Merck), paracetamol (Thermo Fischer), and caffeine powder (Sigma-
Aldrich) was prepared. Equal amounts (1 g) of each component were
weighed, crushed, and mixed in a mortar. The resulting powder was
then transferred to a metal microscopy slide and leveled using a spatula
to create an even surface. The acquired Raman map contained 17,956
spectra by 1014 variables with an image size of 134 × 134 pixels.
Spectra were acquired every 3 µm with an exposure time of 1 s. The pre-
processed APC data set (including background removal and outlier
detection for removing cosmic rays) is depicted in Fig. 2 (A and B), while
the raw unprocessed APC data can be seen in Fig. S2 in the Supple-
mentary Information.

3.2.2. Layered plastic data set
A two-layered plastic foil sample was prepared from polypropylene

(PP, transparent, 30 μm thick) and polyethylene (PE, transparent, 200
μm thick) from common packaging material and polyethylene tere-
phthalate (PET, transparent, 13 μm thick) from Goodfellow. The foils
were cut into quadrilateral shapes, and pieces of PET and PPwere placed
on top of a larger piece of PE on a metal microscopy slide (see Fig. 3). For
mapping, the Raman microscope was focused at the top of the 2nd (PE)
layer; the step size was 30 μm and the exposure time 1 s. Since the foils
were not perfectly flat, the relative Raman intensities of the 1st and 2nd
layer showed some variation. The acquired Raman map of the full
sample (blue rectangle in Fig. 3) contained 35,496 spectra by 1014

variables with an image size as 204 × 174 pixels. This data set contains
spectra of pure PE, but no pixels of pure PP or PET are expected. The raw
(unprocessed) layered plastic data set is presented in Fig. S2. On the
other hand, the pre-processed data set (background correction with
asymmetric least squares [34], and outliers removed) is illustrated in
Fig. 2. Panel C shows the recorded spectra per pixel and panel D

Fig. 2. Summary of the pre-processed real data sets. The asymmetric least squares method [34] was applied for background removal, and outlier detection was
conducted to eliminate cosmic rays. Panels (A) and (C) display the pre-processed Raman spectra of the APC and layered plastic data sets, respectively. Panels (B) and
(D) present the corresponding mean images of the pre-processed APC and layered plastic samples, respectively.

Fig. 3. White light microscopy image of the multilayered plastic foil sample,
with pieces of PET and PP on a larger piece of PE, placed on a metal slide. The
dashed rectangles show the area of the full Raman map (blue) and the subsets
PET@PE (yellow) and PP@PE (green). The scale bar shows 1 mm.
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illustrates the mean image of the data set. The algorithms were also
tested on two cropped sub-areas of the Ramanmap, where no pure pixels
are expected (see Fig. 3). The map of the yellow rectangle will show only
mixed pixels of PET and PE, whereas the subset of the green rectangle
will contain only mixed pixels of PP and PE.

3.3. Raman mapping

Hyperspectral Raman maps of the APC powder mix and the plastic
foil sample were acquired with a Renishaw inVia Raman microscope,
equipped with a 532 nm excitation laser, and an 1800 L/mm grating.
The attached Leica microscope was equipped with a 20x objective (HC
PL Fluotar L 20x/0.40 Corr PH1). Numerical simulations, spectra pre-
processing and data analysis were carried out in MATLAB. The base-
line was removed with asymmetric least squares [34]. For outlier
detection, Hotelling’s T2 and Q residuals were calculated for pixels in the
PCA score space, and the outlier pixels were replaced with the average of
the data set [35]. The data sets were analyzed with homemade PCA,
MCR-ALS routines, and a VCA routine from the openly accessible
Hyperspectral Toolbox [36]. For reference, Raman spectra were also
recorded for the separate pharmaceutical compounds and for the three
plastic foils.

4. Results and discussion

To illustrate the differences between endmember extraction methods
(e.g., VCA) and a resolution scheme (e.g., MCR-ALS), the simulated
cases first underwent PCA decomposition. Subsequently, outputs from
VCA and MCR-ALS were calculated and projected into the principal
component (PC) space for comparative investigations.

Numerical simulations, spectra pre-processing and data analysis
were carried out in MATLAB. It should be highlighted that MCR-ALS was
started with random initialization of the concentration abundance maps.
Convergence criteria for MCR-ALS decomposition were: maximum it-
erations of 2000 or when the difference between consecutive conver-
gence steps is below 10− 6. To check the fit of MCR-ALS models, the
explained variance was calculated as:

R2 =

(

1 −
∑IJ

ij
(
di,j − d̂i,j

)

∑IJ
ij
(
di,j
)2

)

× 100 (9)

where di,j and d̂i,j are the entries of the data and reconstructed matrix
based on the model, respectively [23].

4.1. Simulated data

PCA decomposition provides a low-dimensional representation of
the original data sets within truncated PC spaces. For the simulated
examples with three components, it is possible to illustrate rows of the
data sets in a three-dimensional space. Within this presentation, every
row can be represented as a point (here, each row is a spectrum related
to a pixel). Besides, the space delimited by the data points is the data
cloud highlighted in blue in Fig. 4. The pure Raman profiles used for the
simulation are depicted as red dots. The pure spectral profiles, together
with the origin (0,0,0), form a simplex (here tetrahedron) surrounding
the data points [37]. One of the important properties of such a presen-
tation is that all the points located on a straight line starting from the
origin have the same spectral shape, but only differ in intensity.

Focusing on the case (I), Fig. 4a shows that the pure simulated
spectral profiles (S1, S2, and S3, red dots), VCA extracted endmembers
(V1, V2, and V3, magenta diamonds), andMCR-ALS decomposed spectral
profiles (M1, M2, and M3, black dots) are all located on the tetrahedron
sides starting from the origin. This highlights that the profiles recovered
from VCA and MCR-ALS for case (I), are correct, matching the true
profiles used for the simulation.

Fig. S3 shows the normalized data space to better visualize the data
coordinates and resolved profiles from VCA and MCR-ALS. Finally, the
extracted profiles from VCA, MCR-ALS, and true profiles are summa-
rized in Fig. S4 in the Supporting Information. The correlation between
the true profiles (S1, S2, and S3), the recovered profiles from VCA (V1, V2,
and V3), and the MCR-ALS outputs (M1, M2, and M3) are summarized in
Table 1 which shows for case (I) an accurate recovery of the spectral
profiles using both VCA and MCR-ALS.

In case (I), there are pure pixels for all components. So, based on
equation (7) the spectral profiles of all components can be found among
the data rows. In this way, VCA can extract the pure information thor-
oughly and there are complete matches between the recovered and the
true spectral profiles.

For case (II), the data space is illustrated in Fig. 4b. Whereas MCR-
ALS successfully retrieves the spectral profiles for case (II) (see black
dots in Fig. 4b), VCA fails to extract pure signatures for the second and
third components. It is important to highlight that there is total overlap
in the abundance maps of the second and third simulated components
(see mean image of the case (II) in Fig. 1). Since there are no pure
spectral profiles of components 2 and 3 inside the data cloud, VCA will
retrieve the purest profiles (but not pure ones), which are different from
the true profiles.

In case (II), there are selective pixels for component 1 in the abun-
dance maps (where components 2 and 3 are zero). So, based on Eq. (7),
the pure spectrum of component 1 is among the data rows. Hence, VCA

Fig. 4. Data structure of the simulated cases in PC space. Cases (I), (II), and (III) are represented in (a), (b), and (c), respectively. The blue diamonds are data rows
(each point is a spectrum), and the red circles marked with Sx are the true profiles used to simulate the cases. The pure spectra together with the origin (0,0,0) create a
tetrahedron surrounding the data cloud. VCA and MCR-ALS outputs are depicted as magenta diamonds (Vx) and black dots (Mx), respectively. The pure spectral
information is on the vertices/sides, and mixed profiles are inside the tetrahedron.
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can successfully extract S1. Fig. 4b indicates that V1, M1, and S1 are
located on a line starting from the origin which means they are the same.
However, V2 and V3 are significantly different from S2 and S3.

To reiterate, when there is total overlap in the concentration profiles,
spectral profiles will be mixed profiles. In this case, VCA and other
endmember extraction fail to extract pure profiles. However, the
decomposition algorithms such as MCR-ALS can still decompose the
data and provide pure information. Fig. S4 (second row) shows the true
profiles (red lines), the recovered profiles from VCA (green), and MCR-
ALS (blue). The second row of Fig. S4 highlights that the first spectral
profile is recovered correctly using both VCA and MCR-ALS. However,
VCA fails to extract the pure spectral profiles of the second and third
components. The profiles from VCA are different from the true profiles
used for simulation, see for instance the large contribution from C1 in the
spectral profile recovered for C3. In contrast, the spectra recovered using
MCR-ALS show an excellent match with the true spectral profiles. The
correlation between the true and recovered profiles from VCA and MCR-
ALS, summarized in Table 1, quantifies and confirms the previous
discussion.

For case (III), concentration abundance maps are even more strongly
overlapped and there is no single pure pixel (see Fig. 1, third row). In
other words, all rows of the data set are mixtures. Fig. 4c shows the data
structure of simulated case (III), where the data cloud is embedded in-
side the pure spectral profiles. However, rows of the simulated data are
inside the tetrahedron and do not touch the sides, indicating that all the
pixels are mixed. The recovered profiles from VCA (magenta diamonds)
are on the data cloud but they are not pure. On the other hand, the MCR-
ALS solutions (depicted as black dots) are situated on the sides of the
tetrahedron and align closely with the true solutions (see also correla-
tions in Table 1).

The simulated cases (II) and (III) demonstrate a substantial disparity
between endmember extraction and curve resolution techniques. While
MCR-ALS aims to decompose the data into meaningful physicochemical
solutions, which may not necessarily lie within the data cloud, end-
member extraction algorithms search for the purest spectra within the
data space. In highly mixed cases, where there is no pure information in
the data cloud, VCA (and other endmember extraction methods) will
extract the purest information rather than pure spectra.

As mentioned above, MCR-ALS decomposition started with random
initialization of the concentration abundance maps for all simulated
cases, and the explained variance, calculated based on Eq. (9), was
99.97 %, 99.96 %, and 99.97 % for cases I, II, and III, respectively.

4.2. Aspirin-Paracetamol-Caffeine data set

The APC sample is a well-mixed combination of aspirin, paraceta-
mol, and caffeine with equal contributions (by weight). However,
because of inhomogeneity at the micrometer scale, pure pixels are
anticipated for all chemicals in the recorded Raman map. The raw APC
dataset is illustrated in Fig. S2 and the pre-processed APC spectra are
shown in Fig. 2A. Afterward, the pre-processed APC dataset undergoes
PCA analysis, with the resulting PC plot presented in Fig. 5. Subse-
quently, VCA, MCR-ALS, and true profiles (measured from pure mate-
rials) are overlaid onto the data cloud. Notably, due to the presence of
pure pixels, VCA successfully extracts signatures, matching those ob-
tained by MCR-ALS and the reference spectra from pure aspirin, para-
cetamol, and caffeine. In essence, the APC data set exhibits similar
characteristics as the simulated case (I), where the presence of pure
pixels facilitates the extraction of pure variables. Fig. 6 summarizes the

Table 1
Overview of the correlations obtained between the true profiles and those recovered from MCR-ALS and VCA for the data sets analyzed in this study.

Data Correlation

Corr (VCA outputs, true profiles)* Corr (MCR-ALS outputs, true)*

comp1 comp2 comp3 comp1 comp2 comp3

Simulated Case (I) 0.999 0.999 0.999 0.999 0.999 0.999
Simulated Case (II) 0.999 0.972 0.912 0.999 0.999 0.999
Simulated Case (III) 0.912 0.923 0.901 0.999 0.999 0.999

APC Aspirin Paracetamol Caffeine Aspirin Paracetamol Caffeine
0.960 0.987 0.977 0.958 0.987 0.979

Layered plastic PE PET PP PE PET PP
0.991 0.978 0.913 0.998 0.995 0.994

Subset (PET@PE) PET PE PET PE
0.928 0.902 0.995 0.991

Subset (PP@PE) PP PE PP PE
0.637 0.934 0.999 0.991

* True profiles (S1, S2, and S3), VCA outputs (V1, V2, and V3), MCR-ALS outputs (M1, M2, and M3). The correlation between profiles is calculated using the corr
function in MATLAB.

Fig. 5. Normalized PC space of the APC data set showing the third PC (xn3) vs.
the second PC (xn2). Pixels from the data are represented as blue diamonds,
showing mostly mixed ingredients. Black dots are MCR-ALS (Mx) outputs under
non-negativity constraint. In addition, the magenta diamonds represent VCA
(Vx) pure profiles. Lastly, the red dots represent the measured spectra from the
standard compounds: 1 = paracetamol, 2 = aspirin, 3 = caffeine.
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true profiles, VCA outputs, and profiles from MCR-ALS convergence on
the APC dataset, highlighting excellent agreement.

The recovered spectral profiles from the APC data set using VCA
(green lines), MCR-ALS (blue lines), and true reference profiles (red
lines) are summarized in Fig. 6. The correlation between the reference
profiles of aspirin, paracetamol, and caffeine and those recovered from
VCA andMCR-ALS are {0.960, 0.987, 0.977} and {0.958, 0.987, 0.979},
indicating a high similarity between the reference and recovered profiles
with both approaches (see also Table 1). Additionally, corresponding
concentration abundance maps of aspirin, paracetamol, and caffeine are
provided in Fig. S5, showing the distribution of each chemical within the
spatial domain. It should be highlighted that MCR-ALS has an explained
variance of 98.9 % on the APC data set, starting from random
initialization.

4.3. Plastic foil data set

Finally, the different algorithms were applied to the layered plastic
sample shown in Fig. 3. First, the background of the recorded Raman
spectral profiles was removed using asymmetric least squares followed
by outlier detection. The pre-processed polymer spectral profiles and the
mean image of the full dataset are summarized in Fig. 2 C–D. Subse-
quently, a three-component bilinear decomposition using PCA was
performed. Fig. 7 illustrates the PC space of the dataset, with blue di-
amonds indicating the rows of the data. Red dots represent the co-
ordinates of the standard PE (3), PET (2), and PP (1) profiles, forming a
triangle that surrounds the data points. Due to the design of the layered
plastic sample, there are pure pixels for PE, whereas complete overlap
occurs between PET/PE and PP/PE, resulting in no pure pixels for PET
and PP in the recorded data set. It’s worth noting that the plastic foil
sample is similar to simulated case (II), where only one component has
pure pixels and the other two are completely overlapped. Since there are
pure pixels for PE, the VCA and MCR-ALS extracted profile aligns with
the PE standard (see Fig. 7, lower left corner). However, the VCA profiles
for PP and PET differ significantly from their true profiles (magenta
diamonds are inside the triangle but not on the sides/vertices). On the
other hand, MCR-ALS correctly retrieves the pure spectral fingerprints of
PET and PP (see black dots in Fig. 7). The three-component MCR-ALS
with random initialization showed an explained variance equal to 95.3
% of the total variance of the raw plastic foil data.

Fig. 8 displays the recovered profiles from MCR-ALS as blue lines,
VCA as green lines, and the true reference spectral profiles as red lines.
Whereas MCR-ALS calculates a meaningful solution for all three plastics
with a good match (correlations better than 0.99, see Table 1 for
matching indexes), the VCA output for PP and PET, lacking selective
pixels, significantly deviates from the true profiles (with a correlation of
0.913 and 0.978 with the true signatures). A closer examination of the

VCA-extracted profiles for PET and PP reveals contributions from PE
(see Fig. 8 green lines) with some Raman bands related to PE persisting
in the VCA-extracted profiles for PET and PP. This is attributed to the
fact that all the pixels for PET and PP are mixed with PE, stemming from
a lack of selectivity for PET and PP in the designed layered plastic
sample. Finally, VCA properly extracts the PE signature from the data
because of the selective pixels (with a correlation of 0.991). Addition-
ally, the concentration abundance maps corresponding to the VCA and
MCR-ALS solutions for the full data set are presented in Fig. S6. It should
be mentioned that here the term “concentration” should not be taken
literally, but rather indicates the Raman intensity, which may vary
depending on how well the spectrometer’s focal point overlaps with the
plastic foil pieces (not necessarily perfectly flat).

To further underscore the practical differences between MCR-ALS as
a curve resolution algorithm and VCA as an endmember extraction
method, we selected two sub-images, cropped from the full Raman map
of the plastic foil sample. These chosen sub-images correspond to the
layered plastic sections that solely contain PET and PE, or PP and PE,
where PE is located underneath the other foils (refer to Fig. 3). Conse-
quently, the sub-images encompass highly mixed spectral profiles
without pure pixels for any compound. Selected sub-images have the

Fig. 6. Recovered spectra using VCA (green lines) and MCR-ALS (blue lines) analysis of the APC data set. True reference spectra are illustrated as red lines. Spectra
were normalized, then vertically offset for clarity (0.05 and 0.1 offset for blue and red lines, respectively).

Fig. 7. PC space for the plastic foil data set. The blue diamonds represent rows
of the recorded dataset, while the black circles and magenta diamonds denote
the profiles from MCR-ALS (Mx) and VCA (Vx), respectively. The red dots
indicate the standard plastic spectra measured separately for polyethylene (PE),
polyethylene terephthalate (PET), and polypropylene (PP).
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image size of 50× 59 for PET@PE and 47× 24 for PP@PE. For these two
sub-images, all pixels are mixed; relative intensity variations for the two
polymer components in each sub-images are due to differences in
focusing for the non-flat foil pieces.

In the initial step, selected sub-images underwent a two-component
MCR-ALS decomposition with random initialization of concentration
abundance maps. The explained variance was 96.1 % and 97.4 % for the
PET@PE and PP@PE data sets, respectively. The recovered profiles from
MCR-ALS exhibit an acceptable match with the true signatures from the
separate plastic standards (refer to Fig. 9). Additionally, Table 1 sum-
marizes the high degree of similarity between the true and recovered
profiles from MCR-ALS. However, owing to a lack of selective pixels,
VCA struggles to extract pure profiles (see Table 1). Outputs of VCA
extracted from the sub-images (PET@PE and PP@PE) are presented in
Fig. 9-last row.

It should be highlighted that VCA outputs are spectra from data. The
recorded spectra for the layered plastic sample result from a combina-
tion of individual polymer layers, with some variation in relative in-
tensities. As a consequence, the resolved profiles from VCA in Fig. 9-
third row are mixed profiles. Applying VCA in such highly overlapped
cases is deemed less suitable, necessitating further decomposition. The
similarity index between the VCA results on the sub-images and the true
profiles is provided in Table 1. In contrast, MCR-ALS or other curve
resolution schemes can be employed to retrieve the pure spectral in-
formation from such highly mixed cases [38].

5. Conclusion

Hyperspectral Raman imaging offers valuable chemical and
morphological details (such as compound distributions) in a sample.
However, the analysis of large hyperspectral imaging (HSI) datasets
demands innovative, accurate, and fast chemical data analysis ap-
proaches. Endmember extraction, such as the Vertex Component Anal-
ysis (VCA) solution, involves selecting pure or purest information from
the recorded datasets, where the endmember solution lies among data
rows or columns. During endmember extraction, the only criterion to be
fulfilled is the purity criterion, with no physicochemical constraints
imposed on the extraction algorithm. In contrast, resolution techniques
like Multivariate Curve Resolution with Alternating Least Squares
(MCR-ALS) aim to decompose raw bilinear datasets into meaningful
solutions under predefined constraints. Unlike endmember extraction,
MCR-ALS solutions may not necessarily reside among data rows and

columns; they can extend beyond the data cloud. It is crucial to
emphasize the fundamental difference in perspective between end-
member extraction (EX) and curve resolution techniques from a pure
information extraction point of view. Whereas EX algorithms search
within the data cloud, MCR explores the solution space for bilinear
decomposition [39] and is therefore also more computationally inten-
sive. For the data sets analyzed in this study, VCA and MCR-ALS took
around 10 and 60 s, respectively. In summary, VCA works very well for
exploratory analysis and for datasets that contain pure pixels and it has
the advantage of being less computationally intensive.

It is also important to acknowledge that MCR-ALS analysis of highly
mixed data sets faces a well-known challenge known as rotational am-
biguity [40]. The extent of rotational ambiguity associated with data
sets in this work was estimated using the MCR-BANDs algorithm [33] as
shown in Table S1 (see Supplementary Information).

Despite the presence of rotational ambiguity in non-selective cases,
multivariate curve resolution algorithms, including alternating least
squares, are still useful for two reasons. First, MCR-ALS offers flexibility
by incorporating constraints to push solutions toward more physico-
chemical interpretations [40]. Constraints such as non-negativity on
both concentrations and spectra, unimodality on spectra if applicable,
and sparsity constraints on concentration abundance maps can be
imposed [32]. Second, the MCR-ALS solution can be further enhanced
through rational initialization schemes rather than random seeding
[41]. Finally, expert judgment and interpretation are essential when
working with samples from diverse environments and fields, as the
selectivity of pixels is challenging to guarantee.

In conclusion, the recommendation is to utilize curve resolution
techniques and reserve endmember extraction methods for exploratory
analysis, datasets that contain pure pixels, or as an initialization step for
MCRmethods, especially in situations where no pure pixels are expected
in the data set.
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