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ABSTRACT
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a visible, 
near and shortwave, to thermal infrared multispectral scanning 
instrument operational on three polar orbiting satellites, Suomi- 
NPP, JPSS-1, and JPSS-2. In the present paper, the processing of 
VIIRS using ACOLITE is introduced, using the Dark Spectrum Fitting 
(DSF) algorithm for processing of the visible to shortwave infrared 
bands. ACOLITE now includes support for processing both the 
imaging (I) and moderate (M) resolution bands at 375 m and 750  
m spatial resolution, respectively. In most conditions encountered 
in the present study, the SWIR bands (either I or M) are automati
cally selected by the DSF for performing the aerosol correction. The 
processing is evaluated for turbid water remote sensing via auton
omous hyperspectral radiometry from four sites across coastal and 
estuarine waters: two sites in Belgium and one each in France and 
Argentina. Through analysis of hundreds of matchups between the 
satellite and in situ measurements, a generally good performance is 
found for both I and M bands, especially for bands with the largest 
water signal, i.e. bands between 490 and 670 nm, where on average 
relative differences of 10–15% were found. Reflectance biases are 
generally less than 0.01, with a negative sign in the green and red 
bands and a positive sign in the blue and NIR bands. Similar 
matchup results are found for the I and M red and NIR bands, 
with a slightly higher scatter for the NIR bands. An additional 
comparison with OCSSW/l2gen processing of the M band data is 
performed for various configurations. Overall, DSF performance is 
better in the visible bands, whereas l2gen outputs are more closely 
aligned with the in situ measurements in the NIR. On average, 
negative biases are found for all l2gen configurations, up to −0.02 
in the blue bands. Using either the SWIR1 + 2 or SWIR1 + 3 bands for 
the aerosol correction gives the best performance for l2gen proces
sing. For the three VIIRS instruments separately, the average 
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spectral differences with in situ measurements are comparable, 
with the most important deviation occurring at the Suomi-NPP 
shortest blue bands, where DSF processing gives a larger positive 
bias, up to nearly 0.02. For these bands, results from l2gen corre
spond more closely across the three instruments – although with 
significant negative biases for all three sensors up to −0.02 – pre
sumably due to the use of system vicarious calibration gains in that 
processor. An operational network of autonomous hyperspectral 
instruments provides validation data for any overpassing optical 
imaging satellite in its commissioning or operational phase and 
eliminates the need for spectral interpolation or band shifting. In 
the case of VIIRS specifically, the hyperspectral instruments provide 
adequate data for the validation of the 20, 40 and 80 nm wide 
bands. With three operational wide-swath instruments, which pro
vide largely interoperable data, a high frequency of observations is 
available, especially for study areas at higher latitudes. The novel 
exploitation of the I bands is now possible, thanks to the free and 
open source availability of ACOLITE. The advantage of the higher 
resolution I band data, combined with multiple VIIRS overpasses 
per day, is demonstrated for mapping turbidity in nearshore 
regions with high spatial variabilty and for detecting under- 
resolved floating algae.

HIGHLIGHTS
● The open-source ACOLITE processor was adapted for VIIRS 

I (375 m) and M (750 m) data
● Three operational VIIRS (Suomi-NPP, JPSS-1 and JPSS-2) were 

processed and validated
● In situ autonomous hyperspectral radiometry was used for   

performance evaluation
● ACOLITE I and M band outputs compared well across hundreds 

of turbid water matchups
● Turbidity and FAI product resolution were improved with 

ACOLITE I bandprocessing

1. Introduction

The Visible Infrared Imaging Radiometer Suite (VIIRS) was first launched in 2012 on the 
joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi-NPP) and subse
quently in 2017 and 2022 on two Joint Polar Satellite System satellites (JPSS-1 and JPSS- 
2, renamed NOAA-20 and NOAA-21 after launch). JPSS-2/NOAA-21 has been handed over 
by NASA to NOAA on 30 March 2023 and was officially declared operational on 
8 November 2023. Two future VIIRS sensors are planned on two follow-up JPSS/NOAA 
satellites. VIIRS has 22 spectral bands, with a nominal spatial resolution of 375 m in the 5 
imaging ‘I’ bands and 750 m in 16 moderate resolution ‘M’ bands and in the sensitive day/ 
night panchromatic band (DNB). The 5 I bands cover the red, near-, shortwave-, medium-, 
and longwave infrared, and the M bands cover the visible from 412 nm to longwave 
infrared up to 12.5 μm.

Since the launch of Suomi-NPP, VIIRS M band data have been used for ocean colour 
purposes alongside other missions such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on board of the Aqua and Terra satellites and the Ocean 
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and Land Colour Imager (OLCI) on board Sentinel-3 A and B, or to extend data records 
from defunct missions such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and 
Medium Resolution Imaging Spectrometer (MERIS). VIIRS M band data were used for 
mapping of water turbidity (Balasubramanian et al. 2020; Novoa et al. 2017), in multi
mission analyses of remote sensing reflectance in matchup (Barnes et al. 2019; Hlaing 
et al. 2013), or as long term time-series with their derived chlorophyll a concentration, for 
example, in the Ocean Colour Climate Change Initiative (Mélin et al. 2017; Sathyendranath 
et al. 2019)

Similar to the first two I bands on VIIRS, MODIS has two ‘high resolution’ bands at 250 m 
covering red and NIR wavelengths. Applications of these bands arrived rather soon after 
the operational distribution of MODIS products, for example, for retrieving coastal and 
estuarine water turbidity products (Chen, Hu, and Muller-Karger 2007; Doxaran et al. 2009; 
Franz et al. 2006; Miller and McKee 2004). Various authors have shown interest in the VIIRS 
I bands for mapping of coastal waters, e.g. for turbidity retrieval (Novoa et al. 2017) or 
mapping of floating algae (Hu 2009; Qi et al. 2020), or have applied statistical methods for 
sharpening VIIRS M data to I resolution (Liu and Wang 2020; Vandermeulen et al. 2015). 
However, the VIIRS I bands have in general been much less used for aquatic applications 
compared to the MODIS 250 m bands, presumably because the former cannot be pro
cessed by open source SeaDAS OCSSW/l2gen or any other freely available processor. The 
atmospheric correction of the Suomi-NPP/VIIRS red imaging band (I01) has been pre
viously demonstrated by Wang and Jiang (2018) using the NOAA MSL12 operational 
processor. The authors found good correspondence between the spectrally close red 
I and M bands, as well as for four matchups with in situ data. They did not include the NIR 
imaging band (I02), which may provide useful observations in extremely turbid waters, 
e.g. in the case of red band reflectance saturation (Luo et al. 2018). The NOAA MSL12 
processor is unfortunately not available to the public, and hence, there has been little use 
of VIIRS I band data. Level 2 data from the red I band as processed with MSL12 are 
distributed through the NOAA CoastWatch data portal (https://coastwatch.noaa.gov/ 
cwn/index.html, accessed 19 August 2023), but they are averaged to the resolution of 
the M bands.

In the current paper, the processing with ACOLITE/DSF of both I and M data from the 
three currently operating VIIRS satellite sensors is presented. A matchup analysis is 
performed with hundreds of measurements from autonomous hyperspectral radiometers 
installed at four sites in some of the world’s most turbid coastal and estuarine waters. 
Additionally, the performance of the OCSSW/l2gen processor for the M bands as provided 
by the Ocean Biology Processing Group (OBPG) at NASA Goddard is evaluated. A limited 
number of demonstration applications using the I bands is provided. ACOLITE processing 
software is freely available under an open source licence, now updated to enable public 
use of the VIIRS I and M band data archive.

2. Data and methods

2.1. Satellite data

VIIRS is a multispectral whiskbroom scanning imager with 22 spectral bands covering the 
visible to thermal infrared across three band sets. Its nadir spatial resolution is nominally 
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375 m in the five imaging (I) bands and 750 m in the 16 moderate (M) resolution bands 
and the one day-night-band (DNB). With a wide swath of 3060 km, a single sensor can 
provide daily coverage of the globe, albeit at a reduced spatial resolution at higher 
viewing zenith angles. The bow-tie effect that occurs when observing off-nadir pixels is 
reduced for VIIRS compared to MODIS by the use of rectangular detectors smaller than the 
nominal pixel size and a pixel aggregation procedure (Wolfe et al. 2013). The detectors are 
oriented with their smaller dimension in the along-scan direction, and individual VIIRS 
pixels are aggregated from 3 × 1, 2 × 1, or 1 × 1 detectors at the nadir, middle, and edge of 
scan. For bandwidth reasons, VIIRS off-nadir coverage is additionally reduced by an on- 
board trim procedure when scans overlap by several pixels, resulting in apparent gaps in 
the top-of-atmosphere scan data. This procedure reduces, but does not eliminate, pixel 
overlap at higher observation angles, and the resulting scan data need to be reprojected 
before use. An overview of I and M bands covering the visible to shortwave infrared 
(VSWIR) wavelengths used in the present paper is provided in Table 1. The relative 
spectral response of these bands is provided in Supplementary Material 1. The M bands 
are typically around 20 nm wide in the visible wavelength range, with varying width in the 
NIR and SWIR (up to 60 nm). The spectral width and response of the I02/M07 and I03/M10 
band pairs are well aligned, while the I01 band is much wider (80 nm) compared to the 
corresponding M05 band (20 nm).

Imagery recorded by VIIRS on board of Suomi-NPP, JPSS-1, and JPSS-2 was obtained as 
uncalibrated top-of-atmosphere scans in digital counts at Level-1A (L1A) from OBPG. L1A 
data were processed using the SeaDAS processing components (OCSSW, https://seadas. 
gsfc.nasa.gov/downloads/, accessed 24 April 2023) version V2023.2 to generate geoloca
tion files (GEO) and calibrated top-of-atmosphere radiances at Level-1B (L1B) for both the 
I and M bands in the NetCDF format. The DNB data cannot be calibrated with OCSSW and 
are hence not used. These GEO and L1B files are the required input files for further 
processing with OCSSW l2gen and ACOLITE (see section 2.2).

Table 1. VIIRS VSWIR band information. I and M bands have nominal resolutions of 375  
m and 750 m, respectively. The last three columns provide the band- and sensor-specific 
suffix for the bands within the ACOLITE outputs. Information obtained from NOAA 
technical report NESDIS 142 (https://ncc.nesdis.noaa.gov/documents/documentation/ 
viirs-users-guide-tech-report-142a-v1.3.pdf., accessed 21 July 2023). Thermal infrared 
(TIR) bands (I04, I05, M12, M13, M14, M15 and M16) and the DNB were omitted, as they 
are not used in the present paper.

Band Wavelength Suomi-NPP JPSS-1 JPSS-2

I01 0.600–0.680 μm I01_638 I01_643 I01_642
I02 0.846–0.885 μm I02_862 I02_867 I02_868
I03 1.580–1.640 μm I03_1601 I03_1604 I03_1614
M01 0.402–0.422 μm M01_411 M01_411 M01_411
M02 0.436–0.454 μm M02_444 M02_445 M02_445
M03 0.478–0.498 μm M03_486 M03_489 M03_489
M04 0.545–0.565 μm M04_551 M04_557 M04_555
M05 0.662–0.682 μm M05_671 M05_667 M05_672
M06 0.739–0.754 μm M06_745 M06_746 M06_747
M07 0.846–0.885 μm M07_862 M07_868 M07_868
M08 1.230–1.250 μm M08_1238 M08_1239 M08_1241
M09 1.371–1.386 μm M09_1375 M09_1375 M09_1382
M10 1.580–1.640 μm M10_1602 M10_1604 M10_1614
M11 2.225–2.275 μm M11_2257 M11_2259 M11_2252
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GEO and L1B data are also processed and distributed in a compatible format by the 
Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center 
(LAADS-DAAC), provided through the EarthData Search Portal (https://search.earthdata. 
nasa.gov/search/, accessed 24 April 2023). These products have the advantage that they 
do not require installation of the OCSSW package and running of the VIIRS geolocation 
and calibration tools. These data have identifiers VNP02MOD, VJ102MOD, and VJ202MOD 
for M band radiance (i.e. labelled ‘02’) and VNP03MOD, VJ103MOD, and VJ203MOD for 
M band geolocation (i.e. labelled ‘03’) for Suomi-NPP, JPSS-1 and JPSS-2, respectively. For 
the I bands, the data identifiers are VNP02IMG, VJ102IMG and VJ202IMG and VNP03IMG, 
VJ103IMG and VJ203IMG.

2.2. Atmospheric correction

The VIIRS L1B imagery in NetCDF format was processed using two atmospheric correction 
software packages: ACOLITE (https://github.com/acolite/acolite, accessed 
20 August 2023) and OCSSW l2gen (see previous section). ACOLITE requires either two 
or four inputfiles for processing a VIIRS scene, i.e. the GEO and L1B for either or both the 
I and M bands, while l2gen uses only the two M band GEO and L1B files. Images were 
subset to an approximately 36 × 36 km region of interest over the validation sites (see 
further), which gives a reasonable extent to fix the aerosol optical thickness 
(Vanhellemont and Ruddick 2021).

For the present study, ACOLITE was adapted for VIIRS L1B data processing using files 
either output by OCSSW or obtained from the LAADS-DAAC. ACOLITE includes the Dark 
Spectrum Fitting (DSF) algorithm for atmospheric correction of VSWIR data (Vanhellemont 
2019; Vanhellemont and Ruddick 2018) and the Thermal Atmospheric Correction Tool 
(TACT) for processing of TIR data (bands I04, I05, M12, M13, M14, M15 and M16). The 
evaluation of the latter is out of the scope of the present paper and will be performed at 
a later stage. Processing of either M or I or both M and I bands is supported by ACOLITE, 
with all bands processed at either I or M band resolution. Pixels are either replicated or 
mean-averaged to create finer or coarser resolution data, i.e. M band data are repeated 
four times to make up four pixels at the I band resolution, and four I band pixels are 
averaged to make up a single pixel at the M band resolution. This option can be specified 
by setting ‘viirs_option’ to either a combination of the elements ‘mod’ for the M bands 
and ‘img’ for the I bands separated by a plus sign, i.e. ‘mod’, ‘img’, ‘mod+img’, and ‘img 
+mod’. The first (or only) element defines the output resolution, and the output band set 
depends on the specified element(s). In the present paper, ‘viirs_option=img+mod’ is 
evaluated, i.e. both I and M band data are processed at 375 m resolution. VIIRS L1B data 
were (1) cropped to the study area along the nearest complete scan line (i.e. in sets of 16  
M or 32 I along-track pixels), in order to perform a consistent scan reprojection; (2) 
converted from top-of-atmosphere radiance (Lt) to top-of-atmosphere reflectance (ρt) 
using the provided scale and offset data, and the per-pixel cosine of the sun zenith angle, 
assuming level terrain; and (3) stored in a generic ACOLITE ‘Level 1 Reflectance’ (L1R) 
NetCDF file. The VIIRS L1B quality layer for each band was used to mask pixels when flags 
were set for ‘Saturation’, ‘Temp_not_Nominal’, ‘Missing_EV’, ‘Cal_Fail’, ‘Dead_Detector’, 
and ‘Noisy_Detector’, i.e. when the binary AND with the sum of flag values 4, 8, 512, 1024, 
2048, and 4096 was non-zero.
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ACOLITE/DSF was used for processing of the reprojected (see the next section) generic 
L1R file, using two configurations with a single aerosol type and optical thickness (τa), 
defined at 550 nm, estimated over the study site subset: (1) without (‘DSF’) and (2) with 
(‘DSF+GC’) per-pixel SWIR-based glint correction (Harmel et al. 2018; Vanhellemont 2019). 
In this configuration of DSF processing, a dark spectrum (ρdark) is constructed based on 
the darkest observed ρt in each band across the image subset. The ρdark is assumed to 
have zero surface level reflectance (ρs = 0), and hence for each band, under the specific 
observation and illumination geometry, τa can be estimated for a given aerosol model by 
interpolation of modeled atmospheric path reflectance (ρpath) from precomputed lookup 
tables generated using 6 SV (Kotchenova et al. 2006; Vanhellemont 2020). This procedure 
provides a spectrum of estimated τa (at 550 nm) in each band, and for further processing, 
the lowest τa is used to avoid negative retrievals in the other bands (Vanhellemont and 
Ruddick 2018). A final selection between aerosol models is performed based on the fit 
between the observed ρdark and the modeled ρpath in the two best fitting bands for each 
model. Further details on DSF processing can be found in supporting open access 
publications, e.g. Vanhellemont and Ruddick (2018, 2021); Vanhellemont (2019, 2020). 
The glint correction assumes that the residual SWIR signal after atmospheric correction 
can be attributed fully to sun glint. The SWIR band giving the lowest glint reflectance is 
used as the reference band, and the observed glint signal is then extrapolated to the 
visible and NIR bands by taking into account the atmospheric transmittance and Fresnel 
reflectance ratios in the reference and target bands. Two additional configurations were 
also evaluated, i.e. the application of the DSF τa estimation per-pixel, without (‘DSFR’) and 
with (‘DSFR+GC’) the per-pixel glint correction. In this configuration, the DSF process as 
described above is performed on an individual pixel basis rather than across an image 
subset. In the interest of improving the processing speed, a reverse lookup table was 
constructed to directly interpolate ρpath to τa. Other atmospheric correction parameters 
are then interpolated from the selected τa using the regular lookup tables. ACOLITE 
outputs were masked to exclude non-water pixels using a series of tests. Pixels were 
masked using thresholds on the top-of-atmosphere reflectance, i.e. when (1) ρt > 0.3 in 
any VSWIR band, (2) ρt > 0.005 in the M9 cirrus band, or (3) ρt > 0.0215 in the M10 band 
at around 1.6 μm. Additional masking was performed for mixed pixels that can be 
identified by the resolution differences of I and M bands, i.e. pixels were masked when 
the absolute difference in ρt between the two 1.6 μm bands (I03 and M10) was > 0.002 or 
when the relative difference was > 20%.

OCSSW/l2gen was used to process the VIIRS M data using four configurations: (1) the 
standard processing using the two NIR bands M06 and M07 for the aerosol correction 
(‘l2gen STD’) and three SWIR-based processing configurations using channels (2) SWIR1 
and SWIR2 (‘l2gen SWIR1 + 2’), (3) SWIR1 and SWIR3 (‘l2gen SWIR1 + 3’), and (4) SWIR2 
and SWIR3 (‘l2gen SWIR2 + 3’) for the multiple scattering aerosol estimation, where 
SWIR1 is M08 at 1.2 μm, SWIR2 is M10 at 1.6 μm, and SWIR3 is M11 at 2.2 μm. As the 
study sites all have turbid to extremely turbid waters, the blue-to-green ratio chloro
phyll a retrieval-based bidirectional reflectance distribution function correction (BDRF) 
was disabled (‘brdf_opt = 0’) as were the masking of high radiance (‘maskhilt = 0’) and 
stray light pixels (‘maskstlight = 0’) for all l2gen configurations. The cloud masking 
threshold was set to 0.018 on the SWIR3 band. An additional variation of these four 
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settings was examined by switching the aerosol correction mode from the default 
multiple scattering, relative humidity-based aerosol models (Ahmad et al. 2010), with 
iterative NIR correction (‘aeropt = −17’) to the simple two-band multiple scattering 
aerosol model selection (‘aeropt = −1’). In essence, this variation more closely resembles 
the original Gordon and Wang (1994) method, as it disables the iterative NIR correction 
(Bailey, Franz, and Jeremy Werdell 2010), which is based on a blue-to-green ratio of 
chlorophyll a retrieval that may not be applicable in waters dominated by non-algal 
particulate scattering. ρw was computed from the l2gen outputs as π � Rrs.

2.3. Swath reprojection

The L1R files were reprojected to a Universal Transverse Mercator (UTM) projection with 
375 × 375 m pixel sizes before ACOLITE/DSF processing using bilinear interpolation and 
averaging multiple overlapping observations in the off-nadir area affected by the bow-tie 
effect. If residual scan line gaps were present in the output product, pixels were filled via 
bilinear interpolation. ACOLITE always crops the VIIRS data along the nearest bounding 
scan line edge, and the reprojection is performed per scan line of either 16 or 32 pixels for 
the M and I band resolutions. An example of the bow-tie effect and reprojected data is 
shown in Figure 1. OCSSW/l2gen processing outputs were cropped and reprojected using 
the same method. The different order of the reprojection step, i.e. before (ACOLITE) and 
after (l2gen) processing, was chosen for technical reasons. The DSF with a fixed aerosol 
optical thickness retrieval relies on using information from the subscene, and the repro
jection before processing ensures that each location has the same weight in this estima
tion. Only minor differences were found between the application of the reprojection 
before or after ACOLITE/DSF processing (not shown), and the order of reprojection is not 
deemed to have important consequences for the current application. However, reprojec
tion at the L1R level has a processing time advantage as less datasets need to be 
reprojected, i.e. only ρt for VSWIR and Lt for the TIR bands. The l2gen processing does 
not support reprojection before or during processing, so it was done afterwards. For the 
extraction of matchups, there are several problems using unprojected data, e.g. pixel 
overlap, geolocation replication, and presence of scan line gaps.

2.4. In situ data

In situ measurements from two autonomous hyperspectral radiometer systems were 
used, i.e. the pan-and-tilt hyperspectral radiometer system (PANTHYR, Vansteenwegen 
et al. (2019)), and the hyperspectral pointable system for terrestrial and aquatic radio
metry (HYPSTAR®). The PANTHYR uses a pair of TriOS RAMSES instruments, one for 
radiance and one for irradiance, and measures in 190 channels between 320 and 950  
nm with a full width at half maximum (FWHM) of about 10 nm, with a usable range of 
about 400–900 nm. The HYPSTAR® Standard Range instrument (HYPSTAR®-SR) was used, 
which has a visible to near-infrared sensor measuring in 1330 channels between 380 and 
1000 nm (FWHM of 3 nm). One PANTHYR instrument was deployed on the Blue 
Accelerator Platform (callsign RT1) near Oostende, Belgium, site name O1BE. This deploy
ment has been previously used in turbid water validation studies, e.g. for the Ocean and 
Land Colour Instrument (OLCI) on Sentinel-3 (Vanhellemont and Ruddick 2021) and 
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SuperDove cubesats (Vanhellemont 2023). Three HYPSTAR® instruments were deployed, 
one at the Río de la Plata estuary, near La Plata, Argentina, site name LPAR (2); the Gironde 
estuary mouth, near Le-Verdon-Sur-Mer, France, site name MAFR; and (3) the MOW1 
platform near Zeebrugge, Belgium, site name M1BE. An overview of sites and data 
availability per deployment is given in Table 2, and site locations are illustrated with 
Sentinel-2 imagery in Figure 2.

Both in situ systems are mounted on a pan and tilt head and measured with similar 
protocols, i.e. using a nadir viewing angle of 40°, at 90°, 135°, 225° and 270° relative 
azimuth angles (δϕ) to the sun to minimise sky and sun reflectance on the air–water 
interface (Mobley 1999; K. G. Ruddick et al. 2006). A measurement cycle constists of 
sequential measurements of downwelling irradiance (Ed , three replicates), downwelling 

Figure 1. Example of the scan line gaps caused by on-board pixel deletion in a subset of a JPSS-2/VIIRS 
image taken 2023-04-29 17:03 UTC over the LPAR site, with an unprojected ρs RGB (665, 560 and 
490 nm) on the left. Note the transition between 1 x 1 and 2 x 1 detector aggregation in the middle of 
the image, i.e. where the gap reduces in width, and the repeated observation of certain targets near 
the gaps as a result of the bow-tie effect. The transition from 2 x 1 to 3 x 1 detector aggregation 
further east closes the gap. The top right panel shows the reprojection to the 36 x 36 km UTM grid, and 
the bottom right panel indicates which pixels were mean-averaged for the I01 band. Targets were 
either observed once (dark shading) or twice (light shading). Latitude and longitude annotations are 
suppressed for legibility and can in fact not be displayed for unprojected data. The extents are the 
same as in Figures 3 and 10.
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radiance (Ld, three replicates), upwelling radiance (Lu, eleven replicates for PANTHYR, six 
for HYPSTAR®) and three more replicates of Ld and Ed after the Lu measurements. Data 
from a cycle that pass quality control are mean-averaged, and if sufficient replicates are 
available, i.e. 5/6 Ed , 5/6 Ld and 9/11 Lu for PANTHYR, as well as at least 3 replicates of each 
parameter for HYPSTAR®, the water-leaving radiance reflectance (ρw) is computed by: 

where Lw is the water-leaving radiance, computed from the Lu and Ld average 
measurements: 

where ρF is the effective Fresnel reflectance factor, as estimated from lookup tables 
provided by Mobley (1999). Wind speed for interpolation of the lookup tables is obtained 
as the nowcast wind speed from the Global Data Assimilation System (GDAS) as provided 
by National Centers for Environmental Information (NCEI, dataset identifiers NCEI DSI 
6172 and gov.noaa.ncdc:C00379) for PANTHYR processing. HYPSTAR® data were pro
cessed with a fixed 2 m/s wind speed for MAFR and M1BE and using variable wind 
speed for LPAR derived from NCEP/MET data obtained from the oceandata server of the 
OBPG. Further details on in situ data processing can be found in Vansteenwegen et al. 
(2019); Vanhellemont (2020) for PANTHYR and in De Vis et al. (2024) for HYPSTAR®.

Per site, data from a single δϕ were used, depending on the data availability and 
matchup potential with VIIRS overpass times. The δϕ depended on the site specific 
installation and characteristics: O1BE and LPAR were measured at 270°, MAFR at 135°, 
and M1BE at 90°. For MAFR, an additional filtering on the in situ data as provided on 
Zenodo was performed, rejecting data with a sun zenith angle θs of > 60° to avoid 
measurement of the platform shadow at δϕ of 135° in cases of low sun elevation.

2.5. Matchups and quality control

Matchup data were extracted as 3 × 3 pixel boxes from the 375 × 375 m UTM pro
jected data, centred on a reference location for each site (Table 2), retaining the 
matchup if at least three out of nine pixels were not masked in the processor 
masking procedure. The reference locations were chosen one to three pixels away 

Table 2. Study site details with instrument, deployment and matchup locations. The turbidity range at 
the site was derived from the in situ reflectance data and the algorithm of Nechad, Ruddick, and 
Neukermans (2009).

Site O1BE LPAR MAFR M1BE

Instrument PANTHYR HYPSTAR HYPSTAR HYPSTAR
Latitude 51.24642N 34.81780S 45.54794N 51.36055N
Longitude 2.91993E 57.89607W 1.03963W 3.11825E
Matchup Lat. 51.24883N 34.80920S 45.55058N 51.36008N
Matchup Lon. 2.91224E 57.89515W 1.03188W 3.11670E
Deployments 12/2019–8/2020 12/2021–9/2022 12/2021–4/2023 2/2023–4/2023

9/2021–11/2022
4/2023–7/2023

Turbidity 2–80 FNU 8–180 FNU 3–160 FNU 6–90 FNU
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in the UTM projection of the final output data to avoid on one hand the contam
ination of land and mixed land/water pixels as a result of the very near-shore 
position of the measurement stations, which is increased at higher viewing angles 
by growing pixel sizes and scan line overlap. The reference pixels were chosen 
considering typical masking results for VIIRS reprojected data, and their location is 
represented by the centre of the pixel in the UTM grid (Table 2). This rather relaxed 
pixel masking criterion was applied (i.e. using matchups with > ¼ ≥3/9 valid pixels) 
to allow for matching up with the sites very close to the land, i.e. close to consis
tently masked data. Matchups were retained if an in situ measurement was available 
within 30 minutes of the satellite overpass time. If bounding measurements were 
available each within 30 minutes of the overpass time, they were linearly interpo
lated to the overpass time. Matchups were evaluated per band according to three 

Figure 2. Sentinel-2A imagery subsets (about 9 x 9 km) ρs RGB (665, 560 and 490 nm) composites over 
the instrument deployment locations: O1BE (top left, 2023-06-24), LPAR (top right, 2023-05-10), MAFR 
(bottom left, 2023-04-08) and M1BE (bottom right, 2023-06-04). The open circle denotes the deploy
ment location, and the closed circle denotes the reference location at the centre of a pixel in the 
output UTM grid. Decimal coordinates of these points are provided in Table 2. Contains modified 
Copernicus sentinel data [2023].
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subsets, i.e. considering valid data (1) per processor, (2) for common data across 
processors in the current band, and (3) for common data where all processors 
provide a full spectrum.

Statistics were computed per processor for each matchup subset and separately per 
satellite and per site. A Reduced Major Axis (RMA) regression, i.e. the line bisecting two 
Ordinary Least Squares (OLS) regressions swapping both compared datasets, was per
formed per band. Average statistics were computed between in situ (x) and satellite (y) 
data: the Mean Difference (MD), representing the bias, 

the Root Mean Square Difference (RMSD), representing the scatter, 

and the Mean Absolute Percentage Difference (MAPD), representing the relative 
difference, 

3. Results

Example matchups and RGB composites are provided in Figure 3, one from each satellite 
sensor. The example from LPAR (top) illustrates a fairly typical result at the site, with all 
l2gen configurations underestimating across the spectrum and a rather good match for 
ACOLITE/DSF. A mismatch in the spectral shape in the shortest two bands (M01 and M02) 
can be observed for ACOLITE/DSF in the case of this Suomi-NPP matchup. A low differ
ence is found between DSF and DSF+GC as a low SWIR signal was observed in this 
westward looking subscene, and hence, almost no glint signal is present and removed. 
Two examples from JPSS-1 and JPSS-2 are provided for O1BE, one atypical with all 
processors give a very similar result (middle), and one more typical (bottom), where 
l2gen provides a rather good fit in the NIR but tends to underestimate in the VIS. The 
standard l2gen processing gives the largest underestimation in the VIS. ACOLITE/DSF 
tends to overestimate slightly in the NIR, but has a close fitting result in the VIS. A slight 
increase in the shortest blue band (M01) can be seen in the ACOLITE/DSF result for JPSS-2.

In total, ACOLITE/DSF (without and with glint correction) using a single τa estimate 
over the subscene provided 389 matchups across the four sites, i.e. O1BE (n = 219), LPAR 
(n = 124), MAFR (n = 32), M1BE (n = 14) and three satellite sensors, i.e. Suomi-NPP 
(n = 149), JPSS-1 (n = 218) and JPSS-2 (n = 22). For these matchups, the DSF automatically 
selected predominantly the SWIR bands (n = 356, 91%) for τa determination. The SWIR 
band use was distributed about evenly across the four I03, M08, M10, and M11 bands. The 
VIS (n = 23, 6%) and NIR (n = 10, 3%) band use was limited to about 9% of the matchups 
and was constrained mainly to the blue (M01) and NIR bands (I02, M06). The average τa 

determined by the DSF across the matchups was 0.12 (at 550 nm), with a standard 
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Figure 3. Example matchups between VIIRS and in situ data showing the ρs RGB composite of the 36 
x 36 km subscene centred on the in situ measurement location (left) and spectral plot (right). The circle 
on the RGB composite shows the matchup reference location. The dots connected by a solid black line 
represent the in situ measurement resampled to the VIIRS bands, and the dots connected by coloured 
dashed lines represent the satellite measurement. Note the extra point for the red I band around 640 
nm in the in situ and ACOLITE spectra. The ACOLITE NIR I band points overlap with the NIR M band. 
Top: Suomi-NPP for the LPAR site (2022-01-11, 16:57 UTC), middle and bottom: JPSS-1 (2020-05-19, 
12:51 UTC), and JPSS-2 (2023-05-19; 12:45 UTC) for the O1BE site.

INTERNATIONAL JOURNAL OF REMOTE SENSING 9173



deviation of 0.08. A second band is used in the DSF to determine the best fitting aerosol 
model, where again predominantly the SWIR bands were used (n = 363, 93%); in this case, 
mainly the SWIR at 1.6 μm, i.e. I03 (n = 150, 38%) and M10 (n = 126, 32%). Two aerosol 
models were included in ACOLITE, i.e. the continental ‘model 1’ and maritime ‘model 2’ as 
implemented in 6 SV, which were selected for 30% and 70% of the matchups, respectively. 
Including the glint correction (ACOLITE/DSF+GC) reduced the retrieved reflectances only 
slightly in the present dataset, as most severely glinted pixels will have been masked out 
by the automated masking. The largest impact of the glint correction can be observed in 
the NIR bands. Scatter plots for the red and NIR I bands for all three VIIRS instruments 
combined are provided in Figure 4 for the single τa results without and with the glint 
correction. Outliers in these plots are caused by either spatial variability of turbidity 
between the site and reference locations, or clouds and cloud shadows not detected by 

Figure 4. Matchups with in situ measurements of the I bands on VIIRS as processed with ACOLITE/DSF 
using a single τa estimate over the 36 x 36 km subscene. The top and bottom rows show the I01 (red) 
and I02 (NIR) bands. The left column has the per-pixel SWIR based glint correction disabled, and the 
right column has it enabled. Wavelengths in the title were taken from Suomi-NPP. Points represent the 
mean, and the vertical error bars represent the standard deviation in the 3 x 3 pixel box.
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the masking procedure. These are not filtered out to represent typical satellite data use 
and to highlight that improvements are needed for satellite data masking procedures. 
A full series of scatter plots for DSF and DSF+GC is provided in Supplementary Material 2. 
The results for the per-pixel τa estimation, i.e. the resolved DSF (DSFR), gave similar results 
to the single τa estimation over the subscene, with lower reflectances in general and 
slightly larger errors and scatter. A lower number of matchups was retrieved for DSFR+GC 
due to the increased number of negatives retrieved with this method. The matchup 
results for the DSFR are shown in Figure 5 for the red and NIR I bands.

The l2gen processing provided a variable number of matchups per band, with 
a minimum in band M01 to a maximum in band M07. This is largely a result of the 
retrieval of more negatives by l2gen. Some shorter wavelength band retrievals are 
masked presumably because they are less than the minimum value that can be repre
sented in the l2gen output format (i.e. Rrs < −0.01). The number of matchups varied 
between the different configurations, with the SWIR1 + 2 providing the most matchups (n  
= 386), nearly identical to the ACOLITE result (n = 389). A full series of scatter plots of the 

Figure 5. Same as Figure 4 but for ACOLITE/DSFR, i.e. using a per-pixel τa estimate.
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four l2gen processing settings is provided in Supplementary Material 3. The results for the 
variation of l2gen where the iterative NIR correction was disabled provided even lower 
reflectances and larger differences with the in situ measurements. For the SWIR proces
sing, excluding the iterative NIR also provided slightly worse results, giving lower reflec
tance across the spectrum. As expected, the processing with NIR bands in this variation 
gave almost no valid outputs for the La Plata site in the blue bands M01–M03. It did 
furthermore not provide NIR band reflectance (M06 and M07) for any site. The results from 
these processing options without iterative NIR correction are not further discussed or 
shown.

Spectral differences with the in situ measurements are summarized in Figures 6–8 for 
each processor setting across different matchup subsets for all satellite sensors combined. 
The dotted lines represent the total number of matchups for each individual processor. 
Subsets were created where both ACOLITE and l2gen provide common matchups per 
band, i.e. a variable number per band increasing from M01 (n = 292) to band M07 
(n = 371), plotted as dashed lines, and for common matchups across all bands, i.e. 
where standard l2gen processing provides a full spectrum, which corresponds to its 
minimum valid retrievals at M01 (n = 292), plotted as solid lines. A breakdown per satellite 
sensor for these spectral errors is provided in Supplementary Material 4. Overall low 
differences were found for the different matchup subsets, largely due to the large amount 
of available matchups and the consistent processor performance. This also indicates that 
ACOLITE/DSF results are comparable for scenes for which l2gen processing provided data 
and for those for which it did not. The spectral MD (Figure 6) shows that the absolute 

Figure 6. Mean Average Difference (MD) or the bias between in situ and satellite ρw measurements for 
the M bands as processed with ACOLITE and l2gen for all sensors combined. The solid lines represent 
matchups where all processors provide a full M band spectrum. The dashed lines represent the 
common matchups across the processors for specific band, and the dotted lines show all matchups for 
a given processor.
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Figure 7. Same as Figure 6 but for the root mean squared difference (RMSD) representing the scatter 
in the matchup plots.

Figure 8. Same as Figure 6 but for the mean absolute percentage difference (MAPD) representing 
relative differences between in situ and satellite.
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value of the average bias is lower in the visible bands for ACOLITE/DSF than for OCSSW/ 
l2gen. The lowest bias is found for the blue to red bands (M03, M04 and M05) for DSF and 
for the NIR bands (M06 and M07) for l2gen. A larger positive bias is found for the M01 and 
M02 shortest blue bands in the DSF results, which is largely the result of the Suomi-NPP 
performance in these bands, and to a lesser extent the impact of JPSS-2 performance in 
M01 (see, for example, Supplementary Material 4, Fig. S12). DSF tends to overestimate the 
ρw in the shortest blue and the NIR bands, while the longer blue to red bands have a close 
to zero bias. The l2gen results show a negative bias across the spectrum, indicating 
a general overcorrection, which increases from the red to the shortest blue bands from 
around −0.015 to −0.020. The spectral RMSD (Figure 7) shows a rather flat result for a DSF 
of around 0.01, indicating a consistent amount of scatter in the different spectral bands. 
An increase to almost 0.02 is found for the two shortest blue bands, which is again largely 
caused by Suomi-NPP (Supplementary Material 4, Fig. S13). In the NIR, l2gen gives slightly 
lower RMSD compared to DSF, whereas in the visible band, the RMSD is about twice that 
of DSF. The spectral MAPD (Figure 8) shows the increase of relative errors with decreasing 
water signal, with the MAPD spectrum almost looking like an inverted ρw spectrum. The 
relative differences are < 60% across the visible bands for ACOLITE/DSF, with a minimum 
around 10% in the green band (M04) and around 15% in the blue and red bands (M03, 
M05). The performance in the shortest blue bands is impacted again by the performance 
of Suomi-NPP, which shows 40–70% MAPD (Supplementary Material 4, Fig. S14), where 
JPSS-1 and JPSS-2 stay around 20–50%. The relative differences increase towards the NIR, 
reaching 100% in M07. The glint correction has the largest impact on the NIR reflectance 
matchups reducing relative differences from 60–100% to 40–60%. For l2gen, the visible 
band relative differences follow the same trend but are higher compared to DSF, i.e. 
< 80% in the visible, reaching 20–30% in the best performing bands. The NIR performance 
shows flatter and lower relative differences (20–40%) in general compared to DSF, 
especially for the standard processing and the SWIR-based processing using the SWIR1 
band at around 1.2 μm (M08).

4. Discussion

4.1. DSF validation results

Our results show that ACOLITE/DSF can accurately perform the atmospheric correction for 
both I and M band sets on VIIRS. While the bands used for estimating the τa and aerosol 
model are determined automatically, the DSF relies heavily on the SWIR bands for the 
atmospheric correction over the turbid waters of the study sites. The red (I01) and NIR 
(I02) I band reflectances reach relative differences with in situ measurements of on 
average 13% for I01 and 96% (without glint correction) to 60% (with glint correction) 
for I02. These performances are comparable to the spectrally close coarser resolution M05 
and M07 bands. ACOLITE/DSF can also retrieve surface level reflectance (ρs) for the SWIR 
(I03) I band, a channel that contains no water leaving signal ρw , but that can be used to 
determine sun glint on the air–water interface or for the retrieval of floating/above water 
objects. The use of the DSF with a SWIR-based per-pixel glint correction applied after the 
atmospheric correction provided slight improvements especially in the NIR channels (I02, 
M05 and M07). The impact on the matchup statistics of the glint correction is rather small 
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as most heavily glinted scenes are excluded by the default quality control in ACOLITE. 
Although the matchup locations are close to land, we find no clear impacts of land and 
vegetation adjacency effects (AE), largely due to relative insensitivity of the DSF to these 
types of AE, especially in the visible bands where the land and vegetation signal is rather 
low. Due to the large red-edge signal of vegetation, however, the NIR band results may 
have a larger impact from AE, which will still be included in the reflectance output by DSF. 
In other conditions, e.g. near very bright and spectrally flat ice or snow surfaces, the AE 
may prove to be more problematic for the DSF, as they are for many other atmospheric 
correction approaches. In our dataset, no such conditions are present. The explicit 
correction of AE is not attempted in any currently operational processor and is a topic 
of active research. The per-pixel application of the DSF, i.e. DSFR, showed a good perfor
mance overall, with similar average statistics compared to the application of the DSF with 
fixed aerosol over a 36 × 36 km subscene. The DSFR I01 band results showed a slight 
decrease in performance compared to the DSF, e.g. the average relative differences 
increased from 13 to 16%, while the NIR I02 band performance improved with the relative 
differences reduced to around 44%. This indicates that a residual signal is present in the 
DSF NIR outputs, which can be improved by treating it as an aerosol signal in the DSFR. 
Although slightly more noisy outputs were found for the DSFR, the noise level and 
calibration of the NIR and SWIR bands seem to be acceptable for per-pixel processing. 
For larger regions of interest, regions with strong spatial variability in aerosol concentra
tion, or for full scene processing, the use of a single τa is not likely to be appropriate, and 
the DSFR may provide better results compared to the DSF. For small regions of interest, 
e.g. processing at the level of an estuary or inland water body, the use of DSF rather than 
DSFR may provide smoother output products, with lower sensitivity of the aerosol 
correction to NIR/SWIR land and vegetation adjacency effects.

4.2. SeaDAS/l2gen results

For the M bands, ACOLITE/DSF results more closely corresponded to the turbid water 
measurements in this study compared to OCSSW/l2gen, especially for the visible bands 
where l2gen showed signs of overcorrection for aerosols. An analysis of the l2gen aerosol 
retrieval parameters, i.e. τa in band M07 around 862 nm, and the Ångström exponent (α), 
shows that this overcorrection in the visible bands is correlated with α. Scatter plots of ρw 

difference (satellite – in situ) in band M01 (around 412 nm) as a function of the retrieved τa 

and α for l2gen are provided in Supplementary Material 5 (Figs. S15 and S16). These show 
that the overcorrection of visible band ρw can be linked to α estimation, with the largest 
underestimation of ρw (Δρw −0.05 to −0.07) occurring for the highest values of α (1.4 to 
1.8). Only a slight trend between Δρw and τa is observed, at least for the SWIR based 
models. The rather good fit of l2gen results to the in situ measurements in the NIR also 
indicates that the τa is well estimated. A larger range of α is found for l2gen STD, where 
the water reflectance contaminates the aerosol retrieval. Especially for LaPlata and l2gen 
STD, there is a strong correlation between Δρw and the τa retrievals, and the α estimate 
tends towards the maximum available value in the used aerosol model set. The aerosol 
parameter maps derived from the SWIR based methods did not show clear patterns of 
turbid water contamination, while the STD method did show impacts of non-zero NIR 
water reflectance (an example is shown in Supplementary Material 5, Figs. S17, S18, and 
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S19). As the τa and NIR ρw retrievals seem to be rather accurate, the model selection 
procedure may need to be improved, and perhaps the correct model cannot be estimated 
from the wide range of available models using only two NIR or SWIR observations. The 
main issue with l2gen VIIRS processing for turbid waters at present seems to be the 
tendency to select aerosol models with a high Ångström exponent, i.e. with a large fine 
mode fraction.

4.3. Mission consistency

Mostly the same average performance was found across the three satellite missions. Even 
with a lower total number of matchups (n = 22) due to the recency of the mission, JPSS- 
2 performance compared well to the across mission average and the other missions 
separately, even though the matchup data cover only a few months in northern hemi
sphere winter and spring. Higher positive biases were found for the DSF processing of 
Suomi-NPP blue bands (M01 and M02) compared to the processing of JPSS-1 and JPSS-2. 
These bands also showed a correspondingly higher relative difference and a bit more 
scatter compared to other bands. These differences were not present in the l2gen out
puts, where results were more closely aligned for M01 and M02 across the sensors, albeit 
with a larger negative bias, presumably due to the application of large top-of-atmosphere 
vicarious calibration gains to the Suomi-NPP blue bands (Table 3). The application of these 
gains in the ACOLITE/DSF processing shows an improvement in the matchup analysis for 
the M bands on Suomi-NPP, especially in the blue bands, but does not improve results for 
JPSS-1 and JPSS-2 (not shown separately). This is largely an effect of the smaller than unity 
gains correcting some of the ACOLITE/DSF positive bias for Suomi-NPP, while the larger 
than unity gains for JPSS-1 and JPSS-2 further increase the ACOLITE/DSF positive bias. The 
Suomi-NPP spectra appear smoother in the blue–green spectral region after the applica
tion of these gains, removing the bump around M01–M02–M03, which is visible for 
example in the ACOLITE/DSF results in the top right plot of Figure 3 and in the spectral 
error plots in Supplementary Material 4. Of course, these gains are specific to the OCSSW/ 
l2gen processing system and are not recommended for general use with ACOLITE.

4.4. Regional differences

Across the different validation sites, lower scatter was observed for the Belgian sites 
(O1BE and M1BE) compared to the Argentinean (LPAR) and French (MAFR) sites 
(Figures 4 and 5 and Supplementary Materials 2 and 3). In particular, more scatter 
was found in the red and NIR bands for LPAR and MAFR, where much higher 
reflectances were observed compared to the Belgian sites. The visible bands 

Table 3. Vicarious calibration gains of the first six M bands of the three VIIRS instruments as 
implemented in OCSSW/l2gen processing version 2023.2. These are determined over clear oceanic 
waters using the standard processing; NIR band gains are set to 1.

Satellite M01 M02 M03 M04 M05 M06

Suomi-NPP 0.96571 0.95267 0.98339 0.98540 0.99177 0.97731
JPSS-1 1.00907 1.008178 1.019374 1.014986 1.003158 0.993086
JPSS-2 1.02100 1.02482 1.01097 0.99667 1.01617 1.00219
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compared similarly across all sites, and more limited reflectance ranges around the 
matchup location were found, i.e. the vertical error bars in the scatter plots are 
smaller in the visible than in the NIR bands. This more limited reflectance range for 
the visible bands around the matchup location is consistent with the saturation of 
reflectance in turbid and extremely turbid waters (Doxaran et al. 2002; Luo et al. 
2018). Under saturated conditions, a band will no longer be sensitive to changes in 
particulate concentration, and close to these conditions, differences in particulate 
concentration will lead to low (or no) differences in reflectance. Saturated bands can 
thus provide good correspondence for a larger range of turbidity, as changes in the 
concentration of suspended particles caused by spatial and temporal variability or 
mismatch may be masked by the saturated reflectance. The wavelength under which 
saturation reflectance occurs depends on the particulate type and concentration, 
with blue bands showing saturation effects first and NIR bands showing them last. 
For the red and NIR bands at LPAR, a good agreement was found, however, with 
a large standard deviation in the 3 × 3 pixel box. This indicates that spatial variability 
occurs at the scale of the VIIRS pixel near the reference pixel location, which is 
hidden by the reflectance saturation in the blue and green bands that have much 
lower standard deviations. Some of this spatial variability can be perhaps seen in the 
Sentinel-2 image in Figure 2, but it remains largely invisible due to the saturated 
reflectance of the water. High resolution imagery around the site (not shown 
separately) indicates that there is largely a gradual trend of changing reflectance 
from the coast to the middle of the estuary, especially at red wavelengths, which 
was also observed, for example, by A. I. Dogliotti et al. (2015). This trend is dis
cretised by the different VIIRS pixels and shows up as pixel-to-pixel differences and 
hence as increased standard deviation in the matchup box. For the red and NIR 
bands at the MAFR site, larger, both positive and negative, differences between 
in situ and satellite were found. The effects of reflectance saturation in the shorter 
wavelength bands also here lead to a better performance of those bands in the 
matchup results, i.e. the shorter wavelength bands are not significantly affected by 
changes in particulate concentration observed at the site. The low standard devia
tion at the reference location shows that it is rather homogeneous at the VIIRS pixel 
size, and the difference in red and NIR band reflectance is hence likely the result of 
spatial variability between the near-shore site and the reference pixel further 
towards the centre of the estuary. Large variability occurs throughout the estuary, 
with turbidity and hence reflectance usually highest near the shores and dropping 
off towards the centre (e.g. Novoa et al. (2017); Luo, Doxaran, and Vanhellemont 
(2020)). In contrast to the other sites that are installed 0.5 km to 5 km offshore on 
slender platforms, the MAFR instrument is installed on a rather large near-shore 
mooring pontoon, with its reference matchup location several hundred metres away. 
The currents around the underwater structures of the pontoon may create very 
dynamic and small scale turbidity patterns near the measurement location. The 
challenging location of MAFR may perhaps limit its use to validation of higher spatial 
resolution sensors such as the decametre scale imagers on board Landsat and 
Sentinel-2. Removing the MAFR (n = 32) data from the total number of matchups 
(n = 389) in the present study however only has a minor impact on the average 
matchup statistics (not shown separately).
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4.5. Applications

In this section, some example applications using the VIIRS I band data as processed by 
ACOLITE/DSF are presented. These algorithms are available from the literature but are 
here adapted and integrated in ACOLITE for using the VIIRS I (or M) bands. These products 
can be directly output from the open source processor, serve as demonstration products 
of the new ACOLITE capability, and could inspire potential users. Results presented here 
were reprojected to a common 375 × 375 m UTM grid for both I and M bands.

The red and NIR M and I band data can be used to compute a high resolution switching 
turbidity product, e.g. using the algorithm and calibration of Nechad, Ruddick, and 
Neukermans (2009) with the blending method of A. I. Dogliotti et al. (2015) or Novoa 
et al. (2017). An example of such turbidity products generated from 750 m M and 375 m 
I band data is shown in Figure 9. The I band product shows a much sharper image, with 
clearer delineation of turbidity features. The turbidity in this area is largely determined by 
resuspension and bathymetry, and the location of shallower sandbank areas for example 
can be much more clearly seen on the I band product. In this particular example, the 
I band product shows a higher data range (3.2–40.8 FNU) compared to the M band 
product (4.5–38.4 FNU), and its spatial resolution may be better suited to resolve peak 
turbidity values (e.g. Ody et al. (2016); Dorji, Fearns, and Schumann (2017)). Near-shore 
mixed pixels were masked using the observed differences between I03 and M10 SWIR 
bands at 1.6 μm, but this criterion could be relaxed if only the I band data is of interest, 
with a masking based on I03 alone.

The ρs data from the first three I bands can also be used to compute a floating algal 
index (FAI, Hu (2009)) at 375 m resolution. A FAI map produced from an image acquired 
during the early 2016 massive floating plant event in the La Plata estuary, as described in 
in A. Dogliotti et al. (2018), is shown in Figure 10 using an M (750 m) and I (375 m) band 
combination. This figure demonstrates the additional resolving power of the higher 
resolution product and its potential in improving detection and monitoring of floating 
algal matter. To determine estuarine pixels, the land area was masked using the 
Copernicus 30 m global DEM (DOI: 10.5270/ESA-c5d3d65) reprojected to the same UTM 

Figure 9. JPSS-2/VIIRS scene acquired 2023-06-19 (13:03 UTC) over O1BE, as processed with ACOLITE/ 
DSF+GC showing ρs RGB composite (left) and the red and NIR blended turbidity retrievals according to 
algorithms of Nechad, Ruddick, and Neukermans (2009); Novoa et al. (2017) using the M bands at 
750 m (middle) and the I bands at 375 m (right).
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grid. Pixels above the sea level were masked and buffered using 5 binary dilation 
operations in order to exclude land, near-shore and mixed land-water pixels to which 
the FAI is sensitive. The surface areas of estuarine pixels with FAI > −0.004 (Hu et al. 2010) 
were 70 km2 and 117 km2 for the 16:45 UTC image, and 111 km2 and 127 km2 for the 18:27 
UTC image, for the M and I band FAI, respectively. A larger difference in the areal estimates 
was found for the M band product, presumably due to the larger pixel size, especially at 
the edge of swath viewing conditions (θv was 65.5° at 16:45 UTC and 54.3 at 18:27 UTC). 
Due to the movement of the floating algal patches between both overpasses, their 
horizontal transport can be estimated. In this example, the patches moved about 3 km 
downstream between the Suomi and NPP overpasses spaced 102 minutes apart, indicat
ing a surface current of about 0.5 m/s. The use of the I band product simplified the 
identification of the patches and their edges on the subsequent images.

It is possible to relax the masking thresholds so that ACOLITE can provide outputs for 
specific use cases in more severely glinted conditions; an example is given in Figure 11. 
This scene has large ρt SWIR, with M10 for most water pixels being greater than the 
masking default (0.0215) and reaching up to 0.08. By increasing the ACOLITE masking and 
glint thresholds to 0.08, water reflectance can still be retrieved with the glint signal 
present (DSF) or largely removed (DSF+GC). Some residual glint patterns remain in the 
DSF+GC data, especially in the NIR I02 band, but the water turbidity features, especially in 
the red I01 band and other visible bands, are more clearly resolved. As a result of the glint 

Figure 10. Example of two Suomi-NPP/VIIRS scenes of the La Plata estuary near Buenos Aires 
(upstream of the LPAR site) taken 2016-04-22 at 16:45 UTC (top) and 18:27 UTC (bottom) during 
a massive floating plants event (A. Dogliotti et al. 2018). Shown are the ρs RGB composite (left) and the 
retrieval of a 750 m M band (middle) and 375 m I band (right) floating algal index according to Hu 
(2009).
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viewing geometry, the scan edges can be more clearly seen in the DSF processed data, 
while they are largely removed after DSF+GC processing. This processing option gives 
larger uncertainties on the resulting ρw data and is hence better suited for targets with 
high turbidity and associated high ρw .

As shown above in the floating algal example, multiple VIIRS overpasses, even from the 
same sensor, can be available for a given day. By combining data from the three opera
tional wide-swath VIIRS sensors, it may be possible to observe temporal variability 
between their different overpass times. An example for the O1BE site on 16 May 2023 is 
provided in Figure 12, where five VIIRS images were available in a two-hour period 
between 11:39 UTC and 13:45 UTC. The data in this time series plot have their quality 
masking relaxed compared to the matchup analysis, and glint correction was applied (see, 
for example, the steps taken in the previous paragraph). Mainly, the I to M band sub-pixel 
variability test was masking large amounts of pixels, possibly as a result of high spatial 
variability and more pixel mixing at high viewing zenith angles. Overall, these show good 
performance for two I band matchups, one from Suomi-NPP at 12:33 UTC and one JPSS-1 
at 13:21 UTC. The larger difference with the in situ measurement for the other matchups 
(of around 0.01–0.02) could be caused by the presence of spatial variability between the 
measurement and reference locations (see also, for example, the top left panel of Figure 2) 
that could be different at different stages of the tide, e.g. as a result of tidal monopile 
wakes or the port outflow. The higher PANTHYR reflectance before the VIIRS overpasses, 

Figure 11. Example of a JPSS-2/VIIRS scene with severe glint acquired 2023-05-30 at 12:39 UTC over 
the MAFR site. The top row shows the ρs RGB composite, I01 red and I02 NIR band ρw retrieval without 
glint correction, and the bottom row shows the same with glint correction. In this example, the 
thresholds (on ρs in I03) for masking and glint correction were increased from the defaults to 0.08. The 
variability mask using I03 and M10 was disabled.
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Figure 12. Multiple observations by VIIRS for the O1BE site on 2023-05-16 as processed using 
ACOLITE/DSF+GC. The top two rows show the unprojected and projected ρt , and the third row 
shows the ρs RGB composite. Reflectance was scaled from 0 to 0.15 to fit the 8 bit channels in the RGB. 
The lower plots show the temporal variability of the red band ρw as observed by PANTHYR (at δϕ 225° 
and 270°) and the operational VIIRS constellation for I01 at around 640° nm (left) and M05 at around 
670 nm (right). The legend indicates the VIIRS view zenith angle (θv). Local solar noon is around 11:45 
UTC, and θs varied between 32.1° at 11:39 UTC and 39.7° at 13:45 UTC. Data were acquired during ebb, 
high tide was around 10 UTC, and low tide was around 16 UTC. Latitude and longitude annotations are 
suppressed for legibility, and can in fact not be displayed for unprojected data. The extents are the 
same as in Figures 3 and 9.
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i.e. between 9 and 11 UTC, is indicative of the flood tide platform wake being observed by 
the instrument. A SuperDove image taken on 16 May 2023 at 9:54 UTC, i.e. before the 
VIIRS overpasses and during the flood tide, showed considerable spatial variability, 
including around the RT1 measurement tower, and at the reference location. In this 
image, the reflectance in the red and red-edge bands was around 0.03 lower at the 
measurement location compared to the reference location 600 m away, i.e. of the same 
magnitude as the VIIRS differences observed here. The SuperDove image and a transect 
across the near-shore area are provided in Supplementary Material 6 (Fig. S20). Compared 
to the I band, the M band result shows a larger difference with the in situ measurement. 
This difference between the red I and M bands is not present in the matchup analysis 
presented earlier and is presumably also the result of small scale variability around the 
validation and reference sites. The higher observation angle data at the beginning and 
end of the VIIRS time series show larger difference with the in situ measurements, possibly 
as a result of directional effects not accounted for. These data may also be impacted by 
longer atmospheric path lengths and increased pixel size for the observations with higher 
viewing zenith angle (θv). The ρs RGB appears more blurry, and seems to have a blue haze, 
indicating issues with pixel size and residual atmospheric or air–water interface reflec
tance. Note also the brighter ρt RGB composites for these images as a result of the longer 
atmospheric path length. Overall, these results show the usual difficulties in matching up 
moderate resolution satellite data with in situ measurements in waters with high tem
poral and spatial variability and processing of imagery with long atmospheric path 
lengths. Nonetheless, depending on the application, useful information could be 
retrieved from multiple VIIRS observations during the day.

5. Conclusions

In the present paper, the processing of VIIRS I and M bands with ACOLITE/DSF was 
presented. The results compared well to several hundreds of matchups across three 
satellite sensors (on board Suomi-NPP, JPSS-1 and JPSS-2) and four turbid water sites 
equipped with autonomous hyperspectral radiometers. The best performing bands were 
those with the highest water signal, i.e. bands between 490 and 670 nm. Mean absolute 
differences in those bands were close to zero, with mean absolute percentage differences 
around 10–15%. Due to the high turbidity, appreciable reflectance in the NIR channels 
was observed, where ACOLITE/DSF provided reasonable estimates, in general with rela
tive differences < 50%. The performance of the two red (I01) and NIR (I02) I channels was 
found to be on par with that of the corresponding M channels (M05 and M07), indicating 
that they can be used for turbidity mapping in turbid waters. The optional glint correction 
provided a small benefit across the spectrum, but it should be noted that the most severe 
glint observations are filtered out by the thresholds in the masking procedure.

In general, the same patterns were observed across the different satellite platforms. 
JPSS-1 provided the best performance overall, with Suomi-NPP giving slightly larger 
differences, especially in the two shortest wavelength bands (M01 and M02 at around 
412 and 443 nm), likely as a result of top-of-atmosphere calibration. JPSS-2 gave very 
similar performance to JPSS-1, with slightly higher differences in band M01. A lower 
number of JPSS-2 data were available from its commissioning phase, mostly from the 
northern hemisphere winter and spring, i.e. with lower sun elevations. Overall, the VIIRS 

9186 Q. VANHELLEMONT ET AL.



data from all three platforms can be used in combination for the types of waters 
investigated here, especially in the range 490–670 nm. The potential use of top-of- 
atmosphere system vicarious calibration gains to improve the ACOLITE processing may 
need investigation.

OCSSW/l2gen processing of the VIIRS M bands was also tested for a series of settings. 
Results from l2gen showed higher scatter, as well as larger absolute and relative differ
ences compared to ACOLITE/DSF, except in the NIR bands, where l2gen reflectance is 
more constrained. For all sites, l2gen using the SWIR bands gave improved performance 
over the standard configuration, with on average SWIR1 + 3 providing the best results. 
The alternative and simpler two band atmospheric correction settings without NIR itera
tion did not provide satisfactory results. The results presented here indicate that the 
overcorrection by l2gen in the visible bands is largely due to the selection of aerosol 
models with a large Ångström exponent, i.e. those with a large fine mode fraction. The 
SWIR-based l2gen processing did not show correlation of the aerosol parameters to 
in situ-measured water reflectance, indicating that the water signal did not affect the 
aerosol model selection. These findings may illustrate the difficulty of selecting an 
appropriate aerosol model from a large selection using only two NIR or SWIR bands.

The present paper demonstrates once more the power of a network of hyperspectral 
in situ instruments (K. Ruddick et al. 2024) for the validation of optical VSWIR satellite 
missions, with varying band sets and widths. Data from the PANTHYR and HYPSTAR®-SR 
instruments can be used to validate any satellite band within 400–900 nm, and, in 
particular for land deployments, with the HYPSTAR®-XR (eXtended Range) up to 1700  
nm. For the present study, matchups were already available within the first few months of 
the JPSS-2 satellite mission, which provide timely information on the instrument perfor
mance. For the different validation sites, a better understanding of the behaviour of the 
reference and measurement locations may be needed, and perhaps sensor specific 
matchup suitability and reference locations are needed. Determining these may require 
the combination of high frequency metre scale imagery, in-water sensor deployments, 
and hydrodynamical modelling efforts. It should be noted that most in situ deployment 
locations are opportunistic, as well as the use of their data in many cases. An in depth 
characterization of the different sites in the network, e.g. also with regards to optical and 
physical impacts of the deployment platform, will aid the understanding of the perfor
mance and the uptake of their measurements.

Examples of VIIRS high resolution turbidity and floating algal products were presented, 
as well as the potential for tracking temporal variability or horizontal transport by using 
multiple VIIRS observation throughout the day. ACOLITE is currently the only freely 
available and open source processor with the capability of processing both VIIRS I and 
M bands at native resolution. The availability of this processor could enable more users to 
access the higher resolution I band data for improved mapping of turbid waters or 
floating materials.
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