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Abstract 

Background  Amidst the escalating loss of global biodiversity, freshwater mussels (family Unionidae) have become 
one of the most imperiled animal groups. Acquiring more biological and phylogenetic information on understudied 
taxa constitutes a pivotal aspect of conservation biology. Consequently, a comprehensive examination was con-
ducted on Koreosolenaia, Parvasolenaia, and Sinosolenaia from China encompassing morphology, anatomy, distribu-
tion, and molecular systematics to provide theoretical support for future species endangerment assessments and bio-
diversity conservation.

Results  The shell characteristics of Koreosolenaia, Parvasolenaia, and Sinosolenaia were clearly distinct, and the soft-
body morphology could also be easily distinguished from each other. The papillae of the incurrent aperture of Sino-
solenaia iridinea, Sinosolenaia recognita, and Sinosolenaia oleivora, which were previously described as difficult, 
exhibited significant variations that could be utilized for species diagnosis. Furthermore, both incurrent and excurrent 
apertures of the Sinosolenaia species had small cysts on their dorsal surfaces which may be unique to this particular 
group. Comparative analysis of six mitochondrial genomes (Parvasolenaia rivularis, Koreosolenaia sitgyensis, Sinosole-
naia iridinea, Sinosolenaia recognita, Sinosolenaia carinata, and Sinosolenaia oleivora) revealed a completely consistent 
gene arrangement pattern. Additionally, there was a high consistency in nucleotide base content and skewness, 
amino acid usage, and relative synonymous codon usage among the six complete mitochondrial genomes. Mito-
chondrial phylogenomics of these genomes with additional taxa within Gonideinae robustly supported the generic 
relationships as follows: (Inversidens + ((Microcondylaea + Sinosolenaia) + (Parvasolenaia + (Koreosolenaia + (Ptychorhyn-
chus + (Postolata + Cosmopseudodon)))))).

Conclusions  The present study provided significant data on the shell morphology and soft-body anatomy of Koreo-
solenaia, Parvasolenaia, and Sinosolenaia, thereby clarifying the diagnostic characteristics for these challenging taxa. 
Additionally, we established a robust phylogenetic framework at both the generic and species levels based on mito-
chondrial genomics.
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Introduction
Freshwater mussels (order Unionida) are of practical and 
aesthetic interest due to their role as indicators of threat-
ened inland waterways worldwide [1–4], as well as being 
ornamental, long-lived invertebrates with unique para-
sitic life cycles adapted for existence in flowing waters 
[5–8]. Unionidae is the most diverse family within Unio-
nida, with more than 800 known species worldwide [8, 
9]. The habitats of these organisms display a wide diver-
sity, with some groups thriving in environments char-
acterized by slow water flow, clear waters, and muddy 
substrates containing gravel particles, while others prefer 
habitats with fast currents, crystal-clear waters, and firm 
sedimentary substrate [10–13]. Adult unionids generally 
have limited mobility and mainly feed on plankton and 
other organic matter in the water [14]. Within the family 
Unionidae, there are groups that exhibit minimal move-
ment throughout their lives by consistently embedding 
themselves in firm substrates, which is the case for Sole-
naia sensu lato [15–17]. This peculiar lifestyle makes this 
group more vulnerable to threats from habitat changes 
and climate extremes, such as drought [8, 18–20]. 
Accurate taxonomic and phylogenetic information can 

provide insights into species diversity levels and evolu-
tionary history, which is of great significance for formu-
lating strategies to conserve biodiversity [3, 21–23]. Over 
the past few years, molecular systematics, morphological 
anatomy, and reproductive biology have been studied for 
certain species in this group [17, 24, 25]; however, phylo-
genetic data is still lacking for other species, limiting our 
ability to understand the fundamental biology of these 
species that require conservation attention. Therefore, 
it is crucial to collect more biological information on 
understudied taxa to ensure that endangered biodiversity 
is not overlooked.

The genus Solenaia sensu lato was established by Con-
rad with the assignment of Mycetopus emarginatus Lea, 
1860, as the type species [26]. Currently, the genus is 
recognized to include nine species (Table  1), which are 
endemic to East Asia and are distributed in China, India, 
Myanmar, and South Korea [27]. Initially, malacologists 
primarily focused on species descriptions and synonymy 
analyses based on shell morphological features [28–33]. 
However, the inherent variability of shell morphology has 
resulted in ongoing disputes regarding the species valid-
ity due to subjective interpretations by different scholars 

Table 1  Classification history for Solenaia sensu lato species. Boldfaces indicate the taxa of this study

Simpson, 1900, 
1914 [28, 29]

Haas, 1969 [30] Graf & 
Cummings 
(2007) [32]

He & Zhuang, 
2013 [33]

Huang et al. 
(2019) [35]

Lopes-Lima 
et al. (2020) [36]

Graf & 
Cummings 
(2021) [9]

Bolotov et al. 
(2021) [37]

Solenaia emargi-
natus (Lea, 1860) 
[26]

Solenaia emar-
ginata

Solenaia emar-
ginata

Solenaia emar-
ginata

Solenaia 
emarginata

Solenaia khwae-
noiensis Panha & 
Deein, 2004

Solenaia khwae-
noiensis

Solenaia carinata 
(Heude, 1877) 
[45]

Solenaia iridinea Solenaia carinata Solenaia carinata Solenaia carinata Solenaia carinata Sinosolenaia 
carinata

Solenaia iridinea 
(Heude, 1874) 
[46]

Solenaia iridinea Solenaia iridinea Solenaia iridinea Sinosolenaia 
iridinea

Solenaia oleivora 
(Heude, 1877) 
[45]
 = Micetopus 
recognitus Heude, 
1877

Solenaia oleivora Solenaia cf. 
oleivora

Sinosolenaia 
oleivora

Solenaia sp. Sinosolenaia 
recognita

Solenaia rivularis 
(Heude, 1877) 
[45]

Solenaia rivularis Parvasolenaia 
rivularis

Parvasolenaia 
rivularis

Solenaia trian-
gularis (Heude, 
1885) [35]

Solenaia trian-
gularis

Solenaia trian-
gularis

Solenaia trian-
gularis

Parvasolenaia tri-
angularis ’China’

Parvasolenaia 
triangularis

Solenaia neotri-
angularis

Parvasolenaia 
neotriangularis

Parvasolenaia 
neotriangularis

Parvasolenaia tri-
angularis ’South 
Korea’

Koreosolenaia 
sitgyensis
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when analyzing synonymy and proposing new species 
based on subtle differences in shell morphology [30, 32–
34]. Starting from the 2020s, with increasing attention 
and the development of molecular techniques, significant 
advancements were achieved in the systematic investiga-
tion of this group [35–37]. Huang et  al. [35] conducted 
a comprehensive phylogeny for Chinese freshwater mus-
sels, and revealed that the genus Solenaia was actually 
polyphyletic. In light of shell morphology and phyloge-
netic position, a new genus named Parvasolenaia Huang 
& Wu, 2019 was established, with Parvasolenaia rivularis 
(Heude, 1877) designated as the type species. Addition-
ally, Parvasolenaia neotriangularis (He & Zhuang, 2013) 
and Parvasolenaia triangularis (Heude, 1885) were reas-
signed to this newly proposed genus [35]. Subsequently, 
based on discernible disparities in shell morphology and 
geographical distribution patterns, Lopes-Lima et al. [36] 
proposed that P. triangularis found in China’s Yangtze 
River Basin and South Korea should not be considered 
as the same species; instead, the population inhabiting 
South Korea represented an undescribed new species. 
Consequently, Lopes-Lima et  al. [36] introduced a new 
genus and a new name for previously presumed P. trian-
gularis in South Korea, i.e. Koreosolenaia sitgyensis Lee 
et al. 2020. The recent phylogenetic analyses revealed that 
both Parvasolenaia and Koreosolenaia belonged to the 
tribe Gonideini within the subfamily Gonideinae of the 
family Unionidae [36, 38–40]. However, with the addition 
of molecular data available for the type species Solenaia 
emarginata, molecular systematics revealed that this spe-
cies was a member of the tribe Contradentini [34, 41], 
while the other Solenaia species, such as Solenaia cari-
nata and Solenaia oleivora, belonged to the tribe Gonid-
eini [35, 36, 42–44]. Therefore, based on the differences 
in tribe rank, Bolotov et al. [37] established a new genus 
called Sinosolenaia Bolotov et  al. 2021 for the Chinese 
Solenaia lineage, with Sinosolenaia recognita (Heude, 
1877) designated as the type species. Additionally, Sino-
solenaia carinata (Heude, 1877), Sinosolenaia iridinea 
(Heude, 1874), and Sinosolenaia oleivora (Heude, 1877) 
were also assigned to this newly established genus [37]. 
Finally, by establishing multiple new genera (Table 1), the 
issue of polyphyly within Solenaia sensu lato has been 
successfully resolved.

However, the phylogenetic relationships of this group 
remain controversial. The phylogenetic tree (COI + 28S) 
constructed by Lopes-Lima et  al. [36] revealed a sis-
ter relationship between Koreosolenaia and Parvaso-
lenaia, which was consistent with the findings of Dai 
et  al. [38] and Liu et  al. [47], who utilized three genes 
(COI + 16S + 28S). However, Wu et  al. [39, 40] estab-
lished a phylogenetic relationship using five molecu-
lar markers (COI + ND1 + 16S + 18S + 28S), indicating 

that the two genera did not exhibit a sister relationship. 
These inconsistent phylogenetic relationships signifi-
cantly impede our comprehension of the evolutionary 
interconnections among species. Furthermore, Bolotov 
et  al. [37] reaffirmed the validity of Sinosolenaia spe-
cies based on barcode data from Genbank; however, 
the interspecific phylogenetic relationships remain 
unresolved. Therefore, it is crucial to utilize substantial 
molecular data (e.g., mitochondrial genome) in order to 
clarify the systematic relationships at both the generic 
and species levels.

It is widely acknowledged that the morphological char-
acteristics of mussels exhibit significant plasticity, leading 
to substantial disagreements regarding the classification 
of different taxa at various hierarchical levels and the 
validity of species [48–53]. Sinosolenaia recognita, Sino-
solenaia iridinea, and Sinosolenaia oleivora were consid-
ered to be synonyms for a long time due to their similar 
shell morphology [15, 28–30, 33, 36]. Recently, Bolo-
tov et  al. [37] confirmed the validity of these three spe-
cies based on COI barcode. However, more information 
about the three species, such as comparative conchology, 
anatomy and systematics, is still lacking.

Furthermore, there is a lack of precise species distri-
bution information for these groups. The genera Koreo-
solenaia, Sinosolenaia, and Parvasolenaia exhibit distinct 
endemic patterns [35–37]. As far as is known, Koreosole-
naia is endemic to Korea, while Parvasolenaia and Sino-
solenaia are primarily distributed in China, specifically 
within the Yangtze River basin [27, 35–37]. Due to its 
vast geographical area, diverse water types, and complex 
hydrological environment, China serves as the primary 
hub for the distribution of freshwater mussels [8, 54]. 
This has resulted in a remarkable array of mussel spe-
cies, including numerous endemic ones [38, 39, 55–57]. 
However, previous research on Chinese freshwater mus-
sels predominantly focused on the Yangtze River basin, 
neglecting investigations into the diversity and distribu-
tion of these organisms across different regions of China 
[20, 35, 58]. This knowledge gap hampers our compre-
hensive understanding of precise species distribution 
patterns and paleobiogeography pertaining to specific 
endemic taxa.

Hence, this study conducted a comprehensive inves-
tigation on the species distribution of these groups in 
China, and achieved the following research objectives by 
integrating mitochondrial genomics, shell morphology, 
and soft-body anatomy: (1) to clarify the species distri-
bution information of Koreosolenaia, Sinosolenaia, and 
Parvasolenaia in China; (2) to compare the morphology, 
anatomy, and mitogenomics distinguishing among gen-
era and species; (3) to reconstruct the phylogenetic rela-
tionships based on mitochondrial genomics.
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Materials and methods
Taxon sampling and morphological examination
In 2021–2024, specimens with tissues of Sinosolenaia iri-
dinea [鸢尾华蛏蚌 (Chinese common name), Iris Solen 
Mussel (English common name)], Sinosolenaia oleivora [
橄榄华蛏蚌 (Chinese common name), Olive Solen Mus-
sel (English common name)], Sinosolenaia recognita [真
华蛏蚌 (Chinese common name), Solen Mussel (Eng-
lish common name)], Parvasolenaia rivularis [河小蛏
蚌 (Chinese common name), River Solen Mussel (Eng-
lish common name)], and Koreosolenaia sitgyensis [溪
格韩蛏蚌 (Chinese common name), Sitgy Solen Mussel 
(English common name)] were collected from Liaoning, 
Henan, Hunan, Anhui, and Jiangxi provinces in China 
(Fig.  1; specific locations are shown in Supplementary 
Table  S1). Only shells of Sinosolenaia carinata [龙骨华
蛏蚌 (Chinese common name), Carinate Solen Mus-
sel (English common name)] were collected from Gan 
River (Nanchang City) in Jiangxi Province. Species iden-
tification was based on the published literatures [28–30, 
33, 45, 46, 59] and COI barcode data [36, 37]. Concho-
logical and anatomical features were visually examined 
with the naked eye and under a stereoscopic microscope 
(SZX10, Olympus), including shell shape, surface sculp-
ture, hinge structure, muscle attachment, and papillae in 
the incurrent and excurrent aperture. A Digital Vernier 
Calliper was used to measure shell length (L), shell width 
(W), and shell height (H1 and H2) with an accuracy of 
0.01 mm (Fig. S1). Log-transformed variables were con-
verted into three ratios: (H1-H2)/W, (H1-H2)/L, and 
W/L for the subsequent morphometric analyses. The 
definition of morphometric characteristics and soft-body 
anatomy was illustrated in Fig. S1. All voucher specimens 
were stored at the Museum of Zoology, Shanxi Normal 
University, Taiyuan City, China.

DNA extraction, PCR, sequencing, and mitogenome 
assembly
Doubly mitochondrial inheritance in freshwater mus-
sels involves two types of mitochondrial DNA (mtDNA): 
maternal (F-type) and paternal (M-type) mtDNA [60–
62]. The M-type is found predominantly in male gonads, 
while the F-type is more abundant in somatic tissues. 
Here, we selected only F-type mitochondrial genome 
by extracting DNA from foot tissue and conducted a 
BLAST search (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​
cgi) to confirm the target sequences. The total genomic 
DNA was extracted using the TIANamp Marine Ani-
mals DNA Kit (Tiangen Biotech, Beijing, China) accord-
ing to the manufacturer’s instructions. DNA quality and 
concentration were assessed using 1% agarose gel elec-
trophoresis and NanoDrop 2000 (Thermo Scientific). 

We performed amplification and sequencing of the 
COI gene using the previously known universal primer 
(LCO22me2 + HCO700dy2) [63]. The PCR was per-
formed using a 25 μL mixture of 2 × Taq Plus Master 
Mix (Vazyme, China) (12.5 μL), ddH2O (9.5 μL), 2  μM 
primers (1 μL each), and genomic DNA (1 μL, approxi-
mately 100  ng/μL). Thermal cycling started at 95  °C for 
3  min, followed by 35 cycles of denaturation at 95  °C 
for 15  s, annealing at 50  °C for 30  s, extension at 72  °C 
for 1  min, and then a final extension step at 72  °C for 
5 min. The purification and sequencing of the PCR prod-
ucts were outsourced to Sangon Biotech (Shanghai, 
China). The newly obtained sequences were uploaded 
to GenBank (Accession Numbers: Koreosolenaia sitgy-
ensis: PQ062536—PQ062543; Parvasolenaia rivularis: 
PQ062544; Sinosolenaia iridinea: PQ062545—PQ062562; 
Sinosolenaia oleivora: PQ062563—PQ062567; Sinosole-
naia recognita: PQ062568—PQ062572).

The high-quality genomic DNAs of four species (Sino-
solenaia iridinea, Sinosolenaia recognita, Parvasolenaia 
rivularis, and Koreosolenaia sitgyensis) were sent to 
Novogene Co., Ltd. (China) for library construction and 
sequencing. The sequencing procedure was performed 
on an Illumina Novaseq 6000 platform following the 
manufacturer’s instructions. The libraries had average 
insert sizes of approximately 300 bp and were sequenced 
as 150  bp paired-end. Each library generated approxi-
mately 5  Gb of raw data. Raw reads were filtered using 
fastp ver. 0.20.0 [64] by removing reads containing adap-
tor sequences and low-quality reads (i.e. reads contain-
ing unknown nucleotides ‘N’ higher than 10%, more than 
50% bases with quality scores less than 5) to obtain clean 
reads. Clean reads were then de novo assembled using the 
CLC Genomic Workbench (https://​digit​alins​ights.​qia-
gen.​com/). Contigs identified as mitogenome sequences 
were manually checked for overlap at the beginning and 
end, resulting in a circular mitogenome. Geneious [65] 
was used to examine the entire mitogenome and perform 
an analysis of nucleotide composition. The assembled 
mitogenome sequence was annotated using the MITOS 
WebServer (see http://​mitos.​bioinf.​uni-​leipz​ig.​de/​index.​
py) [66] with the invertebrate genetic code. Protein-
coding genes (PCGs) were manually corrected using 
BLAST searches analysis (see http://​blast.​ncbi.​nlm.​nih.​
gov/). The positions and secondary structures of tRNAs 
were confirmed using ARWEN (see http://​130.​235.​244.​
92/​ARWEN/​index.​html) [67]. The mitogenome maps 
were generated using the online program Chloroplot 
(see https://​irsco​pe.​shiny​apps.​io/​Chlor​oplot/) [68]. The 
obtained mitogenome sequences have been submitted 
to GenBank under accession number (Koreosolenaia sit-
gyensis: OR933732; Parvasolenaia rivularis: OR933733; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://digitalinsights.qiagen.com/
https://digitalinsights.qiagen.com/
http://mitos.bioinf.uni-leipzig.de/index.py
http://mitos.bioinf.uni-leipzig.de/index.py
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://130.235.244.92/ARWEN/index.html
http://130.235.244.92/ARWEN/index.html
https://irscope.shinyapps.io/Chloroplot/
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Sinosolenaia iridinea: OR933734; Sinosolenaia recognita: 
PQ063995).

Mitogenomic analysis
The mitochondrial genomes and annotation files of Sino-
solenaia oleivora (KF296320) and Sinosolenaia carinata 

(NC_023250) were retrieved from GenBank for com-
parison with the mitochondrial genomes sequenced in 
this study. Sequence length, nucleotide composition, and 
AT content of the whole mitogenomes, PCGs, tRNAs, 
rRNAs and control regions (CRs) were calculated using 
the built-in EditSeq program in DNAstar (https://​www.​

Fig. 1  Shells of Koreosolenaia, Parvasolenaia, and Sinosolenaia species. A: Koreosolenaia sitgyensis; B: Parvasolenaia rivularis; C: Sinosolenaia iridinea; D: 
Sinosolenaia oleivora; E: Sinosolenaia recognita; F: Sinosolenaia carinata. For each species, the left valve is located above with the shell surface facing 
upwards, and the right valve is located below with the nacre side facing upwards (left side); the shell umbo view is composed of both left and right 
valves (right side)

https://www.dnastar.com/
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dnast​ar.​com/) [69]. Strand asymmetry was calculated 
using the following formulas: AT skew = (A − T)/(A + T) 
and GC skew = (G − C)/(G + C) [70]. The amino acid 
usage and relative synonymous codon usage (RSCU) 
values of PCGs were calculated using MEGA (ver. 7.0, 
see http://​www.​megas​oftwa​re.​net) [71]. The potential 
secondary structure of the CR was predicted using the 
RNAfold web server with default parameters (see http://​
rna.​tbi.​univie.​ac.​at//​cgibin/​RNAWe​bSuite/​RNAfo​ld.​cgi) 
[72]. Structural elements such as the stem-ring structure 
and tandem repeat sequences were determined based on 
visualization.

Phylogenetic analysis
Two datasets were constructed in this study: (i) COI 
dataset (Table  S2); (ii) mitogenome dataset (contain-
ing 12 PCGs (atp8 was excluded due to high sequence 
variation) and two rRNA genes; 28 taxa) (Table S3). The 
nucleotide sequence of all PCGs was aligned separately 
by the built-in MUSCLE algorithm [73] with default set-
tings implemented in PhyloSuite (ver. 1.2.3, http://​phylo​
suite.​jushe​ngwu.​com/) [74]. The rRNAs were individu-
ally aligned by MAFFT (ver. 7.2, see https://​mafft.​cbrc.​
jp/​align​ment/​server/) [75] with the L-INS-i algorithm. 
Ambiguous alignment areas were trimmed by Gblocks 
(ver. 0.91b, see http://​molev​ol.​cmima.​csic.​es/​castr​esana/​
Gbloc​ks.​html) [76]. The parameter ribosomal gene block 
with a minimum length was set to 2 base pairs (bp), 
allowed gap position was selected with half; the mini-
mum length of PCG block was set to 3 bp, allowed gap 
position was selected none. For the barcoding dataset, 
the COI sequence fragment was aligned and trimmed to 
a length of 567 base pairs (bp). The mitogenomic dataset 
was concatenated using PhyloSuite ver. 1.2.3, resulting in 
a total of 12,424 bp.

Based on the COI dataset, the neighbour-joining tree 
was constructed using the Kimura 2-parameter (K2P) 
model in MEGA (ver. 7.0, see http://​www.​megas​oftwa​re.​
net) with 1000 bootstrap replicates [71, 77].

Before constructing phylogenetic trees based on mito-
chondrial data, substitution saturation tests were per-
formed using DAMBE [78, 79]. The results showed that 
ISS < ISS.c with significant difference (p < 0.05), indicat-
ing that the sequence substitutions were not saturated 
and could be used to construct trees. The mitogenomic 
dataset was analyzed with partition schemes based on 
genes and codons. The partition scheme and the best 
model for Bayesian inference (BI) and maximum likeli-
hood (ML) were selected using PartitionFinder (ver. 2.1.1, 
see http://​www.​rober​tlanf​ear.​com/​parti​tionf​inder/) [80], 
and ModelFinder (ver. 1.4.2, see http://​www.​iqtree.​org/​
Model​Finder/) [81], respectively. The substitution models 

assigned to each partition by PartitionFinder and Mod-
elFinder were listed in Table S4.

BI analyses were carried out in MrBayes (ver. 2.01, see 
http://​nbisw​eden.​github.​io/​MrBay​es/) [82] with models 
generated in PartitionFinder. Four independent Markov 
Chain Monte Carlo (MCMC) chains were run simul-
taneously for ten million generations, and sampling 
was conducted every 1000 generations. When the aver-
age standard deviation of splitting frequency falls below 
0.01, the process can be terminated. The total number of 
generations was 357,000, and the likelihood value con-
verged after 28,000 generations. Therefore, the burn-in 
was set to 30 (> 28). ML analyses were implemented in 
the IQTREE web server (see http://​iqtree.​cibiv.​univie.​
ac.​at/) [83] based on models generated in ModelFinder, 
using 1000 ultrafast bootstraps [77]. The generated phy-
logenetic trees were viewed and edited using iTOL online 
software (http://​itol.​embl.​de/​itol.​cgi) [84].

Morphometric analyses
A total of 46 specimens were used for shell morphomet-
ric analyses. The species’ morphological measurements 
information was shown in Table S5. Principal component 
analysis (PCA) was conducted using an online data anal-
ysis and visualization platform (https://​www.​bioin​forma​
tics.​com.​cn) [85] to describe the morphological variation 
among species. Univariate analysis of variance (ANOVA) 
was performed in SPSS 24.0 [86] to examine differences 
among different groups. To further compare the specific 
differences between the groups, pairwise comparisons 
were conducted between PC1 and PC2 using the LSD 
(least significant difference) method [87], with statistical 
significance set at p < 0.05.

Results
Comparative morphological analysis
We retrieved all available COI sequences of Koreosole-
naia, Parvasolenaia, and Sinosolenaia from Genbank 
and combined them with the sequences obtained from 
this study to compile a total of 152 sequences for the 
COI dataset. The six branches of the NJ tree, based on 
the COI dataset, provided good support for the validity 
of the currently recognized species: Koreosolenaia sit-
gyensis, Parvasolenaia rivularis, Sinosolenaia iridinea, 
Sinosolenaia oleivora, Sinosolenaia recognita, and Sino-
solenaia carinata (Fig. 2).

We conducted a detailed morphological examination 
of all collected specimens (Fig.  1). The shells of Koreo-
solenaia and Parvasolenaia were subtriangular, while 
the shells of Sinosolenaia were narrow and elongated. 
Compared to Parvasolenaia rivularis, Koreosolenaia sit-
gyensis had a wider anterior margin and posterior mar-
gin. The shells of Sinosolenaia species resembled razor 

https://www.dnastar.com/
http://www.megasoftware.net
http://rna.tbi.univie.ac.at//cgibin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at//cgibin/RNAWebSuite/RNAfold.cgi
http://phylosuite.jushengwu.com/
http://phylosuite.jushengwu.com/
https://mafft.cbrc.jp/alignment/server/
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clams. Sinosolenaia carinata could be distinguished from 
other congeneric species (Sinosolenaia oleivora, Sino-
solenaia iridinea, Sinosolenaia recognita) by a distinct 
keel-like protrusion on the dorsal ridge, which prevented 
shells from closing completely and resulted in an atrac-
toid opening at the posterior edge. In contrast, in other 
congeneric species, the shells could be tightly closed. 
Shell characteristics, such as shape, sculpture, and size of 
S. oleivora, S. iridinea, and S. recognita were very simi-
lar, often making it difficult to distinguish them based on 
shell morphology. Although there were apparent varia-
tions in shell color (Fig. 1C, D, E), it should be noted that 
shell color is intricately linked to both age and habitat 
[33, 88], rendering it impractical to accurately identify 
these three species solely based on shell color.

The soft-body anatomical characteristics of Koreo-
solenaia, Parvasolenaia, and Sinosolenaia species were 
depicted in Fig. 3 and Fig. S2. In Koreosolenaia sitgyensis, 

the papillae of the incurrent aperture were short and 
arrange densely in a row, while the excurrent aperture 
was smooth and lacked papillae, but both apertures dis-
played evident pigmentation (Fig. 3A). In Parvasolenaia 
rivularis, the papillae of the incurrent aperture were 
short and conical, unevenly arranged in two rows with 
no papillae observed in the excurrent aperture, and both 
apertures exhibited shallow pigmentation (Fig. 3B).

Although the shell characteristics of Sinosolenaia iri-
dinea, Sinosolenaia oleivora, and Sinosolenaia recognita 
exhibited remarkable similarities, distinct differences 
could be observed in the incurrent aperture of these three 
species. In S. iridinea, the papillae of the incurrent aper-
ture were short and thick, arranged in two to three rows, 
and branched near the base (Fig. 3C1). In S. oleivora, the 
papillae were elongated and spindle-shaped, arranged 
in two to three rows with branching at the pointed end 
(Fig.  3D1). In S. recognita, the papillae were thick and 

Fig. 2  Neighbour-joining tree inferred from 152 COI sequences of Koreosolenaia, Parvasolenaia, and Sinosolenaia species based on the Kimura 
2-parameter model. Each branch is labelled with the GenBank accession numbers and specimen codes (bold type) from this study. Colored taxon 
blocks represent the different species in this study. The number on the branches represents the support values of the primary node. The distribution 
of species is shown in parentheses, with the new distribution found in this study highlighted in blue font



Page 8 of 18Zhang et al. BMC Genomics         (2024) 25:1243 

short, conical in shape, arranged in two rows without any 
branching (Fig. 3E1). These three species had no papillae 
in their excurrent aperture, but they had tightly packed 
small cysts along their margins (Fig. 3C2, D2, E2). It was 
worth noting that Sinosolenaia species possessed small 
cysts on the dorsal surface of both incurrent and excur-
rent apertures, which were closely connected to each 
other—a unique feature not observed in other genera 
(Fig. 3C3, C4, D3, D4, E3, E4).

We also observed the labial palps of the five species 
(Koreosolenaia sitgyensis, Parvasolenaia rivularis, Sino-
solenaia iridinea, Sinosolenaia oleivora, and Sinosolenaia 
recognita), which had similar morphologies characterized 
by a nearly triangular shape (Fig. S2). The anal opening 
was located on the dorsal margin of the posterior adduc-
tor muscle and was connected to the apertures, display-
ing a type I morphology as described by Shu & Wu [89] 
(Fig. S2).

Morphometric analyses
The principal component analysis (PCA) yielded two dis-
tinct eigenvalues that accounted for over 99% of the total 
observed variation among individuals (Fig.  4). The first 
principal component (PC1) explained 67% of the overall 
variation, while the second principal component (PC2) 
accounted for 32.6% of the total variation. Although there 
was only one specimen of Parvasolenaia rivularis, the 
PCA map clustering showed that each species signifi-
cantly formed non-overlapping groups (p < 0.05).

The PC1 axis revealed a significant difference among 
species (p < 0.05), except for the absence of a significant 
difference for Sinosolenaia carinata vs. Sinosolenaia 
oleivora and Sinosolenaia carinata vs. Parvasolenaia riv-
ularis (p > 0.05). On the PC2 axis, Koreosolenaia sitgyen-
sis could be well separated from all other species except 
Parvasolenaia rivularis (p < 0.05). Additionally, signifi-
cant differences existed between some other species as 
well (Table S6).

Comparative mitogenome characteristics
Whole mitochondrial genome and protein‑coding genes
We compared the F-type mitochondrial genomic fea-
tures of Koreosolenaia sitgyensis, Parvasolenaia rivu-
laris, Sinosolenaia iridinea, and Sinosolenaia recognita 
obtained in our study with the complete mitochondrial 
genomes of Sinosolenaia oleivora and Sinosolenaia cari-
nata downloaded from GenBank. The six complete mito-
chondrial genomes ranged from 16,045 bp to 16,716 bp 
(Table 2), all of which contained the typical 37 genes (13 
PCGs, 2 rRNAs, and 22 tRNAs) (Fig. 5A; Table S7). The 
A + T content of all six complete mitochondrial genomes 
was higher compared to the G + C content. Additionally, 
their mitochondrial nucleotide compositions exhibited 
a positive AT skew and a negative GC skew (Table  2). 
The gene arrangement in the mitochondrial genome 
sequences of the six species was identical (Fig. 5A). The 
heavy chain (H chain) encoded eleven genes (cox1, cox2, 
cox3, nad3, nad4, nad4L, nad5, atp6, atp8, trnD and 
trnH), while additional twenty-six genes were located on 

Fig. 3  Anatomical features of excurrent aperture and incurrent aperture. A: Koreosolenaia sitgyensis; B: Parvasolenaia rivularis; C: Sinosolenaia iridinea; 
D: Sinosolenaia oleivora; E: Sinosolenaia recognita; 1: incurrent aperture; 2: excurrent aperture; 3: the dorsal surface of incurrent aperture; 4: the dorsal 
surface of excurrent aperture. Scale = 3 mm
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Fig. 4  Principal component analysis (PCA) based on the data of (H1-H2)/W, (H1-H2)/L, and W/L

Table 2  Mitochondrial genome structural characterization of Koreosolenaia sitgyensis, Parvasolenaia rivularis, Sinosolenaia recognita, 
Sinosolenaia oleivora, Sinosolenaia iridinea, and Sinosolenaia carinata 

K. sitgyensis P. rivularis S. iridinea S. oleivora S. recognita S. carinata

Total (bp) 16,045 16,607 16,368 16,392 16,312 16,716

AT% 60.52 57.85 60.78 59.93 61.64 60.89

ATskew 0.22 0.25 0.21 0.22 0.2 0.22

GCskew −0.34 −0.37 −0.38 −0.37 −0.37 −0.39

No. of gene intervals 28 28 31 24 24 25

No. of gene overlaps 4 4 2 1 3 2

Size range of gene overlap 1 ~ 20 1 ~ 22 2 ~ 10 8 1 ~ 9 1 ~ 8

CR 509 994 778 789 689 1049

rrnS 840 849 844 843 842 857

rrnL 1326 1288 1286 1287 1289 1296

atp6 702 (ATG/TAG) 708 (ATG/TAG) 708 (ATG/TAG) 708 (ATG/TAG) 708 (ATG/TAG) 708 (ATG/TAG)

atp8 192 (GTG/TAA) 192 (GTG/TAG) 198 (ATG/TAA) 198 (ATG/TAG) 198 (ATG/TAA) 198 (GTG/TAG)

cox1 1545 (TTG/TAA) 1536 (TTG/TAG) 1545 (TTG/TAG) 1545 (TTG/TAA) 1548 (ATA/TAG) 1545 (TTG/TAG)

cox2 681 (ATG/TAA) 681 (ATG/TAA) 681 (ATG/TAA) 681 (ATG/TAA) 681 (ATG/TAA) 681 (ATG/TAA)

cox3 780 (ATG/TAG) 780 (ATG/TAG) 780 (ATG/TAG) 780 (ATG/TAA) 780 (ATG/TAA) 780 (ATG/TAA)

cob 1137 (ATA/TAA) 1137 (ATA/TAA) 1137 (ATA/TAA) 1149 (ATC/TAG) 1158 (ATT/TAA) 1161 (ATC/TAG)

nad1 885 (ATT/TAA) 885 (ATT/TAG) 894 (ATT/TAA) 897 (ATC/TAA) 897 (ATC/TAA) 897 (ATC/TAA)

nad2 963 (ATG/TAA) 963 (ATG/TAA) 963 (ATG/TAA) 963 (ATG/TAA) 963 (ATG/TAA) 963 (ATG/TAA)

nad3 357 (ATG/TAG) 357 (ATG/TAG) 345 (ATG/TAG) 357 (ATG/TAG) 357 (ATG/TAA) 357 (ATG/TAG)

nad4 1332 (ATG/TAA) 1347 (ATT/TAA) 1332 (ATA/TAA) 1350 (ATT/TAG) 1350 (ATT/TAA) 1350 (ATT/TAG)

nad4L 297 (ATG/TAG) 297 (ATG/TAG) 297 (ATG/TAG) 297 (ATG/TAG) 297 (ATG/TAG) 297 (ATG/TAG)

nad5 1734 (GTG/TAA) 1728 (ATT/TAG) 1728 (ATT/TAG) 1734 (GTG/TAG) 1734 (ATG/TAG) 1734 (ATG/TAA)

nad6 489 (ATT/TAA) 492 (ATT/TAA) 489 (ATA/TAA) 489 (ATT/TAA) 489 (ATT/TAG) 489 (ATC/TAA)
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the light chain (L chain) (Table S7), which was consistent 
with the mitochondrial genomes of other Gonideinae 
species [38, 39].

Most protein-coding genes (PCGs) in the six mito-
chondrial genomes started with the typical start codon 
ATN (ATA, ATC, ATG, ATT). However, exception 
made for Sinosolenaia recognita, which used ATA as 
the start codon for cox1, the other five species used 
TTG as the start codon for cox1. Additionally, GTG 
was found to be used as the start codon for some PCGs 
(e.g., nad5 in Koreosolenaia sitgyensis and Sinosolenaia 
oleivora; atp8 in Koreosolenaia sitgyensis, Parvasole-
naia rivularis, and Sinosolenaia carinata). Further-
more, all PCGs had the typical TAR (TAA, TAG) as the 
stop codon (Table 2; Table S7). For all six mitochondrial 
genomes, the A + T content of PCGs (57.01% ~ 60.69%) 
was slightly lower than that of the whole genome and 
also exhibited positive AT skew (0.23 ~ 0.29) as well as 
negative GC skew (−0.38 ~ −0.43).

In the six mitochondrial genomes, the most fre-
quently utilized amino acids were Val, Gly, and Leu 

(UUN), while the least commonly used were Arg, Cys, 
and Gln (Fig.  6A). By calculating the relative synony-
mous codon usage (RSCU), it was found that the codon 
usage bias in the six mitochondrial genomes was gen-
erally similar (Fig.  6B). The preferred amino acid cod-
ing codons mostly have A or T in the third position 
(Fig. 6B).

tRNA, rRNA, and CR structure
The six mitochondrial genomes contained a total of 22 
predicted tRNA genes. The length of tRNAs ranged 
from 52 to 74  bp, with the smallest being tRNA-Ala in 
Parvasolenaia rivularis and the largest being tRNA-
Phe, tRNA-Pro and tRNA-Ala in Koreosolenaia sitgy-
ensis, Sinosolenaia iridinea and Sinosolenaia carinata, 
respectively.

Most tRNAs adopted a characteristic cloverleaf sec-
ondary structure, encompassing distinct regions such as 
discriminator nucleotide, acceptor stem, TψC arm, vari-
able loop, anticodon arm, and DHU arm (Fig. 7A). How-
ever, all six mitochondrial genomes showed a large loop 

Fig. 5  Analysis based on mitochondrial data. A: Gene map of the F-type mitochondrial genome of Koreosolenaia sitgyensis, Parvasolenaia rivularis, 
Sinosolenaia iridinea, Sinosolenaia oleivora, Sinosolenaia recognita, Sinosolenaia carinata. B: Phylogenetic trees inferred from Bayesian Inference 
(BI) and Maximum Likelihood (ML) analyses. Support values above the branches are maximum likelihood bootstrap support values and Bayesian 
posterior probabilities, respectively. The colored shaded clades represent three genera that are the focus of this study. Pentagrams symbolize 
the sequences from this study
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Fig. 6  The amino acid usage (A) and relative synonymous codon usage (B) of Protein-coding genes (PCGs). (a): Koreosolenaia sitgyensis; (b): 
Parvasolenaia rivularis; (c): Sinosolenaia iridinea; (d): Sinosolenaia oleivora; (e): Sinosolenaia recognita; (f ): Sinosolenaia carinata 
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in the DHU arm for the tRNA-Ser2 instead of the typical 
stem-loop structure (Fig. 7C). In addition, the tRNA-Arg 
in Sinosolenaia carinata lacked DHU arm (Fig. 7B), and 
the tRNA-Phe in Sinosolenaia recognita lacked the TΨC 
arm (Fig. 7D).

The two rRNA genes (rrnS and rrnL) of the six mito-
chondrial genomes were both encoded on the L chain. 
The rrnL was located between tRNA-Tyr and tRNA-
Leu1, while rrnS was located between tRNA-Arg and 
tRNA-Lys. Among the six mitochondrial genomes, the 
lengths of rrnS and rrnL genes ranged from 840 to 857 bp 
and 1286 to 1326 bp, respectively (Table 2). Both rRNA 
genes showed a preference for (A + T) bases.

The control region (CR) was the largest non-coding 
segment of the mitochondrial genome, exhibiting the 

highest degree of nucleotide composition asymmetry 
and sequence length variation. In this study, the CRs 
of six mitogenomes were consistently located between 
ND5 and tRNA-Gln, with lengths ranging from 509 to 
1049  bp. They displayed a higher A + T content com-
pared to G + C. Furthermore, the CRs exhibited a variety 
of structural elements, such as stem-loop structures and 
tandem repeat sequences (Fig. S3).

Mitochondrial phylogenomics
In this study, we used mitochondrial genomes from 26 
Gonideinae species to construct a consistent topology 
using ML and BI analyses. The monophyly of all tribes 
within Gonideinae was strongly supported by 100% max-
imum likelihood bootstrap supports (BS) and Bayesian 

Fig. 7  Predicted secondary structure for tRNAs. A: Standard secondary cloverleaf structure; B, C, D: abnormal secondary structure (B: Arg 
in Sinosolenaia carinata; C: Ser2 in six species; D: Phe in Sinosolenaia recognita)
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posterior probabilities (PP) in most nodes, and their rela-
tionships at the tribal level were consistent with previous 
studies (Fig. 5B) [38–41, 44].

Focusing on the tribe Gonideini, BI and ML trees con-
sistently supported genus-level relationships as follows: 
(Inversidens + ((Microcondylaea + Sinosolenaia) + (Parv-
asolenaia + (Koreosolenaia + (Ptychorhynchus + (Posto-
lata + Cosmopseudodon)))))) (BS > 80%, PP > 0.9; Fig. 5B). 
In the genus Sinosolenaia, BI and ML yielded consist-
ent and strongly supported phylogenetic relationships 
as follows: (S. carinata + (S. recognita + (S. iridinea + S. 
oleivora))) (BS > 90%, PP = 1; Fig. 5B).

Discussion
Comparative morphology and species distribution
A robust taxonomy is crucial for inferring biologi-
cal characteristics from closely related species, com-
prehending their evolutionary history, and effectively 
prioritizing conservation efforts [90–92]. Combining 
morphological and molecular data, we re-examined the 
three recently separated genera from Solenaia sensu lato, 
namely Koreosolenaia, Parvasolenaia, and Sinosolenaia 
[35–37]. Koreosolenaia and Parvasolenaia can be eas-
ily distinguished from Sinosolenaia by shell shape and 
sculpture (Fig. 1). Compared to Parvasolenaia rivularis, 
Koreosolenaia sitgyensis had wider margins on the ante-
rior margin and posterior margin. Sinosolenaia carinata 
could be distinguished from other congeneric species (S. 
oleivora, S. iridinea, S. recognita) by the prominent keel-
like ridges on its dorsal ridge (Fig. 1). However, the shell 
features of S. oleivora, S. iridinea, and S. recognita were 
very similar, making it difficult to distinguish them based 
solely on shell characteristics (Fig. 1). Capturing changes 
in shell height, length, and width is crucial for accurately 
identifying distinctive features for unionids [93]. During 
the examination of specimens, we observed visible differ-
ences in the ratio of the anterior and posterior margins 
among different species. Therefore, we quantified three 
indicators ((H1-H2)/L, W/L, and (H1-H2)/W3) for PCA 
analysis. The results indicated that there was no overlap 
among S. oleivora, S. iridinea, and S. recognita with statis-
tically significant differences (Fig. 4; p < 0.05). Due to the 
taxonomic challenges posed by the considerable variabil-
ity of shells, it has been acknowledged that considering 
soft-body characteristics is equally imperative [38, 39, 57, 
94, 95]. By observing and comparing the soft-body mor-
phology, we identified distinct variations in the papillae 
on excurrent apertures among S. oleivora, S. iridinea, and 
S. recognita, which can be considered as species diag-
nostic characteristics (Fig.  3). Furthermore, our find-
ings discovered that Sinosolenaia species exhibited small 
cysts closely interconnected on both the dorsal surface of 

apertures, potentially representing a unique feature spe-
cific to the genus Sinosolenaia (Fig. 3).

The comprehension of species distribution is a fun-
damental requirement for comprehending their spatial 
patterns and paleobiogeography. The currently available 
distribution data suggest that Koreosolenaia sitgyensis 
is endemic to Korea, while Chinese Sinosolenaia recog-
nita is found in the Yangtze River Basin, encompassing 
Jiangxi, Hunan, Hubei, Anhui, and Jiangsu [27, 35–37]. 
In this study, we conducted a comprehensive survey and 
sampling throughout China, revealing the presence of S. 
recognita in Nanwan Lake, Henan Province. Addition-
ally, we also collected K. sitgyensis from the Yalu River, 
Liaoning Province. These findings significantly expand 
the known distribution range of these species, providing 
a solid foundation for subsequent assessments regarding 
their endangerment status and conservation strategies.

Mitochondrial genome structure and phylogenetic 
relationships
At present, three gene arrangement patterns have been 
found in the family Unionidae [43, 96]. We successfully 
assembled the complete mitochondrial genomes of Parv-
asolenaia rivularis, Koreosolenaia sitgyensis, Sinosole-
naia iridinea, and Sinosolenaia recognita. Our findings 
indicated that their gene arrangements align with those 
observed in Sinosolenaia carinata and Sinosolenaia 
oleivora, while also sharing the gene arrangement with 
the majority of species within Gonideinae.

The six complete mitogenomes exhibited a high A + T 
content in genomes, protein-coding genes, tRNAs, 
rRNAs, and CRs. Upon analyzing the protein-coding 
genes, we observed that nucleotide A or T was predomi-
nantly favored in the third codon position for most amino 
acids (Fig. 6). This phenomenon is also prevalent among 
other taxa [97–100]. The majority of tRNAs adopt a typi-
cal cloverleaf secondary structure. However, in the DHU 
domain, tRNA-Ser2 of six species exhibited an atypical 
large ring structure (Fig.  7C). Interestingly, the absence 
of the stem in tRNA-Ser is commonly observed in other 
metazoan mitochondrial genomes [99–104], although 
the reasons for this absence remain unclear. This study 
also observed that the CR of the six complete mitochon-
drial genomes contained some structural elements, such 
as stem-loop structures and tandem repeat sequences 
(Fig. S3). Clayton et  al. [105] believed that these stem-
loop structures play a role in initiating replication within 
animal mitochondria.

Recent molecular phylogenetic studies showed that 
the multi-locus phylogeny yielded inconsistent results 
at the generic level [36, 38–40, 47]. This inconsistent 
phylogenetic relationship may be attributed to the lim-
ited number of polymorphic sites and its non-neutral 
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nature, which might not provide sufficient informa-
tion for resolving deep nodes. However, the mitochon-
drial genome is widely acknowledged for its remarkable 
capacity to elucidate both shallow and deep relation-
ships in freshwater mussels [35, 44, 106–109]. Therefore, 
based on the complete mitochondrial genome, we con-
structed a robust phylogenetic framework focusing on 
the subfamily Gonideinae in Unionidae. Both BI and ML 
trees strongly supported that Koreosolenaia, Parvasole-
naia, and Sinosolenaia belonged to the tribe Gonideini, 
with the following phylogenetic relationships: (Inver-
sidens + ((Microcondylaea + (Sinosolenaia carinata + (Sino-
solenaia recognita + (Sinosolenaia iridinea + Sinosolenaia 
oleivora)))) + (Parvasolenaia + (Koreosolenaia + (Ptycho-
rhynchus + (Postolata + Cosmopseudodon)))))).

Threats and conservation implications
It is imperative to evaluate and monitor species diversity 
in the era of ongoing biodiversity loss. A scientific com-
prehension of both species diversity and phylogenetic 
diversity serves as the foundation for species conserva-
tion efforts [40, 88, 110, 111]. Here, we integrated mor-
phology, morphometrics, and mitochondrial genomics to 
conduct a comprehensive study on Koreosolenaia, Parv-
asolenaia, and Sinosolenaia, elucidating their distinctive 
classification features and phylogenetic relationships, 
while also supplementing new information regarding the 
geographic distribution. These findings establish a sci-
entific groundwork for subsequent species threat assess-
ment and conservation endeavors.

The Sinosolenaia group is an important local source 
of aquatic food with fresh and tender meat [15]; how-
ever, due to overconsumption, habitat degradation, 
alteration, and fragmentation caused by human activi-
ties, the distribution range of Sinosolenaia species is 
becoming increasingly narrow and population numbers 
are rapidly declining [17, 24, 25, 112–114]. In recent 
years, the Chinese government has implemented a 
series of policies for the protection of aquatic animals, 
including a 10-year fishing ban in the Yangtze River and 
an updated list of wildlife species under national key 
protection. These measures have significantly improved 
the quality of habitat for these groups. The acquisi-
tion of fundamental knowledge regarding biological 
diversity, taxonomy, evolutionary relationships, essen-
tial biological and ecological characteristics, as well as 
habitat requirements of freshwater bivalves, is impera-
tive for conducting effective conservation assessments, 
planning, and implementation [3]. Based on compre-
hensive research conducted by conchologists on its 
reproductive characteristics, habitat, population distri-
bution, and genetic diversity, the government has offi-
cially designated Sinosolenaia carinata as a nationally 

protected secondary keystone species in 2021. How-
ever, there is still a significant lack of basic biological 
and ecological information for most species of Koreo-
solenaia, Parvasolenaia, and Sinosolenaia, which hin-
ders the assessment of their endangerment status. 
Therefore, we urgently call for more colleagues to par-
ticipate in a detailed study of these groups in order 
to understand their genetic diversity and population 
structure, as well as the microhabitat, behavioral char-
acteristics, and host fish.
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