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A B S T R A C T

We present results of a study covering 13 years of data (2008–2020), investigating for the first time the combined 
impacts of offshore windfarm (OWF) turbine-related and climate-related variables on soft-sediment macro-
benthic communities in the Southern North Sea, focusing on two Belgian OWFs, Belwind and C-Power. We 
hypothesized that both turbine presence alongside climate change would affect macrobenthos in the long-term. 
Our analysis revealed that climate variables, particularly sea surface temperature (SST) influenced macrobenthos 
abundance, species richness and diversity. Species richness was additionally affected by the North Atlantic 
Oscillation (NAO). While most community indices increased with rising SST, diversity declined with higher 
temperatures. Our analysis supported that the already known short-term (max. 3 years) turbine-related impacts 
are consistent through time (13 years). Sediments near turbines and in deeper waters were richer in organic 
matter, characterized by finer sand, and supported more enriched soft-sediment communities compared to lo-
cations further away. A transition from the originally prevailing Nephtys cirrosa community towards a more 
diverse macrobenthic community was observed near the turbines. Our study emphasizes the need for long-term 
studies and the importance of distinguishing turbine presence from climate change effects when assessing the 
impacts of OWFs on marine ecosystems.

1. Introduction

Offshore wind energy (OWE) is an important renewable energy 
source in the global effort to decarbonize and mitigate greenhouse gas 
emissions (International Energy Agency, 2019), aligning with the United 
Nations Sustainable Development Goal (SDG) 7 to ensure access to 
“affordable, reliable, sustainable and clean energy by 2030” (United Na-
tions Department of Economic and Social Affairs, 2023). A significant 
expansion of offshore wind capacity is therefore expected in the coming 
decades, with an estimated addition of over 380 gigawatts (GW) across 
32 countries (Wind Energy Council, 2023) to a current total installed 
capacity of 64.3 GW. In Europe, offshore wind installations surpassed 30 
GW by the end of 2022, constituting 47 % of the global total (Wind 
Energy Council, 2023). Annual growth projections for Europe are opti-
mistic, with additional installations of up to 99 GW by 2030 (Wind 
Europe, 2017).

These commitments have led to the allocation of numerous zones for 

offshore wind development across European waters, such as in the 
Belgian part of the North Sea (BPNS), where nine offshore wind farms 
(OWFs) are operational on a surface area of 238 km2, and an additional 
zone of 285 km2 was designated in the Belgian Marine Spatial Plan 
(Degraer et al., 2022; Verhalle, 2020; Rumes and Brabant, 2021).

The development and operational phases of OWFs are known to 
impact benthic ecosystems (Dannheim et al., 2020; Degraer et al., 2020). 
However, in sandy sediments, the effects of OWF construction are 
relatively short-lived, as a rapid recovery (2 to 4 years) of soft-sediment 
macrobenthic communities is noticed post-construction (Coates et al., 
2015; van Dalfsen et al., 2000). The operational period, which generally 
lasts 20 to 25 years following the construction of OWFs, is characterized 
by impacts of the presence of hard-substrate foundations and their col-
onising fauna in an often naturally sandy environment, which 
(Dannheim et al., 2020; Hiscock et al., 2002) leads to changes in the 
hydrodynamics of the area (Christiansen et al., 2022; Daewel et al., 
2022) and in the seabed relief (Hiscock et al., 2002), as well as an 
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Fig. 1. Study region. Wind turbines are designated in orange (Monopiles, Belwind), red (Jacket foundations, C-Power), black (Gravity base foundations, C-Power) 
and yellow (Turbine D5, where targeted monitoring took place). The boundary of the Belgian OWF concession zone is delineated by a blue polygon. Projection: 
EPSG:32631 – WGS84 / UTM ZONE 31 N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Sampling Design Overview. Sampling procedures in C-Power and Belwind OWFs changed over four periods: 2008–2009, 2009–2014, 2015–2016, and 2017- 
onwards. Stage 1 applies only to C-Power, as Belwind was not yet built. From 2010 to 2012 targeted sampling was carried out. For this, additional samples were taken 
by divers along four gradients at seven distances (1 m to 200 m) from turbine D5 in C-Power.
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enrichment in finer sand near turbines (Coates et al., 2014; Lefaible 
et al., 2023). Sediments with a higher fine sediment fraction, within 200 
m of a wind turbine, also had a decreased permeability, affecting 
nutrient cycles in the sediment (Toussaint et al., 2021). These new hard 
substrate structures (turbines and scour protection layers) provide op-
portunities for fouling organisms to establish themselves (Degraer et al., 
2020; Hutchison et al., 2020; Lindeboom et al., 2011), attracting epi-
benthos and fish (Buyse et al., 2022; Reubens et al., 2014; ter Hofstede 
et al., 2022). The fouling fauna usually consists of filter-feeding organ-
isms, that filter large amounts of water (Voet et al., 2023), enhancing the 
flow of faecal pellets (Mavraki et al., 2022) to the seafloor near the 
turbine (Baeye and Fettweis, 2015). These faecal pellets can then serve 
as new food sources for soft-sediment macrobenthos (Mavraki et al., 
2022), resulting in a higher organic matter (OM) content in sediments 
near turbines (Coates et al., 2014). This enrichment in OM will increase 
macrobenthic abundance and diversity (Coates et al., 2011; Maar et al., 
2009), leading to shifts in macrobenthic community structure (Hiscock 
et al., 2002). However, these effects have hitherto only been demon-
strated for periods up to seven years after OWF construction (Coolen 

et al., 2022). Additionally, their impact is dependent upon the distance 
of the OWF from the coast, turbine types (Lefaible et al., 2023), and 
environmental parameters such as water depth (Coolen et al., 2022; 
Lefaible et al., 2023).

At the same time, Sea Surface Temperatures (SSTs) are altered due to 
climate change which can significantly impact marine ecosystems 
(Hoegh-Guldberg and Bruno, 2010), leading to changes in physico- 
chemical properties and biological responses such as altered species 
physiology, distribution, growth and community structure (Brierley and 
Kingsford, 2009; Dippner et al., 2014; IPCC, 2014; Kröncke et al., 2013; 
Voet et al., 2022). Macrobenthic species have a limited mobility, and as 
a result, they can effectively integrate local changes over time making 
them valuable tools for monitoring environmental shifts associated with 
climate change (Birchenough et al., 2015). Between 1991 and 2022, SST 
increased by 0.3 ◦C per decade in the North Sea, along with an increase 
in the frequency and intensity of marine heat waves (European Envi-
ronment Agency, 2023). According to climate projections, SST in Eu-
ropean basins is expected to further increase by 2–6 ◦C by 2100 under 
the high emissions scenario (European Environment Agency, 2023). In 

Fig. 3. Variable occurrences across the dataset. Count is the number of samples. A; Season. B; Sampling device. C; Water depth. D; Distance to the nearest turbine. E: 
Natural year the sample was taken. F; Year since construction of the OWF. G; Number of samples per year divided by location.

Table 1 
Univariate GAM models. L indicates included in the model as a linear term, S indicates included as a smoother and F as a factor. * indicates that there is an interaction 
with Location for that term. S stands for species richness, N for abundance and H for Shannon-Wiener diversity. Nb stands for negative binominal distribution and G for 
Gaussian distribution. Log stands for Log-link function and Iden for Identity function. R stans for random factor.

Family Link Fine sediment fraction TOM Water Depth Distance to turbine Year since construction SST max SST min NAO Location Season

S Nb Log S L L S* – – L S – R
N Nb Log S L S L S* – S – – R
H G Iden S S L S* – S – – F R

Table 2 
ManyGLM model and predictor variables selected. Nb stands for negative binominal. Log stands for Log-link function. ✓indicates that the variable is included in the 
model, − indicates excluded. R indicates random factor.

Family Link Fine sediment TOM Water depth Distance turbine Year since construction SST max SST min NAO Location Season

Nb Log ✓ ✓ ✓ ✓ ✓ – ✓ – ✓ R
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Fig. 4. Decadal trends of the response and predictor variables selected in this study divided by location. In the Y axis the variable is displayed and in the X axis the 
year of the study.

Fig. 5. Relative abundance of species throughout the years. The Y-axis lists the species that contributed more than 2 % of the abundance throughout the 13-year 
period. X-axis shows relative abundance of the selected species.
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the shallow southern North Sea, benthic environments are specially 
vulnerable to climate change, as they tend to warm more rapidly due to 
their shallow waters and closeness to the shoreline (Garcia-Soto and 
Pingree, 2012; Harris et al., 2014). This can cause a northward shift in 
species distributions (Weinert et al., 2016). Along with SST, the North 
Atlantic Oscillation (NAO) also contributes to variability in marine 
ecosystems (McLean et al., 2018). The NAO affects the hydroclimatic 
state of the North Sea (Wieking and Kröncke, 2001), where negative 
NAO values reflect extreme cold winters, leading to mortality in mac-
robenthos (Dippner and Kröncke, 2003; Kröncke et al., 2013).

Generally, studies on the effects of OWFs on macrobenthos have 
relied on data gathered over limited duration, i.e. ≤ 3 years (Coates 
et al., 2014; Coates et al., 2015; Hutchison et al., 2020; Lefaible et al., 
2023; Lu et al., 2019), with one exception of a study spanning seven 
years (Coolen et al., 2022). To our knowledge, no studies on the effect of 
longer-term presence (> 10 years) of OWF turbines on macrobenthos 
exist. Nevertheless, extended research is essential to capture how soft- 
sediment macrobenthic communities develop after years of OWF pres-
ence in marine environments. On a larger timescale, it is important to 
consider that macrobenthic communities are influenced not only by the 
presence of turbines but also by the effects of climate change. Therefore, 
it is important to account for climate change when assessing the long- 
term impacts of OWFs on soft-sediment infauna.

This study explores how macrobenthic communities have evolved 
over the years (2008–2020) since the construction of two OWFs in the 
BPNS, C-Power and Belwind. Univariate and multivariate modelling 
approaches were used to investigate how the taxonomic composition 
and diversity of macrobenthos communities responded to a set of abiotic 
variables and climate indices.

2. Material and methods

2.1. Study area

Sampling was conducted in two OWFs, C-Power and Belwind, 
located at 27 km and 46 km off the Belgian Coast, respectively (MUMM, 
2024). Both OWF are located on sandbanks, the Thornton Bank and the 
Bligh Bank respectively. The current regime of those areas is charac-
terized by semi-diurnal tidal currents oriented along a northeast- 
southwest axis (Baeye and Fettweis, 2015). Wind speeds increase with 
distance from the coast, and the dominant wind direction is west- 
southwest (Baeye and Fettweis, 2015).

The construction of C-Power began in 2008 on the Thornton Bank, 
part of the Zeeland Banks system (Vlaeminck et al., 1989). The wind 
farm became partially operational in 2009 with 6 gravity-based foun-
dations (GBF). By 2013, the facility was fully operational, featuring a 

Fig. 6. Boxplots of the three community indices per OWF. A. Species richness, B. Log transformed abundance, C. Shannon-Wiener Diversity index. In the boxplot, the 
line inside the box shows the median of the data. The edges of the box represent the lower quartile and upper quartile, respectively. The lower hinge denotes the 
smallest data value greater than the first quartile, while the upper hinge indicates the largest data value less than the third quartile. The whiskers extend from the 
quartiles to show the range of variability outside these percentiles. Data points falling beyond the whiskers are considered exceptionally high or low but are not 
classified as outliers (refer to section 2.4.1 for further details).
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total of 54 wind turbines, including 48 with jacket foundations, spaced 
500 to 700 m apart and positioned at water depths spanning 18 to 24 m 
(Coates et al., 2014; C-Power, 2024; MUMM, 2024). The C-Power OWF 
is influenced by coastal waters, characterized by higher turbidity and 
lower salinity (Lacroix et al., 2004).

Belwind, located on the Bligh Bank, part of the Hinder Banks system 
(Vlaeminck et al., 1989), was constructed between 2009 and 2010 and 
has been operational since 2011 (MUMM, 2024). This OWF comprises 
55 monopile turbines, spaced 500 to 650 m apart and situated at a depth 
range of 15 to 40 m (Fig. 1). The Belwind OWF is only influenced by 
clear waters from the English Channel, resulting in conditions of low 
turbidity and high salinity (Vlaeminck et al., 1989).

2.2. Sample design, collection and treatment

2.2.1. Biotic data
Macrobenthic samples were collected annually from 2008 to 2020 at 

the Thornton Bank (C-Power OWF) and Bligh Bank (Belwind OWF) sites. 
Sampling was carried out in the Spring, Summer, and Autumn at various 
distances from the turbines. In both wind farms sampling procedures 
underwent changes over the years as there were four periods with 
different ship-based sampling strategies (2008 / 2009–2014 / 
2015–2016 / 2017–2020) (Fig. 2) (see suppl. Material 1).

Soft-sediment communities were sampled using different techniques 
depending on proximity to the turbine. At distances greater than 15 m 
from the turbine and in reference areas, Van Veen (VV) grabs were used, 

with a surface area ranging from 0.0247 to 0.1 m2. In contrast, samples 
taken within 15 m from the turbine were collected by scientific divers 
using an airlift system equipped with 1 mm mesh bags, covering an area 
of 0.1 m2. Before 2015, samples at each location were collected in 
triplicate. From 2015 onwards, a single replicate was taken. Samples 
were sieved using a 1 mm mesh and preserved in a 4 % formaldehyde- 
seawater solution. In the laboratory, 1 % Rose Bengal was used to 
stain the samples, after which they were sieved over 1 mm sieve. Or-
ganisms were identified when possible, to the lowest taxonomic level, 
usually species, counted and preserved in a formaldehyde solution (4 
%).

2.2.2. Environmental data
Grain size distribution and organic matter content were determined 

by subsampling each grab sample with a 3.6 cm diameter core. During 
targeted sampling, cores (⌀ 2.7 cm) were taken by divers and the first 
five cm were analyzed for median grain size (MGS) and OM content. All 
sediment samples underwent drying for 48 h at 60 ◦C, and grain size 
distribution was assessed using laser diffraction on a Malvern Master-
sizer which allow for the quantification of MGS and the percentage of 
fine sediment (% <250 μm) for each sample. Total organic matter (TOM) 
content was derived from Eq.1: 

TOM (%) =

(
Dry Weight − Ash Free Dry Weight

Dry Weight

)

× 100 (1) 

where: Dry Weight refers to the sediment dried for 40 h at 60 ◦C, and 

Fig. 7. Species richness model output. The ordinate axis displays the smoothers for each predictor variable, with the number of basis functions (k) indicated in 
parentheses. Dashed lines represent standard errors (SE). “ns” indicates predictors that are not statistically significant.
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Ash-Free Dry Weight refers to the sediment dried for 2 h at 500 ◦C.
Year since the wind farm construction was determined by deducting 

the turbine’s construction year from the sampling year. Water depths at 
the sampling locations were extracted from a 20-m resolution bathym-
etry layer using QGIS (QGIS Development Team, 2020). Additionally, 
distance from the sampling points to the closest turbine was calculated. 
Only data from the year when the minimum sample distance to a turbine 
stayed constant was included, since the distance to the closest turbine 
changed over time as additional turbines were built. Samples taken 
before turbine construction or more than 1 km away were excluded from 
the analysis. Thus, the data were analyzed using a gradient design. The 
study also incorporated SST and NAO. SST data were taken from the EU 
Copernicus Marine Environment Monitoring Service. Seasonally aver-
aged daily SST measurements were used, with extreme events identified 
by their maximum and minimum values. NAO data was obtained from 
the NOAA Climate Prediction Centre and the NOAA Physical Sciences 
Laboratory, respectively. Monthly NAO values were also averaged by 
season (see supplementary material 3).

2.3. Data quality control

Different numbers of replicates were collected over the years; thus, 
for consistency, only the first replicate from each location was used in 
this study. Samples with fine-sand fractions exceeding 80 % and/or TOM 
contents greater than 2 % were excluded (n = 9), as these values were 
considered unrealistic for the sandy sediments in the study region.

Macrobenthic data was taxonomically matched with the World 
Register of Marine Species (WoRMS Editorial Board, 2024) and lumped 
to the lowest possible taxonomic level (see suppl. Material 2). Some 
specimens that were identified to higher taxa (e.g. Phylum, Class or 
Order) were removed from the dataset (see suppl. Material 2) as they 
would influence the biodiversity pattern (<1 % of the abundance). The 
lumping system operated as follows: organisms with a relative abun-
dance below 5 % were excluded, while those above this threshold were 
subject to lumping (see suppl. Material 2 for more information regarding 
the lumping procedure). The final dataset comprised a total of 578 
samples of which 56 % and 44 % originated from the C-Power and 
Belwind OWFs, respectively (Fig. 3).

2.4. Data analysis

2.4.1. Univariate analysis
Three measures of diversity were calculated: species richness (S, 

number of species in each sample), abundance (N, number of organisms 
in each sample), and Shannon-Wiener diversity index (H). Data explo-
ration was conducted to check for outliers, collinearity between vari-
ables, and interactions between the predictor variables and location, 
following the recommendations of Ieno and Zuur (2015) (see suppl. 
Material 4). Due to strong collinearity between fine-sand % and MGS (r 
= 0.8), the last was excluded from the analysis, as fine sediment fraction 
and macrobenthic communities have a robust association (Lefaible 
et al., 2023). Additionally, average SST showed a high correlation with 

Fig. 8. Macrobenthic abundance model output. The ordinate axis displays the smoothers for each predictor variable, with the number of basis functions (k) indicated 
in parentheses. Dashed lines represent standard errors (SE). “ns” indicates predictors that are not statistically significant.
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both SSTmin and SSTmax values (r = 0.7), leading to its exclusion from 
the analysis. Remaining variables did not show a variance inflation 
factors (VIF) higher than 3 (see suppl. Material 4). All analysis were 
performed using R version 4.3.1 (R core Team, R. D. C, 2009).

Generalized Additive Models (GAMs) were developed for the three 
response variables (S, N, H) using the R package “mgcv” (Wood, 2017). 
Sample surface area was included as an offset in the models to account 
for differences between the VV grab and scientific diver samples (0.1 
m2) and the smaller VV grab (0.0247 m2). A forward selection approach 
was used to build the models, with the simplest model including one 
variable and gradually adding more. The optimal model for each 
response variable was selected by choosing the one with the lowest 
Akaike Information Criterion (AIC). If effective degrees of freedom (edf) 
= 1, the variable was treated as a linear term, whereas deviations from 1 
indicated the use of a smoother function (s) (see Table 1). Sampling 
effort was not evenly distributed over the sampling seasons and was 
hence considered a random factor. After model selection, residuals were 
plotted against each variable and visually inspected to verify the 
assumption of homogeneity of variance (see suppl. Material 5).

2.4.2. Multivariate analysis
The relationship between macrobenthic community composition and 

environmental variables was investigated using many generalized linear 
models (manyGLMs) with the R package “mvabund” (Wang et al., 2012). 
The same predictor variables used in the GAMs were applied here. 
Multivariate models were built using manyGLMs, which fits a general-
ized linear model for each species in the dataset and uses resampling- 
based hypothesis testing to evaluate the significance of explanatory 
variables (Wang et al., 2012). Model selection followed a forward 

selection approach based on the AIC sum criterion, adding predictor 
variables step by step and selecting the model with the lowest AIC sum 
value. The final model included fine sediment fraction, years since tur-
bine construction, location, distance to turbine, water depth, TOM, and 
SST max as variables (Table 2). No interactions were included, as they 
complicate the ecological interpretation of the model. After model se-
lection, residuals versus fitted values were visually inspected to confirm 
the assumptions of linear models. Once the model was selected, re-
siduals vs fitted values were visually checked for linear model assump-
tions (see suppl. Material 6).

Anova.manyglm function was applied with 999 bootstrap iterations, 
and the p.uni argument set to “adjusted,” to identify which environ-
mental variables had a significant effect on individual species (p-value 
<0.05). The coefficients of species showing significant responses to each 
environmental variable were then visualized. Positive coefficient values 
indicated a positive association between the species and the environ-
mental variable, while negative values reflected a negative association.

3. Results

3.1. Decadal trends of key variables

Throughout the study period, the fine sediment fraction and TOM 
content fluctuated, with an increase observed between 2010 and 2013 in 
C-Power, followed by a stabilization In Belwind, both parameters 
exhibited a stable trend (Fig. 4.A.B). Sampling depth showed a slight 
increase from 2015 onwards in both OWFs due to the construction of 
new turbines at greater water depths (Fig. 4.C). The distance to the 
turbine decreased with time due to the increasing turbine construction 
and changes in sampling design (Fig. 4.D). SST maximum and minimum, 
along with the NAO index, demonstrated oscillating trends throughout 
the years (Fig. 4.E.F.G). The three response variables, species richness, 
abundance, and Shannon-Wiener diversity, remained relatively stable 
across the study period in both OWFs (Fig. 4.H.I.J).

The dataset comprised 23,960 individuals of 160 countable taxa. C- 
Power harbored 158 taxa whereas Belwind had 145,106 of which being 
found at both wind farms. C-Power had 52 unique taxa, while Belwind 
had 39. The burrowing amphipod Urothoe brevicornis (14.8 %) was the 
most abundant species across the whole dataset, followed by the errant 
polychaeta Nephtys sp. (12 %), the amphipod Bathyporeia sp. (11.2 %) 
and the ribbon worms Nemertea sp. (7.6 %) (Fig. 5).

3.2. Univariate response

Throughout the study period species richness (S) ranged between 1 
and 44 in C-Power and between 2 and 25 in Belwind (Fig. 6.A). The 
selected model explained 57 % of the variation and showed that the 
dominant predictor for species richness was fine sediment fraction. In 
addition, S was significantly and linearly related to TOM, water depth 
and SST min (Table 2, Fig. 7. B., C., F.): it increased with water depth and 
with higher fractions of TOM, whereas it showed a slight decrease with 
increasing SST. Significant non-linear relationships were detected be-
tween S and fine sediment fraction and NAO: S increased with increasing 
fine-sand fraction, levelling off at fine sand fraction ~30 % (Fig. 7.A), 
whereas there was a bimodal relation between S and NAO (Fig. 7.G). 
Distance to turbine did not affect richness significantly in Belwind, 
whereas a significant non-linear effect was found in C-Power with an 
increase from 1000 to 200 m and a stable state from 200 until closer 
distances (Fig. 7.D.E).

Macrobenthos abundances in C-Power ranged from 20 to 24,898 ind 
m− 2 and from 20 to 1330 ind m− 2 in Belwind (Fig. 6.B). The most 
explanatory predictor for abundance (N) was fine sediment fraction and 
the selected model explained more than 70 % of the variation (Table 2). 
N increased significantly and linearly with TOM (Fig. 8.D) and with 
decreasing distances from the nearest turbine in both wind farms (Fig. 8. 
E). Fluctuations in N over the years differed between OWFs: abundance 

Table 3 
Selected GAM models. ‘:’ indicates interaction between both variables. Location 
(CP: C-Power; BW: Belwind) is modelled as a factor and Season are modelled as a 
random factor.

Species richness edf p-value

Fine sediment fraction 3.43 <2e-16
Water depth 1.00 <2e-16
SST minimum 1.00 0.02
Distance to turbine:BW 1.82 0.19
Distance to turbine:CP 6.64 <2e-16
TOM 1.00 7.7e-08
NAO 6.99 1.9e-06
Variance explained: 57.1 %
R2 = 0.559

Abundance edf p-value

Fine sediment fraction 2.31 < 2e-16
SST minimum 1.67 0.33
Water depth 2.66 < 2e-16
TOM 1.00 8.26e-10
Distance turbine 1.00 9.73e-12
Year since construction:BW 4.99 2.22e-06
Year since construction:CP 1.00 0.93
Variance explained: 71.2 %
R2 = 0.39

Shannon-Wiener diversity edf p-value

Fine sediment fraction 4.12 <2e-16
Water depth 1.00 1.3e-06
SST maximum 7.91 9.2e-07
Distance to turbine:BW 2.11 0.11
Distance to turbine:CP 6.10 0.003
TOM 3.83 0.006
OWF – 0.15
Variance explained: 30.5 %
R2 = 0.272
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fluctuated significantly across the years in Belwind, while no significant 
change was observed at C-Power (Fig. 8.F, G). There were significant 
non-linear trends between N and water depth and fine sediment fraction: 
N was higher in deep waters and at higher values of fine sediment 
(Fig. 8.A, C). Macrobenthic abundance was significantly higher during 
Summer compared to Spring and Autumn (Fig. 8.H). SST min did not 
have a significant effect on N (Fig. 8.B).

Diversity ranged from 0 to 3.16 in C-Power and from 0 to 2.84 in 
Belwind (Fig. 6.C). The H model explained up to a 30 % of the variance, 
the main predictor again being fine sediment fraction (Table 3). H 

increased significantly and linearly with water depth (Fig. 9.B). There 
were non-linear relationships between H and the other predictor vari-
ables. H increased with higher fine sediment fraction and TOM values 
but plateaued when fine sediment reached 30 % or declined when TOM 
exceeded 1.5 % (Fig. 9.F). The effect of distance to turbine on diversity 
was OWF specific. In C-Power there was a significant increase of di-
versity closer to the turbine whilst distance to turbine did not have a 
significant effect in Belwind (Fig. 9. D, E). H showed a notable rela-
tionship with SST max, peaking at temperatures between 14 and 16 ◦C 
and declining around 17–18 ◦C (Fig. 9.C). Location did not significantly 
affect diversity, however, was lower in C-Power compared to Belwind 
(Fig. 9.G).

3.3. Multivariate response

The multivariate generalized linear model indicated that all predic-
tor variables, except SST min, significantly affected macrobenthic 
community composition (p-value <0.05) (Table 4). Additionally, both 
fine sediment fraction and years since construction significantly influ-
enced individual species. Fine sediment fraction had the most substan-
tial impact, with 46 species showing a significant preference for finer 
sediments, while two species, Glycera sp. and Ophelia borealis, preferred 
coarser sediments (Fig. 10.A-D). Year since construction significantly 
affected ten species: Gastrosaccus spinifer was more abundant in the 
initial years following construction (Fig. 10.E), whereas Asteriidae juv., 
Eteone longa, Jassa herdmani, Monopseudocuma gilsoni, Nematoda sp., Spio 

Fig. 9. Shannon-Wiener Diversity model output. The ordinate axis displays the smoothers for each predictor variable, with the number of basis functions (k) 
indicated in parentheses. Dashed lines represent standard errors (SE). “ns” indicates predictors that are not statistically significant.

Table 4 
Results of multivariate generalized linear model. Signif. codes: * = p < 0.1, ** =
p < 0.01, *** = p < 0.001.

Parameter Residual 
DF

DF 
diff

Deviance p-value Significant 
species

Fine sediment 557 1 2248.9 0.001 
***

47

Year since 
construction

556 1 1182.4 0.006 
**

10

Distance to 
turbine

555 1 807.2 0.030 * 0

Location 554 1 718.0 0.033 * 0
Water depth 553 1 674.4 0.032 * 0
TOM 552 1 582.6 0.032* 0
SST max 551 1 575.2 0.034 * 0
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Fig. 10. Coefficient plots from the many GLM model. Each cross represents a coefficient estimate, with the horizontal line indicating the 95 % confidence interval for 
that estimate. Coefficients with confidence intervals that do not cross zero are deemed statistically significant and are colored in black. Positive coefficients reflect a 
positive relationship (an increase in the predictor variable results in an increase in the outcome variable), while negative coefficients indicate a negative association 
(an increase in the predictor variable leads to a decrease in the outcome variable). For better visualization, the significant species are displayed in separate graphs. 
The Y-axis lists the significant species for each variable, while the X-axes, which vary across graphs, represent the coefficient estimate values.
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sp., Spiophanes bombyx, and Terebellidae sp. were more prevalent in the 
later years (Fig. 10.F).

4. Discussion

This study is the first to combine turbine-related and climate-related 
drivers of variability in macrobenthos community composition and di-
versity in mobile sediments inside operational OWFs, and does so with a 
dataset spanning a hitherto unsurpassed duration. Our results demon-
strate that local factors remain the main drivers of change in macro-
benthic communities, but also highlight the importance of considering 
climate variables. Additionally, our analysis also revealed a combination 
of site and turbine-specific impacts. Understanding and disentangling 
the effects of turbine presence, of climate change and of local factors 
when studying long-term trends is critical for effective management of 
OWFs in the context of ongoing environmental change and expected 
OWF expansion.

4.1. Influence of the turbines

OWFs in the BPNS are usually situated in areas characterized by 
medium to coarse sediment and low OM content (De Maersschalck et al., 
2006). Such sediments support soft-sediment macrobenthic commu-
nities with low abundance and diversity, such as the Nephtys cirrosa 
community (Breine et al., 2018), which were indeed present in these 
areas prior to OWF construction (De Maersschalck et al., 2006). How-
ever, the introduction of new hard substrates in this sandy habitat cre-
ates additional surfaces available to fouling organisms (Degraer et al., 
2020; Hutchison et al., 2020; Lindeboom et al., 2011). The fouling fauna 
that colonizes the turbine, will enhance the deposition of faecal pellets 
and detritus rich in TOM to the sediment (Maar et al., 2009), adding 
food for sediment-inhabiting fauna (Maar et al., 2009; McKindsey et al., 
2011; Ysebaert et al., 2009) and leading to sediment fining near turbine 
(Coates et al., 2014; Lefaible et al., 2023), resulting in a lower perme-
ability which will facilitate OM retention. The presence of these sub-
merged vertical structures also cause modifications of the local 
hydrodynamic regime (Christiansen et al., 2022; Daewel et al., 2022) 
and seabed topography (Hiscock et al., 2002). These effects combined 
promote the transition towards an “intermediate community” with 
higher abundances of typical offshore species and more fine-sediment 
associated species such as the one from the Abra alba community 
(Breine et al., 2018; Coates et al., 2014), which may further contribute to 
sediment fining and OM accumulation (Breine et al., 2018; Van Hoey 
et al., 2004). This could be due to the presence of tube-building poly-
chaetes, such as Lanice conchilega, an autogenic and allogenic ecosystem 
engineer, which actively construct tubes from coarser particles, thereby 
increasing the finer sediment fractions of the seabed (Braeckman et al., 
2014; Rabaut et al., 2007). It is likely that most of the Terebellidae species 
in the dataset were Lanice conchilega as juveniles of this species are quite 
hard to identify. This process enhances a positive feedback loop that 
facilitates further transition towards a community with more and more 
characteristics of the Abra alba communities. Depending on the type of 
foundation present, associated impacts to the ecosystem will be different 
(Lefaible et al., 2023). The two most common foundations found in 
Belwind and C-Power are monopiles and jackets respectively. Both these 
foundations will have a different impact on the hydrology (Rivier et al., 
2016; Welzel et al., 2020), but also on the type of organisms that will 
colonize the structure. Jackets are known to be dominated by the blue 
Mussel Mytilus edulis down to 20 m depth (Hutchison et al., 2020), while 
the part colonized by mussels on monopile is restricted to the five first 
meter below the water (Coolen et al., 2022). This, coupled with the fact 
that monopiles require a scour protection layer around the structure, 
could result in less fouling impact in the OWF of Belwind (Lefaible et al., 
2023), which consist exclusively of monopiles. Belwind seemed to 
harbour lower species richness and slightly lower diversity than C- 
Power close to the turbines, probably due to the limited fouling impact 

potential in Belwind. The increased abundance at closer distances in 
both OWF corroborated earlier observations in the vicinity of jacket 
foundations on the BPNS for established communities (> 7y after con-
struction) (Lefaible et al., 2023). Our study confirms this trend for both 
monopile and jacket foundations and shows that this turbine effect on 
sediment fining, originally described for the early operational phase of 
gravity-based turbines (Coates et al., 2014), still holds in the long term 
and for different turbine types. We also identified species associated 
with changes at the community level in both OWFs. While species from 
the N. cirrosa community (e.g. Urothoe brevicornis) are still present, we 
also noted the emergence of species associated with the Abra alba 
community (e.g. Terebellidae sp.), indicating a transition towards an 
“intermediate” macrobenthic community, more diverse than the one 
originally present (Breine et al., 2018). Although not significant, we 
observed the emergence of Terebellidae sp. at distances further away 
from the turbines throughout the years, suggesting that the influence of 
turbine presence may still be expanding. While macrobenthic abun-
dance and species richness increased with increasing TOM, corrobo-
rating previous studies (Coates et al., 2014; Lefaible et al., 2023). 
Shannon-Wiener diversity declined when TOM content exceeded 1.5 % 
(Fig. 9.F). A similar trend was observed for species richness in Lefaible 
et al. (2023), which analyzed part of the data in sediments around 
jackets at C-Power. This decrease in diversity may be attributed to the 
proliferation of opportunistic species in areas with high food availability 
(TOM), leading to increased dominance and a reduction in Shannon- 
Wiener diversity (Johansen et al., 2018; Keeley et al., 2013).

Our study also confirms the importance of water depth as a predictor 
of macrobenthic community structure and diversity in the shallow part 
of the North Sea (Armonies et al., 2014; Coolen et al., 2022; Lefaible 
et al., 2023). Response variables peaked at 30 m water depth, indicating 
optimal macrobenthic conditions at this depth. Deeper regions are less 
affected by wave action and sediment disruption, which supports the 
establishment of species and density rich communities (Cheng et al., 
2021). In our study, finer sediments are usually found at greater water 
depths, typically corresponding to troughs and gullies between sand-
banks (Van Lancker et al., 2012).

Unlike previous studies that have been mainly based on shorter time 
periods, i.e. ≤ 3 years (Coates et al., 2014; Coates et al., 2015; Hutchison 
et al., 2020; Lefaible et al., 2023; Lu et al., 2019), the present study 
includes long-term data spanning from the early operational phase. Our 
findings reveal that the patterns observed in short-term studies persist 
well beyond the time scope of those studies, with indications that these 
patterns continue to evolve, as evidenced by the increasing presence of 
Terebellidae even at greater distances. Specifically, species richness and 
Shannon-Wiener diversity are not influenced by years since construc-
tion. However diverse long-term patterns in macrobenthic abundances 
have been observed, with fluctuations over the years only found in the 
Belwind OWF in contrast to more stable macrobenthic abundance values 
for C-Power. Differences in environmental conditions, distance to the 
coast, and foundation types between Belwind and C-Power could explain 
the variations in abundance trends observed. Belwind is situated in a 
more dynamic environment with stronger currents (Legrand and Baet-
ens, 2021), which intensifies sediment resuspension and reduces OM 
enrichment compared to C-Power (Lefaible et al., 2023). Furthermore, 
the distinct foundation types—monopiles at Belwind and gravity-based 
or jacket foundations at C-Power—may influence the degree and impact 
of artificial reef effects on benthic communities (Lefaible et al., 2023).

Additionally, a consistent decline in species richness and diversity is 
evident at further distances from turbines in both OWFs, in line with 
previous studies (Coates et al., 2014; Lefaible et al., 2023). Interestingly, 
and in contrast to Belwind, in our long-term study there is a slight in-
crease in richness and diversity at further distances from the turbines (~ 
500 m) in C-Power. Over the course of the time series, the observed 
fluctuations suggest a potential spillover effect, indicating that the in-
fluence of turbine-related factors, such as organic matter deposition 
(Maar et al., 2009) and changes in hydrodynamics (Christiansen et al., 
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2022), may be extending beyond 500 m from individual turbines. This 
expansion implies a likely interaction between the factors “distance to 
turbine” and “years since construction,” suggesting that turbine-related 
impacts are not static but evolve over time. As turbines increase in 
number over the years, processes such as sediment deposition, changes 
in organic matter distribution, and hydrodynamic alterations may 
extend their reach. This supports the hypothesis of a cumulative effect, 
where the overlapping influence of multiple turbines amplifies the 
spatial extent and intensity of these impacts. Such cumulative effects 
highlight the importance of long-term monitoring to fully understand 
how the combined and evolving influence of turbines shapes the broader 
marine ecosystem.

4.2. Influence of weather and climate

We showed that variations in SSTs affect macrobenthic communities. 
During our 13-year study period, SST increased by an average of 1.5 ◦C 
(see suppl. Material 3) with year-to-year fluctuations.SST affected all 
response variables. Additionally, species richness was affected by NAO. 
Almost all indices tended to increase with increasing SST, however, 
Shannon-Wiener diversity decreased when temperature reached higher 
values (17–18 ◦C). This can possibly be related to an increase in the 
abundance of opportunistic species, as suggested by the positive rela-
tionship between years since construction and the abundance of the 
polychaetes Spiophanes bombyx and Spio sp., the amphipod Jassa herd-
mani, the cumacean Monopseudocuma gilsoni, and nematodes. These 
species, characterized by being small, mobile, and short-lived, align with 
an r-strategy (Lavaleye, 1999), and are typically more tolerant to envi-
ronmental changes, often at the expense of less tolerant taxa such as 
larger, sessile, and long-lived species (Levin et al., 2009). However, this 
observation should be interpreted with caution, and further research on 
the long-term response of these species to climate fluctuations are 
needed to validate this hypothesis. Our work corroborates past studies 
(Dippner and Kröncke, 2003; Kröncke et al., 2013), albeit with a longer 
time span than ours, in showing that changes in macrobenthic com-
munities in the North Sea can be related to climate indices (NAO). In 
addition, our results highlight the importance of taking rising SST into 
consideration when trying to explain spatio-temporal variability in 
benthic communities. This underscores the need for long-term moni-
toring in OWFs to fully understand these impacts. Additionally, long- 
term studies on climate change impacts on benthos often struggle to 
distinguish these impacts from those of beam trawling (Ghodrati Shojaei 
et al., 2016; Meyer et al., 2018). Our study offers the opportunity to 
examine climate change impacts within a fisheries exclusion zone, albeit 
with OWF turbine effects as an important covariate. In addition to direct 
effects of rising temperatures on the physiology of the benthic species 
(Brierley and Kingsford, 2009), rising temperatures can also indirectly 
affect their distribution, e.g. through changes to primary production, 
leading to alterations in the abundance and phenology of phytoplankton 
availability (Desmit et al., 2020; Suikkanen et al., 2007). Enhanced 
primary production will increase the flux of OM to the sediments 
(Suikkanen et al., 2007). Parallelly, rising temperatures will accelerate 
pelagic mineralization, reducing the amount of OM that reaches the 
seafloor (Timmermann et al., 2012; Wikner and Andersson, 2012), 
thereby affecting the food supply for macrobenthic organisms.

5. Conclusion

Our comprehensive long-term analysis of data collected in Belwind 
and C-Power concession areas highlights the significant impact of both 
turbine- and climate-related variables on macrobenthic communities. 
While local factors such as fine sediment, TOM and water depth emerged 
as primary predictors of macrobenthic community descriptors, SST also 
played a crucial role over longer time scales. As such, our findings 
emphasize the importance of considering weather and climate variables 
in long-term studies of benthic communities. Nevertheless, the 

dominance of turbine-related predictor variables suggests that they 
remain the key drivers of biological responses, as macrofaunal abun-
dance and diversity exhibited clear relationships with TOM and fine 
sediment content, with ideal conditions for soft-sediment macrobenthic 
communities observed in deeper zones between sandbanks. The varia-
tions in response to distance from the turbine and years since con-
struction underscored the site-specific nature of impacts, highlighting 
the need for long-term studies considering different turbine foundations 
and areas with different hydrodynamical regimes. Future research 
should include additional environmental parameters, such as primary 
production and implement a comprehensive seasonal sampling strategy. 
This will capture the complete temperature gradient, thereby deepening 
our understanding of the impacts of offshore wind farms on marine 
ecosystems.
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