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SUMMARY

The global ocean’s near surface can be partitioned
into distinct provinces on the basis of regional pri-
mary productivity and oceanography [1]. This
ecological geography provides a valuable frame-
work for understanding spatial variability in
ecosystem function but has relevance only partway
into the epipelagic zone (the top 200 m). The meso-
pelagic (200–1,000 m) makes up approximately
20% of the global ocean volume, plays important
roles in biogeochemical cycling [2], and holds
potentially huge fish resources [3–5]. It is, however,
hidden from satellite observation, and a lack of
globally consistent data has prevented develop-
ment of a global-scale understanding. Acoustic
deep scattering layers (DSLs) are prominent fea-
tures of the mesopelagic. These vertically narrow
(tens to hundreds of m) but horizontally exten-
sive (continuous for tens to thousands of km)
layers comprise fish and zooplankton and are
readily detectable using echosounders. We have
compiled a database of DSL characteristics glob-
ally. We show that DSL depth and acoustic back-
scattering intensity (a measure of biomass) can
be modeled accurately using just surface primary
productivity, temperature, and wind stress. Spatial
variability in these environmental factors leads
to a natural partition of the mesopelagic into
ten distinct classes. These classes demark a
more complex biogeography than the latitudinally
banded schemes proposed before [6, 7]. Knowl-
edge of how environmental factors influence
the mesopelagic enables future change to be
explored: we predict that by 2100 there will be
widespread homogenization of mesopelagic com-
munities and that mesopelagic biomass could
increase by approximately 17%. The biomass
increase requires increased trophic efficiency,
which could arise because of ocean warming and
DSL shallowing.
Curr
RESULTS

Deep Scattering Layers and Acoustic Sampling
Deep scattering layers (DSLs) are ubiquitous features of the global

ocean that comprise biomass-rich communities of zooplankton

and fish. They are so dense (biomass per unit volume) that in early

acoustic surveys echoes from DSLs were mistaken for seabed

echoes, hence the common name ‘‘false bottom.’’ The mesope-

lagic is defined as the 200 to 1,000 m depth horizon (e.g., [8]).

The physics of sound propagation enables this zone to be

sampled effectively from the surface with commonly employed

38-kHz echosounders. Previous studies from tropical to sub-polar

seas suggest that DSLs are rare beneath 1,000 m (e.g., [9, 10]).

General Characteristics of Regional-Scale DSLs
We used an automated, reproducible technique [11] to identify

and characterize DSLs in 38-kHz acoustic data collected from

the top 1,000 m by numerous research and fishing vessels

around the world. We collated data from survey transects

totaling 104,688 km in length (see Figure S1). Together these

contained 26,474 DSLs >10 km long.

Inspection of the global DSL dataset revealed pronounced

geographic differences in DSL depth, vertical extent (thickness),

and acoustic backscattering intensity (quantified as area back-

scattering coefficient [ABC], m2 m�2 [12]). ABC can be a linear

proxy for biomass [3]. In this case, ABC is the total acoustic

backscatter per m2 from DSLs in the mesopelagic zone: hence-

forth, we use the term ‘‘backscatter’’ for simplicity. Although it is

tempting to convert backscatter to a measure of actual biomass

[3], we lack the data on species composition and size, and also

on acoustic target strength, to do this [13]. Our analysis hence-

forth is therefore relative rather than absolute.

Generally speaking, during the daytime, themesopelagic zone

contained a principle DSL that was vertically broad (extending

over >200 m vertically), relatively dense (backscatter approxi-

mately 1.59 3 10�5 m2 m�2), and commonly (>66% chance)

centered at a depth of approximately 525 m (Figure 1). There

was also sometimes (<20% chance) a secondary, less dense

DSL (backscatter approximately 1.26 3 10�6 m2 m�2) approxi-

mately 300 m deeper.

Environmental Drivers of DSL Variability
Differences in DSL characteristics across oceanographic frontal

boundaries have been reported previously [15], but variability at
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Figure 1. Scattering Layer Daytime Vertical

Distribution and Acoustic Backscattering

Intensity

A typical daytime water-column acoustic profile

(an echogram), showing a ‘‘surface’’ scattering

layer in the epipelagic zone (0–200 m), a principal

deep scattering layer (DSL) at around 525 m (the

global mean), and a secondary DSL at around 825

m, both in the mesopelagic (200–1,000 m). Data

were recorded using a 38-kHz echosounder from

the fishing vessel Will Watch [14] on May 30, 2012

in the southwest Indian Ocean (28.8�S, 47.3�E).
The color bar is mean volume backscattering

strength (MVBS, dB re 1 m�1; [12]).
the global scale has not been quantified. The spatial coverage of

our data spanned 14 of Longhurst’s [1] 32 pelagic surface prov-

inces (excluding his coastal biome; see Figure S1). We binned

daytime DSL data by these surface provinces (there can be ma-

jor differences between daytime and nighttime depths of DSLs

due to diel vertical migration [16], so we separated daytime

and nighttime data to avoid introducing temporal artifacts to

our spatial analysis). Variability in depth of the principle daytime

DSL (ZPDSL, m; see Figure 1) was explained well at this spatial

scale (n = 14, R2 = 0.68, root-mean-square error [RMSE] =

28 m) by a simple multilinear model with mean annual primary

production (PP, g Cm�2 day�1, p = 0.01) and surface wind stress

(t, N m�2, p = 0.001) as explanatory variables (Figure 2A). The

variability in backscatter from DSLs was explained well (n = 14,

R2 = 0.65, RMSE = 9.11 3 10�6 m2 m�2) by a simple multilinear

model incorporating PP (p = 0.017) and the temperature at the

depth of the principal DSL (TPDSL,
�C, p = 0.0001; Figure 2B).

Mesopelagic Biogeography
We used a clustering approach to explore the likely geographic

distribution of distinct DSL types across the global ocean (areas

where total depth R1,000 m). We gridded (at 300 3 300 km

scale) PP and TPDSL (estimated from predicted values of ZPDSL,

which is a function of PP and t; see Figure 2A) and used K-means

clustering (see Supplemental Information) of the normalized vari-

ables to identify coherent mesopelagic classes across a range of

spatial scales (from n = 3 to 35 classes globally, classes having

characteristic backscatter, PP and TPDSL values; see Supple-

mental Information, Figure S3).

The ability tomodel regional variability in backscatter was best

at the scale of 22 mesopelagic classes (n = 17, R2 = 0.93,

p < 0.0001, RMSE = 4.5 3 10�6 m2 m�2; Figure 2C). The best

linear model included just one explanatory variable, PP3 TPDSL,

which was positively correlated with backscatter. Although the

22-class scale was optimal for modeling spatial variability in

backscatter, several other scales also enabled very good predic-

tion (R2 > 0.83; see Figures S2 and S3). As the number of classes

increased, finer-scale features emerged in a progression from a

simple polar and non-polar dichotomy, to biomes, to ocean

gyres, to frontal features (see Figure S3). We selected the ten-

class scale (R2 = 0.87) to present mesopelagic biogeographic

structure here (Figure 3; also see Table S1). Projecting at the

ten-class scale produced a map of 36 spatially distinct mesope-
114 Current Biology 27, 113–119, January 9, 2017
lagic provinces, a number similar to the 32 surface provinces

advocated by Longhurst [1] (see Supplemental Information, Fig-

ure S2). By choosing to focus on this scale, we were able to

compare Longhurst’s surface biogeography and our mesope-

lagic biogeography: they do not overlap directly (Figure 3A).

Our ten-class mesopelagic biogeographic structure is more

complex and heterogeneous than the simple latitudinal banding

that pervades previous surface [6] and abyssal [7] schemes.

Although theSouthernOcean is latitudinally banded inour scheme

(reflecting the quasi-parallel oceanographic frontal structure in

that ocean [18]), a markedly different arrangement is evident else-

where. For example, the central tropical gyres of the north and

south Pacific Ocean both cluster into the same class. Classes

with high backscatter values (high mesopelagic biomass) are

found across the north Atlantic andwithin frontal zones atmid-lat-

itudes, with the exception of the south Pacific sector of the South-

ern Ocean. Classes with lower backscatter values (low mesope-

lagic biomass) include the polar oceans and the south Atlantic.

Present-Day Backscatter and Trophic Efficiency
We estimated total global backscatter by summing together the

products of the predicted mean backscatter value (m2 m�2) and

surface area of each mesopelagic class. The present-day value

was 6.02 3 109 m2 ± 1.4 3 109 m2 (error limits from regression

model RMSE value; see Figure 2C).

Biological production (the increase in biomass per unit time) is

a function of biomass, temperature, and trophic level (TL) [19].

The mesopelagic community is made up of organisms operating

at a range of TLs between 2 and4.Myctophid fish (TL= 3.2;www.

fishbase.org) are a major component of mesopelagic biomass

[20, 21]. Zooplankton, squid, and gelatinous predators operate

at TL = approximately 3, while herbivorous zooplankton reside

at TL = 2. We used backscatter as a proxy for biomass, the tem-

perature at the depth of the principle DSL, and a nominal modal

trophic level of 3 to predict a value ofDSLbackscatter production

(perm2 per unit time) for eachmesopelagic class. For each class,

we determined a ratio of backscatter production to PP (TL = 1)

and quantified the total amount of wet-weight primary-producer

biomass required to generate one unit of backscatter (PPbs,

tonnesm�2; seeSupplemental Information). PPbs serves asan in-

verse proxy for the trophic efficiency between TL 1 and TL 3, i.e.,

an increase in PPbs signifies a decrease in trophic efficiency. For

the present day, we estimated a global mean PPbs value of 108

http://www.fishbase.org
http://www.fishbase.org


Figure 2. Weighted Linear Regressions between Observed and Predicted Principal Depths of, and Acoustic Backscattering Intensities from,
DSLs

(A) Principal DSL depth (ZPDSL, m; n = 14, R2 = 0.68, RMSE = 28 m) predicted for 14 of Longhurst’s 32 surface provinces [1], using mean values of primary

production (PP, g C m�2 day�1: data from http://www.science.oregonstate.edu/ocean.productivity/index.php) and wind stress (t: output from SODA [17]) as

explanatory variables ð dZPDSL = 483:8+ 12723t� 1433PPÞ.
(B) Backscatter (ABC,m2m�2; n = 14, R2 = 0.65, RMSE = 9.113 10�6 m2m�2) predicted for 14 of the 32 surface provinces [1], using surface PP and the temperature

at ZPDSL (TPDSL,
�C: inferred fromocean temperature output fromSODA [17]) as explanatory variables ð dABC = � 1:18310�5 + 2:99310�53PP+ 3:38310�63TPDSLÞ.

(C) Backscatter (ABC, m2 m�2; n = 17, R2 = 0.93, RMSE = 4.53 10�6 m2 m�2) predicted for 17 of the 22 mesopelagic classes (determined by K-means clustering

of normalized gridded PP and TPDSL values; see Figure S3G), using PP 3 TPDSL as an explanatory variable ð dABC = � 1:34310�6 + 8:62310�63ðPP3TPDSLÞÞ.
Cross size represents the relative weighting of samples. ZPDSL is weighted by probability of observation, and backscatter is weighted by sample size (spatial

coverage within surface province or mesopelagic class). Colors for (A) and (B) differentiate between Longhurst biomes: red = Trades; green = Westerlies; blue =

Polar. Gray regions indicate the range of RMSE for each regression model. See also Figure S1.
tonnes m�2 (error limits 62 to 195.6 tonnes m�2 from regression

model RMSE values). To enable regional comparisons of trophic

efficiency to be made, we calculated mean PPbs values for each

of Longhurst’s [1] surface provinces. PPbs, and hence trophic ef-

ficiency, was geographically diverse (Figure 4A).

Impacts of Environmental Change on DSL Structure and
Distribution
As the atmosphere warms, the ocean will warm [22], its density

structure will change [23] (influencing stratification and near-sur-

face nutrient supply [24]), surfacewind intensitywill change (influ-

encing vertical mixing, stratification, and nutrient supply), and PP

will change [25, 26].Our finding that thedepth of, andbackscatter

from, present-day DSLs are influenced by PP, temperature, and

wind stress suggests that regional DSL characteristics will

change too, in the future, as a result of expected environmental

change. We used the coupled climate-ecosystem model

NEMO-MEDUSA-2.0 [27] (under the Representative Concentra-

tion Pathways [RCP] 8.5 climate scenario, and with surface forc-

ing as per the UK Meteorological Office’s HadGEM2-ES model)

to obtain PP, t, and TPDSL for the period 2090–2100. Values of

PP and TPDSL (estimated from predicted values of ZPDSL, which

is a function of PP and t) were gridded (300 3 300 km scale),

and each grid cell was attributed a DSL class using the K-means

centroids (see Table S1) from the present-day (2005–2008) ten-

class scale mesopelagic biogeography (Figure 3B).

According to NEMO-MEDUSA-2.0, oceanic PP will remain

fairly constant over the 21st century, with mean values over the

pelagic realm of 0.319 and 0.324 g C m�2 day�1 for the present

and 2100, respectively. While there are differences between the

predictions of various Earth systemmodels, predictions of future

PP by NEMO-MEDUSA-2.0 are consistent with those from a

number of other models [28–31], and this ensemble agreement
is mutually supportive. By 2100, the predicted mean ZPDSL will

be shallower on average than present (shallowing from 545 m

to 510 m, RMSE = 28 m; see Figures 2A and 4B), the predicted

TPDSL will increase (from a mean of 7.2�C ± 0.28�C to 8.5�C ±

0.37�C, error limits based on ZPDSL regression model RMSE

value), and wind stress will weaken (from 0.085 to 0.058 Nm�2).

Future Backscatter and Trophic Efficiency
In light of the environmental changes predicted by NEMO-

MEDUSA-2.0, we estimated that global DSL backscatter will in-

crease by 16.7% from a present-day value of 6.02 3 109 m2 ±

1.4 3 109 to 7.03 3 109 m2 ± 1.4 3 109 in 2100 (error limits

from regression model RMSE value; see Figure 2C). We estimate

that the global mean PPbs will decrease from 108.0 tonnes m�2

(error limits from 62.0 to 195.6) to 73.9 tonnes m�2 (error limits

from 53.6 to 145.7) by 2100 (error limits from regression model

RMSE values; Figure 4A), i.e., that 34.1 tonnes less primary-pro-

ducer biomass perm2 will be needed to generate one unit of DSL

backscatter by 2100, equivalent to a factor increase in trophic ef-

ficiency of 1.232 ± 0.015 (error limits from regression model

RMSE values; see Supplemental Information). The predicted in-

crease in global backscatter and decrease in the mean global

value of PPbs is indicative of an overall future increase in meso-

pelagic biomass and trophic efficiency.

DISCUSSION

The analysis reported here is the first to apply a consistent, auto-

mated technique to identify and determine characteristics of

DSLs from data collected on multiple acoustic surveys across

the global ocean. As such, it provides the first consistent view

of DSL variability globally and has enabled the development,

for the first time, of a DSL-based mesopelagic biogeography.
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Figure 3. Present-Day Mesopelagic Biogeography Derived from Values of Surface Primary Productivity and Temperature at the Depth of the

Principal DSL, and Predicted Biogeography for the Period 2090–2100

(A) Present-day mesopelagic biogeography derived by K-means clustering of gridded PP (g Cm�2 day�1: data from http://www.science.oregonstate.edu/ocean.

productivity/index.php) and TPDSL (
�C: estimated from predicted values of ZPDSL using data output from SODA [17]) values into ten classes (see Table S1 for mean

values).

(B) Future mesopelagic biogeography. Gridded cells attributed to their future appropriate class using centroids from the present-day result.

Longhurst surface provinces [1] are overlaid and labeled. Each mesopelagic biogeography is formed of ten classes (that form distinct mesopelagic provinces

when resolved spatially), which are ranked in order (from C1 to C10) of increasing backscatter values (proxies for mesopelagic biomass). See also Figures S2 and

S3 and Table S1.
Several site-specific DSL studies have been published [32, 33],

but quantitative comparisons between studies have not usually

been possible because a consistent approach to DSL detection

and parameterization has not been used. Longhurst’s surface

biogeography [1], defined in part using globally consistent satel-

lite remote sensing data, has been extremely valuable for

improving understanding of spatial variability in ecosystem func-

tion in the visible and accessible ocean surface.We hope that the

analysis presented here will be of value for understanding oper-

ation on a global-scale of the ecosystem of the hidden mesope-

lagic realm.

Drivers of Backscatter from DSLs
Primary Production

Food web theory holds that biomass at higher trophic levels

(such as zooplankton grazers at level 2 and myctophid fish pred-

ators at level 3.2) is constrained by PP [34]. Indeed PP-to-

biomass relationships have already been reported for mesope-
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lagic fish [3]. It is no surprise, therefore, that PP is a significant

factor in our model of DSL backscatter (a proxy for biomass;

p = 0.01). PP in turn is influenced by light intensity, nutrient avail-

ability, stratification and mixing, and sea-surface temperature

(PP occurs in the illuminated, near-surface zone where biological

processes are strongly influenced by sea-surface temperature).

Temperature at the Depth of the DSL

Sea-surface temperature was not a significant driver of back-

scatter (n = 14, R2 = 0.07, p = 0.19), but temperature at the depth

of the DSL was. Mesopelagic organisms live their lives away

from the surface, which is one reason why the mesopelagic

biogeography revealed here does not map well onto Longhurst’s

[1] surface scheme (Figure 3). Biomass, production, and produc-

tion-to-biomass ratios for marine fish all vary with temperature

[34] (positively; temperature influences metabolic rates and

therefore growth and reproduction), and our finding of a highly

significant positive linear relationship (p = 0.0001) between

DSL backscatter and temperature at the depth of the DSL is

http://www.science.oregonstate.edu/ocean.productivity/index.php
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Figure 4. Global Change in PPbs, an Inverse Proxy of Trophic Efficiency, and Principal DSLDepth for Each Longhurst Surface Province for the

Present-Day and Future, Assuming Future Conditions as per Data Output from NEMO-MEDUSA-2.0 for the Period 2090-2100

(A) PPbs (tonnes m�2; primary-producer biomass required to generate one unit of backscatter per m2 from DSLs in the mesopelagic) calculated by surface

province (see Supplemental Information). Error bars are from regression model RMSE values.

(B) Predicted variability in the depth of the principle daytime DSL ( dZPDSL = 483:8+ 12723t� 1433PP, RMSE = 28 m), where PP (g C m�2 day�1) is primary pro-

duction (data from http://www.science.oregonstate.edu/ocean.productivity/index.php) and t (N m�2) is wind stress, taken from SODA [17]. See also Figure S1.

Surface provinces are grouped by ocean and shown in latitude order from north to south: ARC is the Arctic Ocean, IO is the Indian Ocean, SO is the Southern

Ocean, and ANT represents the region of the SO south of the Antarctic Polar Front. For the Pacific and Atlantic Oceans, provinces that are furthest north (N), south

(S), and those that reside closest to the equator (E) are indicated.
consistent with this. A consequence is that by 2100, the majority

of surface provinces where DSLs are predicted to shallow signif-

icantly (>28 m) will have increased biomasses because they will

be warmer habitats (Figures 3 and 4B).

Biogeographic Change by 2100
Using predicted values of PP, t, and TPDSL for 2090–2100 (from

NEMO-MEDUSA-2.0 [27]) and mapping the ten present-day

mesopelagic classes onto grid cells (300 3 300 km), it becomes

apparent that environmental change will lead to a marked

change in global mesopelagic biogeographic structure by the

end of this century (Figure 3). Prominent changes by 2100

include the low biomass regions of the north and south Pacific

gyres expanding to almost fill their respective ocean basins (be-

ing separated by only a narrower, but more productive, east

Equatorial Zone); the south Indian Ocean gyre decreasing in

biomass (Figure 3); southern mid-latitudinal frontal zones

increasing in area and biomass; the presently diverse south

and central Atlantic Ocean coalescing to a more homogeneous,

and relatively productive (for an open-ocean gyre system)

regime, and increasing biomass in sub-polar regions. This latter

change will be mediated strongly by DSL shallowing (Figure 4B)

andmay indicate northward and southward range expansions of

mesopelagic fish. For the northern hemisphere, this in turn may

be supportive of the view that the Atlantic and Arctic food

webs will merge [27] and will lead to increasing abundance

and diversity of polar mesopelagic fish.

Trophic Efficiency Now and by 2100
The rule of thumb mean figure for trophic efficiency is approxi-

mately 10% per trophic level [35]. As temperature increases

(up to the point that it becomes physiologically challenging), for
a given food supply, fish production will increase [19], yielding

a higher trophic efficiency. This is because with increased tem-

perature, more food can bemetabolized per unit time, increasing

growth and reproduction rates (via shorter generation times).

More rapid growth also leads to increased survival and recruit-

ment because, by growing, individuals more rapidly escape

some predation risk in size-structured food webs. We predict a

mean increase in trophic efficiency between trophic level 1 and

3 by a factor of 1.232 ± 0.015 by 2100. In the context of the

rule of thumb 10% efficiency per trophic level, this is an increase

of 1.1% per level. The magnitude and direction of change will,

however, be geographically diverse because of geographic vari-

ation in temperature change and PP (food supply). At the ocean

scale, the backscatter in the Atlantic as a whole is predicted

to change dramatically by 2100: substantial reductions in PP

(�21% caused by stratification and nutrient depletion [27]) will

lead to reduced biomass (Figure 3) despite the Atlantic maintain-

ing some of the lowest values of PPbs (i.e., highest values of tro-

phic efficiency; Figure 4A). Estimated values of PPbs are pres-

ently highest in the polar regions but, by 2100, we predict

substantially greater trophic efficiency in those regions due to

ocean warming and DSL shallowing (Figures 3 and 4A).

Mesopelagic Fish
Although we do not know the extent to which mesopelagic fish

contribute to DSL biomass [13], it is not unreasonable to expect

it to be high [3]. Consequently, in light of predictions here of an

increase in global backscatter by 2100 (of 16.7%), we predict

an increase in the biomass of mesopelagic fish in the future.

Mesopelagic fish are a key component of pelagic food webs

[36], fueling some commercially important fisheries [21]. They

also play amajor role in the biological pump [2, 37, 38], the active
Current Biology 27, 113–119, January 9, 2017 117
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transport of carbon to the ocean interior that buffers atmospheric

CO2, and so provide an important ‘‘ecosystem service.’’ In

recognition of these roles, the US National Oceanic and Atmo-

spheric Administration’s National Marine Fisheries Service

prohibited in April 2016 commercial fisheries for myctophids

(Myctophidae, or ‘‘Lantern fish’’ are major constituents of meso-

pelagic biomass) and other small forage fish in the Pacific Ocean

off the US West Coast [39]. Our global-scale analysis can

contribute toward ecosystem-based management of the meso-

pelagic because it highlights regions of relatively high (and low)

biomass and because present-day spatial variability (e.g., DSL

characteristics in the sub-tropics versus in temperate regions)

can be used as a proxy for future temporal change (e.g., regional

warming). The ability to predict the redistribution of oceanic

mesopelagic production could aid conservation management

by, for example, guiding placement of open-ocean marine pro-

tected areas.

Concluding Remarks
We have defined a global biogeography for the mesopelagic

zone and used it to infer changes in mesopelagic biomass

and trophic efficiency into the future. This has gone some

way to fill the ‘‘dark hole’’ [4, 5] in our understanding of the

mesopelagic. Predictions based on output from NEMO-

MEDUSA-2.0 suggest that the mesopelagic will become more

productive by 2100 but that this production will be condensed

into smaller regions (e.g., concentrated at fronts) and spread

poleward as DSLs shallow and the ocean warms. It has been

suggested that constancy of light regime under climate change

will prevent myctophid fish invading the Arctic [40]. Our results

bring this into question: ice loss will bring change to the Arctic

surface and—we suggest—will presage change to the deep

sea there as well. These changes may bring new opportunities

for fishing.
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