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Abstract The Middle Miocene is characterized by a long‐term increase in the stable oxygen isotopic
composition of benthic foraminifera (δ18Obenthic). However, it is unclear to what extent this increase reflects
changes in seawater isotopic composition or deep water temperature. We present a high‐resolution alkenone
hydrogen isotope (δ2HC37) record of theMiddle Miocene from a core taken at the upper slope edge (about 409 m
water depth) of the Porcupine Basin continental margin in the eastern North Atlantic Ocean, Site U1318 of the
Integrated Ocean Drilling Program. The δ2HC37 values vary between − 174 and − 200‰ with an average of
− 191 ± 5‰, similar to modern open‐ocean values. Importantly, they do not show a long‐term increase in
surface seawater isotopes (δ2HSSW) during the Middle Miocene Climate Transition. Indeed, when δ18Obenthic is
corrected for subsurface temperature, the bottom seawater oxygen isotopes (δ18OBSW) show no significant
increase in this period. When the latter record is translated into the hydrogen isotopic composition of bottom
seawater using the modern open‐ocean waterline, it has an average value of 5.8 ± 1.5‰, similar to the δ2HSSW

of 5.2 ± 3.1‰ derived from δ2HC37:2, suggesting a relatively small difference between bottom and surface
waters. Our results suggest a stable global surface seawater isotope evolution during the Middle Miocene,
coupled with a long‐term decrease in bottom water temperature.

1. Introduction
The Miocene epoch (23.03–5.33 million years; Cohen et al., 2013) is a globally warm period compared to present
day, with CO2 concentrations varying from pre‐industrial to two times higher than at present (Goldner
et al., 2014). Most prominent are the Middle Miocene Climate Optimum (MMCO; 16.9–14.7 Ma) and Middle
Miocene Climate Transition (MMCT; 14.7–13.8 Ma) where geological, faunal and floral evidence suggest an
Antarctic ice sheet retreat and expansion, respectively (e.g., Fielding et al., 2011; Hauptvogel & Passchier, 2012;
Levy et al., 2016; Passchier et al., 2011; Pierce et al., 2017; Sangiorgi et al., 2018; Warny et al., 2009). These
periods are associated with changes in CO2 concentrations (Badger et al., 2013; Greenop et al., 2014; Kürschner
et al., 2008; Sosdian et al., 2018; Super et al., 2018; Zhang et al., 2013) and characterized by long‐term changes in
the benthic foraminifera oxygen isotopes (δ18Obenthic) (Cramer et al., 2009; Mudelsee et al., 2014; Zachos
et al., 2008). Furthermore, the period is also characterized by so‐calledMiocene oxygen isotope excursions events
(Mi‐events) (Miller et al., 1991), globally observed short‐lived (ca. 100 kyrs) changes in δ18Obenthic (Cramer
et al., 2009; Mudelsee et al., 2014), likely representing a decrease in deep‐water temperature and/or seawater
isotopic composition changes caused by cryosphere expansion and associated with sea‐level variations of tens of
meters (John et al., 2011; Levy et al., 2019; Miller et al., 2020; Shevenell et al., 2004, 2008). However, our
understanding of ice volume estimates and long‐term climate change during this period largely builds on the
oxygen isotopic composition of benthic foraminifera (Miller et al., 2020; Westerhold et al., 2020) a proxy which
reflects not only the isotopic composition but also the temperature of seawater (e.g., Savin et al., 1975; Shack-
leton, 1974). Deep ocean temperature can potentially be constrained by Mg/Ca or carbonate clumped isotopes of
foraminiferal shells (Billups & Schrag, 2003; Elderfield et al., 2012; Hou et al., 2023; Lear et al., 2000; Modestou
et al., 2020; S. Sosdian & Rosenthal, 2009). Modestou et al. (2020) measured Mg/Ca and Δ47 on the same
Miocene foraminifera and observed good agreement between the two temperature estimates. Their Δ47 tem-
perature change of approximately 2.9°C recorded over the MMCT would result in a bottom seawater oxygen
isotope (δ18OBSW) change of ca. 0.6‰. The Δ47 results from Hou et al. (2023) show that Middle Miocene bottom
water temperature (BWT) dropped by ca. 5°C in the Southern Ocean during the MMCT and their calculations
indicate that δ18OBSW was constant over this time, suggesting ice volume was stable. Furthermore, absolute
δ18OBSW values were close to the modern seawater isotopic composition despite the much warmer global climate.
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This contrasts with earlier estimates of a smaller temperature change during the MMCT and therefore a clear
increase in δ18OSW and ice volume (e.g., Billups & Schrag, 2003; Lear et al., 2000, 2015; Shevenell et al., 2008).
Thus, it is not entirely clear how the seawater isotopic compositions evolved over the Middle Miocene due to the
different corrections and temperature proxies used to reconstruct bottom water oxygen isotope records from δ18O
benthic foraminiferal records.

Another potential proxy for the isotopic composition of seawater is based on the hydrogen isotopic composition of
long chain alkenones (δ2HC37), produced by haptophyte algae. Culture studies show that hydrogen isotopic
fractionation of phototrophic organisms depends on, amongst others, the hydrogen isotopic composition of
growth water and salinity (M’Boule et al., 2014; Sachs et al., 2016; Schouten et al., 2006; Weiss et al., 2017;
Zhang et al., 2009; Zhang & Sachs, 2007). Gould et al. (2019), based on open‐ocean suspended particulate organic
matter (SPOM), and Mitsunaga et al. (2022), based on core top sediments, show a statistically identical rela-
tionship between δ2HC37 and the hydrogen isotopic composition of surface water (δ2HSSW). This suggests that in
the natural environment, the influence of factors such as temperature, salinity, species composition (e.g., Chivall
et al., 2014; M'Boule et al., 2014), as well as light and nutrient availability (Sachs et al., 2017; van der Meer
et al., 2015) on stable hydrogen isotope fractionation during biosynthesis might be less important than the
hydrogen isotopic composition of seawater. Hättig et al. (2023) used these calibrations to reconstruct δ2HSSW for
the last glacial maximum and found that δ2H ratios of alkenones are a reproducible paleo‐proxy for relative
changes in seawater hydrogen isotope composition and that alkenone δ2H values fit with other isotope records.
Therefore, the hydrogen isotopic composition of alkenones has the potential to produce hydrogen isotope records
of surface seawater, independent of temperature.

Here we present a hydrogen isotope record of the C37:2 alkenone (δ
2HC37:2) spanning most of the Middle Miocene

from 16.60 Ma till 12.75 Ma from a shelf site (Site U1318, ∼400 m water depth) in the Porcupine Basin, in the
eastern North Atlantic, and compare it to the local benthic foraminiferal δ18O record previously published by
Quaijtaal et al. (2018). The latter record showed the clear impact of theMMCT by a substantial increase in benthic
δ18O values of 1‰ in line with the global benthic stack (Westerhold et al., 2020). Furthermore, the Porcupine
Basin foraminiferal stable isotope record shows imprints of some Mi‐events (Quaijtaal et al., 2018). We
reconstructed the oxygen isotopic composition of bottom waters by correcting the δ18Obenthic record for sub-
surface temperature using TEX86 and compared this to the hydrogen isotopic composition of surface seawater
reconstructed based on the δ2HC37:2 record. Our results shed new light on the evolution of seawater isotopic
compositions in the eastern North Atlantic during the Middle Miocene.

2. Materials and Methods
2.1. Geographic Setting

The Integrated Ocean Drilling Program (IODP) drilling site U1318 is located at coordinates 51°26.16’N, 11°
33.0’W, with a water depth of 409 m (Expedition 307 Scientists, 2006). The paleolatitude during the Middle
Miocene (∼15Ma) was∼47°N (Van Hinsbergen et al., 2015) at a similar water depth as today (Ryan et al., 2009),
situated on the upper slope edge of the continental margin within the Porcupine Seabight (Figure 1). The seabight
represents a failed rift system that originated during the Middle to Late Jurassic period when the North Atlantic
Ocean was being formed. During the Middle Miocene epoch (16–11.7 million years; Cohen et al., 2013), the
British Isles were still connected to continental Europe, with no connection to the North Sea (Gibbard &
Lewin, 2003). The Porcupine Basin is filled with approximately 12 km of sedimentary deposits ranging from the
Late Paleozoic era to the Quaternary period (Ryan et al., 2009). These sediments primarily originate from the Irish
and Celtic shelves (Rice et al., 1991). Present‐day surface water temperatures (SST) at Site U1318 show a
seasonal variation, ranging from ca. 10°C during winter to around 16°C during summer (Locarnini et al., 2018).
However, at depths below ca. 50 m, the water temperature remains constant throughout the year at approximately
11°C (Locarnini et al., 2018; Sangiorgi et al., 2018). The core location and Porcupine bank is under the influence
of the Continental Slope Current (CSC). The CSC transports Eastern North Atlantic Water via the North Atlantic
Current (NAC) to the Norwegian Sea (Raddatz et al., 2011). The present‐day annual mean salinity of the surface
layer (0–50 m) at the core location area is 34.9–35.5 psu (Zweng et al., 2018).
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2.2. Age Model

To target the Middle Miocene, samples were collected from Site U1318 Hole
B (cores 10H–14H and 17X–27X) and Hole C (cores 7H and 8X–10X,
Expedition 307 Scientists, 2006) between 92.4 and 247.5 m composite depth
(mcd). The age model for this depth interval is based on integrated bio‐,
isotope‐ and magnetostratigraphy, as presented in Quaijtaal et al. (2018). Two
hundred forty‐five (245) samples were previously analysed for UK′

37 and
TEX86 proxies (Sangiorgi et al., 2021) from which 145 samples had sufficient
material for stable oxygen and carbon isotopes analysis of the benthic fora-
minifera Uvigerina sp. and Cibicidoides pachyderma (Quaijtaal et al., 2018).
The Middle Miocene samples consist mainly of greenish‐gray clay with total
organic carbon content ranging between 0.27% and 0.70% (Sangiorgi
et al., 2021). The samples between 92.4 and 247.5 mcd cover the age interval
12.75–16.60 Ma with an average time resolution of 25 kyrs for stable carbon
and oxygen isotope analysis and 17 kyrs for organic geochemistry. To in-
crease the resolution of the organic geochemistry and hydrogen isotope record
we extracted 25 additional samples between 98.05 and 230.42 mbsf following
the extraction and fractionation procedures of Sangiorgi et al. (2021). The
average time resolution for the extended organic geochemistry record is 14
and 31 kyrs for the hydrogen isotope record.

2.3. Long‐Chain Alkenones and GDGT Analysis

Alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were extracted and analysed as previously
described by Sangiorgi et al. (2021). Furthermore, we re‐analysed all GDGT fractions with improved analytical
methodology (Hopmans et al., 2016) using an ultra‐high performance liquid chromatography/mass spectrometry
(UHPLC/MS) on an Agilent 1,260 Infinity HPLC 230 coupled to Agilent 6130MSD using two silica BEHHILIC
columns (2.1 mm × 150 mm, 1.7 μm 232 thickness) connected in series and maintained at 25°C. A solvent
gradient of hexane/isopropanol (9:1, v/v) (solvent A) and hexane (solvent B) was used starting with 18% of
solvent A and 82% of solvent B at a constant flow rate of 0.2 ml/min. The GDGTs were eluted isocratically for
25 min and thereafter solvent A increased in a linear gradient to 30% in 25 min and to 100% of solvent A in the
following 30 min. GDGTs were detected in Selective Ion Monitoring (SIM) mode for protonated GDGT mol-
ecules [M+H]+. The TEX86 index was calculated after Schouten et al. (2002) and the calibration against the
average subsurface temperature between 0 and 200 m (subT) is from Kim et al. (2012) (Equations 1 and 2) with a
standard error of ±2.2°C.

TEXH
86 = log (TEX86 ) (1)

subT = 54.7 ∗ TEXH
86 + 30.7 (2)

The alkenones of the ketone fractions of the 25 additional samples taken in the study were measured using an
Agilent 6890°N gas chromatograph coupled to a flame ionization detector (GC‐FID), equipped with a CP Sil‐5
fused silica capillary column (50 m × 0.32 mm, 0.12 μm thickness), to determine the quality of the fraction for
further isotope analysis and to calculate the UK′

37 values (Equation 3) according to Prahl & Wakeham (1987). The
UK′

37‐based SSTs were calculated with the global core‐top calibration of Müller et al. (1998) (Equation 4).

UK′
37 =

[C37:2 ]

[C37:2 ] + [C37:3]
(3)

SST =
UK′

37 − 0.044
0.033

(4)

Hydrogen isotope ratios of alkenones of 124 fractions (99 from the original sample set of Sangiorgi et al. (2021)
and 25 additional samples) were measured in duplicate using a gas chromatograph coupled to a Thermo Delta V

Figure 1. Map of sea surface salinity data from Zweng et al. (2018) using a
scientific color map from Crameri (2023) showing the sediment core
location. U1318 core was drilled in the Porcupine Basin which is at the
Northeast Atlantic shelf.

Paleoceanography and Paleoclimatology 10.1029/2024PA004852

HÄTTIG ET AL. 3 of 12

 25724525, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024PA

004852, W
iley O

nline L
ibrary on [28/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



isotope ratio mass spectrometer via high‐temperature conversion reactor (Isolink I) and Conflo IV. The GC was
equipped with an RTX–200 60 m column according to Weiss et al. (2019) and samples were injected manually.
We report the δ2H ratio of alkenone C37:2 determined by manual peak integration. C37:2 appears as the main
alkenone peak, while C37:3 and C38 alkenone peaks are in lower relative abundance and most of the time below
minimal intensity for the isotope ratio integration. We report the δ2HC37:2 value as average value of the replicate
analysis together with the standard deviation. Standard deviations for δ2H ratios represent the reproducibility
between replicate analytical runs, and generally fall within the 3‰ precision window for the Thermo Scientific
Delta V. The analytical error of the δ2HC37:2 measurements is 2.4‰ based on the pooled standard error of 273
δ2HC37:2 measurement runs. The hydrogen isotope values for alkenones were standardized against pulses of H2

reference gas, which was injected three times at the beginning and two times at the end of each run. Daily, before
running samples, the H3

+ factor was measured and the day‐to‐day variability was never more than 0.5 ppm/nA,
and the performance and stability of the machine was monitored by measuring an n‐alkane standard, Mix B
(supplied by A. Schimmelmann, Indiana University). The n‐alkanes mixture covers a δ2H range from approxi-
mately − 9‰ to − 264‰ and intensities ranging from 1,000 to 4,000 mV. Samples were only run when the
average difference and standard deviation between online and certified values was less than 5‰. The average
pooled standard deviation of the n‐alkanes in 67 Mix B runs is 4.7‰. To further monitor the system performance
squalene and C30 n‐alkane were co‐injected with each sample with measured values ranging from − 161± 11‰ to
− 74± 6‰. The offline predetermined values are − 170± 4‰ for squalene and − 79± 5‰ for C30 n‐alkane. The
larger standard deviations and offsets compared to offline values are due to compounds in ketone fractions of
these samples that co‐elute with the co‐injected standards.

2.4. Calculation of Seawater Isotopes

For the calculation of δ2HSSW from the hydrogen isotopic composition of C37:2 we applied the open‐ocean
relationship based on surface ocean suspended particulate organic material (SPOM) by Gould et al. (2019)
(Data Set S2 in Supporting Information S1):

δ2HC37 = 1.48 (±0.4) × δ2HSSW − 199 (±3) (RMSE = 5.8‰) (5)

We reconstructed the oxygen isotopic composition of the bottom seawater (δ18OBSW) from the benthic forami-
nifera δ18O data set published in Quaijtaal et al. (2018) which consists of δ18O values ofCibicidoides pachyderma
and δ18O values ofUvigerina sp converted to C. pachyderma. For the temperature correction we used the updated
and extended records ofUK′

37 and TEX
H
86 (Data Set S1 in Supporting Information S1). We calculated the δ18OBSW

with the relationship described by Lynch‐Stieglitz et al. (1999) as arranged by Cramer et al. (2011) (Equations 6
and 7). We report δ18OBSW values in VSMOW with the accepted conversion value of 0.27‰ (VPDB to
VSMOW) (Equations 6 and 7) (Cramer et al., 2011). The uncertainty in the parameters in this equation are poorly
constrained and likely relatively small compared to the uncertainties in the temperature estimations. The pooled
standard error (analytical error) of the δ18Obenthic analyses is 0.06‰.

t = 16.1 − 4.76 × (δ18Obenthic − (δ
18OBSW − 0.27)) (6)

Rearranged to δ18OBSW:

δ18OBSW =
− 16.1 + 4.76 × δ18Obenthic + t

4.76
+ 0.27 (7)

The modern open‐ocean relationship between oxygen and hydrogen isotopes is described by Hättig et al. (2023)
as the modern open‐ocean waterline (MOOWL) and is based on the data sets of Gould et al. (2019), Roh-
ling (2007), Srivastava et al. (2010) and Weiss et al. (2019) and the Water isotope Database (2022) managed by
Dr. G. Bowen (University of Utah):

δ2HSW = 6.58 × δ18OSW − 0.12 (RMSE = 1.1‰) (8)

Rearranged to δ18OSW:
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δ18OSW = 0.152 × δ2HSW − 0.018 (RMSE = 0.17‰) (9)

For the error propagation we use the analytical error based on the pooled standard error of δ2HC37 instead of the
external standard Mix B as the latter compromises a different class of compounds (n‐alkanes), with a much larger
range of intensities and isotope values than the C37 alkenones explaining their larger SE. Furthermore, they elute
at different backgrounds and column temperatures. The propagated error for reconstructing changes in δ2HSSW is
3.4‰, resulting from the combination of the pooled standard error of δ2HC37 and the error of the slope of
Equation 5. The propagated error for absolute δ2HSSW values is 6.3‰, resulting from the pooled standard error of
δ2HC37 and the root‐mean‐square error of Equation 5. The propagated error for absolute δ2HBSW values and
changes in δ2HBSW is 1.2‰, resulting from the analytical error of oxygen isotopes, an uncertainty of 2.2°C in
TEX86 subsurface temperature reconstruction and the error in the waterline calibration (Equation 8). The prop-
agated error for δ18OBSW is 0.46‰. Note that for Equation 6 no root‐mean‐square error is reported and thus the
propagated error for δ18OBSW and δ2HBSW is likely underestimated.

3. Results and Discussion
3.1. Temperature Records

The reanalysis of GDGT fractions of IODP core U1318B using updated methodology (Hopmans et al., 2016)
resulted in slightly shifted TEXH

86 values by on average − 0.01 compared to those published by Sangiorgi
et al. (2021), with some values changing by up to 0.06 due to the better separation of GDGTs, especially the
GDGT‐2 peak (Figure S1b in Supporting Information S1). In contrast to Sangiorgi et al. (2021), we converted the
TEXH

86 values to subsurface temperature (subT; the average of 0–200 m temperatures as defined by Kim
et al., 2012) values as we aim to ultimately use the temperature estimates to correct the δ18Obenthic values (see
below). The subT record varies between 13°C and 21°C (Figure 2) and shows the same cooling trends described
by Sangiorgi et al. (2021) for the SST inferred from TEXH

86. The recalculated BIT index is below 0.3 in all
samples, in good agreement with Sangiorgi et al. (2021), suggesting no bias on TEX86 values by continental
organic matter input (Figure S1b in Supporting Information S1). The GDGT‐2/GDGT‐3 ratio (Taylor et al., 2013)
is relatively constant between 1.7 and 3.2, suggesting that GDGTs are consistently from shallow depths (Hurley
et al., 2018; Kim et al., 2015; Taylor et al., 2013) as expected in this relatively shallow water location of ca. 409 m
depth. Furthermore, Varma et al. (2023) showed that the TEX86 signal is mainly from depths shallower than
350 m. Finally, present day temperatures between 50 and approximately 500 m water depth are quite constant
(Locarnini et al., 2018; Wienberg et al., 2020). Based on this, we use the 0–200 m calibration of Kim et al. (2012)
to calculate subT, but in Figures S5 and S6 of Supporting Information S1 we also present an alternative tem-
perature reconstruction using the 0–400 m calibration of Ho and Laepple (2016). The extended UK′

37‐based SST
record is on average 4–8°C higher than the subT estimated from TEXH

86 with temperatures varying between 25.8
and 28.9°C (Figure 2) and a cooling of ca. 3°C between 14.6 and 12.7 Ma. Thus the UK′

37 reflects a similar
temperature trend as TEXH

86, but with a smaller amplitude, which is surprising as bottom water temperatures
typically vary to a smaller degree then SST. This difference is likely due to theUK′

37 reaching its maximum value of
1 (cf. Sangiorgi et al., 2021) and thus this proxy is unable to record SST higher than 29°C which may have been
present during the first part of the Middle Miocene record.

3.2. Evolution of Oxygen Isotopes of Bottom Water

The oxygen isotope ratio of benthic Cibicidoides pachyderma as published by Quaijtaal et al. (2018) follows the
trend of the global benthic stack (Westerhold et al., 2020, CENOGRID). During the MMCO between 16.6 and
14.59Ma, the δ18Obenthic signal varies between − 0.35 and 0.58‰with an average value of 0.12± 0.23‰. During
the MMCT from 14.59 to 12.75 Ma, values increase as high as 1.43‰. This ca. 1‰ increase is similar to what is
observed in the global δ18Obenthic stack record and has until recently been associated with ice volume increase
(Billups & Schrag, 2002; Haq et al., 1987; Rohling et al., 2022). Recent studies, however, suggest a strong bottom
water cooling explaining most of the increase in δ18Obenthic, and therefore little to no ice volume build up (Hou
et al., 2023; Leutert et al., 2021; Meckler et al., 2022; Modestou et al., 2020).

Several Mi‐events were tentatively identified based on positive oxygen isotope excursions linked to magneto-
stratigraphy and palynology changes (Quaijtaal et al., 2014, 2018; Sangiorgi et al., 2021). In particular Mi‐events
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2, 2a and 3 are likely reflected in the local δ18Obenthic with positive excursions of ca. 0.8‰. The Mi‐2a event (ca.
14.8 Ma) is linked to an eustatic sea level fall of ca. 30 m and a cooling of ca. 0.7°C in deep waters (John
et al., 2011; Miller et al., 2020) and the Mi‐3 event (13.8 Ma) is associated with cooling in the deep ocean of 1.2°C
and ca. 50 m eustatic sea level fall (De Vleeschouwer et al., 2017; Miller et al., 2020) and a pCO2 decline from ca.
600 to 400–500 ppm (Sosdian & Lear, 2020). The global Mi‐4 (Steinthorsdottir et al., 2021) is less pronounced in
our local record with a small increase of ca. 0.3‰.

To reconstruct δ18OBSW from benthic foraminifera we need to reconstruct bottom water temperatures (e.g., Hou
et al., 2023; Lear et al., 2015; Modestou et al., 2020). Unfortunately, we were not able to do this using benthic
foraminifera. However, the core location is at a rather shallow water depth of ca. 409 mwith present day relatively
small temperature differences between bottom waters and subsurface (0–200 m) waters of 1–3°C (Figure S2 in
Supporting Information S1, Locarnini et al., 2018; Sangiorgi et al., 2021). Therefore, we corrected δ18Obenthic

with the subT derived from TEXH
86. The reconstructed δ

18OBSW values range between 0.6 and 1.4‰, a similar
range as reconstructed by Hou et al. (2023) for the Middle Miocene at the Southern Hemisphere deep‐ocean Site
1,168. Interestingly, our reconstructed bottom water oxygen isotope record shows no increasing trend between
14.5 and 13.5 Ma and only a minor increase of ca. 0.2‰ after 13.5 Ma (Figure 3a; see Supporting Information S1
for further discussion). This suggests no major change in seawater isotopic compositions after 14.6 Ma at least for
this core location in the eastern North Atlantic, in agreement with the suggestion of Sangiorgi et al. (2021) that
benthic oxygen isotopes of U1318 are mainly controlled by temperature at this core location.

Figure 2. Middle Miocene multiproxy temperature and seawater isotope record, Site U1318. Globally recognized Miocene
cooling events (Mi‐events; Miller et al., 1991; Steinthorsdottir et al., 2021) are marked with blue bars and were identified by
Quaijtaal et al. (2014) based on a sharp increase in δ18Obenthic in combination with palynology and magnetostratigraphy.
(a) Global stack δ18O of benthic foraminifera (CENOGRID, Westerhold et al., 2020); (b) local oxygen isotope data of
Cibicidoides pachyderma (C.p.) (Quaijtaal et al., 2018), error bars represent the standard deviation of duplicate isotope
measurements; (c) δ2H of long‐chain alkenones C37:2 (this study), error bars represent the standard deviation of duplicate
isotope measurements; (d) revised subsurface temperature (subT) based on TEXH

86 index calculated with Kim et al. (2012)
(this study); (e) surface temperature (SST) based on UK′

37 index (Sangiorgi et al., 2021). The age model is presented in
Quaijtaal et al. (2018).
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Regarding the short‐term Mi‐events, during Mi‐2 and Mi‐2a the reconstructed δ18OBSW shows a sharp excursion
of 0.3‰while Mi‐3 and Mi‐4 show a stepwise increase of 0.2–0.3‰. However, it is difficult to distinguish those
events from the large variability in the record which can be up to 0.5‰.

3.3. Evolution of Hydrogen Isotopes of Surface Water

The δ2HC37:2 values of the Middle Miocene sediment record at Site U1318 ranges between − 200‰ and − 172‰
(Figure 2c). In contrast to the δ18Obenthic and subT record (Figure 2d), the δ2HC37:2 record shows no substantial
increase between 14.6 and 12.75 Ma. Between 15.5 and 15.2 Ma δ2HC37:2 decreases parallel to the δ18Obenthic

record from − 190‰ to − 195‰, followed by a sharp increase to − 186‰. But, during the global cooling step and
Mi‐3 event δ2HC37:2 increases first continuously from − 200‰ at 14.1 Ma to − 187‰ at 13.7 Ma, then decreases
sharp to − 195‰ and continues to vary. Due to the large variability we were not able to rigorously identify the Mi‐
events in the δ2HC37:2 record.

The δ2HC37:2 alkenone record was subsequently converted into a δ2HSSW record using the calibration of Gould
et al. (2019) (Equation 5). This assumes that the alkenones are mainly derived from open‐ocean haptophyte
species. However, little is known about haptophyte species during the Miocene. The main producer may have
been Reticulofenestra (Perch‐Nielsen, 1985; Samtleben, 1980), ancestor of the present day open‐ocean species
Emiliania huxleyi (Gibbs et al., 2013). We observed a typical open‐ocean alkenone distribution with a dominant
abundance of the C37:2 next to C38 suggesting that open‐ocean haptophytes (Type III; Kleijne, 1993) were the
dominant alkenone producers at the time.

Conversion of the δ2HC37:2 alkenone values resulted in δ2HSSW values ranging between − 1 and +17‰
(Figure 3b). The average δ2HSSW for this record is 5.2 ± 3.1‰, which is similar to the nearest (ca. 313 km
distance from the core site) modern measured δ2H value of surface seawater,+2.1‰ (Gould et al., 2019). Similar
to the δ2HC37:2 record there is no increase in δ

2HSSW after 14.8 Ma, in contrast to the δ18Obenthic and subT records.
During the Mi‐events, δ2HSSW seemingly increased by 2–6‰, but these events cannot be clearly distinguished

Figure 3. Seawater isotope reconstruction. (a) Bottom seawater isotopes are reconstructed with oxygen isotopes of
foraminifera: δ18OBSW is calculated with Cramer et al. (2011) and subT from the same sediment depth signal. δ18OBSW was
translated with the modern open‐ocean waterline (MOOWL) to δ2HBSW. Gray lines indicate the propagated error of 1.2‰ for
δ2HBSW. (b) The surface seawater isotope reconstruction is based on hydrogen isotope analysis of C37:2 alkenones, δ

2HSSW is
calculated with the SPOM calibration from Gould et al. (2019) and translated to δ18OSSW with the MOOWL (Equation 8).
Gray lines indicate the propagated error of 6.3‰ for absolute δ2HSSW. Note that the error for changes in δ

2HSSW is 3.4‰ (see
main text). Global Miocene cooling events (Mi‐events; Miller et al., 1991; Steinthorsdottir et al., 2021) are marked with blue
bars and are identified by Quaijtaal et al. (2014) based on a sharp increase in δ18Obenthic in combination with palynology and
magnetostratigraphy.
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due to the large overall variability, similar to the reconstructed δ18OBSW. Thus, reconstructed δ2HSSW and
δ18OBSW records both show a lack of any substantial increase in isotope values between 14.6 and 12.75 Ma,
although δ18OBSW does show a small increase after 13.5 Ma. These two independent records thus suggest that this
period, the Miocene Climate Transition (MMCT; 14.7–13.8 Ma) was not associated with a substantial change in
the isotopic composition of seawater in the eastern North Atlantic.

4. Implications
Our record of reconstructed hydrogen isotopic composition of surface seawater, based on an approach not
requiring any temperature correction, clearly shows that the MMCT was not associated with a strong change in
seawater isotopic composition, suggesting that the change in oxygen isotopic composition of benthic foraminifera
was mainly reflecting a substantial cooling of 4–5°C in the eastern North Atlantic Ocean. The question arises
whether this phenomenon is unique for this location or whether it is a global phenomenon. Interestingly, our
results agree with recent studies based on clumped isotope data of benthic foraminifera which suggest higher than
previously estimated bottom water temperatures during the MMCO and indicate strong bottom water cooling
during the MMCT (Hou et al., 2023; Leutert et al., 2021; Meckler et al., 2022; Modestou et al., 2020). Their
inferred cooling of ca. 5°C could in principle completely explain the global Middle Miocene δ18Obenthic evolution
and implies a stable ice volume and thus little to no ice volume buildup (Hou et al., 2023). Our results confirm
Middle Miocene stable seawater isotopic composition for both δ2H and δ18O suggesting no ice volume buildup.
This contrasts with geological reconstructions of ice sheet advances during those time periods (e.g., Fielding
et al., 2011; Hauptvogel & Passchier, 2012; Levy et al., 2016; Passchier et al., 2011). However, as suggested by
Hou et al. (2023) the progressive Neogene Southern Ocean ice volume could be explained by a progressively
lowering of Antarctic ice sheet height while the ice expands seawards during the Middle Miocene. The total
global ice volumemight have been stable, but the volume to area ratio might have changed (Hou et al., 2023). This
million year MMCT cooling caused by the decrease in pCO2 (Pagani et al., 1999; Super et al., 2018) may thus
have led to similar global ice volumes coupled with deep ocean cooling.

Translation of our average reconstructed hydrogen isotopic compositions of surface seawater
(δ2HSSW = 5.2 ± 3.1‰) to δ18OSSW using the MOOWL suggests values of ca. 0.8 ± 0.5‰, similar to
δ18OBSW = 0.9 ± 0.2‰ based on foraminifera. This suggests relatively small differences between bottom and
surface seawater isotopes. Furthermore, similar to Hou et al. (2023) the reconstructed surface and bottom
seawater isotopes fall in the range of the modern open‐ocean seawater isotopic composition (δ18O = − 0.5 and
1.5‰, δ2H = 0–10‰, LeGrande et al., 2006; Rohling, 2007; Hättig et al., 2023). This may imply similar ice
volumes in the MMCT as those of modern day (Hou et al., 2023; Rohling et al., 2022).

During the Middle Miocene there were several short‐lived (ca. 100 kyr) δ18Obenthic increases thought to be
associated with BWT decreases of 0.7–1.2°C and attendant sea‐level falls of 20–50 m: Mi‐2 (16 Ma), Mi‐2a
(14.8 Ma), Mi‐3 (13.8 Ma), and Mi‐4 (13.1 Ma) (Holbourn et al., 2013; Miller et al., 2020). However, both
our reconstructed δ18OBSW and δ2HSSW values do not consistently show these excursions mainly due to the large
overall variability in our records. For our δ2HSSW record, this variability may be caused by the analytical un-
certainty of compound‐specific hydrogen isotope analysis, for example, the pooled standard error of analysis is
ca. 2.4‰. Furthermore, variable fractionation factors between alkenones and water for different species (e.g.,
Schouten et al., 2006; M'Boule et al., 2014; van der Meer et al., 2015; Wolhowe et al., 2015) may lead to incorrect
estimates of δ2HSSW while the calibration error between δ2HC37 and δ

2HSSW is also relatively large (root‐mean‐
square error of 5.8‰ for the calibration of Gould et al., 2019), hinting at factors other than δ2HSSW impacting
δ2HC37 such as light intensity and nutrient availability (e.g., Sachs et al., 2017; van der Meer et al., 2015; Weiss
et al., 2017; Wolfshorndl et al., 2019; Wolhowe et al., 2015). Using the analytical error and the error of the
calibration slope we determined that the hydrogen isotopic composition of alkenones can detect changes in
δ2HSSW exceeding 3–4‰, potentially corresponding to δ18OSSW fluctuations >0.5‰. Our reconstructed δ18OBSW

may be impacted by incorrect estimations of subsurface water TEXH
86 estimates. Furthermore, the δ18Obenthic

record may be influenced by diagenetic alteration (e.g., Corfield et al., 1990; Pearson et al., 2001, 2007; Sexton &
Wilson, 2009) and bioturbation (e.g., Hülse et al., 2022). Quaijtaal et al. (2018) did observe minor secondary
crystals on the shell walls which might have influenced the isotopic values. Clearly it would be beneficial to
generate hydrogen isotope records from different sites, including equatorial and Southern Ocean sites, to
reconstruct the global surface seawater isotope distribution and evolution and potentially disentangle which
isotope events (Mi‐events) were caused by cooling or a combination of cooling and seawater isotopic composition
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change. Nevertheless, our results have shown potential for δ2HC37 records in the Cenozoic to provide seawater
isotope records which are independent from temperature.

5. Conclusions
We presented a high‐resolution Middle Miocene hydrogen isotope record of alkenones from a shelf site (U1318)
in the Porcupine basin, in eastern North Atlantic. Our record reflects no long‐term changes in surface seawater
isotopes during the MMCT. Calculated bottom seawater isotopes based on benthic oxygen isotopes and sub-
surface TEXH

86 temperature correction also indicate no long‐term change during this period. This suggests a
fairly stable seawater isotopic composition during the MMCT for both bottom and surface waters at this shallow
(409 m) site, suggesting no or a very limited ice volume effect on seawater isotopic composition and indicating
that the Miocene Climate Transition was mainly a time of cooling. More independent seawater isotope records of
the Atlantic and Pacific Ocean covering the MMCT are needed to confirm if this was a global phenomenon.

Data Availability Statement
Data is available at PANGAEA (Hättig et al., 2024). All processed sediment samples are stored at NIOZ, that is,
TLE, apolar, ketone, polar fractions of U1318. All unprocessed raw data files are archived in the NIOZ data
archive system (DAS) and available upon request by contacting DAS@nioz.nl.
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