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ABSTRACT
Aim: Determining the species distribution and factors shaping it is a major challenge for conservation planning. Ecological niche 
models (ENMs) facilitate the comprehension of how environmental factors may influence species occurrence, providing spatially 
explicit information relevant to conservation. Therefore, our aim was to estimate the potential distribution of key habitat- forming 
Mediterranean gorgonians, whose conservation would protect many co- occurring species.
Location: Mediterranean Sea.
Methods: We modelled the potential distribution of the Mediterranean gorgonians Eunicella singularis, Eunicella cavolini, 
Paramuricea clavata and Corallium rubrum, using an ensemble ENM that combines nine algorithms. An extensive dataset of 
presence records (> 4378) collected through scientific surveys and citizen- science was intersected with oceanographic and topo-
graphic information within the coralligenous habitat depth range (< 150 m). This approach was used to map the habitat suitabil-
ity of the study area for each species, assess related uncertainty, identify the most important factors shaping their distribution, 
and evaluate the overlap with the current network of Marine Protected Areas.
Results: The model identified higher habitat suitability for the occurrence of each gorgonian species in the NW Mediterranean, 
with roughness and temperature as the main drivers of their distribution. Conversely, the poorly sampled SE Mediterranean 
showed low habitat suitability, although there is a greater uncertainty associated with this estimate. The combined potential 
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distribution of the four species is estimated to cover a quarter of Mediterranean shallow and mesophotic waters, but only 19% 
was included within protected areas.
Main Conclusions: The habitat suitability and uncertainty maps provide a valuable tool for the conservation and management 
of Mediterranean gorgonian species by offering spatially explicit information critical for marine spatial planning. The model 
estimates of habitat suitability showed low uncertainty for most of the study area, with few exceptions in the SE Mediterranean. 
Further studies, particularly in the SE Mediterranean will contribute to validate these results and will provide new information 
to improve future modelling efforts.

1   |   Introduction

Mediterranean coralligenous temperate reefs represent a highly 
diverse habitat of particular ecological concern, threatened by 
local and global stressors including overharvesting, marine 
pollution, invasive species, recreational activities, and, more re-
cently, warming- driven mass mortality events (Ballesteros 2006; 
Bevilacqua et al. 2021; Garrabou et al. 2022). Within these sys-
tems, gorgonians play a key structural role by creating dense 
forests that support a wide range of species (Ballesteros 2006). 
These characteristics make them particularly valuable for ma-
rine conservation, and their loss could lead to cascading ef-
fects throughout the entire ecosystem (e.g. Ponti et  al.  2014, 
2016). However, our understanding of the distribution of these 
Mediterranean coralligenous species at a regional scale is very 
limited and mainly focused on the NW Mediterranean (see 
Linares et al. 2020). In this sense, spatial modelling approaches 
would be key to increase our knowledge about their distribution 
at large spatial scales.

Ecological niche models (ENMs), also known as species dis-
tribution models (SDMs) or habitat suitability models, have 
become central to understand species distribution and their 
determinants, generating relevant information for ecology and 
conservation biology. Notably, the recent rise of global environ-
mental and species occurrence databases (e.g., COPERNICUS, 
Bio- Oracle, European Marine Observation and Data Network—
EMODnet, Global Biodiversity Information Facility—GBIF) to-
gether with the development of multiple user- friendly tools (e.g., 
MAXENT, R packages such as ‘biomod2’, ‘dismo’ etc.; Hijmans, 
Phillips, and Elith  2023; Phillips and Dudík  2008; Thuiller 
et  al.  2009), are fostering a rapid expansion of their use. This 
trend is further supported by innovative projects that aim to en-
hance the current understanding of species distribution, such 
as enlarging the number of species records through the use of 
expert- validated citizen science databases (Matutini et al. 2021).

However, ENMs still present some challenges. The proper se-
lection of environmental predictors and the appropriate spatial 
scale for modelling species ecological niche are crucial aspects 
often overlooked (see Saupe et al. 2012). Additionally, identify-
ing the optimal ENM method includes a wide range of different 
techniques and algorithms, from statistical regression methods 
(e.g., generalised linear models) to machine- learning decision 
processes (e.g., random forest trees). Advancements in ENMs are 
leading to the adoption of ensemble—or consensus—techniques 
aimed at balancing under-  and over- estimations of species po-
tential distribution from different individual modelling tech-
niques (Araújo and New 2007; Hao et al. 2019; Thuiller 2003). 
This approach typically improves model accuracy (Marmion 
et  al.  2009) and predictive performance (Crossman and 

Bass 2008) by reducing uncertainty and estimation bias (Buisson 
et al. 2010; Guo et al. 2015) A further improvement involves re-
porting model uncertainty alongside the estimate of the species 
potential distribution to prevent erroneous conclusions (Barry 
and Elith 2006; Robinson et al. 2017).

The number of publications modelling species distribution in 
marine systems has increased in the last decades (Melo- Merino, 
Reyes- Bonilla, and Lira- Noriega  2020; Robinson et  al.  2011) 
along with advances in underwater surveying and habitat 
mapping technologies (Misiuk and Brown  2024). This trend 
is noteworthy, as the spatially explicit nature of ENMs output 
(i.e., distribution maps) is commonly used to guide conserva-
tion efforts, for instance by assessing climate change impacts 
on species distribution or the spread of invasive species (e.g., 
Adams et al. 2016; Gormley et al. 2015; Srivastava, Lafond, and 
Griess 2019), among other topics. Marine ENMs have focused 
mainly on commercial species rather than those forming habi-
tats (Melo- Merino, Reyes- Bonilla, and Lira- Noriega 2020), such 
as corals, macroalgae and seagrasses. Yet, habitat conservation 
has proven to be more effective than single- species protection 
and is gaining prevalence in conservation (Primack  2006). In 
this sense, marine habitat- forming species should be represented 
further in habitat suitability models as these species play an im-
portant role in highly diverse benthic ecosystems in tropical 
and temperate seas, providing structural support to associated 
communities. Furthermore, the adverse effects of global warm-
ing may threat the distribution of marine habitat- forming spe-
cies and thereby impact numerous coexisting species (Martínez 
et  al.  2018; but see Assis et  al.  2022). As such, modelling the 
distribution of the main habitat- forming species within the cor-
alligenous might be key for its conservation.

To date, few studies have however modelled the distribution 
of the whole Mediterranean coralligenous habitat (Martin 
et  al.  2014) or single gorgonian species (Boavida et  al.  2016; 
Pulido Mantas et al. 2022), while other studies have focused on 
limited areas of the well- studied NW Mediterranean (Bellin and 
Rossi 2023). Outside these areas, the lack of data on the distri-
bution of coralligenous species represents a big challenge for the 
effective management and conservation of this vulnerable hab-
itat (Giakoumi et al. 2013), highlighting the necessity to expand 
modelling efforts across the entire Mediterranean basin scale. 
In this context, we aim to (i) map the regional potential distri-
bution of the four most abundant and representative gorgonian 
species of shallow and mesophotic depths in the Mediterranean 
coralligenous assemblages (i.e, Eunicella singularis, Eunicella 
cavolini, Paramuricea clavata and Corallium rubrum) using an 
ensemble ENM technique; (ii) provide a measure of accuracy 
about model estimates; (iii) determine the main environmental 
conditions that better describe the species distribution at the 
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Mediterranean scale; and (iv) explore the overlap between spe-
cies' potential distribution and the current network of Marine 
Protected Areas (MPAs).

Considering the lack of knowledge about the distribution of these 
species across the entire Mediterranean, this study represents a 
unique opportunity to enhance the current understanding on 
the distribution of the modelled species on unexplored regions 
(i.e., SE Mediterranean) and to estimate their extension at the 
Mediterranean shallow and mesophotic waters. These insights 
will enhance our ability to develop comprehensive management 
and conservation strategies at the Mediterranean scale by prompt-
ing spatially explicit information to focus conservation actions 
and guide the identification of suitable focal areas for further in-
vestigations, complementing empirical data on their distribution.

2   |   Methods

2.1   |   Modelled Species and Presence Data

The four gorgonian species considered in this study are en-
demic of Mediterranean rocky bottoms. The temperate gorgo-
nian Eunicella singularis (Esper, 1791) is a common octocoral 
in Mediterranean coralligenous and precoralligenous assem-
blages at depths ranging from 10 to 70 m (Gori et  al.  2011; 
Linares et al. 2008). It is known as the only Mediterranean gor-
gonian with symbiotic microalgae in their tissue (Carpine and 
Grasshoff 1975). The yellow octocoral Eunicella cavolini (Koch, 
1887) establishes distinct facies in the Mediterranean coral-
ligenous assemblages, displaying a broad distribution, albeit 
with variable abundance. It is known to occur from the west-
ern Mediterranean and Tunisian coasts to the Aegean Sea and 
the Sea of Marmara, extending further eastwards compared to 
the other modelled species (Sini et al. 2015). The red gorgonian 
Paramuricea clavata (Risso, 1827) is a long- lived species with 
slow growth and annual recruitment rates, and late reproduc-
tive maturity, making it especially vulnerable to disturbances 
(Linares, Coma, and Zabala 2008; Linares et al. 2007). The red 
coral Corallium rubrum (Linnaeus, 1758) is a precious octo-
coral endemic of the Mediterranean rocky bottoms and adjacent 
Atlantic waters. Although it can inhabit depths up to 800 m, 
its current occurrence has been restricted to areas of difficult 
access to fishing activities (e.g., caves, vertical walls, isolated 
rocks) due to decades of overexploitation driven by its very high 
commercial value (e.g., Montero- Serra et al. 2015).

Presence- only data for the four species were extracted from dif-
ferent scientific and expert- validated citizen science databases. 
Georeferenced occurrences from scientific data and technical 
reports were taken from CorMedNet database (https:// corme 
dnet. medre cover. org/ ; Linares et al. 2020), while citizen science 
data were extracted from the Observadores del Mar (www. obser 
vador esdel mar. es; Chic and Garrabou  2021) and Reef Check 
Med (www. reefc heckm ed. org; Turicchia et al. 2021) platforms. 
Additionally, for the red coral, we included validated local eco-
logical knowledge data obtained from SCUBA diving fishermen 
(Garrabou et al. 2024). Finally, we complemented the remain-
ing information with OBIS data (www. obis. org). We excluded 
occurrences that fell outside the Mediterranean Sea province as 
defined by Spalding et al. (2007), those that occurred on land, 

and any duplicates. To reduce the spatial clustering of data 
points (spatial autocorrelation), we thinned our dataset using 
the ‘spThin’ package (Aiello- Lammens et al. 2015) of R (R Core 
Team  2023), which uses a randomization algorithm to maxi-
mise the number of presence records within a given thinning 
distance. A 10- km buffer was established around each presence 
location to prevent clustering at the spatial resolution of the en-
vironmental predictors (0.042°—approximately 4 × 4 km).

2.2   |   Environmental Predictors

The selection of the environmental predictors (Table 1) relied on 
their potential relevance for the ecology of the species and thus, 
their distribution. Bathymetry has been identified as a deter-
mining factor driving the distribution of marine benthic species 
(e.g., Pulido Mantas et al. 2022; Anakha et al. 2023; Bellin and 
Rossi 2023; but see Tittensor et al. 2009). In this study, the bathy-
metric range was restricted to depths ranging from 0 to 150 m, ex-
cluding areas devoid of coralligenous habitats (Ballesteros 2006) 
from the modelled habitat suitability estimation. Temperature, 
nutrients, current velocity, and light have been highlighted as 
main factors driving their distribution. Temperature is a key fac-
tor for the distribution of the modelling species, with thermal 
tolerances from 16°C to 20°C in C. rubrum, 14°C to 20°C in E. 
cavolini, and 14°C to 22°C in E. singularis and P. clavata (Previati 
et al. 2010). Nutrients and current velocity are critical for coral 
feeding, and may also influence the distribution of these species 
(Coma et al. 1994; Gori et al. 2015). Light availability is also ex-
pected to play an important role shaping the distribution of the 
zooxhantellae Eunicella singularis (Weinberg 1979).

Oceanographic predictors (i.e., temperature, salinity, chlorophyll 
a, nitrates, phosphates, silicates, and current velocity) were ex-
tracted from Copernicus Marine Environmental Monitoring 
services (CMEMS; https:// marine. coper nicus. eu/ ), using a mul-
tiyear annual average (Table 1). Notably, since the four modelled 
species are sessile, the annual average temperature of seawater 
at the sea floor (i.e., bottom temperature) was selected, while for 
the other variables, the values for the sea surface were used. The 
topographic predictors bathymetry and its derivatives (i.e., bathy-
metric position index [BPI]; and roughness index elevation [RIE]) 
were extracted from the European Marine Observation and Data 
Network (EMODNet; https:// emodn et. ec. europa. eu/ ; Table 1) data 
service, as well as the seabed substrate type. Notably, BPI calcu-
lates the difference between the value of a focal cell and the mean 
of the surrounding cells contained within an annulus shaped 
window (Lundblad et al. 2006), while RIE quantifies the standard 
deviation of residual topography in a focal window calculated as 
the focal pixel minus the focal mean (Cavalli et al. 2008). Since 
oceanographic data did not fully cover the spatial extent of the 
presence records, they were interpolated using the analysis tool 
Nearest Neighbour Analysis for QGIS (QGIS Development Team 
2023). The bathymetry derivates (BPI and RIE) were calculated 
using an internal radius/cell of 1 and an external radius/cell of 3, 5 
and 11 using the R package ‘MultiscaleDTM’ (Ilich et al. 2023), at 
the bathymetry native resolution (approx. 0.001°), and then were 
resampled at the resolution of oceanographic predictors (0.042°). 
The seabed substrate type information was reclassified into four 
categories (sand, hard substrate, mixed and others) prior to raster-
ization for simplicity.
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The collinearity between predictors were checked with a mul-
ticollinearity variance inflation factor (VIF) analysis (Table S1) 
using the functions ‘vif’, ‘vifcor’ and ‘vifstep’ from the R package 
‘usdm’ (Naimi et al. 2014). Additionally, we have also examined 
the individual correlations with the Spearman's correlation coef-
ficient, which is suitable for non- linear models, using the ‘corVar’ 
function from the R package ‘SDMTune’ (Vignali et al. 2020). 
After the analysis, 11 predictors were retained: bathymetry (m), 
BPI, chlorophyll a (mg/m3), current velocity (m/s), nitrates (mg/
m3), phosphates (mg/m3), RIE, salinity (psu), seabed substrate, 
silicates (mg/m3), and temperature (°C; Figure S1).

2.3   |   Ecological Niche Modelling

We modelled the potential distribution of the four species by 
estimating the Habitat Suitability Index (HSI) computed using 
an ensemble ENM approach. We used the R package ‘biomod2’ 

(Thuiller et al. 2009), which supports ensemble modelling and 
has been extensively used for marine ENM at regional scale 
(e.g., Chefaoui et  al.  2021; Matos, Company, and Cunha  2021; 
Principe et al. 2021). We employed a combination of nine differ-
ent modelling algorithms, combining the regression algorithms 
generalised linear model (GLM) and multiple adaptive regres-
sion splines (MARS), the classification schemes algorithms 
classification tree analyses (CTA) and flexible discriminant 
analysis (FDA), the distance- based algorithm surface range en-
velope (SRE) commonly known as BIOCLIM, and the machine- 
learning algorithms generalised boosting model (GBM) also 
known as boosted regression trees, random forest (RF), artificial 
neural network (ANN) and maximum entropy (MAXENT).

For the algorithms ANN, CTA, FDA, GBM, GLM, MARS, RF 
and SRE, 10 datasets of pseudo- absences (PA) were generated, 
each containing 1000 data points. The strategy used for gen-
erating these PAs was a random selection of points outside the 

TABLE 1    |    Environmental predictors considered for the fitting of the ensemble model. Note that Seabed substrate is a categorical predictor.

Predictor type Predictor
Min/max 

(0–150 m depth) Units Source
Native 

resolution Time interval

Oceanographic Bottom temperature 14.02/23.25 °C CMEMS—
Mediterranean Sea 
Physics Reanalysisa

0.042° 1/07/1990–1/07/2020

Salinity 31.293/39.913 psu 1/07/1990–1/07/2020

Chlorophyll a 0.040/1.917 mg/m3 CMEMS—
Mediterranean Sea 
Biogeochemistry 

Reanalysisb

0.042° 1/07/2000–1/07/2020

Nitrate (NO3) 0.003/60.175 mg/m3 1/07/2000–1/07/2020

Phosphate (PO4) 0.004/0.764 mg/m3 1/07/2000–1/07/2020

Silicate (SiO4) 0.613/17.766 mg/m3 CMEMS—
Mediterranean Sea 

Biogeochemical 
Analysis and 

Forecastc

0.042° 1/01/2020–1/02/2023

Current velocity 0/0.387 m/s CMEMS—
Mediterranean Sea 
Physics Reanalysisa

0.042° 1/07/1990–1/07/2020

Topographic Bathymetry −150/0 m EMODNet Digital 
Bathymetryd

0.001042° NA

Bathymetric position index (BPI)

3 −13.691/53.612 NA

5 −13.299/86.865 NA

11 −29.008/198.461 NA

Roughness index elevation (RIE)

3 0/25.833 NA

5 0/32.648 NA

11 0/71.866 NA

Environmental 
descriptor

Seabed substratef NA NA EMODNete NA NA

aEscudier et al. (2020).
bTeruzzi et al. (2021).
cFeudale et al. (2022).
dEMODnet Bathymetry Consortium (2016).
eEMODnet (2021).
fReclassification of the Seabed substrate: The new category ‘Sand’ included the original substrate categories of ‘sand’, ‘sandy mud’, ‘muddy sand’, ‘fine mud or sandy 
mud or muddy sand’ and ‘fine mud’. The new category ‘Hard substrates’ included the original substrate categories of ‘rock or other hard substrate’ and ‘Coralligenous 
platfroms’. The new category ‘Mixed substrates’ included the original substrate categories of ‘mixed sediment’ and ‘coarse and mixed sediment’. The new category 
‘Other substrates’ included the original substrate categories of ‘seabed’, ‘facies with (Ficopomatus enigmaticus) of the euryhaline and/or eurythermal biocenosis’, ‘dead 
mattes of (Posidonia oceanica)’ and ‘(Posidonia oceanica) meadows’.
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suitable conditions estimated by a rectilinear surface envelope, 
following the recommendations of Barbet- Massin et al. (2012). 
For MAXENT, one run of 10,000 random background points 
was used (Phillips and Dudík 2008).

The ensemble model only included single algorithm models with 
the best predictive performance. Algorithms performance was 
evaluated using the area under the receiver operating characteris-
tic (ROC) curve (Hanley and McNeil 1982), true skill statistic (TSS; 
Allouche, Tsoar, and Kadmon 2006), and derived sensitivity and 
specificity metrics. Sensitivity and specificity analyses quantified 
the predictive accuracy of the model to discriminate between oc-
currences and PAs locations respectively (Fielding and Bell 1997). 
Data were split into calibration (70% of the records) and validation 
(30% of the records) datasets for each iteration and PAs dataset.

In this pre- evaluation process, algorithms with a mean sensitiv-
ity < 85 and mean specificity < 80 were excluded from the anal-
yses. For each combination of algorithm and the PA dataset, a 
total of four evaluation runs were performed.

The performance of each single- algorithm model included in the 
ensemble model was evaluated using ROC and TSS values calcu-
lated for each species and algorithm. According the ROC value, 
the models were classified as poor (ROC values < 0.7), reasonable 
(ROC values between 0.7 and 0.9) and very good (ROC values 
> 0.9) following the criteria by Araújo and Pearson (2005), while 
for TSS, models' predictive performance ranged from poor (< 0.4) 
to good (0.4–0.8) to excellent (> 0.8; Zhang et al. 2015). For each 
single- algorithm model (i.e., each combination of algorithm and 
PA dataset) a total of 11 evaluation runs were performed.

The Habitat Suitability Index (HSI) for each species was calcu-
lated incorporating the mean of the single algorithm model se-
lected according to the TSS score (≥ 0.8). We chose the TSS score 
over the ROC value because the ROC can be misleading when 
evaluating models' predictive performance (Lobo, Jiménez- 
Valverde, and Real 2007). The coefficient of variation of model 
estimates provides a measure of uncertainty and was estimated 
by dividing the standard deviation by the mean of the habitat 
suitability values. Lower coefficient of variation values indicates 
higher agreement between model's prediction (i.e., lower uncer-
tainty), while higher values mean higher uncertainty.

To assess the predictors relative importance, we conducted 10 iter-
ations and derived importance scores from 0 (lowest importance) 
to 100 (highest importance) by using the built- in method provided 
within the ‘biomod2’ package. Finally, response curves were 
generated for the ensemble model of each species and predictor. 
To reduce the uncertainty in prediction values beyond the range 
of environmental conditions were the species were reported, re-
sponse curves were truncated to values within the predictor range.

2.4   |   Estimated Distribution of Key Mediterranean 
Gorgonians

The continuous habitat suitability maps generated by the ensem-
ble model were transformed into the potential habitat distribu-
tion (i.e., binary presence- absence maps) using species- specific 
thresholds. These thresholds were obtained as the cut- off values 

that minimised the difference between sensitivity and speci-
ficity (Lobo, Jiménez- Valverde, and Real 2007) using the func-
tion ‘threshold’ from the R package ‘dismo’ (Hijmans, Phillips, 
and Elith  2023). Considering that 10 PA datasets were used, 
the species- specific threshold values corresponded to the mean 
threshold value derived from all datasets used. The potential 
habitat distribution was mapped for each species and for the 
four species combined, where the cells occupied by one, two, 
three, and/or all four species were considered as combined po-
tential habitat suitability. The potential coverage area within the 
Mediterranean, ranging from 0 to 150 m depth, was computed for 
both individual species and the assemblage of the four species.

2.5   |   Potential Area of Coverage Within MPAs

The binary potential habitat distribution of each species was 
compared and intersected with areas covered by MPAs to cal-
culate the percentage of potential habitat areas under some type 
of protection. The MPAs layer was extracted from MAPAMED/
MEDPAN  (2019, www. mapam ed. org), where only the catego-
ries ‘Marine Natura 2000 site’ and ‘MPA with a national stat-
ute’ were defined as MPAs. The intersection was computed both 
for each species individually and collectively, using the QGIS 
Intersection tool. The percentage was determined by comparing 
the number of raster cells categorised as ‘potential presences’ 
within MPA polygons, divided by the total number of raster cells 
identified as ‘potential presences’.

3   |   Results

From the total 7201 initial data points, 4378 occurrences were 
retained after the data quality check (Figure S2). Of these, 817 
were kept after spatial autocorrelation corrections. The occur-
rences are even distributed among the modelled species (E. 
singularis 182, E. cavolini 181, P. clavata 187 and C. rubrum 
267), although unbalanced between Mediterranean ecoregions 
(Figure 1; Tables S2 and S3).

3.1   |   Environmental Conditions at the Location 
of Species Occurrence

We examined the range of the environmental conditions at 
the location of species presences (Figure  2). The four species 
showed a similar pattern for all the predictors. They were pre-
dominantly found at temperatures ranging from 14.43°C and 
19.77°C, and were more frequent at phosphate concentrations 
averaging 0.03 mg/m3 (range: 0–0.28), silicate concentrations 
averaging 1.73 mg/m3 (range: 0.7–4.36), nitrate concentrations 
averaging 1.05 mg/m3 (range: 0.42–4.44), and chlorophyll a 
concentration averaging 0.15 mg/m3 (range: 0.07–0.46). All 
presences were exposed to a current velocity ranging from 0 to 
0.19 m/s, and salinity ranging from 36.31 to 39.17 psu. Colonies 
were observed at bathymetries ranging from −2.81 to −150 m, 
although it seems that C. rubrum was found more frequently at 
deeper areas (mean = −67.21 m) than, for instance, E. singularis 
(mean = −59.64 m). Presences were more frequent at locations 
with Bathymetric Position Index (BPI) averaging 2.26 (range: 
−1.83 to 70.77) and RIE averaging 1.68 (range: 0.02–15.33; 
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Figure  2). For the seabed substrate, the majority of presences 
were consistently found on sand substrate (> 60%), followed by 
mixed, other types or hard substrates (see Table S4 for details).

3.2   |   Modelling Results

3.2.1   |   Model Performance

According to the pre- analysis of sensibility and specificity 
metrics, the SRE algorithm were excluded from the ensem-
ble model for all species. Additionally, the FDA algorithm was 
also discarded from the ensemble model for C. rubrum, and 
ANN for C. rubrum and E. singularis (Figure S3; Table S5).

A total of 561 single algorithm models were generated for C. ru-
brum for model fitting, 671 for E. singularis, and 781 for both E. 
cavolini and P. clavata (see Table S5 for details). All single model al-
gorithms and ensemble models achieved a very good performance 
on average according to the ROC score (> 0.9). For TSS, the aver-
age performance of the ensemble model ranged from 0.82 ± 0.05 
to 0.88 ± 0.00 (Figure  3). The single algorithms RFs and GBMs 
consistently showed the highest performances (Figure  3; TSS 
> 0.93 ± 0.01). MAXENT and MARS also exhibited the best pre-
dictive performances (TSS from 0.82 to 0.88), while the other al-
gorithms (i.e., CTAs, ANNs, GLMs, and FDAs) displayed varying 
performance (from good to excellent) between species, with some 
estimates falling below the threshold of 0.8 or displayed a wider 
range of estimates, indicated higher standard deviation values.

FIGURE 1    |    Distribution of the presence records in the Mediterranean Sea by species: (a) Eunicella singularis, (b) Eunicella cavolini, (c) Paramuricea 
clavata and (d) Corallium rubrum. Marine ecoregions according to Spalding et al. (2007) are highlighted using numeric labels: (1) Alboran Sea, (2) 
Western Mediterranean, (3) Adriatic Sea, (4) Ionian Sea, (5) Aegean Sea, (6) Tunisian Plateau/Gulf of Sidra and (7) Levantine Sea.

FIGURE 2    |    Distribution of species records according to the predictor's gradient. The violin plot represents the density distribution for each modelled 
species. Median and interquartile range (IQR; 0.25–0.75) are shown for each species. BPI, bathymetric position index, RIE, roughness index elevation.
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3.2.2   |   Contribution of the Environmental Predictors 
for the Model Estimates

The most important environmental predictors shaping the 
potential habitat of the four coralligenous species are the RIE 
(mean contribution = 45%) and mean bottom temperature (mean 
contribution = 23%; Figure 4). Phosphates, bathymetry, salinity 
and chlorophyll a are ranked next. Silicates, nitrates, BPI, cur-
rent velocity and seabed substrate showed small contribution 
(< 8% for all the species; Figure 4) to the prediction of the poten-
tial habitat suitability.

3.2.3   |   Potential Habitat Suitability 
and Uncertainty Estimates

The continuous HSI for the four Mediterranean coralligenous 
species is shown in Figure  5a–d. The highest HSI values es-
timated (i.e., 80–95) for the four gorgonians was found in the 
Western Mediterranean ecoregion, particularly in Tyrrhenian 
and Ligurian Seas, as well as in certain areas of the Balearic Sea. 
Intermediate to high suitable areas were identified along the 
Alboran Sea, eastern Adriatic Sea coast, the northern Aegean 
Sea, and in the Ionian Sea. In contrast, the locations with less 
suitable environment were found in the SE Mediterranean ecore-
gions of the Tunisian Plateau/Gulf of Sidra and Levantine Sea.

The habitat suitability estimates from single algorithm mod-
els included in the ensemble model were distinct from the 

ensemble model projection (see Figure  S4 for details). The 
GBMs algorithms exhibited consistently the small variation. 
In contrast, the RFs, MAXENTs, MARSs and GLMs tended to 
underestimate the potential distribution, while FDAs tended 

FIGURE 3    |    Models predictive performance according to the mean TSS (True Skill Statistic) and ROC (area under the curve of the receiver 
operator characteristic) by species:I (a) Eunicella singularis, (b) Eunicella caovlini, (c) Paramuricea clavata and (d) Corallium rubrum] and algorithm 
(horizontal and vertical lines—standard deviation) considering all pseudo- absences and evaluation runs. Dots represent individual model techniques 
and black triangles the ensemble models. Single algorithm models with performance greater than the TSS threshold (≥ 0.8 pink dashed line) are 
included in the ensemble model. Only algorithms selected in the species- specific pre- evaluation are considered.

FIGURE 4    |    Predictor contributions to the ensemble model 
prediction by species and all species combined, represented as the mean 
percentage and standard deviation. BPI, bathymetric position index; 
RIE, roughness index elevation.
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to overestimate it. The difference between the projections of 
the CTAs and ANNs algorithms with the ensemble varied 
between species. The MARSs and GLMs algorithms showed 
the greatest variation compared with the ensemble projection 
(Figure S4).

The ensemble model coefficient of variation returned overall high 
uncertainty scores in the SE Mediterranean and NW Adriatic 
Sea, coinciding with some of the regions where the estimated 
habitat suitability was lower (Figure 5a′–d′). The uncertainty es-
timates show a similar pattern for the four modelled species, but 
with varying levels of uncertainty. The species E. singularis, P. 
clavata and C. rubrum showed greater variation in uncertainty 
values, ranging from higher (e.g., SE Mediterranean and NW 
Adriatic Sea) to lower values (e.g., E Adriatic and Aegean Seas, 
and overall the Western Mediterranean; Figure  5a′,c′,d′). The 
model estimates for E. cavolini were less variable, with higher 

uncertainty estimates in some specific areas of the Western 
Mediterranean and Adriatic Sea (Figure 5b′).

3.2.4   |   Predicted Response Curves

The response curves predicted by the ensemble model (Figure 6) 
showed contrasting patterns between predictors, in particular 
with those predictors of greatest importance in the ensemble 
model for all species (i.e., RIE and temperature). Habitat suit-
ability seems to be higher (HSI > 75 for E. singularis and C. ru-
brum, and HSI > 50 for E. cavolini and P. clavata) in areas where 
seafloor RIE is higher (> 2). In contrast, the HSI for the modelled 
species showed a consistent decline with increasing tempera-
ture. Most species exhibited high suitability (HSI > 75) in colder 
waters (15°C–17°C), which then dropped to the lowest values of 
HSI at higher temperatures (18°C–19°C; HSI < 25 for E. cavolini 

FIGURE 5    |    Ensemble model results for each species. Panels on left (a–d) expressed habitat suitability index using a colour scale ranging from 
blue (less suitable areas; 0) to red (most suitable areas; 100). Panels on right (a′–d′) show the model uncertainty estimated by the coefficient of 
variation (standard deviation/mean of probabilities between algorithms) represented by a colour scale from blue (lower uncertainty) to red (higher 
uncertainty). The histogram illustrates the frequency distribution of coefficient of variation values for each species. Please note that the uncertainty 
scale varies across species.

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.15041, W

iley O
nline L

ibrary on [24/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9 of 16

and P. clavata; and HSI < 50 for E. singularis and C. rubrum). 
For phosphates, the habitat suitability exhibited a peak at con-
centrations close to 0.05 mg/m3, whereas with bathymetry, the 
environmental suitability consistently decreased from shallow 
water to higher water depths. The response curves of salinity 
peaked around 38 psu, while the responses to increasing levels 
of chlorophyll a varied slightly except for E. singularis, which 
showed an increase with increasing concentration of chloro-
phyll a in seawater to values up to 0.2 mg/m3. The response 
curves to the remaining predictors (i.e., nitrates, silicates, BPI, 
current velocity, and seabed substrate) exhibit minimal varia-
tion across the predictor's gradient (Figure 6; see Figure S5 for 
the complete range of predictor values, and Table S6 for seabed 
substrate values).

3.3   |   Percentage of Areas Potentially Covered 
by Key Mediterranean Gorgonians and Under 
Protection

Overall, the combined potential distribution of the four modelled 
species covers 25.98% of the Mediterranean's shallow and meso-
photic areas (Figure 7; Table 2). Notably, E. singularis occupies 
22.77% of the modelled region, with potential presences deter-
mined by cells surpassing a species- specific habitat suitability 
threshold (minimum difference between sensitivity and speci-
ficity: minDSS) of 43.70. Eunicella cavolini exhibited a potential 
occupancy of 14.07%, determined by a minDSS of 57.70, while P. 
clavata can find suitable habitat areas in the 13.58% of the region 
based on minDSS of 55.49. Finally, C. rubrum exhibited an occu-
pancy of 24.01%, based on a minDSS of 44.60 (Figure 7; Table 2).

The percentage of the potential habitat covered by MPAs reached 
19.06%. Specifically, P. clavata is the modelled species with the 
highest potential protection coverage by MPAs (18.09%), fol-
lowed by E. cavolini (18.02%). The species E. singularis and C. 
rubrum are the species with less area of potential habitat cov-
ered by MPAs (11.95% and 10.02%, respectively; Table 2).

4   |   Discussion

4.1   |   Habitat Suitability and Main Drivers

While ENMs may exhibit a bias towards areas with concen-
trated presence records (e.g., Western Mediterranean), our 
models demonstrated the ability to predict relatively higher 
suitability for locations with intermediate levels (e.g., Aegean, 
Adriatic, and Ionian Seas) of species occurrence. These ecore-
gions coincide with well know habitat patches of these spe-
cies (e.g., Bruckner  2016; Sini et  al.  2015; WoRMS  2024). The 
ensemble model estimated low habitat suitability for all spe-
cies in the SE Mediterranean (i.e., Tunisian Plateau/Gulf of 
Sidra and Levantine Sea ecoregions), suggesting poorer envi-
ronmental conditions for the species occurrence, albeit with 
higher uncertainty. The paucity of occurrence records in the SE 
Mediterranean likely influenced these estimates. However, this 
result may also be attributed to the contrasting temperature gra-
dient between the NW and SE Mediterranean Sea together with 
a more rugged seascape in the northern Mediterranean com-
pared to the southern regions. Supporting this conclusion is the 
model's selection of RIE and bottom temperature as the most rel-
evant predictors for estimating habitat suitability. Interestingly, 
Alboran Sea and the south of the Western Mediterranean ecore-
gions (i.e., from −5° to 10° longitude), evidenced intermediate to 
high habitat suitability values with low uncertainty, occasion-
ally surpassing an HSI value of 80 for the P. clavata and E. singu-
laris species. This suggest that these areas offer greater potential 
for targeted conservation efforts in the Mediterranean Sea.

Several factors may shape the ecological niche of marine species 
differently from terrestrial organisms, and this must be consid-
ered when applying ENMs. Generally, distribution of mobile 
marine species relies less on dispersion and more on ontoge-
netic shifts and feeding conditions. However, coastal benthic 
species may exhibit greater similarity to their terrestrial coun-
terparts compared to mobile marine species, relying more on 
dispersion and less on ontogenetic shifts and feeding to find a 

FIGURE 6    |    Response curves of the ensemble model for each predictor. The response curves for the species are represented as the mean (solid 
line) and the 95% confidence intervals (shaded areas) of the ensemble model predictions. The x- axis represents the gradient of the predictor values 
within the environmental range observed in the presences record. The y- axis represents the predicted habitat suitability values according to the 
ensemble model. BPI, bathymetric position index; RIE, roughness index elevation.

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.15041, W

iley O
nline L

ibrary on [24/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 16 Journal of Biogeography, 2024

suitable habitat to settle and develop (Robinson et al. 2011; but 
see Hiddink 2003; Manzur, Barahona, and Navarrete 2010). Our 
study identified (i) roughness—a proxy for rocky habitats—and 
(ii) mean bottom temperature, as the most important factors 
determining the distribution of the modelled species. Indeed, 
the ensemble model prediction for areas classified with higher 
habitat suitability exhibited low uncertainty, indicating high 
agreement between single- algorithm models estimate. These 
areas coincide with steeper slopes, a proxy for rocky habitats, 
and cooler seawater mean temperatures, which were identified 
as the most suitable for the species occurrence according to the 
response curves and predictor contributions.

Roughness index elevation was the most important factor in-
fluencing the distribution of Mediterranean gorgonians across 
the sea basin. Although the importance of the seafloor substrate 
in marine ENMs is increasingly recognised (Melo- Merino, 

Reyes- Bonilla, and Lira- Noriega 2020; Misiuk and Brown 2024), 
the existing information currently for the Mediterranean scale 
is only available at a coarser resolution, limiting, for instance, 
the current representation of areas with hard substrates. Thus, 
incorporating seabed roughness as a surrogate for seabed sub-
strate has improved the model, enabling to identify highly suit-
able areas in locations with known rocky bottoms. This type of 
substrate is preferred settling areas by octocoral larvae (Linares 
et al. 2008; Zelli et al. 2020). Likewise, the model was able to 
identify areas with low HSI in environments dominated by sandy 
substrates. For example, in the Adriatic Sea we observed an es-
timate of HSI consistent with prior research (Martin et al. 2014; 
Boavida et al.  2016; but see Bellin and Rossi  2023), with high 
suitability along the rocky east coast and lower suitability in the 
sandy west coast. This result ensures our confidence in the mod-
el's capability to estimate the distribution in areas with lower 
sampling effort. Moreover, contrasting to previous findings 

FIGURE 7    |    Potential distribution (binary transformation) for the four modelled species combined (a) and species- specific potential distribution: 
(b) Eunicella singularis, (c) Eunicella caovlini, (d) Paramuricea clavata and (e) Corallium rubrum.

TABLE 2    |    The percentage of coverage area by potential habitat determined after binary transformation of the continuous estimate from ensemble 
models for each species and for the four species grouped, as well as the percentage of potential habitat coverage by Marine Protected Areas (MPAs). 
Binary transformation is based on the minimum difference between sensitivity and specificity (minDSS) threshold.

Species

Coverage area by potential habitat 
(binary transformation)

Percentage of potential habitat 
areas covered by MPAsminDSS Percentage of potential habitat

Eunicella singularis 43.70 22.77 11.95

Eunicella cavolini 57.70 14.07 18.02

Paramuricea clavata 55.49 13.58 18.09

Corallium rubrum 44.60 24.01 10.02

Four species grouped — 25.98 19.06

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.15041, W

iley O
nline L

ibrary on [24/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



11 of 16

estimating the potential distribution of the modelled species 
for the Spanish and French coasts (Western Mediterranean; 
Bellin and Rossi 2023; Boavida et al. 2016; Martin et al. 2014), 
our research also identifies for the first- time higher HSI in 
rocky regions (i.e., north of the Catalan coast and south of the 
French coast) and lower HSI in the sandier areas (i.e., south of 
the Catalan coast). Exceptionally, E. singularis displayed higher 
suitability on the shallower zone of these predominantly sandy 
regions. This preference for shallower habitats, evidenced by 
the bathymetry and chlorophyll a in the response curves, is ex-
plained by the symbiotic relationships with microalgae under 
light conditions, which only existed in this particular species of 
gorgonian in the Mediterranean Sea.

Bottom mean temperature was also a critical driver for gorgo-
nian distribution pattern. The high habitat suitability estimated 
for areas with cooler waters (15°C–17°C) and low suitability for 
warmer areas (18°C–19°C) is consistent with the thermotol-
erance range described for these species, which prefer cooler 
thermal regimes (Gómez- Gras et al. 2022; Cau et al. 2018; Pey 
et al. 2011; Pivotto et al. 2015; Torrents et al. 2008). These results 
align with in situ measurements of mean temperatures in those 
regions and a higher concentration of presence records of the 
modelled species (e.g., 16.5°C in Le Riou- Marseille; 17°C in Cap 
de Creus—Western Mediterranean; 17.25°C in Mljet—Adriatic 
Sea; see www. t-  mednet. org). However, the values of bottom 
temperature used in the ensemble model represent the annual 
mean for the study area. The Mediterranean Sea is character-
ised by highly contrasted summer and winter temperatures es-
pecially in shallower depths. This seasonal variability, marked 
by the mixed layer depth variation, can lead to a wider range of 
temperature conditions. For instance, temperatures can reach 
a maximum multi- year mean of 22°C in Cap de Creus, a region 
where the mean annual temperature is 17°C (see www. t-  med-
net. org for more examples). Previous studies have demonstrated 
that long duration exposure to temperature > 23°C, such as the 
observed in marine heatwaves in the Mediterranean, cause 
the appearance of the first signs of necrosis (Coma et al. 2009; 
Crisci et al. 2011), driving high mortality rates in these species 
(Cerrano et al. 2000; Garrabou et al. 2022). In this context, it is 
important bearing in mind that the higher frequency, intensity, 
and persistence of thermal anomalies over recent years have 
led lethal and sublethal effects on these gorgonian populations 
(Arizmendi- Mejía et  al.  2015; Linares et  al.  2005; Viladrich, 
Linares, and Padilla- Gamiño  2022), driving potential range 
shifts and rendering shallower populations particularly sus-
ceptible to the adverse effects of temperature anomalies (Cau 
et al. 2018; Ezzat et al. 2013).

Contrary to other studies on benthic species (e.g., Anakha 
et al. 2023; Bellin and Rossi 2023; Pulido Mantas et al. 2022), 
our results placed less emphasis on bathymetry, even though it 
ranks as the third most important predictor for E. cavolini and 
P. clavata. Despite modelling within the bathymetric range of 
the coralligenous habitat (up to 150 m), a consistently higher 
predicted probability was observed in shallow waters. This re-
sult can probably be attributed to the dim light conditions that 
favour the development of coralligenous bioconcretions, formed 
by the growth of calcareous algae (Ballesteros  2006). Notably, 
C. rubrum maintained a consistently high HSI throughout 
most of the bathymetric range. This result may be due to the 

availability of presence records from less accessibility areas as a 
consequence of overfishing (Tsounis et al. 2007). Nutrients, sa-
linity, chlorophyll a, BPI, current velocity, and seabed substrate, 
displayed lower contribution to the ensemble estimate. Among 
the nutrients, phosphates exert the strongest influence on the 
models. This effect probably arise from phosphates playing a 
limiting role in Mediterranean productivity compared to other 
nutrients, such as nitrates, exhibiting a clear east–west gradi-
ent with higher phosphate concentrations in the Alboran Sea 
and Western Mediterranean ecoregions (Lazzari et  al.  2016). 
While nutrients may hold less significance for benthic inverte-
brate feeders (Robinson et al. 2011), they are of greater impor-
tance for coral distribution along with current velocity (Thiem 
et  al.  2006). However, at regional scale, grid- based averaging 
may have failed to capture this finer- scale variations.

The species exhibit distinct responses to environmental factors 
at different geographical scales (Levin  1992). Coastal benthic 
species, for instance, are particularly sensitive to fine- scale hab-
itat variations, therefore ENMs may exhibit enhanced predictive 
accuracy using finer scale environmental information (Guisan 
and Thuiller  2005; Turner et  al.  2019). Consequently, higher 
roughness—enhanced habitat heterogeneity—emerges as key 
driver for the modelled species, akin to the influence of slope 
(e.g., Boavida et  al.  2016). Nevertheless, roughness provided a 
more precise predictor than slope given the preference of these 
species not only for vertical walls, but also for overhangs and 
near- horizontal hard substrates. Conversely, predictors such as 
temperature may assume increased relevance at regional and 
global scales. Intrinsically linked to the geographical scale, model 
resolution has a significantly impact on the performance and 
predictions accuracy of the model (Guisan et al. 2007; Manzoor, 
Griffiths, and Lukac  2018; Turner et  al.  2019). Modelling at 
smaller scales enable higher resolutions, benefiting from more 
precise predictors available. However, scaling up demands a del-
icate trade- off between these factors, as larger grid sizes force 
species predictions to conform into their broader surroundings, 
resulting in poor predictions (Guisan and Thuiller 2005). Given 
that ecological patterns identified at one spatial scale might not 
be prevalent to another, ecological phenomena and environmen-
tal impacts should be studied at multiple scales.

4.2   |   Ensemble Ecological Niche Model: 
Challenges and Opportunities

The accuracy and reliability of ENMs predictions are influ-
enced by the quality and quantity of data, as well as the model 
settings. Our ensemble model demonstrated a high predictive 
performance, although estimates for the SE Mediterranean 
and NW Adriatic Sea exhibited higher uncertainty. Our results 
may improve by including other variables than abiotic factors, 
such as biotic determinants (e.g., interspecific interactions) and 
mechanisms influencing how a species inhabit at a specific lo-
cation (e.g., dispersal determinants or biogeographical barriers). 
Although recent advancements in distribution models strive to 
integrate these multifaceted factors that collectively shape the 
ecological niche (e.g., joint ENMs approaches or network anal-
ysis; Deneu et al. 2021; Ovaskainen and Abrego 2020; Pollock 
et al. 2014), caution is advised when interpreting ENM results. 
In our study, the limited presences in the SE Mediterranean may 
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hinder models from fully capturing the ecological niche of spe-
cies. The model prediction relies on the best available environ-
mental data available for the entire modelling area and species 
ecology, but with the inherent limitations at this geographical 
scale (e.g., lower resolution, varying time scales between pre-
dictors, etc.). These limitations, together with model constrains, 
may restrict accurate predictions in SE Mediterranean, echo-
ing the need of further studies (Hao et al. 2020). Indeed, some 
evidences, albeit scarce, of the presence of these species in the 
literature (see for example the evidences of red coral fisheries 
in the SE Mediterranean, Tsounis et  al.  2013) highlight the 
importance of additional sampling effort directed to this area 
and to enhance future model attempts. However, it is import-
ant to remember that the habitat suitability maps are closely 
linked with the associated uncertainty maps. In areas with low 
sampling effort but located in sandy regions, the models were 
relatively accurate. However, in areas with higher environmen-
tal variability than those where the species is present (e.g., SE 
Mediterranean), the single algorithm estimates were distinct, 
leading to higher uncertainty. In our study, the combination of 
the habitat suitability and uncertainty maps about the ensemble 
models estimates, provide relevant information for future con-
servation efforts. Nevertheless, it is important to highlight that 
the projected output represents a model of the potential species 
distribution, which may not precisely reflect their actual dis-
tribution, requiring therefor ground- truthing surveys. The use 
of the ensemble modelling approaches is however probably the 
most appropriate approach to achieve balance within under-  and 
over- estimations, and robust predictive performance.

4.3   |   Concluding Remarks and Conservation 
Implications

In light of the dramatic increase of multiple threats affecting 
coralligenous species, including marine heatwaves driving 
mass mortality events (Garrabou et al. 2022), coupled with their 
key ecological role as habitat- forming species, research on their 
spatial distribution at regional scale and the underlying envi-
ronmental drivers remain surprisingly limited (but see Bellin 
and Rossi 2023; Boavida et al. 2016; Pulido Mantas et al. 2022). 
By combining efforts of both scientific surveys and citizen sci-
ence, we have gathered a total of 4378 occurrences of the four 
most relevant Mediterranean species that play key structural 
roles in coralligenous assemblages. To our best knowledge, this 
study represents the first attempt to assess the habitat suitabil-
ity of E. singularis, E. cavolini, P. clavata and C. rubrum at the 
Mediterranean Sea scale, using a multi- algorithm approach and 
accounting for uncertainty. Implementing a rigorous model ap-
proach, we found a clear preference for rocky habitats and an 
influence of mean bottom temperature shaping their distribu-
tional pattern. The NW Mediterranean was the region identi-
fied with higher habitat suitability for all species, while the SE 
Mediterranean region was identified as providing the poorer 
environmental conditions for the species occurrence, although 
with higher uncertainty about the model estimates.

The potential extent of coralligenous habitat dominated by 
key but threatened gorgonian species exceeds a quarter of the 
Mediterranean bottoms (up to 150 m depth). This highlights 
the importance of this study to guide further investigations to 

complement empirical data on their distribution. However, only 
a fraction (19%) of this potential habitat is currently under protec-
tion regimes, underscoring the need for improved conservation 
and management measures. This estimate is likely optimistic, es-
pecially considering the low proportion of highly protected MPAs, 
the number of MPAs lacking implemented management plans, 
and the observed lack of enforcement in some MPAs (see Sala 
et al. 2021). In fact, our results offer spatially explicit information 
that can guide management strategies, including the expansion of 
the current MPAs network. Given the potential impact of marine 
heatwaves on contracting the bathymetrical and geographical 
distribution of these species, further studies should be focused not 
only on increasing sampling efforts to validate our estimates but 
also incorporating projections of species distribution under vari-
ous climate change scenarios. Yet, current data availability might 
not be enough to produce useful outputs, as model transferability 
onto distinct conditions can increase uncertainty to non- relevant 
levels for spatial planning. Therefore, at the moment, our findings 
are the best effort to guide future conservation strategies for cor-
alligenous habitat dominated by key gorgonian species. Although 
achieving the effective international coordination needed for their 
protection may be challenging, these findings can direct attention 
to suitable focal areas, to explore with higher resolution models at 
the local scale. Finally, these outcomes underly the need to redi-
rect management efforts in the face of existing inadequate mea-
sures (e.g., sites without protection measures such as Natura 2000 
sites) in addressing local stressors that may synergize with global 
impacts (e.g., climate change and diving frequentation; Zentner 
et al. 2023). Targeted habitat protection is essential for an effective 
management that strives to mitigate the current escalating local 
and global threats.
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