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1  |  INTRODUC TION

Archaeological sites around the southern part of the North Sea 
show a clear increase in northwest European marine fisheries 

around the 10–11th century AD, the so- called “fish event horizon” 
(Barrett et al., 2004a, 2004b). The most marked increases are 
seen for Gadidae [e.g. cod (Gadus morhua (Linnaeus 1758)), had-
dock (Melanogrammus aeglefinus (Linnaeus 1758)), and whiting 
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Abstract
Flatfish are ecologically diverse species that commonly occur in marine environments, 
but also in estuarine and riverine habitats. This complicates the examination of the 
potential role of flatfish in the ‘marine fish event horizon’, an economic shift in human 
exploitation from freshwater to marine fish species during the 10–11th centuries CE 
around the southern North Sea. This study represents the first multi- disciplinary 
investigation of flatfish remains to make species- specific interpretations of flatfish 
exploitation. Peptide mass fingerprinting and multi- isotope analysis of carbon (δ13C), 
nitrogen (δ15N) and sulphur (δ34S) was performed on collagen from 356 archaeological 
flatfish and 120 comparative archaeological marine or freshwater species to explore 
the catch habitat of individual flatfish species between 600 and 1600 CE from the 
North Sea area. European flounder show signals reflecting both freshwater and ma-
rine environments, while other flatfish show only those of marine habitats. A subtle 
shift towards more marine exploitation towards the end of the period is identified, 
corresponding to the observed transition in targeted species from flounder to plaice 
throughout the medieval period. Sites show slight differences in δ13C and δ34S within 
the same species, related to the local environments. Remarkable is the high abun-
dance of marine plaice and flounder during the early medieval period, which shows 
clear marine or coastal exploitation of flatfish early on, well before the previously 
accepted onset of the marine fish event horizon. This indicates a gradual shift from 
coastal to open marine fish exploitation over the medieval period.
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(Merlangius merlangus (Linnaeus 1758))], which were much less com-
mon in inland sites prior to this period. Meanwhile, freshwater spe-
cies such as Cyprinidae and Salmoniformes became relatively less 
abundant in later periods (Barrett et al., 2004a, 2004b; van Neer 
& Ervynck, 2016). Flatfish (Pleuronectiformes) are significant within 
this dynamic, as certain species commonly caught by humans can 
reside in both marine and freshwater habitats. Flatfish have been 
uncovered from sites dated to well before the fish event horizon, 
but the representation of the whole order of Pleuronectiformes in-
creases during and after the fish event horizon (Barrett et al., 2004a, 
2004b; van Neer & Ervynck, 2016). These fish are still highly impor-
tant in modern day fisheries, and many stocks have been overfished 
in the recent past (e.g. Cadrin et al., 2015; Rice & Cooper, 2003). The 
dynamics of flatfish exploitation through a longer time series has not 
been well investigated until now. This lack of baseline records limits 
the understanding of the health of the fish stocks in modern times. 
Understanding the occurrence of the earliest marine fisheries could 
further pinpoint the moment in time when humans began impacting 
marine ecosystems intensively.

Due to the changes in habitat choice and diet (Braber & de 
Groot, 1973; De Groot, 1971) throughout the life cycle of flatfish, 
simple species identification of flatfish remains from archaeological 
sites is not sufficient to tackle the question of where they have been 
feeding and might have been caught, which is key to understanding 
the role of these species in the freshwater/marine fishing dynamics 
during the fish event horizon. Pleuronectiformes are regarded as 
being primarily marine species. Some species, however, are known to 
occur, at least during a part of their lives, in brackish and freshwa-
ter systems, such as for example Platichthys flesus (Linnaeus 1758), or 
European flounder (e.g. Elliott et al., 1990; McGoran & Morritt, 2017; 
van Beek et al., 1989). Other commonly exploited species found 
in the North Sea area, such as Pleuronectes platessa Linnaeus 1758 
(plaice), Limanda limanda (Linnaeus 1758) (dab), Scophthalmus maximus 
(Linnaeus 1758) (turbot), S. rhombus (Linnaeus 1758) (brill) and Solea 
solea (Linnaeus 1758) (Dover sole), are generally found in coastal or 
open marine environments as adults, although larvae and juveniles 
can occur in inshore waters or estuarine nurseries (e.g. Jager, 1999; 
Primos et al., 2013; Ramos et al., 2010; Russo et al., 2008). Stable iso-
tope analysis of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) can 
aid in differentiating between fish residing in different aquatic envi-
ronments and potentially geographic regions (e.g. Fuller et al., 2012; 
Robson et al., 2016). Visual and morphological identification of flat-
fish species, such as flounder and plaice, is challenging, (e.g. Watt 
et al., 1997; Wouters et al., 2007) with identification made possible 
through molecular techniques (e.g. Dierickx et al., 2022).

Many studies have analysed fish isotopic composition from 
western and northern Europe, mostly from Gadidae, and the num-
ber of dedicated European fish isotope studies is increasing (e.g. 
Barrett et al., 2008, 2011; Ervynck et al., 2018; Fuller et al., 2012; 
Häberle et al., 2016; Hutchinson et al., 2015; Nehlich et al., 2013; 
Ólafsdóttir et al., 2021; Orton et al., 2011; Robson et al., 2016). Only 
a handful of isotope studies have included archaeological flatfish 
samples as part of human dietary studies or general environmen-
tal studies of fish (Table S1 in the Supplementary Information S1, 

section 1). These studies reflect the wide variety of habitats floun-
der can occur in, as well as potential dietary changes throughout 
the life of a species and differences between Pleuronectid spe-
cies (Antanaitis- Jacobs et al., 2009; Dahliwal et al., 2019; Ervynck 
et al., 2018; Fischer et al., 2007; Fuller et al., 2012; Göhring 
et al., 2016; Müldner & Richards, 2005, 2007; Robson et al., 2016), 
yet no in- depth time series for individual species has been investi-
gated and the number of published flatfish data is low (only 29 sam-
ples for all time periods), preventing our understanding of targeted 
species and exploited habitats during and after the fish event hori-
zon in the medieval period.

In this study, a large body of archaeological remains of multiple 
species within Pleuronectiformes (n = 356) are analysed, together 
with comparative samples of marine and freshwater fish (n = 120). 
An integrated biomolecular approach utilising multi- isotopic (δ13C, 
δ15N, δ34S) and proteomic species identification techniques is used 
to investigate 13 sites from around the southern North Sea dating 
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    |  813DIERICKX et al.

to the medieval period (6th—16th century CE; Figure 1) and to reveal 
changes in flatfish fisheries in terms of targeted habitats and species.

2  |  MATERIAL S AND METHODS

2.1  |  Archaeological site and sample selection

The sites were selected based on their location (i.e. southern North 
Sea area), dating of the features (between 600 and 1600 CE) and 
reported amount of Pleuronectiformes bones (minimum ca. 10 per 
family per dated phase). A detailed summary of each site is pro-
vided in the Supplementary Information S1 (section 1). Figure 1 
shows the geographical location and the chronology of the sites 
respectively. From each site, a subset of flatfish samples was ran-
domly selected, including various skeletal elements, for stable 
isotope analysis (see Supplementary Information S2) from each 
medieval phase/period (6th—16th century CE). To avoid repeated 
sampling of the same individual fish, only one sample was taken 
per combination of preliminary identified taxon, context, estimated 
size, element and side. Whenever available, samples from typical 
freshwater (Esocidae, Cyprinidae) and marine species (Gadidae) 
were also sampled to provide a local baseline for both habitats. 
These taxa were selected as they are common in archaeological 
sites from these regions, can feed on similar prey as flatfish do, 
and generally do not tend to migrate between habitat types. Seven 
modern commercially acquired flatfish samples were analysed 
alongside the archaeological samples as references for the analysis 

for both quality criteria and habitat baselines. Site phases were cat-
egorised into time periods to discuss results (Table S2). Size estima-
tions were done to bins of 10 cm standard length (SL) if possible, 
by visually matching to modern reference material of known sizes 
from the Royal Belgian Institute of Natural Sciences (RBINS) and 
the University of York Zooarchaeology Laboratory (YZL).

2.2  |  Collagen extraction and stable 
isotope analysis

Collagen was extracted from 476 archaeological fish samples and 
seven modern flatfish samples and analysed using EA- IRMS (Elemental 
Analyser—Isotope Ratio Mass Spectrometer) at BioArCh, University 
of York, UK for carbon and nitrogen. Sulphur analysis was performed 
for a subsample of the dataset, those with high quality collagen (i.e. 
not excluded based on quality criteria for carbon and nitrogen; see 
below) and representing a good overall distribution of species, size, 
time period and site (n = 223 archaeological and 7 modern) at SUERC, 
UK. Whole bones were preferentially used for analysis to avoid biases 
with growth layers. See Supplementary Information S1 (section 2), for 
details on the extraction and analysis protocols.

2.3  |  Species identification

Each selected sample was identified to family level and, where 
possible, species level using available identification keys 

F I G U R E  1  Archaeological sites. 
(a) Map of the North Sea basin with the 
13 archaeological sites in eight locations; 
(b) Example of an archaeological flatfish 
bone, os anale, analysed (BSG0104); 
(c) Chronological overview of the 
archaeological sites with the relevant 
phasings and their abbreviations used in 
the text: the numbers match those on the 
map. See Table S2 for details on the used 
time periods.
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814  |    DIERICKX et al.

(e.g. Watt et al., 1997; Wouters et al., 2007). As morphological ap-
proaches are not always sufficient to distinguish between species 
of Pleuronectiformes, collagen peptide mass fingerprinting (PMF, 
also known as ZooMS, Zooarchaeology by Mass Spectrometry) was 
carried out, following the methodology from Dierickx et al. (2022) 
(also see Supplementary Information S1, section 2). All samples were 
identified by following the biomarkers and methodology described 
in Dierickx et al. (2022) for flatfish and Harvey et al. (2018) for other 
fish taxa, except for Cypriniformes due to a lack of published peptide 
biomarkers.

2.4  |  Quality criteria

For carbon and nitrogen stable isotope analysis, species- specific 
quality criteria were developed by analysing the collagen composition 
of Pleuronectiformes species reconstructed using LC–MS/MS data 
from Dierickx et al. (2022; also see Supplementary Information S1, 
sections 2, 3, and 4). Samples with C:N > 3.5 were excluded from 
the analysis for plaice, flounder and dab, and those with C:N > 3.4 
for turbot, brill and Dover sole. A dynamic cut- off value was used 
for Gadidae, following Guiry and Szpak (2021) (see Supplementary 
Information S1, section 3). For sulphur, a discrepancy has been no-
ticed between the mass spectrometry measured and calculated 
sulphur content (this study; Nehlich & Richards, 2009). Therefore, 
rather than relying on species- specific criteria, the quality criteria 
defined by Nehlich and Richards (2009) were followed: %S between 
0.40% and 0.85%, C:S between 125 and 225 and N:S between 40 
and 80.

2.5  |  Radiocarbon dating

Radiocarbon dating was performed on material of the site of Barreau 
Saint- George in order to confirm dating obtained from pottery at 
the site. Three bovine samples from different pits, from where most 
fish material was obtained, were selected and dated at SUERC, UK. 
Results can be found in the Supplementary Information S1, sec-
tion 1, Figure S1.

2.6  |  Data analysis and availability

The distinction between marine and freshwater habitats using 
δ13C was performed using well- established criteria (e.g. Fuller 
et al., 2012; Robson et al., 2016) and by looking at the comparative 
taxa analysed in this study to set baselines for marine and freshwa-
ter habitats in the North Sea region. These showed a cut- off point 
near −20‰ δ13C. Classification of habitat types using sulphur stable 
isotope values followed Nehlich et al. (2013) and Nehlich (2015), 
which uses data of fish taxa from the same hydrogeographic re-
gion, in which the freshwater signal for sulphur has an upper limit of 
around 15‰, and δ13C < −20‰. Flatfish samples defined as marine 

(δ13C > −20‰; see results) have δ34S values between 0 and 20‰, 
with δ34S < 10‰ as estuarine, 10‰ < δ34S < 15‰ as estuarine/
southern North Sea marine, while samples with δ34S > 15‰ are 
defined as strongly open marine (i.e. oceanic water without a sub-
stantial freshwater influence), following Nehlich et al. (2013) and 
Nehlich (2015). Data was analysed using R (R Core Team (2022), 
version 4.1.1 (2021- 08- 10)—“Kick Things”). Data was visualised 
using ggplot() (ggplot2 package; Wickham, 2016) in R. A Chi- 
square test was performed using chisq.test() to assess if there is 
a significant association between two categories. Further asso-
ciations between size, period, site and isotopic values in flounder 
and plaice were explored using Bayesian ANOVA. Full details and 
results are presented in the Supplementary Information S1, sec-
tion 6. Additional results and archaeological site background can 
be found in the Supplementary Information S1. The data table with 
all the results can be found in Supplementary Information S2 and 
raw isotopic data in Supplementary Information S3. R code, pho-
tographs and peptide mass spectra of the archaeological samples 
can be found on Zenodo by following this link: https:// doi. org/ 10. 
5281/ zenodo. 10418711.

3  |  RESULTS

3.1  |  Shifting species presences through time

From the archaeological samples, 356 were identified as 
Pleuronectiformes using PMF (two L. limanda or dab, 91 P. flesus or 
European flounder, 237 P. platessa or plaice, 13 S. maximus or tur-
bot, three S. rhombus or brill, seven S. solea or Dover sole, and three 
Pleuronectidae), while the remaining samples were identified as the 
following: 30 Cypriniformes, 19 Esox lucius Linnaeus 1758 (pike), 2 
Conger (Linnaeus 1758) (conger eel), 1 cf. Salmo trutta trutta Linnaeus 
1758 (trout), 33 Gadus morhua (Atlantic cod), 34 Melanogrammus ae-
glefinus (haddock), 1 Merlangius merlangus (whiting). Of the modern 
samples, three were identified as plaice and four as flounder.

Considering only archaeological Pleuronectiformes samples con-
fidently dated to a specific period, that is early medieval 1 (EM1), 
early medieval 2 (EM2), high medieval (HM) and late medieval (LM) 
(see Figure 1 and Table S2 for definitions), the relative species abun-
dance shows a clear shift with plaice becoming more abundant com-
pared to flounder throughout the medieval period (Figure 2). The 
difference in species abundance between the periods is significant 
(Chi- squared test: p = .0001356, X2 = 59.178). The same trend is es-
pecially noticeable in some sites, for example, those in York, and less 
so in others (Supplementary Information S1, section 5). In some of 
the other settlements, such as London and Koksijde, plaice can be 
just as abundant as flounder during the EM period, while in other 
settlements such as Gent and Vlaardingen, flounder remains present 
during the LM period. Other Pleuronectiformes species were only 
identified from a handful of samples in York, Canterbury, Barreau 
Saint- George, Koksijde, Gent and Vlaardingen (Supplementary 
Information S1, section 5).
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3.2  |  Habitat preferences and ecology reflected in 
isotope values

Freshwater species and marine species are generally clearly distinct 
in δ13C and δ34S, except for one Cypriniformes sample with a high 
δ13C value (Figure 3). Most flatfish have similar δ13C and δ34S values 
to the marine species, except for eight flounder samples with δ13C 
values below −20‰, making them fall within the freshwater group. 
Flatfish have a rather restricted range for δ15N. Only a few samples 
have higher δ15N values (14.0‰–17.5‰), identified as the more pis-
civorous species such as turbot and brill. The marine Gadidae also 
have elevated δ15N values (13.5‰–18.5‰). Comparative fresh-
water species have a wide range of δ15N. The distinction between 
habitat types is less distinct for δ34S. Flatfish samples that were 
identified as freshwater by δ13C (<−20‰) all have δ34S < 9‰, which 
corresponds to the delineation of habitat groups by Nehlich (2015) 
and Orton et al. (2011), although some freshwater specimens have 
10‰ < δ34S < 15‰.

3.3  |  Isotopic trends

The general trends for the two most numerous species, plaice 
and flounder, are described here. For detailed results on other 
species and effects of chronology, geography and size, see the 
Supplementary Information S1, section 6. The relative abundances 
of each habitat type in the early (EM; EM1 and EM2 joined here 
to increase sample size per species), high (HM) and late medieval 
(LM) periods are compared for both species (Figure 4). In each time 
period, freshwater and estuarine samples are mostly identified as 
flounder, while southern and open marine samples are mostly iden-
tified as plaice. For both species, there is an increase in southern 

North Sea marine samples during the HM period and a decrease 
in estuarine samples compared to the EM period. Although not 
a strong relationship, this change is also confirmed by Bayesian 
ANOVA (see Supplementary Information S1, section 6; also see 
Figure S11). During the LM period, no estuarine plaice have been 
observed. There are clear differences observed between different 
size classes, in particular for δ13C and δ34S, with larger size classes 
having fewer samples with low values for δ13C and δ34S, as sup-
ported by Bayesian ANOVA (see Supplementary Information S1, 
section 6; also see Figure S9). No clear chronological or site effects 
were noticed between size classes (Supplementary Information S1, 
section 6, Figures S15–S20).

4  |  DISCUSSION

Species specific timelines of medieval catch locations of 
Pleuronectiformes have been reconstructed through combining col-
lagen PMF and stable isotope analysis.

4.1  |  Species dynamics

Between the two species that are most abundant and heavily ex-
ploited in the southern North Sea, there is a clear relative decrease 
in consumption of flounder and a relative increase in consumption 
of plaice throughout the medieval period around the North Sea. 
This shift is especially noticeable during the second half of the EM 
and HM periods (10–11th century), when marine fishing increased 
around the North Sea (Barrett et al., 2004a, 2004b). This trend is ob-
served at most sites and is very noticeable in York (see also Dierickx 
et al., 2022). A few sites show a slightly different trend or timing 
in the shift, which can be related to their specific historical context 
(see Supplementary Information S1, section 5). Settlements with 
easy access to the North Sea (e.g. coastal Koksijde) and with early 
maritime trade connections (e.g. London), have a high abundance 
of plaice during the EM period. Settlements with nearby estuar-
ies (e.g. Barreau Saint- George, also see Dierickx et al., 2022, Gent, 
Vlaardingen, Leiderdorp) have relatively large numbers of flounder 
throughout the medieval period.

Only a handful of other flatfish species (turbot, brill, Dover 
sole and dab) have been identified. This matches most archaeo-
logical reports on fish remains from around the North Sea, which 
find flounder and plaice (or Pleuronectidae in general) to be most 
abundant (e.g. Enghoff, 1999; Ervynck & van Neer, 1992; Harland 
et al., 2016; Nicholson, 2009; Oueslati, 2019; Reynolds, 2015). 
Turbot and brill are only present at sites close to the coast and/or 
during the HM and LM periods, where marine fishing is ongoing. 
The presence of Dover sole in Tradescent Lane in Canterbury is ex-
plained both by its location at the southernmost part of the North 
Sea, where this species is more common (Heessen et al., 2015), 
and by the elite nature of the site with consumption of Dover sole 
linked to for example, monasteries (Ervynck & van Neer, 1992). 

F I G U R E  2  Proportional species abundance per period, as 
identified using peptide mass fingerprinting. Total number of 
samples per chronological period is listed above each bar.
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Other Pleuronectiformes species were less targeted and have 
mostly been recorded as by- catch during the post- medieval and 
modern periods (Bennema & Rijnsdorp, 2015; Walsh et al., 2015) 
or occur in more northern areas or neighbouring waters, mak-
ing it less likely these were exploited on a regular basis in the 
selected sites.

4.2  |  Quality criteria

This study further confirmed the need for species- specific qual-
ity criteria for isotope analyses, as proposed by previous research 
(e.g. Guiry & Szpak, 2020, 2021). In case species data is unavail-
able, phylogenetically closely related species should be used as 
a proxy, rather than ecologically similar species, as phylogeny is 
a strong determinant of the collagen composition, since this pro-
tein is coded by several genes (COL1A1, COL1A2, and sometimes 
COL1A3). For sulphur, it was not possible to define species- specific 

criteria, due to an observed discrepancy (see Supplementary 
Information S1, section 3).

4.3  |  Inferences by habitat, size, 
location and chronology

4.3.1  |  Habitat and size distinctions

The isotope values from different species of archaeological fish cor-
respond to the expected isotope niches based on their modern ecolo-
gies, with freshwater and marine species being clearly distinct in δ13C 
while the diet and trophic level is reflected by δ15N. Although the 
distinction between marine and freshwater habitats based on the 
comparative taxa seems to be quite clear in this case study (cut- off 
point of −20‰ δ13C), this might not be the case or be the same value 
for other taxa or in other regions (see Guiry, 2019). For example, the 
single Cypriniformes with a higher δ13C value may have lived close to 

F I G U R E  3  Scatter and density plots 
showing habitat distinctions. (a) δ13C and 
δ15N of all archaeological fish samples, 
coloured and shaped to the broad 
ecological group; (b) δ13C and δ34S of all 
archaeological fish samples, coloured and 
shaped to the broad ecological group; 
(c) δ13C and δ15N of Pleuronectiformes 
samples, coloured by species; (d) δ13C 
and δ34S of Pleuronectiformes samples, 
without S. solea in the density plots for 
clarity, coloured by species.
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    |  817DIERICKX et al.

estuaries or could potentially reflect a higher cut- off point between 
marine and freshwater environments in a particular locale. As this is 
only one sample in a large dataset, we draw upon the overwhelming 
data for freshwater versus marine signatures. Both δ13C and δ15N for 
Gadidae match with data for central and southern North Sea Gadidae 
(Barrett et al., 2008; Orton et al., 2011). The correlation observed be-
tween δ13C and δ34S confirms δ34S as a proxy for marine- freshwater 
habitats (e.g. Leakey et al., 2008; Nehlich, 2015; Nehlich et al., 2013).

Fewer individuals with estuarine and freshwater habitat isoto-
pic signatures were observed for larger size classes (>30 cm SL). As 
flatfish grow larger, they tend to move out from estuaries and near- 
coastal habitats to more marine environments, which could result in 

an overall increase in δ13C and δ34S values. The samples of flounder 
with a freshwater signature in this study all originate from small- sized 
individuals (10–30 cm SL), which can be expected as this species can 
often be found in freshwater environments when they are young, 
while moving towards the estuaries and marine habitats when they 
get bigger (Russo et al., 2008). Identifying those flounder with fresh-
water isotopic signatures as having been caught in freshwater hab-
itats is complicated by the lifecycle of this species that can migrate 
to coastal areas for spawning or display ontogenetic changes in habi-
tat preferences, and may retain their original freshwater signatures if 
having recently entered a marine environment (e.g. Aarnio et al., 1996; 
Russo et al., 2008; Selleslagh & Amara, 2008, 2015; Sims et al., 2004).

F I G U R E  4  Summary of isotope data for European flounder (left) and plaice (right) for the three main time periods, early (top), high (mid), 
and late (bottom) medieval period. The number in the pie charts represents the total sample number per locality. Samples are categorised 
into five habitat types based on the isotope data. Freshwater: δ13C < −20‰; Marine: δ13C > −20‰; and where δ34S data are available marine 
samples are further divided into the following three categories: Estuarine: δ34S < 10‰; southern North Sea marine (or freshwater influenced 
marine): 10‰ < δ34S < 15‰; and Open marine: δ34S > 15‰.
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While changing their habitat as they grow larger, Pleuronectidae 
do not change the nature of their diet and generally eat similar 
prey from the same trophic levels throughout their lives (Braber 
& de Groot, 1973; De Groot, 1971), thereby explaining the lack of 
patterning of δ15N values with increasing size class. Smaller sized 
(20–30 cm SL) flounder can sometimes show higher δ15N values 
compared to larger size classes (>30 cm SL) (Figure S9; also see 
Ervynck et al., 2018).

4.3.2  |  Location differences

Site location has a significant impact on the isotope composition of 
flatfish, which can in most cases be explained by the respective local 
environment (Supplementary Information S1, section 6). Coastal 
sites exclusively rely on marine flatfish (δ13C > −20‰), whereas 
samples with lower δ13C values (<−20‰), indicating freshwater (in-
fluenced) habitats, were found in inland and peri- coastal sites (i.e. 
sites close to the coast where rivers are still under tidal influence), 
alongside marine samples. Vlaardingen and Leiderdorp are located 
close to the estuarine region of the southern Netherlands, which 
could explain the lower δ13C values on average for both flounder 
and plaice at these sites.

Plaice samples with very high δ34S values (>15‰) from 
Coppergate in York date to the 12th–13th century which stand 
apart from other sites included in this study. These individuals may 
have originated some distance from York as during this time marine 
fishing was well established and York had ready access and trade 
connections to the northern North Sea, where such high δ34S val-
ues have been observed (Barrett et al., 2011; Nehlich et al., 2013). 
However, a closer origin for these fish is also possible due to high 
local bedrock δ34S signatures in the North of England in particular 
(Bataille et al., 2021; St- John- Glew et al., 2018) combined with this 
region receiving more oceanic water from the Atlantic (Otto, 1983), 
which could cause a particular isotopic niche for this species at this 
time period.

In a few instances, human economic, dietary, and culinary choices 
could be driving the observed isotopic variation. The relatively high 
abundance of freshwater samples in York and London could indicate 
that fishing in the rivers Ouse and Thames for flounder was more 
common practice than it was in mainland Europe. Isotopic data from 
London fits nicely with historical sources indicating that fresh plaice 
was brought inland to London from coastal areas, while flounder was 
caught in the Thames (Reynolds, 2015; Galloway, 2017). Humans 
clearly made conscious choices about the habitat from which they 
fished specific flatfish and traded different species over longer 
distances.

4.3.3  |  Chronological changes

No clear trends were observed for δ13C and δ15N data for ei-
ther plaice or flounder, but a slight increase is observed for δ34S 

throughout the medieval period, especially for plaice (see also 
Supplementary Information S1, section 6, Figure S11). During the 
EM period, most of the fish originated from marine habitats, most 
likely close- coastal and estuarine or freshwater- influenced marine 
habitats (δ13C > −20‰ and 5‰ < δ34S < 15‰). This high abundance 
of marine plaice and flounder during this EM period is remarkable, 
with southern North Sea exploitation occurring from as early as 
the 7th century (Figure 4). Humans were exploiting and transport-
ing estuarine, coastal and marine flatfish inland to settlements such 
as York, London, Vlaardingen and Leiderdorp four centuries earlier 
than expected from the picture provided predominantly by Gadidae 
at the marine fish event horizon of the 11th century (e.g. Barrett 
et al., 2004a, 2004b, 2011). One previous isotopic study has alluded 
to a slightly earlier date for the increase in exploitation of marine 
environments with a single marine Clupeidae identified in early me-
dieval York (Müldner & Richards, 2005). This early find of marine 
Clupeidae is unsurprising, as herring were already exploited in large 
numbers during the EM period and this fishery was identified as be-
coming dramatically more intensive during the HM period and LM 
period (Barrett et al., 2004a, 2004b).

Conversely, during the HM period, there is a relative decrease 
in flatfish originating from an estuarine/coastal environment and 
relative increase in those from the southern North Sea (marine 
δ34S > 10‰). This increasingly marine trend continues where by 
the LM period, no estuarine fish appear, while both southern North 
Sea and open marine fish are present. The shift towards more open 
sea fisheries is most apparent for plaice. This outward expansion of 
fisheries corresponds to the observed shift in species, as humans 
increasingly exploited the open seas for herring and cod, they also 
fished for plaice more frequently. Close coastal fisheries might have 
become less important and sustainable economically, therefore re-
ducing the exploitation of flounder. No evidence was found here 
that indicates that flatfish fisheries expanded beyond the North Sea 
during the medieval period. This contrasts with the continuous geo-
graphical expansion that occurred during the HM and LM periods 
onwards for Gadidae and Clupeidae fisheries (e.g. Holm et al., 2021; 
Orton et al., 2014).

4.4  |  Impact on our understanding of the marine 
fish event horizon

Flatfish exploited from inshore marine environments, such as es-
tuarine and coastal areas, appear during the EM period not only in 
the coastal site of Koksijde, where it might be expected, but also 
in inland and peri- coastal settlements such as York, London, Gent, 
Vlaardingen and Leiderdorp, some as early as the 7th century CE. 
With most of the marine flatfish from these sites being larger than 
20 cm SL (and about half even bigger than 30 cm SL), the chance of 
them being stomach contents from Anguillidae (eels) or other ani-
mals is slight (see Barrett, 2016), making it very likely these fish were 
intentionally brought to the site for human consumption. All these 
settlements were of local political significance, and were part of 
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active trade networks across the North Sea (Dijkstra et al., 2016; 
Loveluck & Tys, 2006; van Loon & de Ridder, 2006). It is possible 
that these maritime trade connections were linked to this early ma-
rine fish exploitation.

The cause of this early onset of marine exploitation of flatfish 
during the medieval period, however, remains to be explored. Being 
ecologically diverse and easy to exploit, flatfish may have served as 
a stepping stone taxon to more outward marine fisheries. Flatfish 
can be easily caught using nets (e.g. seine nets) either standing 
on the shore or from a boat, occasionally using hook and line, and 
even by flounder tramping. These methods were readily available 
during the early medieval period (e.g. van Neer & Ervynck, 2016). 
They could then have paved the way to more intense marine ex-
ploitation of other economically significant fish such as, Gadidae and 
Clupeidae, making the change from riverine and coastal exploitation 
to open marine fishing a gradual transition, alongside early herring 
exploitation.

A clear outward movement of marine flatfish fisheries is 
observed in London, York, and Gent during the HM period, as 
seen from δ13C and δ34S values, contemporary with the marine 
fish event horizon (Barrett et al., 2004a, 2004b). This outward 
movement resulted from the interplay of various socio- economic 
changes (Barrett et al., 2004a, 2004b) such as the expansion of 
trade networks, Scandinavian influence, growing population and 
urbanisation in these cities, and increased importance of Christian 
practices (Barrett et al., 2004a, 2004b). The potential decrease 
in freshwater quality (e.g. in York, O'Connor, 1989) combined 
with a collapse of freshwater fish stocks, as attested by histori-
cal sources from across Europe (Hoffmann, 1996), strengthened 
these changes. It is perhaps unsurprising that a shift towards more 
open marine environments is only detected here in larger cities, 
such as York, London and Gent, at the start of the HM period, 
while the smaller cities and coastal areas relied on more close- 
coastal focused flatfish fishing throughout the medieval period. 
These major cities, having a larger population and established 
connections in long- distance trade, had greater demand and op-
portunities to import marine fish from the specialised open ma-
rine fisheries that had developed by this point (also see Barrett 
et al., 2004a, 2004b; van Neer & Ervynck, 2016). The exploitation 
of estuarine and freshwater flatfish, however, remains active in 
sites across the southern North Sea during the HM and LM peri-
ods to a minor extent.

Recent isotopic research on archaeological human remains 
has been interpreted as indicating that, contrary to evidence pro-
vided by finds of fish remains from archaeological sites, an increase 
of marine foods in the diet in England did not occur until the 11th 
century (Leggett, 2022). However, modelling human diets using 
bulk stable isotopes is challenged by the visibility of different food 
groups contributing to collagen values. Marine fish consumption is 
difficult to detect when it comprises less than ca. 20% of the diet 
(Hedges, 2004; Leggett, 2022; Müldner & Richards, 2007; Prowse 
et al., 2004). Therefore any increase in marine fish consumption be-
tween 0 and 20% of the diet would be invisible in bulk bone collagen 

isotope values. The evidence from flatfish presented here reveals the 
earlier, perhaps more subtle dynamics of marine fish consumption.

Molecular analysis of archaeological fish remains has enabled a 
species- specific multi- isotope approach to flatfish, revealing a de-
tailed history of flatfish fisheries around the southern North Sea 
during the medieval period. In summary, we detected an early onset 
of inland trade in marine- caught flatfish, occurring from at least the 
7–9th century CE and possibly earlier, and predating the marine fish 
event horizon by a few centuries. A clear shift in targeted flatfish 
species throughout the medieval period and an outward move-
ment of the flatfish fisheries correspond with the increase in marine 
Gadidae and Clupeidae in the zooarchaeological evidence.
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