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Abstract 26 

 27 

Despite the urgent need for accurate and robust observations of microplastics in the marine environment 28 

to assess current and future environmental risks, existing procedures remain labour-intensive, especially 29 

for smaller-sized microplastics. In addition to this, microplastic analysis faces challenges due to 30 

environmental weathering, impacting the reliability of research relying on pristine plastics. This study 31 

addresses these knowledge gaps by testing the robustness of two automated analysis techniques which 32 
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combine machine learning algorithms with fluorescent colouration of Nile red (NR)-stained particles. 33 

Heterogeneously shaped uncoloured MPs of various polymers—polyethylene (PE), polyethylene 34 

terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)—ranging from 100 35 

to 1000 µm in size and weathered under semi-controlled surface and deep-sea conditions, were stained 36 

with NR and imaged using fluorescence stereomicroscopy. This study assessed and compared the 37 

accuracy of decision tree (DT) and random forest (RF) models in detecting and identifying these weathered 38 

plastics. Additionally, their analysis time and model complexity were evaluated, as well as the lower size 39 

limit (2 – 4 µm) and the interoperability of the approach. Decision tree and RF models were comparably 40 

accurate in detecting and identifying pristine plastic polymers (both > 90%). For the detection of 41 

weathered microplastics, both yielded sufficiently high accuracies (> 77%), although only RF models were 42 

reliable for polymer identification (> 70%), except for PET particles. The RF models showed an accuracy > 43 

90% for particle predictions based on 12-30 pixels, which translated to microplastics sized < 10 µm. 44 

Although the RF classifier did not produce consistent results across different labs, the inherent flexibility 45 

of the method allows for its swift adaptation and optimisation, ensuring the possibility to fine-tune the 46 

method to specific research goals through customised datasets, thereby strengthening its robustness. The 47 

developed method is particularly relevant due to its ability to accurately analyse MPs weathered under 48 

various marine conditions, as well as ecotoxicologically relevant MP sizes, making it highly applicable to 49 

real-world environmental samples. 50 

 51 

1. Introduction 52 

 53 

 54 

Microplastics (MPs), plastic particles ranging from 1 µm to 5 mm (Hartmann et al., 2019; Arthur et al., 55 

2009), are a widespread and persistent pollutant, detected even in remote areas far from human activities 56 

(Peeken et al., 2018; Bergmann et al., 2019; Ross et al. 2021, Van Cauwenberghe et al., 2013, Peng et al., 57 

2018). Accurate and robust observations are essential for evaluating the current and future environmental 58 

risks posed by MPs, however, MP analysis continues to be labour-intensive to this day (Primpke et al., 59 

2020a). Indeed, analytical identification of MPs in a wide range of marine environmental matrices is a 60 

critical yet challenging part of the research. Consequently, an extensive spectrum of analytical methods 61 

has been developed in the last decade to meet a variety of research and monitoring purposes, based on 62 

the requirements associated with research and monitoring observations of MPs. However, many of these 63 



techniques have considerable limitations in terms of resolution, minimum particle size, human bias 64 

interference, labour intensity and analysis time, and consequently, analysis cost (Primpke et al., 2020a).  65 

 66 

Fluorescence microscopy, combined with fluorescent dyes, allows to effectively visualise MPs. The 67 

fluorescent dye Nile red (NR) has been widely used in MP studies because of its high adsorption for 68 

plastics, its affinity for a wide range of polymers, its short incubation time (10-30 min), and its 69 

effectiveness to detect MPs down to a few µm (Maes et al., 2017; Shruti et al., 2022). Nile red fluorescence 70 

of MPs is often imaged using fluorescence microscopes equipped with a camera, for subsequent visual or 71 

automated image analysis. A major flaw of the NR approach is the co-staining of lipid-rich organic material, 72 

which interferes with MP analysis (e.g. Maxwell et al., 2020; Shruti et al., 2022). However, false positives 73 

resulting from this issue can be mitigated using a multiple-filter approach (Meyers et al., 2022). 74 

 75 

The integration of automation into various MP detection and identification techniques has recently led to 76 

a remarkable transformation in MP research. The application of Artificial Intelligence (AI) in the field of 77 

research has revolutionised the way researchers approach MP analysis, with machine learning (ML) 78 

gaining particular popularity as it enables a faster, more cost-effective, and less biased particle 79 

identification (Guo et al., 2024). Numerous prediction models based on ML have been developed for the 80 

automated detection and identification of MPs, where the main principles often rely on vibrational 81 

spectroscopy (Lin et al., 2022). Frequently used algorithms to do so include decision trees (DTs), random 82 

forests (RFs), support vector machines, K-nearest neighbours, and neural networks (Yan et al., 2022; Lin 83 

et al., 2022). Automation of MP analysis methods has however introduced both opportunities and 84 

challenges. Selecting the best model is data-dependent, where finding a trade-off between model 85 

performance, model complexity and computational speed is crucial (Maxwell et al., 2018). Machine 86 

learning programs can process large amounts of data with a high accuracy but can take up a lot of time to 87 

do so, especially when limited computing power is available, making it costly. For example, Focal Plane 88 

Array (FPA) array-based µ-FTIR images combined with a spectroscopic analysis pipeline allows for the 89 

automated comparison of MP polymers and their unique infrared spectra with spectral libraries using 90 

pattern recognition algorithms, but overall analysis time is still relatively high (Primpke et al., 2017). For 91 

instance, it may take 4 h to scan 14 x 14 mm with a pixel resolution around 11 µm (64 x 64 FPA detector 92 

elements) (Bergmann et al., 2019; Primpke et al., 2020a), while an additional 4 – 48 h is needed for spectral 93 

analysis by spectral correlation (Peeken et al., 2018; Primpke et al., 2020b; Primpke et al., 2020a). A 94 

compromise between model complexity and model performance also exists: although they often perform 95 



better, more complex ML algorithms such as RFs lack transparency as they are much harder to interpret, 96 

especially for non-experts in the field of AI (Breiman et al., 1993; Breiman et al., 2001; Witten et al., 2002). 97 

Simpler models like DTs are more intuitive and easier to interpret due to their transparency. However, 98 

they are less effective for complex or noisy datasets and are more prone to overfitting, which occurs when 99 

a ML model performs significantly better on training data than it does on new datasets (Breiman et al., 100 

1993; Breiman et al., 1996; Witten et al., 2002). 101 

 102 

Microplastics in the marine environment undergo weathering, e.g. due to mechanical forces, UV radiation, 103 

microbial colonisation, and hydrostatic pressure, leading to alterations in their physical and chemical 104 

structure (Fotopoulou et al., 2019; Shah et al., 2008; Fauvelle et al., 2021). These changes can complicate 105 

their detection and analysis (Dong et al., 2020; Liu et al., 2020), underscoring the need to consider 106 

weathered MPs in method development, effect studies, and leaching experiments, along with their 107 

pristine representatives. Standard Raman and IR spectra of MPs were shown to be significantly impacted 108 

by environmental weathering processes through shifts in their spectra (Dong et al., 2020) which in turn 109 

can interfere with the spectral matching process. Shifts in crystallinity and polarity (Maes et al., 2017) can 110 

also impact the fluorescence of NR-stained plastics due to the solvatochromism of the dye, i.e. its 111 

fluorescence changes based on the polarity of its environment, in this way affecting the accuracy of the 112 

approach. 113 

 114 

At present, the bulk of method development-focused research and effect studies still relies on pristine 115 

MPs (Waldman and Rillig, 2020; Alimi et al., 2022), yet recent studies suggest that aged plastics behave 116 

differently (Arp et al., 2021; Bhagat et al., 2022). This underlines the importance of implementing 117 

environmentally relevant MPs into future MP research for more accurate findings. To tackle this problem, 118 

MP structural and chemical transformations brought on by weathering processes are nowadays being 119 

studied during laboratory simulations. However, most research focuses only on a few ageing processes 120 

when mimicking environmentally relevant conditions (Alimi et al., 2022), while the degradation of MPs in 121 

the marine environment is influenced by fluctuations in weathering processes and abiotic factors like 122 

seawater temperature, salinity and hydrostatic pressure. In addition, degradation is affected by the 123 

polymer type, size, structure, shape, and density of MPs. The complex interplay between these variables 124 

makes it difficult to realistically simulate MP degradation in a laboratory setting. 125 

 126 



There is still much to uncover regarding the abundance, behaviour, and potential effects of smaller-sized 127 

MPs (< 100 µm). While methods capable of reaching this MP size threshold exist, the time and costs 128 

involved in analysis hinder routine assessments, emphasising the need for cost-efficient and high-129 

throughput analysis methods. Moreover, smaller-sized MPs are an emerging concern in the field of 130 

ecotoxicology (Beiras et al., 2020). A smaller size translates into an increased surface-to-volume ratio of 131 

MPs, which renders them more bioavailable (Mattsson et al., 2015, Wagner and Reemtsma, 2019). Their 132 

size can also accelerate physicochemical and biochemical reactions at their surface (Wayman et al., 2021). 133 

This disparity between current analysis methodologies and ecotoxicologically relevant MP sizes stresses 134 

the existing gap in our understanding of the true extent and impact of MP contamination in the marine 135 

environment. Addressing this issue is therefore imperative for a comprehensive assessment of MP 136 

pollution. 137 

 138 

A last significant challenge MP research faces is the interoperability of analysis methods. Ensuring a 139 

constant performance of a method across different laboratories, regardless of the diverse laboratory 140 

conditions, is of paramount importance in scientific research. Consistency across various laboratories 141 

strengthens the credibility of obtained findings using that method, creates a sense of confidence in the 142 

scientific community, and hence encourages the widespread adoption and application of a method. This 143 

in turn contributes to a more comprehensive understanding and management of MP pollution in marine 144 

ecosystems. 145 

 146 

Despite the urgent need for accurate and robust observations of MPs to assess environmental risks, many 147 

existing methods are labour-intensive and costly and may not always guarantee consistent performance 148 

across different laboratories. Moreover, current research often relies on pristine plastics, overlooking the 149 

complexities introduced by environmental weathering, which can alter the physical and chemical 150 

properties of MPs and impact analytical reliability. Additionally, there is a significant gap in cost-efficient 151 

methods for analysing smaller, ecotoxicologically relevant MPs. In response to the current shortcomings, 152 

this research focused on testing the robustness of two recently developed, automated, Nile-red (NR) 153 

based MP analysis techniques, created using two different ML algorithms. To do so, their ability to 154 

accurately analyse MPs weathered under semi-controlled surface water and deep-sea water conditions 155 

was assessed and compared, along with their analysis time and model complexity. Additionally, the size 156 

limit of the overall best performing technique was determined, i.e. the minimum particle size for which 157 

the model algorithm produces sufficiently accurate predictions in terms of plastic identity and polymer 158 
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type. Finally, we tested whether the knowledge rules generated by this classifier produce consistent 159 

results across different labs. The novelty of the developed method lies in its broad applicability, as it covers 160 

a diverse range of plastic polymers, weathering conditions, and instrumentation types, providing a 161 

comprehensive tool for advancing MP research. By verifying the robustness of the models, we assess their 162 

reliability for widespread adoption and application, which serves as a cornerstone for a comprehensive 163 

understanding and effective management of MP pollution within a marine context. 164 

 165 

2. Materials and Methods 166 

 167 

This work used an open-source approach that combines NR-stained particle fluorescence with machine 168 

learning models, following a comprehensive six-step protocol. First, two sets of Red, Green, and Blue 169 

(RGB) colour datasets were created using two types of microscopes: a fluorescence stereomicroscope 170 

(FSM) and a fluorescence microscope (FM). Each set had two datasets for training a ‘Plastic Detection 171 

Model’ (PDM) to classify particles as plastic or non-plastic, and a ‘Polymer Identification Model’ (PIM) to 172 

classify plastic particles by polymer type (Fig. 1 - step 1). This was done as per Meyers et al 2022 and 173 

Meyers et al., 2024a, where RGB-colour values extracted from pixels of particles photographed with a 174 

fluorescence microscope were used to generate RGB statistics that make up the datasets, which in turn 175 

were used to train models and make predictions of a particle’s identity based on its RGB statistics. The 176 

first set of RGB datasets, constructed at the laboratory of the Flanders Research Institute for Agriculture, 177 

Fisheries and Food (ILVO set with ILVO datasets 1 and 2) were used to generate and validate a total of five 178 

ILVO PDMs and five ILVO PIMs, and this using two types of ML algorithms, i.e. a decision tree (DT) and a 179 

random forest (RF) classifier (Fig. 1 - step 1). To do so, the datasets were split into 80% training data and 180 

20% test data. 181 

 182 

Secondly, the average number of correctly classified instances (CCI) + standard deviation (SD) (%) for a 183 

subset of particles unknown to the models (test datasets) was calculated for each of the models, and 184 

compared for both classifiers: plastic/non-plastics for the PDMs, and polymer type for the PIMs. Cohen's 185 

Kappa statistic, used to compare observed accuracies with expected accuracies, was also calculated (Fig. 186 

1 - step 2). Running five simulations per model (PDM/PIM) for each classifier enhanced the robustness 187 

and reliability of the evaluation process by mitigating the influence of random variations or chance 188 

occurrences on model performance. Thirdly, after also comparing their analysis time and model 189 

complexity (cfr. ‘2.2 Model construction and classifier comparison’) for the overall best scoring model 190 



algorithm, the average accuracy of the ILVO models based on the best performing ML algorithm was 191 

tested for the detection and identification of MPs weathered at sea under semi-controlled, surface water 192 

and deep-sea water conditions for a duration of 12 months using five simulations per model type (Fig. 1 - 193 

step 3). 194 

 195 

As a fourth step, a second set of models was constructed and validated, using the second set of RGB 196 

datasets constructed at the laboratory of the Flanders Marine Institute (VLIZ set with VLIZ datasets 1 and 197 

2), which comprised RGB data from images acquired at a higher magnification (VLIZ PDM and VLIZ PIM) 198 

(Fig. 1 - step 4) To do so, the existing RGB datasets from Meyers et al., 2022 were expanded. In the fifth 199 

step, the lower size limit of the developed approach was determined (cfr. ‘2.3 Lower size limit’) using the 200 

VLIZ models with the highest magnification (Fig. 1 - step 5). In a sixth and last step, the interoperability of 201 

the approach was tested by evaluating the average performance of the ILVO models for the VLIZ datasets 202 

1 and 2, and the performance of the VLIZ models for the ILVO datasets 1 and 2, based on five simulations 203 

per model type (Fig. 1 - step 6). 204 

 205 

 206 

Fig. 1. Schematic overview. A schematic overview of the comprehensive, six-step approach employed in this work, where the 207 

robustness of a microplastic analysis method based on machine learning models combined with fluorescent colouration of NR-208 

stained particles was thoroughly tested. 209 

 210 

2.1 Construction of datasets 211 

ILVO datasets 1 and 2 were based on images series acquired with a fluorescence stereomicroscope (Leica 212 

M205 FA Fluorescence stereomicroscope - LAS X software), at a magnification of 1 x 10, while images 213 



series for the two VLIZ datasets were acquired with a fluorescence microscope (LEICA DM 1000 - Leica 214 

Application Suite version 4.13.0), at a 10 x 10 magnification (Fig. 1) (Meyers et al., 2024b). To generate 215 

the RGB datasets for the ILVO PIM and the VLIZ PIM (as described in detail in Meyers et al., 2022), five 216 

and seven of the most abundantly produced MP polymers globally, respectively, as well as organic 217 

materials with high prevalence in the marine environment were selected. First, uncoloured and pristine 218 

polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyvinyl 219 

chloride (PVC) were obtained and cryomilled into heterogeneously shaped particles (50 - 1,200 µm) by 220 

specialized companies (Centexbel - Zwijnaarde, Belgium, and CARAT GmbH - Bocholt, Germany). The 221 

organic materials cotton, flax (raw and bleached), hemp (raw and bleached), silk, and wool (alpaca and 222 

sheep) were also obtained from Centexbel, while chitin, wood, and gull feathers were collected from the 223 

beach and cut into similarly sized particles. In the next step, less than 0.5 mg of each material (the different 224 

plastic polymers/organic material in general) was added to separate glass beakers containing Milli-Q 225 

water. To test the ability of the models to correctly classify unknown polymers as plastics, for the VLIZ 226 

PIM, two additional polymers were used, i.e. nylon and PUR particles. As PE and PP are similar with respect 227 

to their fluorescence as a consequence of their similar chemical structure (Meyers et al., 2022), it was 228 

decided to group them into one class to construct the ILVO PIM (‘PE/PP’). All MPs used were pristine, 229 

heterogeneously shaped uncoloured fragments, with varying densities (Gago et al, 2019). Next, the 230 

content of each beaker was filtered over a PTFE-filter (47 mm diameter, 10 μm pore size, Millipore Ltd.) 231 

using a MilliPore manifold system (3 + 3 workstations) (Merck Millipore) and stained with 1 mL of the 232 

fluorescent dye Nile red dissolved in acetone (10 μg mL−1) using a glass pipette. After 15 min, filters were 233 

rinsed with Milli-Q water and left to dry in a dark environment for 24 h. 234 

 235 

Particles were photographed with both types of microscopes using fixed settings, capturing a series of 3 236 

images per particle under a blue, green, and UV microscope filter (cfr. Table S1 for details). Red, Green, 237 

and Blue colour data from 135 (ILVO PIM) and 200 (VLIZ PIM) particles per plastic polymer type, or per 238 

group of plastics (PE/PP), were analysed to construct ILVO dataset 2 and VLIZ dataset 2 (n = 540 and n = 239 

1400). A random subselection of MP particles, evenly spread across all polymers, was used to construct 240 

ILVO dataset 1 and VLIZ dataset 1, complemented with RGB data from 420 (ILVO PDM) and 500 (VLIZ 241 

PDM) particles of natural origin (n = 840 (2 x 420) and n = 1000 (2x 500)). For the VLIZ datasets, 15 - 50 242 

images for each of the material types (i.e. all individual polymers, and a mix of organic materials) were 243 

used to build the datasets. Three PTFE filters per material type were used, acquired over three days. For 244 

the ILVO datasets, 6 images per material type, capturing an entire PTFE filter, were used. Six PTFE filters 245 



per material were employed, acquired over three days. All dataset sizes allowed for an appropriate 246 

statistical power for a small effect size (α = 0.05, power = 0.8) (Serdar et al., 2021). Required training 247 

dataset sizes of all four models for which prediction error was below 5% were also simulated using the 248 

randomForest package in R (Fig. S1) (Liaw & Wiener, 2002). 249 

 250 

Once the images were acquired, extraction of the RGB values from particle pixels was done through 251 

automated image analysis in the open-source image processing program ImageJ (Abràmoff et al., 2004) 252 

according to the updated procedure described in Meyers et al., 2024a. For each particle above a set size 253 

limit within each image series, a CSV file was generated with extracted RGB values of all pixels lying on 254 

the maximum Feret diameter of that particle, and this for the image acquired under the blue, green and 255 

UV filter. Next, per particle, for each microscope filter, statistics were calculated (10th, 50th and 90th 256 

percentile as well as the mean value) for each of the three colour values (R, G, and B) in R (R Core Team, 257 

2020). All 36 RGB statistics per particle were then automatically compiled into the above-mentioned 258 

datasets (cfr. Meyers et al., 2022 for method details). 259 

 260 

2.2 Model construction and classifier comparison 261 

For both classifiers (DT and RF), the generated RGB statistics were used as input variables, while the 262 

output was particle identity (plastic/non-plastic for the PDM and polymer type for the PIM). Decision tree 263 

classifiers create flowchart-like trees, where each internal node represents a test of a feature, the 264 

branches represent outcomes of the tests, and leaf nodes signify the output of the algorithm. The datasets 265 

were recursively split into smaller datasets based on the values of the features, i.e. the RGB statistics. The 266 

CART (Classification and Regression Tree) supervised ML algorithm (Therneau et al., 2015) was used to 267 

generate the DT classifiers (Meyers et al., 2022), (five simulations per model type) where, for the PDM 268 

and PIM, respectively, a minimum of 8 records had to be present in a node before a split was attempted, 269 

as well as a minimum of 3 records in an end node, and splits that did not enhance the model fit by 0.02 270 

were eliminated. To avoid overfitting, the model was allowed to grow until a depth where the validation 271 

metrics used either stagnated or declined. 272 

 273 

RF classifiers, on the other hand, average the output of multiple DTs fit on random subsamples (63.2%) of 274 

the dataset, and this to obtain a single result (bootstrap aggregating or bagging). Breiman’s RF algorithm 275 

(Breiman, 2001; Liaw & Wiener, 2002) was used to construct the RF classifiers here, where a fitting 276 

number of variables (cfr. Fig. S2 “optimal number of parameters”) were chosen each time at random out 277 



of all predictor variables, and the best split on these variables was used to divide the node. For each tree, 278 

the leftover data (36.8%) was then used to calculate the misclassification rate, i.e. the out of bag (OOB) 279 

error rate. The aggregated error, which determines the overall OOB rate of the classifier, was plotted for 280 

each model as a validation. To fine-tune the RF models, the number of trees to achieve the most accurate 281 

results was also determined (Fig. S3). The final, optimised models all had 500 prediction trees (ntree), 282 

each using max. 12 variables (mtry). 283 

 284 

To visualise classification performance of all four models, non-metric multidimensional scaling (NMDS) 285 

plots using the Bray-Curtis similarity index and default settings were generated in R (Fig. 2, Fig. S4) based 286 

on one of the five simulations for each model type. For both classifiers, the best features to split the data 287 

were based on the Gini impurity metric (Daniya et al., 2020). The accuracy of all models using both 288 

classifiers was assessed based on their CCI rate, their Cohen’s kappa statistic (McHugh, 2012), which is a 289 

measure of interrater reliability, and their confusion matrices. For the DTs, this was done by randomly 290 

selecting 4/5 of each dataset to train each of the five models per model type and keeping the remaining 291 

1/5 as a validation dataset based on the Pareto principle ratio (Dunford et al., 2014). For the RFs, five-fold 292 

cross-validations were performed to estimate the skill of the models on unseen data by re-training the 293 

models on the same design. Here, each dataset was split into five randomly chosen equal folds (each 294 

containing 1/5 of the dataset). Validation iterated over these folds, using each as a unique test dataset 295 

while training the model on the remaining four. Additionally, model training duration, analysis time, and 296 

complexity were assessed and compared for both classifier types. Furthermore, when the average overall 297 

model accuracy was < 70%, the model was considered unfit for MP analysis. 298 

 299 

RGB datasets derived from pristine MPs were used to construct all models. While the conventional 300 

approach may be to train models on datasets developed using weathered plastics, logistical constraints 301 

underscore the challenge associated with this approach (discussed under '4.4 Interoperability'). While 302 

conducting an extensive weathering of various polymers under environmentally relevant conditions as 303 

done here is relevant and feasible (cfr. ‘2.3 Natural weathering of microplastics’), it implies that models 304 

could only be built once weathering is finalised. Therefore, the initial strategy focused on assessing the 305 

performance of RF models trained on pristine materials when applied to weathered MPs, providing a 306 

pragmatic foundation for subsequent investigations. 307 

 308 



 309 

 310 

Fig. 2: Non-metric multidimensional scaling plots of the training datasets. The non-metric multidimensional scaling (NMDS) 311 

plots highlight the differences and similarities in fluorescent colouration of all Nile red-stained particles used to train the four 312 

models: from top to bottom, left to right: ILVO Plastic Detection Model (PDM), VLIZ PDM, ILVO Polymer Identification Model 313 

(PIM), VLIZ PIM. 314 

 315 



2.3 Natural weathering of microplastics 316 

To test the robustness of the classifiers, their ability to correctly classify naturally weathered plastics was 317 

tested. A mix of MP fragments (PE, PET, PP, PS, and PVC) sized 500 - 1000 µm (CARAT GmbH) was filled 318 

into stainless steel tubes (316 mesh) (Inoxia Ltd, 45.7 Dunsfold Park, Stovolds Hill, Cranleigh, GU6 8TB, 319 

United Kingdom), which were placed in stainless steel containers (Fig. 3). The containers were deployed 320 

in subsurface, coastal waters in the Norwegian Sea (Tromsø, Norway; 69.642730, 18.950389) in February 321 

2021 and in deep-sea waters (2380 m depth) of the Mediterranean Sea (off the coast of Marseille, France; 322 

42.807683, 6.043867) (Fig.3 and Fig. S5) in April 2021, respectively. During the exposure at sea, the 323 

stainless-steel containers deployed in subsurface waters were manually cleaned at regular intervals to 324 

remove bivalves and other attached organisms. The samples remained submerged in the sea for 12 325 

months before being retrieved. Afterward, the stainless-steel tubes were left under a fume hood to dry. 326 

Next, the microplastic particles were transferred into burnt (450 °C, 6 h) glass vials and brought to the 327 

laboratory. 328 

 329 

Following this, for each type of weathering, polymer particles were stained under the previously described 330 

conditions and photographed under the fluorescence stereomicroscope using the same settings as for 331 

pristine particles (Table S1). Hereafter, the average predictive performance of the FSM PDM and FSM PIM 332 

was tested using a random selection of 30 particles per polymer (PE/PP, PET, PS and PVC), for each type 333 

of weathering, totaling 240 particles. Additionally, ATR-FTIR spectra of each studied polymer were 334 

acquired in its pristine, surface water-weathered, and deep-sea water-weathered form (Perkin Elmer 335 

Frontier FTIR with UATR top plate with diamond/ZnSE crystal, Zaventem, Belgium). For clarity, deep-sea 336 

water-weathered (DSW) MPs and surface water-weathered (SFW) MPs will be referred to as DSW MPs 337 

and SFW MPs, respectively. 338 

 339 



 340 

Fig. 3a, 3b and 3c. Controlled natural weathering of microplastics. Stainless steel tubes (3b) were filled with a microplastic 341 

mixture and placed inside stainless steel containers. These containers were then submerged in subsurface coastal waters of the 342 

Norwegian Sea near Tromsø, Norway (3a), or in the deep sea off the coast of Marseille, France, in the Mediterranean Sea, for a 343 

duration of 12 months. For the deep-sea deployment, the containers were mounted on a carousel (3c), which was retrieved after 344 

weathering using an acoustic release system (Fig. S5). 345 

 346 

2.4 Lower size limit 347 

To determine the lower size limit of the two best performing models, for PE, PS, PET and PVC, a small 348 

amount of MPs (<0.5 mg) sized < 5 µm - 300 µm was added to a glass beaker with Milli-Q water, whose 349 

content was then filtered and NR-stained (cfr. ‘2.1 Construction of datasets’). One filter per polymer was 350 

obtained and photographed using the fluorescence microscope, which offers the largest magnification of 351 

both microscope types (i.e. 10 x 10). Next, all MPs present were analysed using the VLIZ PDM and PIM, 352 

and the number of pixels per MP used to predict the particle identity was assessed. A total of 2010 PET 353 

particles, 3939 PE/PP particles, 1596 PS particles and 2533 PVC particles were analysed and subdivided 354 

into 10 different size groups (Table S2), representing all particles present on the PTFE filter per polymer. 355 

Following this, a graph was constructed to plot predictive accuracy per size class for the PDM and PIM. 356 

The lower size limit for each polymer type was determined as the smallest number of pixels and 357 

corresponding size class for which both models achieved an accuracy > 70 %. 358 

 359 

 360 

 361 



2.5 Interoperability 362 

To test the interoperability of the analysis method, MPs imaged with the Leica M205 FA Fluorescence 363 

stereomicroscope were analysed using models trained on images from the LEICA DM 1000, and vice versa. 364 

In this process, all particles of datasets 1 and 2 from the VLIZ laboratory were analysed using models 365 

trained on datasets 1 and 2 from the ILVO laboratory, respectively, and vice versa. 366 

 367 

2.6. QA/QC 368 

As background control measures to prevent MP contamination, the use of plastic materials was avoided 369 

prior to the image acquisition, tools and glassware used were pre-cleaned with Milli-Q water and soap 370 

before use, sample processing was conducted in a laminar flow hood, and a 100% cotton lab coat and 371 

trousers were worn. Additionally, a subset of pristine MPs to construct the models as well as the 372 

weathered MPs were FTIR validated (cfr. Methods Supplement). 373 

 374 

3. Results 375 

 376 

3.1 Classifier comparison for pristine materials 377 

DT and RF classifiers both had high accuracies (> 90% for all models) based on the obtained CCI rates and 378 

Cohen’s kappa statistics (Table 1). Fluorescent colouration differed between plastic and organic particles, 379 

as well as between most polymers, except for PP and PE (VLIZ PIM), as is apparent from the NMDS plots 380 

(Fig. 2, Fig. 4, Fig. S4, Fig. S6). The PDMs based on both classifiers misclassified only a negligible number 381 

of organic and plastic materials. The PIM built using the DT approach misidentified PS particles as PE (4.4 382 

± 9.9%), PET (2.2 ± 2%), and PVC (2.2 ± 3.3%). Additionally, it misclassified PE as PS (3 ± 3.1%), PET particles 383 

as PVC (1.5 ± 2%), and PVC particles as PET (1.5 ± 2%) and PS (1.5 ± 2%). When using the RF approach, 384 

classification errors primarily involved PE/PP particles being classified as PS (0.7 ± 0%), PET as PS (0.7 ± 385 

0%), PS as PVC (1 ± 0.4%), and PVC as PS (0.7 ± 0%). For both classifiers, SDs were low and relatively 386 

constant, indicating minimal variability among the five obtained accuracies for each of the models. Based 387 

on model performances in Table 1, the accuracy of DT and RF classifiers was relatively similar for pristine 388 

materials. 389 

 390 

 391 

 392 



Table 1. Predictive accuracy of decision tree (DT) vs. random forest (RF) classifiers for pristine microplastics. Predictive 393 

accuracy of the Plastic Detection Model (PDM) and the Polymer Identification Model (PIM) for pristine MPs and organic 394 

material, based on DT and RF classifiers, using images acquired with a fluorescence stereomicroscope (FSM) (ILVO datasets 1 395 

and 2). 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

3.2 Classifier comparison for weathered MPs 409 

When considering the average predictive reliability of the ILVO models for weathered MPs, model 410 

performance was very similar for DT and RF classifiers across different types of weathering (77.2 ± 38% 411 

vs. 78.8 ± 36% for SFW particles, and 86.8 ± 20.2% vs. 87.8 ± 17.1% for DSW particles, respectively) (Table 412 

2). For SFW MPs, misclassifications were primarily PET particles classified as organic material (CCI rate of 413 

20.7 ± 8.3% for DTs and 25.3 ± 1.8% for RFs). For DSW MPs, the main misclassifications involved PE/PP 414 

particles identified as organic material (CCI of 57.3% ± 8.3% and 63.3 ± 0%). Average accuracies were 415 

substantially higher for SFW particles when PET particles were excluded from the analysis, for both DT 416 

and RF classifiers (96 ± 6.9% vs. 96.7 ± 5.8%, respectively). In contrast, for DSW particles, excluding PET 417 

had a negligible effect on accuracy (85.8 ± 24.6% vs. 87.6 ± 21, respectively).  418 

 419 

While the predictive accuracy of the PIM remained high for polymers such as PE/PP (SFW: 95.3 ± 3% and 420 

DSW: 98 ± 1.8%) and PS (only SFW: 89.3 ± 23.9%) using the DT classifier, PET and PVC showed substantial 421 

misclassification rates. For SFW and DSW MPs, respectively, PET had a CCI rate of 11.3 ± 7.7% and 36.7 ± 422 

22.9%, while PVC had a CCI rate of 58.7 ± 14.3% and 57.3 ± 27.6%. Moreover, the predictive accuracies 423 

for PS showed a relatively large variability (SD of 23.9%), indicating inconsistent performance of the DT 424 

classifier for this polymer type.  425 

 426 

 DECISION TREE CLASSIFIER RANDOM FOREST CLASSIFIER 

PRISTINE PLASTICS  

FSM (ILVO) 
PDM PIM PDM PIM 

CCI % 99.3 ± 1.1% 95.9 ± 2.3% 100 ± 0% 99 ± 0.5% 

Cohen’s κ 1 0.98 1 1 

PE/PP    97 ± 3.1%   99.26 ± 0% 

PET    98.5 ± 2%    99.26 ± 0% 

PS    91.1 ± 8.1%    97.93 ± 1% 

PVC    94 ± 1.7%    99.26 ± 0% 

Organic material 99.8 ± 0.5%  100 ± 0%  



When assessing the overall PIM performance, the RF classifiers outperformed the DTs. The average 427 

accuracies for RFs were 70 ± 39.2% for SFW MPs and 80.3 ± 14.8% for DSW MPs, compared to 63.7 ± 428 

38.4% and 60.8 ± 26.3% for DTs, respectively. Similar to the PDM, the average accuracy for SFW particles 429 

substantially increased, and the SD decreased when PET particles were excluded (88.9 ± 12.8%). For DSW 430 

particles, the accuracy remained relatively consistent (84 ± 15.7%). For the DT classifiers, only the average 431 

predictive accuracy of the PDM exceeded the 70% threshold. In contrast, both the PDM and PIM exceeded 432 

this threshold when using the RF classifiers. The RF models were hence considered most reliable for the 433 

accurate identification of MP polymers, except for the analysis of SFW PET particles (accuracy of 25.3 ± 434 

1.8%). 435 

 436 

The fluorescent colouration and intensity of pristine and SFW PET particles differed considerably 437 

compared to other polymers, particularly under the blue filter, which is crucial for some model 438 

parameters (Fig. 4 and Fig. S7). Attenuated Total Reflectance (ATR) spectra of each polymer, acquired in 439 

their pristine, surface water-weathered, and deep-sea water-weathered forms, are freely available in the 440 

open-access repository Marine Data Archive (Meyers et al., 2024c), and are visualised in Fig. S8 - S12.  441 

 442 

The ILVO PDMs and PIMs using DT classifiers consisted of five single trees, each based on different training 443 

datasets. The PDMs were pruned to a depth of 1, and had a total of 2 leaf nodes, while the PIMs were 444 

pruned to a depth of 5 to prevent overfitting, with a total of 9 leaf nodes, including multiple PE, PET, and 445 

PS and nodes. In contrast to these simpler models, the RF-based ILVO PDMs and PIMs required 100 trees 446 

each to produce accurate results, respectively (Fig. S3), with tree depths ranging from 1 - 5. Although 447 

model complexity increased, the computational time for generating predictions was < 10 s for both the 448 

DT and RF approaches. 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 



Table 2A (upper) and 2B (lower): Predictive accuracy of decision tree (DT) (2A) vs. random forest (RF) (2B) classifiers for 457 

weathered microplastics. Predictive accuracy of the Plastic Detection Model (PDM) and the Polymer Identification Model (PIM) 458 

for surface water-weathered MPs and deep-sea water-weathered MPs using DT and RF classifiers. 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 
SURFACE WATER  

WEATHERED MPS 

DEEP-SEA WATER  

WEATHERED MPS 

DECISION TREE 

CLASSIFIER 

FSM (ILVO) 

PDM PIM PDM PIM 

CCI % 99.3 ± 1.1% 95.9 ± 2.3% 99.3 ± 1.1% 95.9 ± 2.3% 

Cohen’s κ 1 0.98 1 1 

Total number of 

tested MPs 
77.2 ± 38.1% 63.7 ± 38.4% 86.8 ± 20.2% 60.8 ± 26.3% 

PE/PP 88 ± 3% 95.3 ± 3% 57.3 ± 8.3% 98 ± 1.8% 

PET 20.7 ± 8.3% 11.3 ± 7.7% 90 ± 4.1% 36.7 ± 22.9% 

PS 100 ± 0% 89.3 ± 23.9% 100 ± 0% 51.3 ± 25.3% 

PVC 100 ± 0% 58.7 ± 14.3% 100 ± 0% 57.3 ± 27.6% 

 
SURFACE WATER 

WEATHERED MPS 

DEEP-SEA WATER 

WEATHERED MPS 

RANDOM FOREST 

CLASSIFIER 

FSM (ILVO) 

PDM PIM PDM PIM 

CCI % 100 ± 0% 99 ± 0.5% 100 ± 0% 99 ± 0.5% 

Cohen’s κ 1 0.98 1 1 

Total number of 

tested MPs 

78.8 ± 36.0% 

(96.7 ± 5.8% 

without PET) 

70.0 ± 39.2% 

(88.9 ± 12.8% 

without PET) 

87.8 ± 17.1% (87.6 ± 

21 without PET) 

80.3 ± 14.8% 

(84 ± 15.7 

without PET) 

PE/PP 90 ±  0% 99.3 ± 1.5% 63.3 ± 0% 100 ± 0% 

PET 25.3 ± 0.5% 86.7 ± 0% 88.7 ± 0.5% 69.3 ± 1.5% 

PS 100 ± 0% 92.7 ± 1.5% 100 ± 0% 83.3 ± 7.8% 

PVC 100 ± 0% 74.7 ± 1.8% 99.3 ± 0.4% 68.7 ± 3.8% 



 495 

Fig. 4. Stereomicroscopic images of pristine and weathered microplastics. Images of four Nile red-stained, commonly produced 496 

microplastic polymers, acquired with a fluorescence stereomicroscope, under a blue, green and UV filter, and used by the models 497 

to predict a particle’s plastic identity, and to identify its polymer type based on fluorescence colouration and intensity. In this 498 

figure, pristine microplastics per polymer type are shown, as well as surface water-weathered microplastics and deep-sea water-499 

weathered microplastics. 500 

 501 

3.3 Lower size limit 502 

The VLIZ PDM and PIM both achieved sufficient accuracy (> 70%) for the lowest size class tested across all 503 

polymers (Fig. S13, Table S2). This class corresponds to particles with a maximum Feret diameter of 6 to 504 

30 pixels, meaning that predictions were based on the same number of RGB statistics. Under the 505 

magnification used, this corresponds to particles < 10 µm. After conversion, the smallest accurately 506 



identified particles were 2 µm (6 pixels) for PET, 4 µm (12 pixels) for both PE/PP and PS, and 4 µm (12 507 

pixels) for PVC. The lower size limit was determined by the smallest particle present on the respective 508 

PTFE filters (Table S2). 509 

 510 

3.4 Interoperability 511 

To assess the interoperability of the models, the ILVO models were tested on VLIZ datasets 1 and 2, and 512 

vice versa. Both models designed for plastic detection demonstrated a robust ability to identify nearly all 513 

plastic particles accurately when using the optimised in-lab method, achieving CCI rates of 100 ± 0% (VLIZ 514 

models) and 96.9 ± 0.1% (ILVO models). However, the ILVO PDM misclassified certain plastics such as 515 

nylon (CCI rate of 98.6 ± 0%) and PUR (80 ± 0.8%), which were unknown to the model (Table 3). Despite 516 

the high accuracy in plastic detection, the models showed a significant risk of overprediction. The ILVO 517 

models correctly identified only 58.7 ± 0.2% of organic materials photographed in the VLIZ laboratory, 518 

while the VLIZ models achieved a mere 0.8 ± 0.4% accuracy for organic materials photographed in the 519 

ILVO laboratory.  520 

 521 

While the models performed well for polymers like PE/PP (with accuracies ranging from 66.2 ± 4.6% to 522 

100 ± 0%), they were less accurate for other polymers such as PET, PS, and PVC when used with different 523 

instrumentation, with CCI rates ranging from 6.8 ± 0.3% to 55.9 ± 3%. These disparities indicate that the 524 

models in their current form are unsuitable for generating accurate predictions of particles based on 525 

images obtained using different microscope types or magnifications. 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 



Table 3: Interoperability of the RF models. The interoperability of the Plastic Detection Model (PDM) and the Polymer 538 

Identification Model (PIM) was tested by analysing MPs in the ILVO datasets 1 and 2, acquired with a fluorescence 539 

stereomicroscope (FSM) in the ILVO laboratory, using models based on the VLIZ datasets 1 and 2, respectively, acquired with a 540 

fluorescence microscope (FM) in the VLIZ laboratory, and vice versa. 541 

 542 

 543 

4. Discussion 544 

 545 

4.1 Choice of machine learning algorithm 546 

In this research, both DT and RF models demonstrated similarly high accuracies in detecting plastics and 547 

identifying the polymer composition of pristine materials. When applied to weathered plastic particles, 548 

both models maintained high detection accuracies (SFW: 77.2 ± 38% (DT) vs. 78.8 ± 36% (RF); DSW: 86.8 549 

± 20% (DT) vs. 87.8 ± 17 (RF)) (Tables 1 and 2). However, for identifying the specific polymers of weathered 550 

plastics, only the RF models achieved sufficiently high accuracies (SFW: 63.7 ± 38.4% (DT) vs. 70 ± 39.2% 551 

(RF); DSW: 60.8 ± 26.3% (DT) vs. 80.3 ± 14.8 (RF)). Decision tree and RF algorithms represent two 552 

prominent and popular ML approaches within MP research (Li et al., 2023; Wu et al., 2023; Yao et al., 553 

2023), each offering advantages and challenges. Decision tree models are more prone to overfitting, 554 

which can reduce accuracy on new data. A maximum depth as well as a minimum sample size per node 555 

should be specified to prevent the tree from growing endlessly, ensuring the model captures only the 556 

most general and crucial aspects of the dataset. Despite these challenges, DTs are valued for their 557 

transparency and interpretability. The simplicity of these white box models allows for an easy 558 

visualisation, which makes them particularly useful when model clarity is essential. 559 

 560 

 

ILVO MODELS BASED ON FSM 

– 

ANALYSED PARTICLES BASED ON FM (VLIZ) 

VLIZ MODELS BASED ON FM 

– 

ANALYSED PARTICLES BASED ON FSM (ILVO) 

RANDOM FOREST 

CLASSIFIER 
PDM PIM PDM PIM 

PE/PP 100 ± 0% 66.2 ± 4.6% 100 ± 0% 100 ± 0% 

PET 100 ± 0% 55.9 ± 3% 100 ± 0% 93.2 ± 0.3% 

PS 100 ± 0% 78.4 ± 27.4% 100 ± 0% 6.8 ± 0.3% 

PVC 100 ± 0% 100 ± 0% 100 ± 0% 18.5 ± 0% 

All plastics 96.9 ± 0.1% 73.3 ± 12.6% 100 ± 0% 35.4 ± 48.8% 

Organic 58.7 ± 0.2%  0.8 ± 0.4%  



Random forest models, classified as black box models, are inherently more complex than DTs, which can 561 

pose challenges in understanding their internal structure and interpreting the reasoning behind certain 562 

predictions. Unlike DTs, RFs do not provide a clear breakdown of weighted scores, but they are generally 563 

more robust, effectively handling the instability and overfitting issues that can affect a single DT (Bienefeld 564 

et al., 2022). Random forest models can leverage the power of multiple DTs for decision making by 565 

creating random subsets of features to build multiple smaller DTs, which are then combined. In qualitative 566 

data classification, such as in this study, the predictions of these DTs are aggregated through a majority 567 

voting system to produce a final prediction (Svetnik et al., 2003). Although RFs do not require pruning, 568 

their performance is sensitive to the number of predictive variables considered. Increasing these variables 569 

enhances model strength but also raises intercorrelation, while decreasing them has the opposite effect. 570 

Additionally, while increasing the number of trees generally improves predictive accuracy, a threshold 571 

exists beyond which there is no significant performance gain anymore. However, with an increasing 572 

number of trees to be tested often comes an increased analysis time. 573 

 574 

Our study underlines the robustness of the RF algorithm in managing alterations in polymers due to 575 

weathering in surface and deep-sea waters. The collective strength of RFs was essential in maintaining a 576 

sufficient predictive accuracy despite potential variations in fluorescence colouration and intensity caused 577 

by MP weathering. Moreover, the ability of the RF models to mitigate overfitting while enhancing 578 

interoperability contributed to their superior performance in capturing potential spectral changes or 579 

changes in fluorescence intensity across different polymers. Despite their complexity, the increase in 580 

computational costs associated with RF models compared to the DT models was negligible. Therefore, for 581 

analyses where both MP quantification and identification are required, RF emerges as the superior 582 

algorithm. However, if polymer identification is not a research goal, both DT and RF classifiers allow for a 583 

reliable analysis of MPs in a cost- and time-effective manner.  584 

 585 

The ability to accurately analyse weathered MPs makes the developed models particularly relevant, as it 586 

ensures their applicability to real-world environmental samples. Other studies have also leveraged RF 587 

classifiers for MP analysis: Vitali et al., 2024 developed a method for analysing MPs in bottled water using 588 

NR staining and an RF-based automated image processing workflow, achieving precise quantification and 589 

sizing of MPs down to 10 µm. At the same time, Wang et al., 2024 utilised flow cytometry coupled with 590 

ML, including RF algorithms, to effectively differentiate MPs from natural particles in aqueous 591 

suspensions. Alternative methods for identifying MP polymer types not based on chemical analysis include 592 



confocal fluorescence microscopy combined with fluorescence life-time imaging microscopy (FLIM), 593 

which distinguishes polymers based on emission spectra but has limited validation in real-world samples 594 

(Sancataldo et al., 2020). Another approach, using photoluminescence spectroscopy alongside NR 595 

staining, differentiates plastics based on their Stokes shift, although the impact of weathering on spectral 596 

emission still requires further study (Konde et al., 2020). 597 

 598 

The effective application of the new method requires a solid understanding of machine learning 599 

techniques, where DTs offer a straightforward and simple interpretation through their transparent inner 600 

structure, while the more complex RFs require a specialised knowledge, potentially requiring additional 601 

training. Next to this, while the multi-filter approach reduces the number of false positives compared to 602 

single-filter methods (Meyers et al., 2022) and enables polymer identification, its increased complexity 603 

requires a thorough understanding of the NR staining process, familiarity with the expected fluorescent 604 

colouration of reference plastics, and the ability to effectively operate fluorescence microscopes with 605 

multiple filters. 606 

 607 

4.2 Environmental weathering of microplastics and its consequences for microplastic analysis 608 

The developed models presented in this work leveraged the solvatochromic properties of NR to predict 609 

particle identity. The emission spectrum of NR shifts based on the polarity of its environment, which 610 

allows for distinguishing MPs into "polar" and "hydrophobic" categories according to their polymer 611 

characteristics (Maes et al., 2017). As polymer polarity increases, the maximum emission wavelengths 612 

shift towards longer wavelengths, facilitating further classification into specific polymer types through 613 

quantification of their fluorescent colouration (Meyers et al., 2022). Notably, the fluorescent colouration 614 

of SFW PET particles following NR staining substantially differed from that of pristine PET particles, a 615 

change not observed in DSW PET particles (Fig. 4). This suggests susceptibility of this polymer to 616 

weathering processes that are more dominant in sea-surface waters, such as UV radiation and 617 

microorganism settlement. To improve the accuracy of predictions for polymers like PET, it is 618 

recommended to include RGB data from weathered particles in the training datasets. This can be achieved 619 

through artificial weathering processes or semi-controlled environmental weathering, as implemented in 620 

this study. Incorporating such data would likely enhance the overall predictive accuracy of the models. 621 

Alternatively, RGB datasets could be constructed using naturally weathered MPs, although this approach 622 

may be more labour- and time-intensive. 623 

 624 



Plastic waste typically decomposes slowly but weathers and breaks down into MPs when exposed to UV 625 

radiation, mechanical abrasion, temperature changes, and biodegradation. These weathering processes 626 

rapidly alter the physical and chemical properties of MPs, affecting their environmental behaviour, 627 

including increased leaching of additives, changes in molecular weight and surface roughness, and 628 

enhanced pollutant absorption due to biofilm formation (Liu et al., 2019; Duan et al., 2021). The absence 629 

of a pretreatment step, which generally applies for water samples low in organic content (Gago et al., 630 

2019), may have allowed biofilm residues to remain on the MPs, potentially affecting NR staining and 631 

fluorescence analysis. A recent validation study from our laboratory that employed digestion methods 632 

(Meyers et al., 2024) demonstrated higher accuracy in identifying weathered MPs, with 98.25 ± 3.04% of 633 

DSW MPs and 100% of SFW MPs correctly identified by the PDM. The slightly lower accuracy observed in 634 

the current study (78.8 ± 36% for SFW MPs and 87.8 ± 17% for DSW MPs) may be attributed to the 635 

presence and costaining of biofilms on the untreated MPs (Macedo et al., 2005). The polymer 636 

identification accuracy for weathered plastics was similar in both studies. 637 

 638 

Environmental ageing processes pose challenges for MP analysis methods, which are often designed and 639 

tested using pristine MPs. As became apparent from the obtained results, weathering-induced changes in 640 

chemical and physical properties can affect the fluorescent colouration of NR-stained MPs, hindering 641 

accurate model classification. Standard Raman and IR spectra of MPs are also affected by aging, leading 642 

to shifts that complicate matching with commercial libraries of pristine materials (Fig. S8-S12) (Dong et 643 

al., 2020). Developing reference libraries based on naturally weathered MPs could address this issue, but 644 

it may increase total analysis time and labour costs. However, adding weathered MP spectra to 645 

commercial libraries of pristine MPs has also been shown to improve spectral matching accuracy for 646 

environmental samples (De Frond et al., 2021). The ATR spectra generated during this study have been 647 

made publicly available (Meyers et al., 2024c). Weathering-induced polymer alterations and potential 648 

changes in associated additives may also complicate identification and quantification based on mass 649 

spectrometry, another frequently employed analysis (Primpke et al., 2020a). In addition to this, 650 

weathering processes may interfere with the step preceding the analysis, where samples are extracted 651 

from sample matrices. Environmental degradation has been shown to alter the densities of certain 652 

polymers (Kowalski et al., 2016), potentially making it more difficult to efficiently isolate all MPs present 653 

in sediment samples. 654 

 655 

 656 



4.3 Weathered reference plastics 657 

Researchers are increasingly recognising the importance of using reference materials that mimic the 658 

properties of weathered MPs when developing and testing new methods, next to the incorporation of a 659 

variety of MP polymers, sizes and shapes. This study employed a unique approach by weathering a mix of 660 

MPs at sea under semi-controlled surface water and deep-sea water conditions for 12 months, offering a 661 

compromise between controlled laboratory simulations and the weathering of MPs under untraceable 662 

natural conditions. By adopting this approach, we address inherent challenges associated with both 663 

methodologies: unlike conventional laboratory experiments, the weathering process took place under 664 

authentic natural conditions. Consequently, the MPs within the containers were exposed to the combined 665 

effects of diverse degradation processes and various influencing factors. Periodic cleaning of the surface 666 

water containers ensured unobstructed water flow, facilitating natural biodegradation processes. 667 

However, the degree of UV weathering in the surface weathering experiment might have been influenced 668 

by the experimental setup, as sunlight only partially passed through the container pores. Similarly, the 669 

impact of sea wave force may have been partially mitigated by the container. Nevertheless, this setup was 670 

imperative for the controlled natural degradation of MPs within the confines of the container. Despite 671 

being potentially less labour- and time-intensive compared to the collection of weathered MPs/the 672 

collection and cryomilling of weathered macroplastics, the duration of degradation was set to a period of 673 

one year in order to be meaningful. As a last point, despite introducing heterogeneity in shape, the process 674 

of cryomilling to produce the used MP fragments did not mimic mechanical weathering to the full extent, 675 

as various processes such as stretching, tearing, and crushing also contribute to plastic fragmentation in 676 

a marine context. Consequently, crucial MP characteristics for risk assessments, such as particle size, do 677 

not fully align with the naturally occurring composition. However, in contrast to environmentally sourced 678 

MPs with unknown origins and history, the precise deployment location and bathymetric conditions were 679 

known and controlled for, along with the duration of weathering. Meteorological conditions, currents, 680 

weather patterns, and UV radiation can be retrospectively traced, and can provide a comprehensive 681 

understanding if required. Additionally, the study employed a MP composition of the most prevalently 682 

produced and encountered plastics, which enhances the global applicability of the results. Lastly, the MPs 683 

in this study underwent a weathering duration of 12 months, surpassing the temporal scope of many prior 684 

studies (e.g. Naik et al., 2020). Nonetheless, it is acknowledged that certain MPs require multiple years to 685 

exhibit substantial weathering effects (Chamas et al., 2020). Alternatively, environmentally relevant 686 

weathered MP samples can be produced by cryomilling plastic macrolitter collected from beaches (Kühn 687 

et al., 2018). 688 



 689 

Future prospects of the approach applied in this work include deployments of weathering containers over 690 

prolonged durations to accurately reflect long-term degradation processes, while the generation of MPs 691 

through mechanical abrasion processes representative of the marine environment should be pursued. 692 

Next to this, refinements in experimental setup are required to ensure unhindered exposure of MPs to 693 

sunlight and mechanical forces.  694 

 695 

4.3 Lower size limit 696 

The RF models in this study showed an accuracy > 90% for particles with Feret diameters between 12 and 697 

30 pixels,corresponding to MPs < 10 µm at the microscope magnification used.  The ability to identify MPs 698 

of ecotoxicologically relevant sizes (Beiras et al., 2020) in a cost- and time-effective way enhances the 699 

ecological relevance of the method and fills a critical gap. Other frequently used MP analysis methods 700 

show similar lower size limits, e.g. 1 µm for µ-Raman and 10 - 20 µm for µ-FTIR (Cabernard et al., 2018; 701 

Mintenig et al., 2019; Primpke et al., 2020a). Although no MP size limitation exists for GC-MS-based 702 

techniques, a significant drawback is their inability to quantify or characterise MPs physically, information 703 

that is essential for risk evaluations (Schwarzer et al., 2022, Qiao et al., 2019). In prior research, NR co-704 

staining of organic material like residual fat posed challenges for NR-based MP analysis (Prata et al., 2021). 705 

Efficient matrix removal is crucial but often not feasible, risking inaccuracies in MP 706 

detection/quantification (Shruti et al., 2022). In this study, however, the use of multiple filters (UV, blue, 707 

green) and the inclusion of fluorescence data unique to organic materials and distinct from plastic into 708 

the RF models helped to differentiate between these materials. Additionally, the risk of persistent false 709 

positives due to similar fluorescence could be reduced using customised RGB datasets (cfr. ‘4.4 710 

Interoperability’).  711 

 712 

Other methods have also succeeded in detecting smaller MPs using a NR-based approach. For example, 713 

Ko et al., 2024 introduced a system combining fluorescence labelling with a microfluidic device and 714 

particle tracking software, enabling automated size measurement and real-time discrimination of MPs 715 

sized 100–1000 nm, such as PS and PVC, in small water samples. Similarly, Bianco et al., 2022 developed 716 

a method combining NR staining and flow cytometry and was able to quantify plastic particles in the 0.6–717 

15 µm size range. 718 

 719 

 720 



 721 

4.4 Interoperability 722 

Ensuring consistent method performance across different laboratories is crucial in scientific research and 723 

environmental monitoring. When comparing the performance of models built and tested with distinct 724 

microscopes, both demonstrated high accuracies for pristine materials. However, during the 725 

interoperability assessment, the accuracy of the RF algorithm decreased when models were built and 726 

tested using images acquired with different microscope types. Implementing a preprocessing pipeline as 727 

a normalisation step to address differences in image acquisition parameters, or leveraging transfer 728 

learning, could help tackle this issue. Another option is the development of new datasets. While this 729 

outcome presents a challenge, it is important to note that the foundation of the method lies in training 730 

datasets which can be easily and rapidly constructed for a specific laboratory (Meyers et al., 2022). For 731 

instance, using a fluorescence stereomicroscope (FSM), over 100 reference particles sized < 500 µm can 732 

be filtered onto a single PTFE filter and captured in a single image series (blue, green, and UV filters), 733 

enabling the construction of an RGB dataset within a day following staining. To enhance predictive 734 

robustness, it is however recommended to include RGB data from MPs stained with NR at different points 735 

in time. Building a training dataset, constructing a model, and testing its accuracy can be completed in 736 

two days. This inherent flexibility of the method allows for its swift adaptation and optimisation, in this 737 

way ensuring the possibility to fine-tune the method to specific laboratory conditions and set 738 

requirements. In this way, researchers can account for unique variables in their own research that could 739 

potentially affect model performance, such as 1) the specific MP polymer composition being targeted, 2) 740 

the matrix type from which these MPs are extracted and which may interact with the MPs’ NR 741 

fluorescence, 3) the specific types of organic material present in that matrix which could interfere with 742 

MP detections (e.g. chitin in seawater samples or lipid residues in gastrointestinal tracts (GITs) of fish), 4) 743 

the microscope model and magnification used to perform the analyses, and so on. Consequently, the 744 

lower accuracy obtained when testing the interoperability of the models does not impede their 745 

implementation elsewhere. Instead, it emphasises the adaptability of the developed method. Giving 746 

laboratories the ability to efficiently create customised datasets allows them to address specific 747 

challenges encountered, thereby strengthening the robustness of the method and its successful 748 

deployment in diverse environments.  749 

 750 

Additionally, this cost-effective approach is particularly beneficial for laboratories that lack the expensive 751 

equipment often associated with MP analysis (Primpke et al., 2020a). In this way, the approach enables a 752 



broader range of laboratories to engage in MPs research, facilitating the advancement of knowledge on 753 

plastic pollution across diverse marine environments worldwide. 754 

 755 

5. Conclusion 756 

 757 

Both DT and RF models demonstrated high accuracy in detecting pristine and weathered MPs. Despite 758 

their complexity, RF models are preferred for polymer identification due to their superior performance 759 

and minimal increase in computational time. Although the models generally had a high predictive 760 

reliability, incorporating RGB data from weathered particles could further enhance accuracy for specific 761 

polymers like PET. The models also proved effective in detecting and identifying MPs smaller than 10 µm, 762 

underlining their potential in analysing ecotoxicologically relevant MPs in marine environments. Although 763 

interlaboratory assessments revealed challenges related to microscope type variations, the adaptability 764 

of the RF models allows customisation to specific conditions, ensuring robustness and successful 765 

application in diverse settings.  766 

 767 

The relevance and novelty of the method are underscored by its ability to accurately analyse MPs 768 

weathered under various marine conditions, making it highly applicable to real-world environmental 769 

samples. Additionally, its capability to detect ecotoxicologically relevant MP sizes in a cost- and time-770 

effective manner addresses a critical gap in MP research. Moreover, by providing a cost- and time-771 

effective alternative to traditional methods, the ML-based method enables a wide range of laboratories 772 

to engage in MP research. 773 
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