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Abstract

Passive acoustic monitoring (PAM) is commonly used to obtain year-round

continuous data on marine soundscapes harboring valuable information on

species distributions or ecosystem dynamics. This continuously increasing

amount of data requires highly efficient automated analysis techniques in order

to exploit the full potential of the available data. Here, we propose a bench-

mark, which consists of a public dataset, a well-defined task and evaluation

procedure to develop and test automated analysis techniques. This benchmark

focuses on the special case of detecting animal vocalizations in a real-world

dataset from the marine realm. We believe that such a benchmark is necessary

to monitor the progress in the development of new detection algorithms in the

field of marine bioacoustics. We ultimately use the proposed benchmark to test

three detection approaches, namely ANIMAL-SPOT, Koogu and a simple cus-

tom sequential convolutional neural network (CNN), and report performances.

We report the performance of the three detection approaches in a blocked

cross-validation fashion with 11 site-year blocks for a multi-species detection

scenario in a large marine passive acoustic dataset. Performance was measured

with three simple metrics (i.e., true classification rate, noise misclassification

rate and call misclassification rate) and one combined fitness metric, which

allocates more weight to the minimization of false positives created by noise.

Overall, ANIMAL-SPOT performed the best with an average F metric of 0.83,

followed by the custom CNN with an average fitness metric of 0.79 and finally

Koogu with an average fitness metric of 0.59. The presented benchmark is an

important step to advance in the automatic processing of the continuously

growing amount of PAM data that are collected throughout the world’s oceans.

To ultimately achieve usability of developed algorithms, the focus of future

work should be laid on the reduction of the false positives created by noise.

Introduction

Passive acoustic monitoring (PAM) creates massive

amounts of valuable data to monitor fauna with bio-

acoustic methods. PAM has the great advantage of being

able to collect continuous data at logistically challenging

locations. Therefore, this method of data collection plays

an especially large role in the investigation of marine hab-

itats and species. The continuously increasing amounts of

PAM data make the manual review of these data by

human experts more and more impractical and require

automatized approaches to process and analyze data to

gain knowledge on spatio-temporal patterns of sounds-

capes, species presence and behavior. While numerous

statistical and threshold-based methods are available to

solve acoustic detection and classification problems auto-

matically, these methods often suffer from either low sen-

sitivity (i.e., high false-negative rate) or low selectivity

(i.e., high false-positive rate), not achieving the accuracy

of human classification abilities (Baumgartner & Musso-

line, 2011; Kowarski & Moors-Murphy, 2021; Roca &
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Van Opzeeland, 2019; Schall et al., 2021; Thomisch

et al., 2016). Common statistical methods extract repre-

sentative measurements from the time, frequency and

amplitude domain of given audio files which are then

supplied to machine learning algorithms or filtered by

applying previously tested threshold values (Bittle & Dun-

can, 2013; Usman et al., 2020). These methods often still

require a considerable amount of control through manual

post-processing of results (Kowarski & Moors-Murphy,

2021; Schall et al., 2021) The biggest challenges when it

comes to automatic detection and classification methods

are coping with low signal-to-noise ratios, simultaneous

species and noise presence, sparsity of signals of interest,

variability in vocalizations (e.g., inter- and intra-

populational or interindividual) and overlapping vocaliza-

tions (Stowell, 2022).

The analysis of acoustic data is usually based on the

use of spectrograms featuring high temporal and spectral

resolutions. Computer vision techniques have delivered

promising results in recent years with regard to auto-

mated spectrogram classification mainly implementing

deep learning techniques such as convolutional neural

networks (CNNs; Allen et al., 2021; Bergler et al., 2019;

Dugan et al., 2014; Halkias et al., 2013; Poupard

et al., 2021; Stowell et al., 2019). A main requirement for

achieving good results with deep learning techniques is

the availability of large annotated datasets to train, vali-

date and test models, which contain as much of the exist-

ing variability of soundscapes as possible. This is

beneficial so that the model learns to generalize over dif-

ferent spatial and temporal scales to ensure a broad appli-

cability of the developed models in the light of increasing

data availability. Numerous bioacoustic software tools

provide the functionality to train your own CNNs or even

predict your data with pre-trained models, such as Ketos

(Kirsebom et al., 2021), Koogu (Madhusudhana, 2022),

aviaNZ (Marsland et al., 2019), ANIMAL-SPOT (Bergler

et al., 2022), gibbonfindR (Clink & Klinck, 2019), sound-

Class (Silva et al., 2022), OpenSoundscape (Lapp

et al., 2023) and Raven Pro 1.6.5 (K. Lisa Yang Center for

Conservation Bioacoustics, 2023). Even more publications

report on developed and tested models that can be used

to analyze marine passive acoustic data to detect marine

animal vocalizations (Allen et al., 2021; Belghith

et al., 2018; Bergler et al., 2019; Best et al., 2020, 2022;

Bohnenstiehl, 2023; Kirsebom et al., 2020; Madhusudhana

et al., 2021; Miller et al., 2023; Rasmussen & Širović, 2021;

Rycyk et al., 2022; Shiu et al., 2020; Vickers et al., 2021;

White et al., 2022; Zhong et al., 2020, 2021). However,

there is only a small number of actual applications of

these models to long-term data (Allen et al., 2021; Best

et al., 2022; Bohnenstiehl, 2023; Lammers et al., 2023;

Rycyk et al., 2022). We believe that this is because most

published approaches were evaluated on subsets of data

that do not necessarily represent a real-world detection

scenario (e.g., Belghith et al., 2018; Vickers et al., 2021;

White et al., 2022). A real-world detection scenario in the

marine realm is almost always characterized by a large

imbalance between shorter time periods when animal

vocalizations are present and longer time periods when ‘

only’ environmental (e.g., rain, earthquakes, currents) or

anthropogenic noise is present (e.g., shipping). Addition-

ally, not only should the dataset be imbalanced, but the

soundscape diversity of training, validation and testing

datasets should be representative of long-term and

large-scale PAM data. These two factors are of key impor-

tance when designing a real-world dataset for the evalua-

tion of broadly applicable detection algorithms for marine

sounds, posing additional challenges for the development

of detection algorithms.

Therefore, to measure the performance of available

approaches in a controlled and standardized way, there is

the need for a neutral benchmark (Weber et al., 2019),

which consists of a defined task specifically designed to

measure the performance of different algorithms on a

real-world dataset of marine passive acoustic data. For

this special case of highly imbalanced datasets from

marine PAM (in comparison to terrestrial recordings), we

need to make sure that the dataset on which performance

is reported on is representative of real-world marine PAM

datasets. Here we describe a benchmark for the detection

of baleen whale vocalizations which is based on a large

annotated dataset (1880.25 h) from seven Antarctic loca-

tions, 4 years and all months of the year. This dataset is

considered to be representative of real-world marine

PAM data. We highlight the need to document perfor-

mance with three simple and one combined performance

metrics and already evaluated three CNN-based detection

algorithms on the basis of the presented benchmark.

The evaluation code for this benchmark is available

at https://gitlab.awi.de/oza-sound-detectors/cnn_sound_

detection.

Materials and Methods

Showcase for choice of dataset and metrics

Dealing with imbalance in the data is a well-known chal-

lenge in machine learning. Some metrics commonly used

in classification tasks can be misleading when evaluating

highly imbalanced data (Johnson & Khoshgoftaar, 2019).

Furthermore, in marine bioacoustics, there has been a

challenge with proper generalization of the positive class,

due to the aforementioned imbalance of the signal of

interests and the non-gaussian distribution of ocean

noise. Properly evaluating algorithms dealing with such
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challenges depends on the specific task at hand to, for

example, avoid that algorithms trained in one single loca-

tion do not always perform well on unseen locations. We

showcase the importance of the dataset and evaluation

metrics’ choice by training and testing a simple CNN

classifier (for the description of model setup, see

“Experimental model setup”, Appendix S1) on an anno-

tated marine passive acoustic dataset with varying levels

of imbalance: when the model is trained on a dataset in

which noise is only represented by a small proportion, its

performance is usually also good on a similar test dataset

in which noise is represented by a small proportion, but

its performance can drop when tested on more and more

imbalanced datasets (Fig. 1). Second, we need to make

sure that performance is monitored in a way that the

used metric is also representative of the detection goal,

namely a high recall for all the vocalization classes and a

low false-positive rate caused by noise. The importance of

this can be illustrated by the results of the simple CNN

classifier trained on a high noise percentage (i.e., 90%)

and tested on varying levels of imbalance: its accuracy

increases when tested on datasets with increasing levels of

imbalance; however, this is only due to its ability to cor-

rectly classify noise as the recall for the vocalization clas-

ses remains at moderate values for all tests (Fig. 1).

Dataset

The library of annotated circum-Antarctic recordings for

Antarctic blue and fin whale vocalizations published by

Figure 1. Model evaluation for two different training conditions: 10% noise in the training set versus 90% noise in the training set. Accuracy

represents the number of correct predictions divided by the total number of predictions; the false classification rate represents the number of

false predictions divided by the total number of predictions and the average of the recalls per class (per class true predictions divided by per class

actual positives).
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Miller et al. (2021) was used for this benchmark. This

library consists of 1880.25 h of annotated audio record-

ings across seven Antarctic sites and 11 site-year combina-

tions, covering multiple months per year.

This dataset was chosen for the benchmark because it

represents a multi-class detection scenario for baleen

whale vocalizations in a real-world long-term dataset with

a realistic imbalance toward the presence of noise with

73–99.9% of the time having only noise presence (average

91%, median 94%). The annotations comprise seven

vocalization categories from Antarctic blue whales and fin

whales: the Antarctic blue whale Z-call represented by the

A-call (A), B-call (B) and the entire Z-call (Z), the

Antarctic blue whale D-call (D), the fin whale

40Hz-downsweep (Dswp) and the fin whale 20Hz-pulse

represented by the 20Hz-pulse (20Hz) and the

20Hz-pulse plus overtone (20Plus). The representation of

these seven vocalization categories within the entire data-

set and the different site-year combinations is highly

imbalanced (Table 1).

For the usage of this dataset in this benchmark, we

consider the possibility to join certain vocalization cate-

gories into one category. For example, the Antarctic blue

whale ‘A’, ‘B’ and ‘Z’ vocalization categories are all part

of the same vocalization, namely the Antarctic blue

whale Z-call, and they occur rather as a continuum in

the dataset than as separable categories (Fig. 2; Ljung-

blad et al., 1998; Rankin et al., 2005). Second, the fin

whale 20Hz-pulse is represented by both only the 20 Hz

component and the 20 Hz component plus its overtone

(Fig. 2; Širović et al., 2004). Finally, the Antarctic blue

whale D-Call and the fin whale 40Hz-downsweep are

two vocalization categories for which differentiation cri-

teria are not fully understood up to date (Fig. 2; Ou

et al., 2015) which makes it likely to have confusions

between these two categories in the ground truth anno-

tations. Therefore, we consider the possibility to join ‘A’,

‘B’ and ‘Z’, ‘20Hz’ and ‘20Plus’, as well as ‘D’ and ‘

Dswp’ into each one category, which consequently allows

for five different cases of class separation (Table 2). Pre-

liminary model training and following performance ana-

lyses (for the description of model setup, see

“Experimental model setup”, Appendix S1) including all

five cases showed a considerable increase in classification

performance when joining all three above described

(sub-) categories as in case 5 (Table 2). Therefore, all

below-described experiments were conducted concerning

the detection/classification task of this case and future

uses of this benchmark can consider joining categories

as in any of the presented cases in order to increase

detection feasibility.

Data split

For the purpose of a neutral benchmark, the focus should

be on creating a realistic scenario of using published algo-

rithms or even pre-trained models on someone’s (newly

collected and therefore) unseen data (Weber et al., 2019).

The test data for this benchmark should therefore be split

in a blocked-cross-validation approach for which each

one site-year combination is excluded from the training

and validation procedure and only used for the test. This

way our benchmark makes sure that different algorithms

are tested thoroughly on different independent unseen (in

this case 11) datasets. The test dataset from each site-year

combination should then be sequenced with a

sliding-window approach to imitate a realistic detection

task in an unknown dataset. The model evaluation results

Table 1. Dataset composition from Miller et al. (2021) for the 11 site-years and seven vocalization categories (‘A’, ‘B’, ‘Z’, ‘D’, ‘Dswp’, ‘20Hz’,

‘20Plus’).

Site-year

Vocalization categories

A B Z D 20Hz 20Plus Dswp

Maud Rise 2014 2191 37 28 70 23 5 6

Greenwich 2015 827 157 29 66 2 1 46

Kerguelen 2005 812 237 166 435 788 78 444

Kerguelen 2014 2557 1177 563 435 1920 1826 344

Kerguelen 2015 1970 542 236 1180 552 718 344

Casey 2014 3681 1398 1091 679 17 0 0

Casey 2017 1741 558 119 553 78 214 0

Ross Sea 2014 104 0 0 0 0 0 0

Balleny Islands 2015 923 44 31 46 951 148 78

Elephant Island 2013 2447 1672 141 10 600 3266 1599 965

Elephant Island 2014 6934 967 100 1034 4940 2912 4077

Total 24 189 6791 2506 15 100 12 539 7503 6306

Note the natural imbalance in the dataset.
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accordingly have to be reported on all 11 site-year

combinations.

The training validation split of the benchmark is up to

the model developer. For the three runs presented here,

the training and validation sets consisted of a total of

30 000 samples for each of the four classes (‘ABZ’,

‘20Hz20Plus’, ‘DDswp’ and ‘Noise’) which were split ran-

domly into training and validation sets, with slightly dif-

ferent training–validation ratio proportions (we consider

these proportions as part of the approaches that are to be

compared based on the presented benchmark as different

proportions have both advantages and disadvantages).

Model evaluation

For the model evaluation within the framework of this

benchmark for baleen whale detection, we want to put

emphasis on the reduction of false positives created by

noise (e.g., electronic noise, strumming noise, ambient

noise caused by wind, rain, sea ice or earthquakes, vocali-

zations from other species) as this is the biggest challenge

when it comes to detecting baleen whale sounds in large

passive acoustic datasets. The focus of this benchmark

lays on finding solutions for the continuously increasing

(large) passive acoustic datasets that require highly

Figure 2. Exemplary spectrograms of the seven vocalization categories. All displayed sounds have a sampling rate of 250 Hz and are

bandpass-filtered between 5 and 124 Hz. The spectrograms have 15 s duration and 125-Hz bandwidth and were created with 256 window size,

98% overlap and 3570 FFT (Fast Fourier Transform) size, which is representative of the input to the models in the experiments.

Table 2. Cases for category combinations (original categories: ‘A’, ‘B’, ‘Z’, ‘D’, ‘Dswp’, ‘20Hz’, ‘20Plus’, ‘Noise’).

Case         

1) A B Z D Dswp 20Hz 20Plus Noise 

2) A B Z D Dswp 20Hz 20Plus Noise 

3) A B Z D Dswp 20Hz 20Plus Noise 

4) A B Z D Dswp 20Hz 20Plus Noise 

5) A B Z D Dswp 20Hz 20Plus Noise 
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efficient automated analysis techniques in order to exploit

the full potential of the available data. Therefore, we con-

sider three different metrics for model evaluation: (1) the

vocalizations’ true classification rate (TCR) that describes

the average TCR or the recall from all the vocalization

categories (i.e., excluding the Noise category), (2)

the noise misclassification rate (NMR) that describes the

false-positive rate generated by the noise category for the

vocalization categories and (3) the call misclassification

rate (CMR) that describes the average misclassification

rate of the vocalization categories among each other. True

positives, false positives and false negatives are counted

from the confusion matrices that are based on the count

of all input segments provided to a specific approach.

The exemplary confusion matrix in Table 3 and the fol-

lowing calculations show how to obtain the three metrics

in the case of the 4-class detection task (i.e., case 5,

Table 2):

TCR ¼ TP1

ABZtotal
,

TP2

20Hz20Plustotal
,

TP3

DDswptotal

� �
;

NMR ¼ FPn1 þ FPn2 þ FPn3
Noisetotal

;

True classification rate has to be maximized and NMR

and CMR have to be minimized. As a fourth metric, we

combine these three metrics into one fitness metric (F )

which will be used for model comparison. We propose

the following in order to give more weight to the minimi-

zation of false positives created by noise

F ¼ TCR, 1�NMRð Þ, 1�NMRð Þ, 1�CMRð Þð Þ:

The alternative confusion matrices and corresponding

formulas for the four metrics in case of an evaluation

based on the other four cases listed in Table 2 are pro-

vided in Appendix S1 (Case 1, Case 2, Case 3, Case 4).

Experiments

In order to provide the first model performance results

alongside this benchmark, we tested three CNN-based

classifiers. Two of these CNN models are published

models that were designed for bioacoustic detection and

classification tasks, namely ANIMAL-SPOT (Bergler

et al., 2022) and the Python package Koogu (Madhusud-

hana, 2022). The third CNN model is a custom-made

sequential CNN inspired by AlexNet (Krizhevsky

et al., 2017) tuned to handle the current benchmark. All

three models were trained, validated and tested on the

task of classifying the three joined vocalization categories

‘ABZ’, ‘20Hz20Plus’ and ‘DDswp’ and a separate ‘Noise’

category. Since all three approaches needed different data

inputs and slightly different configurations, we will pro-

vide the information on how data were preprocessed and

training, validation and tests were performed in separate

sections below. Details are summarized in Table 4.

ANIMAL-SPOT

For ANIMAL-SPOT, the entire dataset was decimated to

250 Hz, bandpass-filtered between 5 and 124 Hz and then

sequenced into 15 s wave files with 12.5 s overlap. If the

time limits of a wave file overlapped to 100% with a cor-

responding vocalization annotation, we assigned the cor-

responding label, otherwise we assigned the label ‘Noise’.

If a wave file overlapped with more than one annotation

of the different vocalization categories, the wave file got

assigned one random choice of the labels from the anno-

tations with overlap. The training-validation ratio was

82:18, which is the default. ANIMAL-SPOT creates spec-

trograms from all input wav files on the fly for which we

set the NFFT (Nonuniform Fast Fourier Transform) size

to 256 samples and the hop length to 62 samples, a mini-

mum frequency of 5 Hz and a maximum frequency of

CMR ¼ FPc1
ABZtotal

, FPc2
ABZtotal

, FPc3
20Hz20Plustotal

, FPc4
20Hz20Plustotal

, FPc5
DDswptotal

, FPc6
DDswptotal

� �
:

Table 3. Exemplary confusion matrix for the 4-class detection task.

ABZ 20Hz20Plus DDswp Noise Total

ABZ TP1 FPc1 FPc2 FN1 ABZtotal
20Hz20Plus FPc3 TP2 FPc4 FN2 20Hz20Plustotal
DDswp FPc5 FPc6 TP3 FN3 DDswptotal
Noise FPn1 FPn2 FPn3 TN Noisetotal

Green cells mark the true positive (TP) counts that are considered in the true classification rate (TCR) calculation, orange cells mark the false posi-

tive (FP) counts that are considered in the noise misclassification rate (NMR) calculation, and the yellow cells mark the FP counts that are consid-

ered in the call missclassification rate (CMR) calculation.
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124 Hz, minimum/maximum normalization, and an addi-

tional linear frequency compression to 90 frequency bins.

Additionally, we allowed ANIMAL-SPOT to apply its

default data augmentation (i.e., random scaling of fre-

quency, time and intensity; Bergler et al., 2022) within

the training dataset. With this respective input, we

trained, validated and tested ANIMAL-SPOT for each of

the blocked site-year combinations with the default set-

tings recommended in Bergler et al. (2022) (Table 4).

Koogu

Koogu comes with a data sequencer which we used to

decimate the data to 250 Hz and then sequence it into

15 s audio windows with 12.5 s overlap which were stored

as NumPy arrays as NPZ files. If the time limits of an

audio window overlapped to 100% with a corresponding

annotation, we assigned the corresponding label, other-

wise we assigned the label ‘Noise’. If an audio window

overlapped with more than one annotation of the differ-

ent vocalization categories, Koogu assigns multiple labels

due to its multi-label training capability. The training–
validation ratio was 85:15. As for Koogu, there are no

recommended settings, we used the model training and

validation specifications described in Miller et al. (2023),

where Koogu was configured to detect the Antarctic blue

whale D-call in the same dataset used for this benchmark.

Koogu also creates input spectrograms on the fly for

which we set the window length to 250 samples and the

window overlap to 97%, again only considering the fre-

quency range between 5 and 124 Hz. With this respective

input, we trained, validated and tested Koogu for each of

the blocked site-year combinations with the settings

described in Miller et al. (2023) (Table 4). For one of the

site-year combinations, we also evaluated the performance

of Koogu disabling the multi-label setting in order to see

if this would increase performance (but performance was

worse than with multi-labeling enabled so that this setting

was not further evaluated).

Custom-made sequential CNN

The custom-made sequential CNN has a much simpler

architecture than the implemented models from

ANIMAL-SPOT and Koogu as can be seen in Figure 3.

As input for the model, we created spectrograms from

the 15 s wave files with 12.5 s overlap (created for

ANIMAL-SPOT with the same corresponding labels) with

a window length of 256 samples, a window overlap of

250 samples, a NFFT size of 3570 samples and using the

magnitude mode for the short-time Fourier transform,

finally displaying the power spectral density. These spec-

trograms were compressed to 90 × 30 pixel 8-bit unsigned

integer images in grayscale (where the 98% percentile was

set to the maximum value for the grayscale in order to

avoid loud outliers dominating the coloration). The

training–validation ratio was 70:30. With this respective

input, we trained, validated and tested the custom CNN

for each of the blocked site-year combinations for 100

epochs with a batch size of 16, an initial learning rate of

0.0001, a patience to change the learning rate of 10

epochs, a learning rate decay factor of 0.5 and a patience

for early-stopping of 20 epochs (Table 4).

Experimental Results

Three initial experiments have been conducted on the

presented benchmark and provide first insights into the

performance of available tools for sound detection in

marine passive acoustic data. The three CNN models

ANIMAL-SPOT, Koogu and the custom CNN were suc-

cessfully trained to detect the four vocalization categories

‘ABZ’, ‘20Hz20Plus’ and ‘DDswp’ in the open access

dataset published by Miller et al. (2021) in a blocked

Table 4. Settings for the three CNN-based classifiers tested on the presented benchmark.

Setting ANIMAL-SPOT Koogu Custom CNN

Architecture ResNet18 with initial kernel size

of 7 and initial max-pooling disabled

DenseNet of 4 quasi-dense blocks with

4,4,4 and 2 layers and growth rate of k= 8

Sequential CNN

inspired by AlexNet

Max training epochs 100 60 100

Batch size 16 64 16

Validation interval Every 2 epochs Every 5 epochs Every epoch

Learning rate 0.00001 0.01 0.0001

Patience learning rate change 8 Epochs 10, 30, 50 10

Learning rate decay factor 0.5 0.1, 0.01, 0.001 0.5

Patience early-stopping 20 NA 20

Adam β1 0.5 0.9 0.9

CNN, convolutional neural network.
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cross-validation fashion with very diverse performances.

The TCR metric was on average highest for the custom

CNN (0.73), even though ANIMAL-SPOT achieved the

maximum TCR for a single location (i.e., average= 0.67,

maximum= 0.91; Fig. 4A; Table 5). Koogu’s TCRs were

generally quite low with two outlier site-year combina-

tions and its NMRs and CMRs were represented by a

wide spread of values (Fig. 4A–C; Table 5).

ANIMAL-SPOT and the custom CNN had very similarly

good performance in terms of the CMR metric with aver-

ages of 0.04 and 0.06, respectively (Fig. 4C; Table 5).

Finally, ANIMAL-SPOT’s high F metric results from its

low average NMR of 0.16, while the custom CNN only

achieves an average of 0.24 (Fig. 4B; Table 5). Overall,

ANIMAL-SPOT performed the best with an average F

metric of 0.83, followed by the custom CNN with an

average fitness metric of 0.79 and finally Koogu with an

average fitness metric of 0.59 (Fig. 4D; Table 5).

The inspection of the timelines of predictions of the

three models in comparison to the timelines of the

underlying ground truth data for the four classes ‘

20Hz20Plus’, ‘ABZ’, ‘DDswp’ and ‘Noise’ provides

insights into the usability of the three models to analyze

real-world (long-term) data. The predictions of

ANIMAL-SPOT and the custom CNN in most cases

resemble closely the real distribution of the four classes

within the ground truth (Figure S1). Exceptions are, for

example, that ANIMAL-SPOT predicted for Elephant

Island 2014 an underrepresented occurrence for the ‘

20Hz20Plus’ class and that the custom CNN predicted for

Kerguelen 2005 an overrepresented occurrence for the ‘

DDswp’ class. Koogu’s predictions, on the other hand, in

many cases were biased toward the ‘ABZ’ or ‘DDswp’

classes. This translated into high proportions of the time

the model predicted baleen whale acoustic presence when

actually only noise was present in the ground truth

(Figure S1). Exceptions of better resemblance of the

ground truth by Koogu were for both years of Elephant

Island and the Ross Sea, which represent special cases

within the entire dataset due to the high density of vocali-

zations within the Elephant Island data and very homoge-

neous noise conditions in the Ross Sea data.

Figure 3. Custom sequential convolutional neural network model architecture.
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Discussion

In many fields of machine learning such as the classifi-

cation of images or human speech, much of the recent

progress has been driven by published benchmarks

(e.g., Mehrish et al., 2023; Russakovsky et al., 2015;

Yang et al., 2021). Similarly, the benchmark presented

here sets a challenge in order to improve algorithms’

performance for the sound detection task in marine

long-term PAM data. The three approaches tested here

delivered partly (i.e., ANIMAL-SPOT and custom

CNN) promising results, while considerable improve-

ment of performance is necessary to ensure the usabil-

ity of approaches for the analysis of long-term data.

Future applications of approaches to this benchmark

Figure 4. The four benchmark metrics [i.e., (A) true classification rate – TCR, (B) noise misclassification rate – NMR, (C) call misclassification rate –
CMR and the (D) overall fitness metric – F] for the evaluation of the three models ANIMAL-SPOT, Koogu and the custom CNN in a blocked

cross-validation fashion. Boxplots represent the overall distribution of the metrics per model and the colored dots are the single data points (note

that only the vertical distribution of the dots has a meaning in terms of the metric value, but the horizontal distribution within each boxplot has

been added arbitrarily to enhance visibility). CNN, convolutional neural network.

Table 5. Benchmark results (i.e., the four benchmark metrics F, TCR,

NMR and CMR) for the three evaluated CNN-based classifiers.

Metric ANIMAL-SPOT Koogu Custom CNN

TCR Average 0.67 0.34 0.73

Std 0.25 0.19 0.10

NMR Average 0.16 0.38 0.24

Std 0.11 0.31 0.17

CMR Average 0.04 0.15 0.06

Std 0.03 0.10 0.03

F Average 0.83 0.59 0.79

Std 0.07 0.09 0.17

CMR, call misclassification rate; CNN, convolutional neural network;

NMR, noise misclassification rate; TCR, true misclassification rate.

Bold values indicate the highest achieved average value among the

three tested models for each of the four metrics.
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should aim for better performances (i.e., higher F met-

rics) than presented here.

The focus for the development of algorithms to analyze

long-term PAM data for the presence of marine animal

vocalizations should be first laid on the reduction of the

false positives created by noise while the recall of the

vocalization classes should be kept reasonably high (i.e.,

� 0.8 TCR while minimization of the NMR and ulti-

mately maximization of F ). This is important to ulti-

mately achieve usability of the developed algorithms

without the need for manual post-processing of detec-

tions by human experts, which is often too

time-consuming. Finally, we suggest to aim at a value of

around 1% or lower for the false positives caused by

noise (i.e., per vocalization class) in order to guarantee

the direct applicability to real-world data for biological

and ecological interpretation (Miller et al., 2021; Schall &

Parcerisas, 2022; Širović et al., 2004; Thomisch

et al., 2016). We are aware that the presented benchmark

will, strictly speaking, only monitor the progress in algo-

rithm development for the detection of baleen whale

sounds (due to the lack of a published dataset including

vocalizations of multiple taxa). However, we believe that

approaches tuned for the detection task of vocalizations

of a single taxon within a realistically imbalanced dataset,

as proposed in this benchmark, will most likely also show

comparable performances when re-trained and tested on

real-world marine PAM data from other taxa.

Furthermore, this benchmark can be the basis to

address additional challenges in the field of marine bio-

acoustics which go beyond the ‘simple’ detection of

marine animal vocalization presence. Here, four addi-

tional challenges shall be named: (1) the separation of

the joined vocalization classes such as ‘ABZ’ in ‘A’, ‘B’

and ‘Z’ and ‘20Hz20Plus’ into ‘20Hz’ and ‘20Plus’, as

well as the distinction of spectrally very similar vocaliza-

tions such as ‘D’ and ‘Dswp’ as the successful separate

detection of these classes would provide potentially addi-

tional information on the distribution and behavior of

the single species (e.g., Gedamke, 2009; Leroy et al., 2016;

Oleson et al., 2007); (2) the successful detection of multi-

ple vocalization classes within one time window

(multi-labeling or the application of separate recognition

tools per vocalization class); (3) the counting of cue rates

in order to interpret behavior or estimate population

densities (e.g., Schall et al., 2019; Thomas & Mar-

ques, 2012); (4) the determination of the exact time-

stamps of the vocalizations in order to localize calling

individuals from the time-difference-of-arrival with mul-

tiple recording devices (e.g., Helble et al., 2015; Warner

et al., 2017). In the future, specifically defined tasks on

the same dataset used in this benchmark or other similar

datasets (representing the natural imbalance among

classes, especially the noise class) should be provided as

benchmarks to address these challenges.

In general, we hope that the presented benchmark will

have an effect of rapid improvement in the field of

marine bioacoustics monitoring and in particular for the

detection of marine animal sounds in long-term passive

acoustic data. We believe that a benchmark as the one

described in this publication is necessary to be able to

monitor progress and join forces worldwide in order to

advance in the automatic processing of the continuously

growing amount of PAM data that are collected through-

out the world’s oceans.

Summary of the Benchmark

In this publication, we present a benchmark for the detec-

tion of animal vocalizations in marine PAM data that aids

at the facilitation of rapid progress within the field of

marine bioacoustics and can be summarized as the fol-

lowing four conditions:

Dataset: The library of annotated circum-Antarctic

recordings for Antarctic blue and fin whale vocalizations

published in Miller et al. (2021) has to be used for this

benchmark as it represents a multi-class detection sce-

nario for baleen whale vocalizations in a real-world

long-term dataset with a realistic imbalance toward the

presence of noise.

Task: The dataset consists of annotations for in total

seven vocalization classes of Antarctic blue and fin whales

(i.e., ‘A’, ‘B’, ‘Z’, ‘D’, ‘Dswp’, ‘20Hz’, ‘20Plus’), of which

the temporal presence shall be detected within the entire

dataset. In order to increase the feasibility of the detection

task, we consider the possibility to join certain vocaliza-

tion categories into one category (i.e., ‘ABZ’, ‘DDswp’,

‘20Hz20Plus’).

Data split: For creating a realistic detection scenario the

test data should be split in a blocked-cross-validation

approach for which each one site-year combination is

excluded from the training and validation procedure and

only used for the test. The test dataset from each site-year

combination should then be sequenced with a

sliding-window approach to imitate a realistic detection

task in an unknown dataset.

Metrics: Four different metrics should be finally reported

for model evaluation: (1) the vocalizations’ TCR, (2) the

NMR, (3) the CMR and (4) one overall fitness metric (F )

that is a combination of the first three metrics.
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Appendix S1. Experimental model set up.

Figure S1. The timelines of predictions from the three

models (ANIMAL-SPOT, Koogu, and the custom CNN)

and of the ground truth for the 11 site-year combinations

and each of the four classes (‘20Hz20Plus’, ‘ABZ’, ‘

DDswp’, and ‘Noise’).
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