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Seasonality of primary production explains
the richness of pioneering benthic
communities
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A pattern of increasing species richness from the poles to the equator is fre-
quently observed in many animal taxa. Ecological limits, determined by the
abiotic conditions and biotic interactions within an environment, are one of
the major factors influencing the geographical distribution of species diver-
sity. Energy availability is often considered a crucial limiting factor, with
temperature and productivity serving as empirical measures. However, these
measures may not fully explain the observed species richness, particularly in
marine ecosystems. Here, through a global comparative approach and stan-
dardised methodologies, such as Autonomous Reef Monitoring Structures
(ARMS) and DNA metabarcoding, we show that the seasonality of primary
production explains sessile animal richness comparatively or better than sur-
face temperature or primary productivity alone. A Hierarchical Generalised
Additive Model (HGAM) is validated, after a model selection procedure, and
the prediction error is compared, following a cross-validation approach, with
HGAMs including environmental variables commonly used to explain animal
richness. Moreover, the linear effect of production magnitude on species
richness becomes apparent only when considered jointly with seasonality,
and, by identifying world coastal areas characterized by extreme values of
both, we postulate that this effect may result in a positive relationship in
environments with lower seasonality.

The relationship between global environmental variables and the
structure of benthic communities has been a key focus of ecological
research in the last century, with the formulation of multiple hypoth-
eses to explain the perceived latitudinal gradient of biodiversity1. The
endeavour offinding anexplanation to ‘Latitudinal DiversityGradients’
(LDG) has a long history2 and builds on the observation of a general
increase in species diversity from the poles to the equator3. However,

this effect was often found to be not monotonic, with diversity not
continuously decreasing with latitude, studded with exceptions based
on the taxonomic group considered4 and the peculiarities of specific
regions (e.g. Antarctica5). Attempts to identify the cause of such pat-
terns detected different ecological variables1, showing conflicting
results depending on both the chosen measures of biodiversity, and
the candidate ecological drivers themselves6.
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These inconsistencies probably derive, to some extent, from the
fact that the observed diversity might be shaped by a variety of factors
(e.g. biotic interactions, evolutionary influences, historical processes,
etc.), regardless of the environmental settings, making it even more
complicated to study2. The intrinsic influence of evolutionary events,
operating on a larger temporal and spatial scale, affects species
distributions7. On topof this, the structure of the survey design and the
allocation of sampling frames, i.e., where samples are collected, con-
tribute significantly to the final outcomes of any investigation
performed8. The application of traditional methodologies, such as
those relying on morphological identifications, can be affected by low
precision and reproducibility9, and this could further obfuscate the
mechanisms underlying these processes.

Here, we evaluate the influence of environmental variables on
shaping the richness of pioneering metazoan communities settling on
artificial structures at the global scale. This is performed, for the first
time, on a DNAmetabarcoding dataset of shallow hard-bottom sessile
metazoan communities recovered fromAutonomous ReefMonitoring
Structures (ARMS) deployed globally, assembled from publicly avail-
able and published datasets, including the ARMS Marine Biodiversity
Observation Network programme10 (ARMS-MBON), as well as addi-
tional structures deployed in the Southern Ocean. These communities
are strongly related to local environmental features compared to
‘older’ or ‘climax’ assemblages11. We hypothesise that the number of
species recovered throughglobally distributedARMS is determinedby
the amount and seasonality of resources, allowing the support ofmore
species.

Of the many hypotheses formulated to explain the LDG, this
one pertains to the ‘Ecological limits’ category, as defined by
Pontarp et al.2. The ecological limit can be defined as the ‘limit to
the number of individuals and/or taxa that can coexist within an
ecosystem due to abiotic settings and biotic interactions such as
competition for limited resources’2. However, identifying the
specific mechanisms that determine the relationship between the
ecological constraints and the diversity measure is a complicated
endeavour. Uncovering these mechanisms require a proper for-
mulation of the theoretical framework, the identification of sui-
table empirical measures of the explanatory environmental
variables (i.e. what exactly is the ‘limit’ and how it is measured) and
a correct testing of the proposed predictions12.

In addition to the geographic area or the long-term climatic sta-
bility, the energy availability is often mentioned as a main ecological
limit to the number of species that can coexist in an environment2,6.
Temperature and productivity are the variables that historically
received more attention as representative of this limit6. However, the
relationship between temperature and diversity is complex. This
includes, for example, its effect on physiological processes13, ulti-
mately influencing the higher speciation rate in the tropics. Moreover,
temperature itself can influence the total productivity present in an
environment, especially in the terrestrial realm where the amount of
resources is mostly driven by temperature and water14. Nonetheless,
the effect that temperature has on defining the geographic distribu-
tion of species often resulted in a positive correlation, reflecting the
higher richness found in the warm waters of the tropics. On the other
hand, productivity is often represented in terms of magnitude (e.g.
annualmeans of net primary productivity), which, especially inmarine
environments, can show an inverse relationship with diversity15,16,
bewildering our understanding of the relationship between pro-
ductivity and diversity.

One aspect of primary productivity inmarine ecosystems that has
rarely been considered in describing the observed diversity of benthic
metazoans refers to its seasonality17. The seasonality of oceanic pri-
mary productivity captures the regularity of production in the first
layers of the ocean and has important implications for nutrient and
carbon cycling18, influencing the capacity of marine ecosystems to

uptake atmospheric CO2
19,20. Different oceanic regions present pat-

terns of more or less intense seasonality for a variety of reasons: at
higher latitudes for the reduction (or even absence) of primary pro-
duction throughout the winter18 or in coastal waters for the seasonal
input of riverine and aeolian nutrients or the presence of upwelling21.
These factors can disrupt the recognised co-variation between sea-
sonality and sea surface temperature, leading to considerable differ-
ences in seasonality patterns between oceanbasins at lower latitudes21.
Thus, the presence of a marked seasonality in the primary production
of coastal waters can be due to the interplay of a variety of environ-
mental conditions, as well as to the specific geomorphological and
hydrological characteristics of the study site, independently from the
main physicochemical characteristics of specific areas (such as tem-
perature and salinity). Although this aspect of productivity has been
studied for decades22, less attention has been dedicated to uncovering
specific indices that can represent the effect seasonality hason benthic
communities17,23.

In this study, we test the role of the interaction between the sea-
sonality of primary productivity and its magnitude, as a suitable eco-
logical limit driving the richness of settling benthic metazoans on a
global scale. We assume that the interplay between the aforemen-
tioned variables acts as a proxy to energy availability, shaping the
resource availability to larvae and propagules. A Hierarchical Gen-
eralised Additive Model (HGAM), including separate smoothers for
both seasonality and magnitude of net primary production, is vali-
dated, showing a strong negative relationship between seasonality and
benthic richness. Prediction errors, calculated following a cross-
validation approach, are lower for models including seasonality, indi-
cating that the seasonal oscillation of resources has the strongest
effect in this relationship. Moreover, coastline areas of the world
exhibiting higher resource availability overlap with regions of known
high biodiversity, matching the distribution of tropical coral reefs. By
adopting standardised and reproduciblemethodologies, such as those
obtained using DNA metabarcoding techniques10,11, more robust data
can be produced in order to predict the structure and diversity of
pioneering hard-bottom communities under evolving environmental
conditions. The application of ARMS at the global level, following a
systematic approach and in a clear setting, provides a tool for under-
standing the influence that environmental variables have on the
development of future assemblages.

Results
Out of the total 146 samples included in the original dataset, 140,
corresponding to 116 ARMS, passed the quality control steps of the
bioinformatic analyses. Specifically, the ARMS from the Aegean Sea
were removed before proceeding with the rest of the analyses. The
remaining samples were recovered from 14 different ecoregions24,
with a varying number of site and sampling replicates (the number of
ARMS, Table 1).

The bioinformatic analyses performed on the entire dataset yiel-
ded a total of 1,065,469 denoised sequences and 6069 molecular
Operational Taxonomic Units (mOTUs). The highest mOTU richness
was observed in samples deployed within tropical latitudinal zones,
whereas the lowest was observed in polar regions as well as in some
temperate regions (Fig. 1). Among the environmental variables, the
Normalised Seasonality Index (NSI) and sea surface temperaturemean
(SST mean) exhibited the highest Pearson’s correlation coefficients
with mOTU richness, while the SST range and total Net Primary Pro-
ductivity (total NPP) showed the lowest coefficients (Supplemen-
tary Fig. 1).

Some environmental variables, including depth and months of
deployment, showed high levels of collinearity (Supplementary Fig. 2).
The highest correlation was observed between productivity measures
(e.g. NPP mean and CHL mean), and between NSI and SST mean, but
other variables, including SSS mean and SST range, were correlated
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with several other variables included in the dataset (Supplemen-
tary Fig. 2).

Generalised additive model
Prior to model validation, the presence of spatial autocorrelation
was assessed by fitting two HGAM models with separate smoothers
for NSI and total NPP, and including or not the grouping factor ‘site/
year’ as a random effect. The presence of the grouping factor as a
random effect resulted in a significant reduction of the spatial
autocorrelation, a substantial decrease of the Akaike Information
Criterion (AIC) value and no discernible patterns in the residuals
compared to the HGAM model without the random effect (Supple-
mentary Fig. 3).

Out of all variables, only SSS range, months and depth of deploy-
ment showed Variance Inflation Factor (VIF) values lower than 3, toge-
ther with NSI and total NPP, and could all be included as fixed terms of a
HGAMmodel with the aforementioned random effect (Table 2).

All the variables included in themodelwere statistically significant
at the 5% level. Considering the fixed effects, the highest chi-square
were observed for NSI and months of deployment (Table 2). The lim-
ited significance of the remaining variables can also be deduced by
inspecting the confidence intervals of the smoothers, closely reaching
the 0 partial-effect line (Supplementary Fig. 4). The number of mOTUs
tended to increase with the months of deployment, but the pattern
resulted not linear, and the increase was particularly strong after two
years of deployment (Supplementary Fig. 4).

This model was compared with a simpler HGAM model fitted
using only the energy availability variables (NSI and total NPP). This
model showed a good fit andAIC values slightly higher than the former
model (Table 3). Considering the limited significance of most non-
collinear variables, and the non-linearity of the smoother formonths of
deployment, the lower AIC values could have been obtained through
over-fitting, which is supported by the very similar values of percen-
tage of explained deviance (Table 3). For this reason, the following
analyses focus on the simpler model, only considering the variables
included in the main hypothesis, NSI and total NPP, as proxies of
energy availability. Validation of this model showed no discernible

pattern in the residuals, indicating normality of the same and a linear
relationship between the fitted and observed response variables. The
spread of the fitted values increased at higher values of the response
variable (Supplementary Fig. 5).

The prediction of the combined effects of NSI and total NPP on
the response variable revealed a predominantly negative effect of
NSI (Fig. 2), which is also supported by the lower p values retrieved
for both HGAM models (Table 2). This indicates a decreasing
number of mOTUs with an increase in the seasonality of NPP, irre-
spective of the total NPP (Fig. 2). A negative effect was also observed
with increasing total NPP. This effect was observed also in the
initial model with all non-collinear variables. Nonetheless, the
highest richness in the model was predicted for lower values of
both seasonality and magnitude of production, reflecting the
negative relationship between both smoothers and the number of
mOTUs (Fig. 2).

Alternative models and assessment of the prediction error
The significance of NSI and total NPP was also assessed by comparing
the prediction error of the aforementioned model with other HGAM
models fitted with environmental variables commonly used to
describe the richness of benthic communities.

Out of all these models, those including NSI and SST mean
exhibited the strongest, linear relationshipswithmOTU richness, while
the one including total NPP resulted in a complex non-linear and
overall negative relationship, with the prediction values peaking at
intermediate values of NPP (Fig. 3).

The prediction error, assessed by calculating the Root Mean
Square Error (RMSE) values during the cross-validation approach,
varied significantly among models (Fig. 4). The prediction error was
higher for models including mean CHL and NPP (Fig. 3), and lower for
SST mean, NSI and the energy availability model. The lowest RMSE
values were obtained for the model including both NSI and total NPP.
When predicting with fixed seasonality values on the validation data-
sets, the energy availability model exhibited a linear negative predic-
tion of total NPP on the number of mOTUs, consistent with varying
values of seasonality (Fig. 5). However, the effectwas reduced athigher

Table 1 | ARMS deployment design for each ecoregion

Ecoregion Time range (years) #Monthsofdeployment # Sites/year # ARMS
per site

# ARMS Depth (metres) Dataset origin

North and East Barents Sea 2018–2020 12–13 2 1 2 14 ARMS-MBON

Northern Norway and
Finnmark

2019–2020 18 1 2 2 2 ARMS-MBON

North Sea 2018–2020 12–14 4 2–3 10 4–25 ARMS-MBON

Baltic Sea 2013–2015 26 2 2–3 5 8 Pearman et al.27

Celtic Seas 2019–2020 12 1 3 3 12 ARMS-MBON

South European Atlantic Shelf 2013–2014 12–13 3 2–3 8 11–12 Pearman et al.27

Western Mediterranean 2013–2014 18 3 3 9 17 Pearman et al.27

Adriatic Sea 2014–2015 13 2 3 6 9 Pearman et al.27

Black Sea 2013–2014 13 3 2–3 8 7–8 Pearman et al.27

Northern and Central Red Sea 2013–2020 14–24 10 1–6 34 10 Pearman et al.27

ARMS-MBON
Carvalho et al.29

Southern Red Sea 2015–2017 24–33 5 3 15 8–10 Carvalho et al.29

Hawaii 2016–2018 23 1 6 6 4 Nichols et al.51

East Antarctic Wilkes Land 2014–2017 12–24–36 4 1–2 6 20 This Paper

Ross Sea 2015–2018 12–24–36 3 2 6 25 This Paper

This table reports themost significant differences in the study design of each ecoregion, following Spalding et al.24 ecoregions’ naming, with rows orderedby latitude of the centre of the ecoregion.
The field ‘#sites/year’ shows the number of sites per year of deployment investigated in each region, and corresponds to the grouping factor adopted as a random effect in the HGAMmodel. Sites
wheremultiple structures have been deployed in different years are grouped separately. Multiple values in the field ‘depth’ represent the range of depth at which the structures were deployed. The
‘dataset origin’ field refers to the publication the corresponding samples have been first presented. More information on the specifics of each study are reported in the published papers or
the Supplementary Methods and Supplementary Data 5.
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seasonality values, indicating a limited decrease of mOTU richness at
higher values of seasonality (Fig. 5).

Identification of coastal regions with high energy availability
The procedure adopted to uncover areas of the world’s coastline
with high energy availability (low seasonality and high magnitude),
produced 286,843 random points in the coastline buffer area. The
vast majority of these points were in areas with low magnitude of
production, relative to the dataset’s extreme values of NSI and total
NPP, and either low or high seasonality (~0.35 and ~0.9 of NSI),
reflecting the higher extent of these type of regions in the world
oceans’ surface (Supplementary Figs. 6–9). Areas with low season-
ality (NSI < 0.4) and high magnitude (total NPP > 75 gm−2 year−1) are
under-represented in this dataset, resulting in 5% extrapolation

areas in the energy availability model not supported by data
(Fig. 6a). Only 9504 points were generated in raster pixels for these
combinations of NSI and total NPP values in the world’s coastlines,
reflecting this condition (Fig. 6b).

The percentage of high energy availability points for each realm24,
indicates that temperate Australasia, eastern tropical coastline of
Africa and South America and the Indo-Pacific include more coastline
areas with these characteristics, followed by other temperate regions
(Table 4). However, when examining the percentage at the ecoregion
level, the pattern ismore fragmented andmany ecoregions of western
and central Indo-Pacific, as well as the tropical Atlantic, show high
cover of high energy availability areas (Fig. 6c). This is compared to the
percentage of points, in the same ecoregions, with low seasonality and
no filter for magnitude of production (Fig. 6d). The complete list of
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Fig. 1 | Deployment locations and richness of the ARMS investigated in
this study. a Deployment locations for the Autonomous Reef Monitoring Struc-
tures (ARMS) investigated by Carvalho et al.29 and Pearman et al.27, as well as data
obtained from theARMS–Marine Biodiversity ObservationNetwork (ARMS-MBON)
programme10. bDeployment locations for the ARMS investigated by Nichols et al.51

as well as the ones from Antarctica. Purple tone shows the degree of seasonality, as
described in box (c). c Schematic representation of the dynamics of Net Primary
Production at different seasonality levels, following the same representation used
in Berger and Wefer22. Lighter purple tones reflect a condition where primary
production is constant throughout the year, whereas darker tones indicate higher
seasonality, with most of the yearly production mostly occurring in a specific
season. d Tukey-style boxplots showing the distribution of the number of mole-
cular Operational Taxonomic Units (mOTUs) for the structures in each ecoregion
investigated. The sample number onto which boxplots are calculated is shown in

brackets above the x axis labels, and refers to technical replicates. The lower and
upper hinges correspond to the 25th and 75th percentiles, while the central line
refers to themedian. Theupperwhisker extends to the largest value no further than
1.5 * inter-quantile range (IQR) from the 75th percentile, while the lower extends to
the smallest value at most 1.5 * IQR of the 25th percentile. All data points outside
these ranges are plotted individually. These boxplots are shown only for the pur-
pose of indicating the variability of mOTU richness across all the ecoregions. The
triangles’ and boxplots colours refer to the latitudinal zone in which the deploy-
ment took place, and the boxplots are ordered by the median of the number of
mOTUs of the samples for each ecoregion. Ecoregions and latitudinal zones were
defined following Spalding et al.24. Themapwas created usingQGIS73 (version 3.14),
the coastline contour was downloaded from the Global Self-consistent, Hier-
archical, High-resolution Geography database74 (GSHHG, version 2.3.7).
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ecoregions with the respective number of total and filtered points can
be inspected in Supplementary Data 1.

Discussion
Oneof themain goals in ecology is to understandwhichenvironmental
factors shape the observed species richness, and a clear knowledge of
the mechanisms driving these phenomena is pivotal. By focusing on
specific taxonomic groups, and using less reproducible and standar-

disedmethodologies, the results, and thus the inferences coming from
their interpretation, may lack the necessary setting for a comprehen-
sive comparison across a wide range of habitats, regions, and taxo-
nomic groups.

Since the proposal of ARMS as a quantitative sampling metho-
dology for hard bottom pioneering artificial communities25, a multi-
tude of projects have been conducted employing these structures in
different areas of the world. However, only recently, different organi-
sations and research networks have worked together to plan and
conduct simultaneousmonitoring activities at a continental and global
level10,26. The first regional study on colonisation of ARMS, conducted
at a continental scale, was published by Pearman et al.27, whose sam-
ples were included in the analyses performed here. Pearman et al.27

didn’t find any clear latitudinal trend in diversity, but highlighted
correlations with environmental variables, chosen due to their pre-
viously known influence on the distribution of marine species, their
broad characterisation of sea surface waters and their availability
under a standardised format (i.e. from satellite observations).

Here, the spatial scale was expanded at the global level, andmore
environmental variables were included, providing a more complete
ecological setting. This allowed us to test whether the number of
benthic species settling on artificial structures is determined by the
availability of resources, rather than temperature or primary pro-
ductivity alone, by integrating an aspect of the phenology of plank-
tonic communities that has rarely been considered in this context, i.e.
seasonality. The rationalebehind this hypothesis builds on the concept
that a marked seasonality in coastal waters can determine intense
phytoplanktonic blooms during specific seasons, with a reduced
temporal range of primary production throughoutmost of the year (in
contrast to less seasonal regions, like in the tropics). The seasonal
distribution of primary production ultimately influences the proces-
sing of organic matter that reaches deeper waters28, regulating the
availability of food to higher trophic levels. In highly seasonal envir-
onments with a reduced temporal range of primary production, there
is likely to be higher competition due to time-limited availability of
resources. Conversely, regions with lower seasonality, where primary
production remains relatively constant throughout the year, could
support the settlement and coexistence of additional species.

Table 2 | HGAM models variables’ statistics

HGAM all non-collinear HGAM NSI and Total NPP

Smooth
terms

edf chi-
square

p value edf chi-
square

p value

NSI 4.052 73.110 <2e−16 2.771 122.151 <2e−16

Total NPP 1.000 4.383 0.036324 1.001 4.753 0.029337

Months 5.117 21.194 0.000947 – – –

Depth 1.000 4.855 0.027565 – – –

SSS range 1.718 6.582 0.037561 – – –

Site (ran-
dom
effect)

24.714 105.486 <2e−16 34.816 245.086 <2e−16

Output of the summary.gam function of the R package mgcv78. Estimated degrees of freedom
(edf), the chi-square test and p values (two-sided chi-square test) refer to each smooth term in
the fitted HGAM models. The ‘site’ variable represents the grouping factor used as random
effect.
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Fig. 2 | Contour plots of HGAM models predictions. The predictions of the
number of mOTUs corresponding to the smoothers of total NPP and NSI in the
HGAM models obtained. Yellow tiles indicate higher mOTUs number, red tiles

lower. The total NPP and NSI values are on the y and x axis respectively. The blue
lines correspond to contour values of OTU number prediction, increasing by a
factor of 50, as reported in the colour bar of the figure.

Table 3 | HGAM models’ statistics

Models edf Deviance
explained %

AIC

NSI + Total NPP 38.59 93.86 1389.11

NSI + Total NPP + All
non-collinear

37.6 93.96 1386.63

Estimated degrees of freedom (edf), percentage of deviance explained and Akaike Information
Criterion (AIC) for all models fitted in the model selection process.
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In this context, the higher yearly magnitude of primary pro-
ductivity would hardly provide any difference to the overall resource
availability of benthic communities inhabiting regions with higher
seasonality, as those resources would be already limited by the tem-
poral dynamics of phytoplanktonic blooms. Differently, in less seaso-
nal environments, a higher amountof primaryproductivitywouldhave
a greater impact as it would indicate a higher magnitude of resources
distributed in a longer time frame, thus increasing, not only the annual
quantity of productivity, but also the overall availability to benthic
communities. This delineates four different ‘extreme’ scenarios char-
acterised by either low or high seasonality combined with low or high
productivity magnitude, where the regions showing low seasonality
and high productivity could sustain the highest number of species.

However, our model detected a negative relationship between
bothNSI and total NPP and the number of benthicmOTUs (Fig. 2), with
seasonality explaining most of the variation (Table 2). The highest
number of species was predicted at low seasonality and magnitude of
production, with a limited and negative effect of magnitude (Fig. 5).
Although a positive relationship between richness and magnitude of
production was here expected, at least for low seasonality levels, it is
important to mention that the aforementioned outcome is not
unknown in literature.

Other studies involving ARMS, but at a smaller spatial scale,
uncovered a lower mOTU richness in the most productive areas,
especially when similar measures of magnitude of production were
taken into account. Pearman et al.27 found a negative correlation
between Shannon diversity and both the range of sea surface tem-
perature and the mean concentration of chlorophyll. Although no
clear linear relationship between SST range and mOTU richness was

detected here, similar outcomes were revealed regarding CHL mean
(Fig. 3), reflecting the negative relationship between total NPP and
mOTU richness in our HGAM models.

At an even smaller spatial scale, Carvalho et al.29, using data from
ARMS deployed along the Red Sea coastline, showed a negative cor-
relation between both sea surface temperatures and particulate
organic carbon, and benthic diversity of both sessile and motile
metazoan communities. A significant decrease in benthic diversity was
observed from the northern area of the Red Sea to the southernone, in
accordance with the results of another paper30, using the same struc-
tures but dealing with the microbial community, where a lower
diversity was found in the southern region of the Red Sea. In fact, this
region is characterised by higher concentrations of chlorophyll and is
renowned for the higher seasonality of sea surface temperature and
chlorophyll31, resembling the outcomes obtained in this paper, i.e. a
negative relationship between magnitude of production and mOTU
richness.

While consistent with the literature on ARMS studies, the negative
relationship between total NPP and richness found here could also be
explained by the absence of samples representing regions with low
seasonality and high productivity. In general, regions at lower latitudes
are under-represented in the dataset here analysed, compared to
temperate ones, even though we have many replicated sites and
samples in the Red Sea (Table 1 and Fig. 1), where extensive research
using ARMShas been conducted27,29,30. For this reason, higher values of
magnitude of production are here only found in samples showing
increasing seasonality, which, as mentioned earlier, would represent a
condition that does not substantially increase the overall resource
availability to benthic communities, due to the temporal limitation of
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those resources. This is evidenced by the 5% extrapolation of the linear
predictor of themodel (Fig. 6a), indicating the presence of supporting
data at varying degrees of total NPP only with increasing seasonality
values (~0.5 to 0.6 of NSI), at which no significant increase in mOTU
richness was predicted (Fig. 2). The identification of coastal regions
including underrepresented environmental conditions (low season-
ality and high magnitude of production) would improve our under-
standing of the effects of magnitude.

In fact, the ecoregions showing the highest percentage of low
seasonality coastline areas are mostly located in the tropical and
subtropical latitudinal zones, overlapping the global distribution of
coral reefs32, showing a particularly high concentration in the Indo-
Pacific, where the highest diversity of zooxanthellate Scleractinia can
be found33 (Fig. 6d). However, within this same distribution, only a
limited number of ecoregions include high percentages of low sea-
sonality and high magnitude of production areas (Fig. 6c), reaching a
maximum of 12%, if we take into account the highest level of bior-
egionalisation, the realm (Table 4). These ecoregions are mostly
located in the Northern coastline of Australia, overlapping both the
eastern andwesternmajor coral reefs, the latter less studied, although
they are comparable in extent to the former34. Other areas include the
Mozambique channel, where the highest diversity of the Indian Ocean
reef-building corals can be observed33,35, as well as the northern
coastline of South America, either eastern of western, that, together
with the Caribbean Sea, were found to host the highest biodiversity in
Central to South America36.

On the other hand, varying degrees of seasonality were thor-
oughly represented here. The highest seasonality of NPP were detec-
ted in polar regions, the Black and Baltic seas and Norway, with a
distinct gradient from regions characterised by episodic (sensu Berger
andWefer22) phytoplanktonic blooms (e.g. Antarctica andSvalbard), to
areas with a more seasonal phenology (e.g. Black and Baltic seas),
ending with regions characterised by oligotrophic waters and no

marked seasonal blooms (e.g. Red sea and Hawai’i). This trend also
reflects the general assumptions of greater diversity in tropical regions
in respect to both temperate and polar regions. In fact, lower richness
was observed for the polar samples, followed by the Black Sea, in
accordance with Pearman et al.27, whereas the highest values were
found in tropical regions, such as the Red Sea and the Hawai’i (Fig. 1d).

Prediction errors were found to be much higher in the HGAM
model including measures of magnitude of production, such as total
NPP only. On the other hand, themodel with integratedNSI performed
similarly to SST mean and NSI exclusively, with a much lower predic-
tion error (Fig. 4). This condition is also reflected by the change of
smoother for total NPP detected after its inclusion in an HGAMmodel
together with NSI, resulting in lower degrees of freedom, highly dif-
fering from the smoother included in the HGAMmodel with total NPP
only (Fig. 3). The linearity was found to remain consistent in the cross-
validation approach (Fig. 5), suggesting that the primary role of the
magnitude of NPP may be ‘obscured’ by the phenology of planktonic
communities, at least for benthic communities directly relying on
these resources, andmay result effective only when integrated with its
seasonality. However, the higher variation explained by seasonality in
both HGAMmodels reinforce the idea that the temporal availability of
food, instead of its magnitude, may represent the ecological limit for
sessile metazoans, as seen in studies on deep-sea foraminifera17.

However, unexpected higher diversity was found for the samples
from theNorthernNorway and Finnmarkecoregion, highly resembling
the mOTU richness found in the tropical ecoregions (Fig. 1d). This is
particularly relevant, especially considering the high latitude at which
those structures were deployed, and thus the high seasonality of pri-
mary productivity for this region. In fact, apart from the differences in
deployment depth between these samples (i.e. from Norway) and the
rest of the dataset (Table 1), the ARMS’ location is characterised by
high tidal currents exchanging water between two fjord systems with
very different physical, chemical and hydrological conditions37. These
dynamic environmental conditions have already been associated with
a higher diversity in macrobenthic species in respect to the neigh-
bouring areas38. The peculiar hydrological characteristics of this loca-
tion complicate the relationship between the local primary production
(of the specific area investigated) and benthic communities. This is
due, in fact, to the higher sedimentation rates of organicmatter and its
frequent resuspension38 present in the area, increasing the temporal
availability of food resources for the developing communities.

This phenomenon is not unknown. Temperate and polar regions
showmoderate to high seasonal pulses of NPP, and thus consequently
of particulate organic matter (POC). If the amount of POC produced
during those pulses surpasses the consumers’ capacity to feed upon it,
it deposits in ‘food banks’, of more permanent and lower nutritional
content39. The resuspension of these food resources can sustain a
more complex community,withmorespecies of bothdepositional and
suspension feeders. Such effects have already been observed, where
suspension-feeding communities living in areas distant from the ori-
ginal location of this food source are supported by the availability of
particulate matter suspended by currents40. Thus, the relationship
between food availability and diversity can bemore complex if we take
into account the peculiar dynamics of organic particle export from the
surface to the seafloor41 of specific areas.

This also explains the inconsistencies observed in different
studies conducted to investigate the relationship between the
diversity of foraminifera communities and seasonality of net pri-
mary production. Gooday et al.42 detected a negative relationship
between ‘food availability’ and diversity of deep sea benthic for-
aminifera communities, in contrast with the results observed in
previous literature17,43. Nematodes, foraminifera and molluscs rich-
ness positively correlates with latitude and POC fluxes to the sea-
floor in deep sea sites distributed globally, and not with surface
primary productivity and POC production44, suggesting that the
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geographic mismatch, and renown decoupling45, between the sur-
face production and the effective export to the seafloor could
explain, at least partly, these incongruences.

Another aspect to take into account refers to the relationship
between mOTU richness and SST. SST mean was strongly related to
mOTU richness, resulting in low prediction errors, comparable to the
HGAM models including NSI exclusively or together with total NPP
(Fig. 4). This outcome is not surprising, especially if we consider the
high collinearity between SSTmean and NSI, a well-known condition21,
which has been detected also for this dataset (Supplementary Fig. 2).
However, the high correlation observed here between these two vari-
ables may be due to the aforementioned under-representation of
tropical regions. In fact, the correlation between temperature and
seasonality of NPP is reduced at lower latitudes, thanks to the other
parameters generally influencing the seasonality (e.g. upwelling or
riverine inputs)21. By providing a more complete dataset, the colli-
nearity between these two environmental variables could be reduced,
resulting in a proper setting for a variable selection process, allowing
to assess the significance of NSI over SST mean in explaining richness
at the global level.

Overall, the application of ARMS appears to be well suited in
studies investigating the relationship between benthic diversity and
the environmental settings at all spatial scales. In fact, these structures
allow the recovery of a variety of species belonging to a very specific
community (i.e.metazoan pioneering artificial communities of shallow
hard-bottom substrata). This community deeply relies on the envir-
onmental settings and dynamics of the local primary productivity,
making themparticularly useful as experimental subjects, especially in
light of the mechanistic approach envisioned by Pontarp et al.2. More
precise and meaningful results could be obtained by providing a
complex, multidisciplinary approach that gathers the logistic oppor-
tunities and expertise of multiple researchers, thus providing a mon-
itoring programme that specifically focus on the effects of
environmental parameters and biological dynamics on the pioneering
assemblages of hard substrata throughout the world10,46, including

multiple sites with contrasting or different environmental settings in
each investigated region.

However, research programmes focusing on the development of
this kind of studies have only recently being carried on at a global
spatial scale and in a systematic way, taking advantage of the appli-
cation of very specific and standardisedmethodologies, i.e. the ARMS,
togetherwith highly reproduciblemethodological techniques10,26. Still,
an important aspect to keep in mind when performing such pro-
grammes pertains to some characteristics of the study design, mainly
the chosen depth of investigation and the operational deployment
time range. Here, depth and months of deployment resulted statisti-
cally significant in a HGAM model that included different environ-
mental variables, however, no significant interpretation of the effects
on benthic communities can be discerned, except for a general
increase of richness with months of deployment. Nonetheless, the
influenceof depth andmonths of deployment is surelypresent, but the
geographical scale of the dataset may obscure it.

Another aspect to consider is the sample and site replication, here
limited for some ecoregions in respect to others, due to the aggrega-
tion of data from studies conductedwith different researchobjectives,
designs and capabilities. Although no defined number of necessary
replicates can be strictly determined, it is noteworthy tomention that a
certain variability must be provided when modelling global distribu-
tion of benthic richness, and a lack of such variation could lead to
biased interpretations. The higher than expected diversity recovered
from the samples located in the ‘Northern Norway and Finnmark’
ecoregion could be an example, where the inclusion of multiple sites
could unveil a different overall situation for the region, being char-
acterised by a complex coastline and diversified environmental con-
ditions, typical of fjord systems, that do not necessarily match the
specific conditions here examined.

The representativeness of diverse regions, when considering the
global spatial scale, is similarly important. Here, the diversity of tem-
perate ecoregions included, in contrast to the limited number of tro-
pical ecoregions, reduced the ability to investigate some aspects of
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energy availability in the tropical latitudinal zone. However, additional
samples from studies involving ARMS in tropical, or sub-tropical zones
could not be included in this study due to the limited deployment time
range25, the adoption of different amplifying primers47 or the absence
of metabarcoding sequences48. Future global comparison of ARMS
samples will need to integratemore diverse sites in different locations,
increasing the variability of regions from all latitudinal zones, while
also selecting data with a higher site replication per region, provided
the validity of the adopted bioregionalisation.

Acknowledging the influence that seasonality of primary pro-
duction has on the diversity of hard-bottom, pioneering metazoan
communities could improve our efforts to preserve biodiversity and
our understanding of the impacts of anthropogenic pressure,

especially if we consider the different drivers of seasonality and the
direct impacts humans have on them (e.g. eutrophication). At a larger
spatial and temporal scale, this would help to model or infer the state
of future assemblages’ diversity under the influence of climatic chan-
ges, including the ongoing processes of atlantification49 and topicali-
zation inwide oceanic areas of theworld, and/or to assess andmonitor
the effect of climatic oscillations on communities inhabiting key areas
affected by these conditions50. The adoption of ARMS is particularly
useful in this context due to their flexible deploying potentiality,
allowing to inspect the communities developing on these structures at
different time ranges and thus, at different environmental conditions.

Methods
ARMS sequences
The ARMS sequences (140 samples, corresponding to 116 structures)
analysed in this paper were gathered from both published resources,
includingCarvalho et al.29, Pearmanet al.27 andNichols et al.51, and from
new data obtained in the context of different research programmes
working at high latitudes in both Poles and the European continent,
from the ARMS-MBON programme10 and this study. Only the samples
obtained from structures deployed for at least one year were included,
in order to analyse communities that had the chance to experience all
the different physical and biological conditions of the water column in
all different seasons. These sequences were downloaded from the
respective data repositories cited in the aforementioned papers and
incorporated in the pipeline with the new data presented here. More
information on the deployment, retrieval, processing and DNA
extraction, amplification and sequencing of the latter is presented in
the Supplementary Methods. The same information for the samples
obtained from the published papers can be obtained from the afore-
mentioned studies27,29,51.

Geographic extent of dataset
The ARMS samples from Carvalho et al.29, Pearman et al.27 and Nichols
et al.51 were collected from 8 different ecoregions, all in the Northern
Hemisphere and never exceeding 60 degrees of latitude (Table 1 and
Fig. 1). The total 14 ecoregions and three latitudinal zones are defined
following Spalding et al.24. These ecoregions cover different seas and
oceans, specifically the Red, Baltic, Black, North, Mediterranean and
Barents seas, the Hawai’i islands and Southern Ocean, spanning from
78° north to 74° south of latitude (Fig. 1). Samples from the Southern
Ocean were deployed near two research stations, namely ‘Mario Zuc-
chelli’ station, in Terra Nova bay in the Victoria Land, and ‘Dumont
D’Urville’ station in Terre Adélie.

The samples included in the analyses derive from structures
deployed for at least one year at shallow depths (less than 25 metres).
Due to the lack of any processed motile fraction in some of the sam-
ples’ sources, only the sessile fraction was included. Furthermore, this
allows investigating a more ‘defined’ community and reducing the
amount of secondary consumers included in the analyses.

Bioinformatic analyses
Raw sequences from specific samples were processed differently from
the rest of the dataset in the first steps of the pipeline due to structural
differences of the format in which they were available: specifically,
sequences from ‘East Antarctic Wilkes land’ (ENA accession numbers
ERR12209601 to ERR12209606) were initially reverse complemented
and subsequently demultiplexed using the vsearch52 and cutadapt53

softwares, respectively, whereas for the samples fromCarvalho et al.29,
as well as other samples from the ARMS-MBONprogramme, no primer
removal was performed as the fastq files available were already trim-
med from them. Following these pre-processing steps, all paired reads
from the entire dataset were length truncated to 200 and 190bp for
the forward and reverse reads, respectively. Sequences from the two
reads were merged with no ambiguous bases allowed and 2maximum

Fig. 6 | Graphic representation of the percentage of random point falling on
coastal areaswithhigh energy availability in each ecoregion. a 5% extrapolation
areas for the mOTU richness prediction of the smoothers in the model including
NSI and totalNPP.bDensity plot of all randompoints generated in the0.04degrees
coastal areas of theGlobal Self-consistent, Hierarchical, High-resolutionGeography
database (GSHHG) world coastlines plotted with the corresponding total NPP
( y axis) and NSI (x axis) values from the global rasters of those variables. Each tile
can include a minimum of 1 point. Red shaded area represents the high energy
availability combinations of total NPP and NSI values (NSI < 0.4 and total
NPP > 75 gm−2 year−1), andmatches the lowconfidence area of theprediction in box
(a). c Ecoregions are coloured based on the percentage of number of points falling
on high energy availability coastal areas in respect to the total number of random
points. d As per box (c), but based on the percentage of points falling on low
seasonality areas (NSI < 0.4), irrespective of total NPP values.
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differences in the alignment. The merged sequence length was
restricted to 311–313 bp for the samples that were already available
without primers, whereas the length restriction was set to those values
plus the lengthof theprimers (26 bp) andprimer tags, if present. These
steps were performed using vsearch, whereas primer removal was
doneusing cutadapt, allowingone errormaximum in the alignment for
each primer. Samples with less than 200 sequences at this point were
removed from the analyses. All samples were concatenated into one
fastq file, sequences with a maximum expected error greater than 1
were removed, converted into fasta format and length filtered to
311–313 bp using vsearch, which was also used for the dereplication,
and removal of chimeras, performed using the uchime254 software.

A list of accession numbers of mitochondrial genome sequences
stored at the NCBI (Supplementary Data 2) was used to download the
corresponding fasta files of the mitochondrial cytochrome oxidase I
(COI) region from a variety of animal phyla, using a script written with
different tools of the Entrez Direct software suite55, in addition to
samtools56 and seqkit57 softwares. These sequences were aligned using
the software MACSE58 (tool ‘AlignSequences’) together with the pri-
mers from Leray et al.59 and Geller et al.60, the same used to amplify all
the samples used in this study. The software Megax61 was used to
inspect the alignment and extract the smallest coding region including
the ‘Leray fragment’ of the COI, and one additional codon at the third
end (thus obtaining an alignment of 318 bp). This was done in order to
provide some ‘freedom’ to the following alignment step, which was
done aligning the dereplicated dataset to that coding region. This final
alignment was performed using the tool ‘EnrichAlignment’ in MACSE,
which aligns each input sequence singularly and discards those that do
not satisfy particular conditions (in this case, no frameshifts, insertions
and stop codons were allowed). In order to speed up the alignment,
the fasta file with the dereplicated sequences was split in multiple files
with an identical number of sequences each, and run in parallel using
the software tool GNU parallel62. This alignment procedure allowed us
to identify the exact codon position of each nucleotide, and calculate
the entropy values of each codon position in the sequences of the
dataset, which is used in the denoising procedure proposed by Antich
et al.63,64. As the abundance annotation provided by vsearch at the
dereplication refers to the total dataset, and thus might not reflect the
true abundance at the DNA sequencing procedure, the denoising is
performed for each group of samples analysed separately at PCR and
sequencing (e.g. different sequencing runs), after recalculating the
abundance of each sequence in each group of samples, using mainly
vsearch and seqkit commands. Details on the procedure are available
within the scripts. After denoising, aminimumabundance threshold of
0.005%, in respect to the total abundance for each group of samples,

was set, and all Amplicon Sequence Variants (ASV) with abundance of
less than 5 sequences were removed from the analyses.

The molecular Operational Taxonomic Unit (mOTU) table (or
count/abundance table) was assembled using the vsearch tool
‘search_extract’ on the dataset after the length filtering step and with
the sequences aligned by MACSE as input. Clustering was then per-
formedon the dereplicated, aligned anddenoised sequences using the
software swarm65,66 (version 3) and a resolution set to 13 due to the
highmutation rate of the COI63. The mOTU table earlier produced was
then ‘collapsed’ according to the clustering results, using an R script
modified from the script ‘owi_recount_swarm.R’ at the GitHub ‘meta-
barpark’ repository (https://github.com/metabarpark/R_scripts_
metabarpark), which sums count values from each sequence belong-
ing to the same cluster as obtained by the swarm algorithm.

Environmental parameters
The Moderate Resolution Imaging Spectroradiometer (MODIS)
ancillary data on Chlorophyll (CHL, in mg m3), Sea Surface Tem-
perature (SST, in °C), Photosynthetic Available Radiation (PAR, in E
m2 day−1) and Diffuse Attenuation coefficient (DA, at 490 nm in
units m−1) was downloaded from the Ocean Productivity website
(Oregon State University, http://sites.science.oregonstate.edu/
ocean.productivity/) at 8-day and 0.083 degrees of resolution (or
2160 × 4320 grid size, ~9 km at equator), from 2013 to 2020.With the
same spatial resolution, but at 1-day of frequency, satellite data on
Sea Surface Salinity (SSS, in PSU) was downloaded from the ‘Global
Ocean Physics Reanalysis’ product67 of the E.U. Copernicus Marine
Service Information. The downloaded, raw data for SST, CHL and
PAR were used for the calculation of net primary productivity (NPP,
gm−2 day−1), and, consequently, the Normalised Seasonality Index
(NSI), as described in the following paragraph. Long-term averages
of mean values were calculated for all environmental variables,
whereas long-term averages of the range values were additionally
calculated for SSS and SST, as indicators of physical extremes. These
variables have been historically used as descriptors of the richness
and diversity of biological communities inhabiting marine environ-
ments, as they properly describe the physico-chemical and biolo-
gical conditions of these ecosystems. Moreover, SST and NPP are
usually investigated as empirical measures used to describe the
‘energy availability’ of marine environments. The sum of all NPP
values (hereafter referred to as ‘total NPP’ gm−2 year−1) in a year for
each satellite data point was preferred to the mean of NPP as
representation of the magnitude of primary productivity, due to
frequent absence of satellite data in polar areas in the winter
months, ultimately influencing the final mean values.

Table 4 | High energy availability coastal areas percentage for each realm

Realms # High energy availability points # Total random points % High energy availability

Temperate Australasia 865 7181 12.05

Tropical Atlantic 1866 15,664 11.91

Tropical Eastern Pacific 256 2700 9.48

Western Indo-Pacific 1403 18,354 7.64

Central Indo-Pacific 2727 40,367 6.76

Temperate Northern Pacific 1076 27,043 3.98

Temperate South America 301 12,607 2.39

Temperate Northern Atlantic 989 42,904 2.31

Temperate Southern Africa 21 1164 1.8

Arctic 0 89,340 0

Eastern Indo-Pacific 0 3609 0

Southern Ocean 0 25,910 0

Percentage of random points falling on high energy availability areas (low seasonality–high magnitude of production) for each realm, according to Spalding et al.24.
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Multiple indices have been proposed to quantify the annual
variability of NPP, by taking into account the overall annual standard
deviation in primary production21, the initiation and duration of phy-
toplanktonic bloom events (as reported in Cole et al.68), or the ‘pro-
duction half-time’22. More recently, a new index (NSI) was proposed by
Brown et al.18 by normalising the seasonality index introduced by
Berger andWefer22 by half of the total number of possible observations
in a year, allowing its comparison between regions with different
magnitudes of primary production. Two scripts in shell (Ubuntu ver-
sion 20.04.6 LTS) and R (version 4.2.2) were created for the download
and pre-processing of satellite data, the calculation of the Vertically
Generalised Production Model (VGPM) for oceanic NPP, following
Behrenfeld and Falkowski69, using anR version of the codeprovidedby
the Ocean Productivity website (http://sites.science.oregonstate.edu/
ocean.productivity/vgpm.code.php), and the calculation of the Nor-
malised Seasonality Index (NSI) following Brown et al.18, using GDAL70

(Geospatial Data Abstraction Library) the R packages collection
tidyverse71 and amodified version of the ‘daylength’ function from the
geosphere package72. This was done to include satellite data for the
Black Sea, which are lacking in the layers for the VGPM of oceanic NPP
provided by the Ocean Productivity website. The obtained data was
then further processed using QGIS73 (version 3.14). All points falling
inside the coastline contour of the Global Self-consistent, Hierarchical,
High-resolution Geography database74 (GSHHG, version 2.3.7) were
removed, and a kriging interpolation was performed using SAGA
CMD75, with default parameters except for the variogram, for which
themodel ‘2.20114 + 2.75005 * x’was chosen, and the target size, which
was set to 0.04 degrees, thus doubling the resolution of the satellite
raw data. The interpolation was performed on 16 regions of the world,
overlaying the samples’ locations and extending on ~5 degrees of both
latitude and longitude around those locations.

All raster files for these layers were imported in QGIS and values
extracted using the coordinates of each sampling location (Supple-
mentary Data 3). In order to account for spatial autocorrelation and
reduce issues due to pseudo-replication, a grouping factorwas created
by aggregating samples (and sites) based on adistance of 0.02 degrees
as radius, thus with a diameter of 0.04 degrees that resembles the
spatial resolution of the interpolated environmental layers. As some
structures were deployed in the same geographical point, but at dif-
ferent years and time ranges, they were discriminated against in the
grouping factor based on the year of deployment (and/or retrieval).
This grouping factor will be later used in the statistical analyses, to
account for spatial autocorrelation.

The following analyses were also conducted using satellite data
corresponding to the exact time range of each ARMS’ deployment and
retrieval schedule, thus obtaining only the environmental conditions
that each sample faced during its community development, without
relying on the averages of a broader period. However, due to the
absence of satellite data for the exact locations of the ARMS deployed
in Antarctica, likely caused by the persistent presence of sea-ice in
those periods, samples from the ‘East Antarctic and Wilkes land’
ecoregion could not be included, whereas satellite data from the ‘Ross
Sea’ ecoregionmostly relied on interpolation of satellite points located
far from the exact location of the structures. For this reason, the
analyses were conducted on a broader time range (2013–2020),
including the deployment-retrieval time ranges of all samples. The
results from the same analyses, but conducted on the aforementioned
exact time ranges’ data, are included in the Supplementary Discussion
and Supplementary Data 4.

Statistical analyses
A phyloseq76 object was created in R using the mOTU table and the
sample information file, including the environmental variables (Sup-
plementary Data 5). Dot charts showing the ranges and frequency of
values for each environmental variable were inspected to check for

outliers (Supplementary Fig. 10), however, no transformation was
deemed necessary. The correlation between the number of mOTUs
and each environmental variable was assessed using Pearson’s corre-
lation coefficient, and thedistributionof thenumber ofmOTUs ineach
ecoregion (following Spalding et al.24) was inspected with boxplots.

The presence of spatial autocorrelation was assessed with the
package ncf77, by estimating the spline correlograms on the Pearson’s
residuals of two HGAM models fitted using the package mgcv78, both
including separate smoothers for NSI and total NPP, as explanatory
variables of the number of mOTUs. The two models differ in the pre-
sence (or not) of the random effect used to account for the spatial
dependency within each ‘site’ (i.e. the grouping factor applied at the
same spatial resolution of the environmental layers), where multiple
samples (ARMS) have been deployed. This random effect also differ-
entiates structures that have been deployed at the same sites but at
different time ranges, for example in cases of multiple deployments at
different years. The effectiveness of the random effect to be used in
the following model selection and validation was assessed by com-
paring the AIC of the two models.

In order to check whether other environment variables could be
included in the model, the entire set of variables was compared in a
correlationmatrix, beforeperforming a variable selectionbasedon the
Variance Inflation Factor (VIF) using the package olsrr79. The variables
with less than 3 VIF, including the NSI and total NPP, were then inclu-
ded in the model. The variable selection was performed also on the
depth and number of months of deployment.

Model selection was conducted on a HGAM model fitted using a
REstricted Maximum Likelihood (REML) estimation and assuming a
Negative Binomial distribution with logarithmic link for the response
variable. The grouping factor ‘site’ was included in the model as a
random effect and all the non-collinear explanatory variables were
included in the model using thin plate regression splines smooths for
each variable. Model selection was performed until all variables
resulted statistically significant (i.e. <0.05). The final model was com-
pared to themodel that only includes NSI and total NPP. Contour plots
of each model’s predictions were produced and compared to assess
the combined effect of NSI and total NPP, and the models were vali-
dated by comparing the output of mgcv’s ‘gam.check’ function, e.g.
histogram of residuals and plot of residuals vs. fitted values.

Prediction performance between the HGAMmodel including NSI
and total NPP was compared with that of other HGAM models
including single variables commonly used in literature to describe
benthic metazoan richness such as SST, CHL, total andmean NPP, and
NSI, following a cross-validation approach. For each ecoregion, 2 sites
were randomly sampled and the corresponding samples used to create
the training datasets. This was done to avoid over-representation of
the samples from the Red Sea, which accounted for a high proportion
of the dataset’s ARMS (Table 1). Each training dataset was then used to
fit the different HGAM models and the prediction was conducted on
the remaining subset (the rest of the dataset not sampled previously,
here called the validation dataset) using the ‘predict.gam’ function,
from the mgcv package. The prediction was performed including the
random effect, as the random selection of sites allows to preserve the
entirety of samples in each selected site, and the errors of the pre-
diction were assessed by calculating the RMSE, using the package
Metrics80, between the prediction values and those observed in the
validation dataset. This was performed on 100 randomly generated
subsets of the entire dataset. The list of site codes in each training
dataset used for the analyses and figures here reported is available at
Supplementary Data 6.

The linearity of total NPP at varying degrees of seasonality was
assessed by modifying the NSI values of each generated validation
dataset, producing 6 new datasets at different levels of the seasonality
index (i.e. from 0.3 to 0.8). This allowed us to inspect the smoother of
total NPP at different levels of seasonality (in the models including the
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NSI) and compare it to the smoothers obtained by themodel with only
total NPP as explanatory variable.

Identification of high energy availability coastal areas
In order to identify which areas of the world oceans’ surfaces included
extreme values of both seasonality and productivity, for the environ-
mental variables of total NPP and NSI, an interpolation spanning the
entire world was performed after selecting which of 225 regions
dividing the earth surface in equal areas overlapped the oceans, and
performing an interpolation inside each of these regions. The same
aforementioned SAGA CMD parameters were used, except for search
range and radius, which were changed to ‘local’ and 0.65 degrees
respectively, to reduce the interpolation time. All interpolated layers
from all regions were merged into a single one using GDAL and
imported in QGIS. For each combination of total NPP and NSI
extremes, a polygon layer showing their distribution on oceanic sur-
facewaterswas created inQGIS, adopting a series of tools that allowed
us to filter specific raster values.

Concurrently, the identification of which ecoregions included the
highest percentage of coastline areas with high ‘energy availability’
(low seasonality and high productivity magnitude), a different
approach was undertaken. A buffer area of 0.04 degrees of span from
the coastlines identified by the GSHHG high resolution database was
created, and 10 thousand points maximum falling on this buffer area
were randomly extracted for eachecoregion,with aminimumdistance
of 0.04 degrees between each other. The points falling on raster pixels
with low (NSI < 0.4) and high (total NPP > 75 gm−2 year−1) values of NSI
and total NPP, respectively, were extracted and counted. The identi-
fication of low and high values of seasonality and productivity was
defined by the inspection of the dataset distribution of these values,
thus corresponding to the highest and lowest values in the dataset
here analysed. Finally, for each ecoregion, the percentage of number
of points in high energy availability areas compared to the total
number of points was calculated. The percentage of all points falling
on low seasonality areas (NSI < 0.4), independently from the pro-
ductivity values, was also calculated.

A more detailed description on the methods described in this
section can be found in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The .fastq files of the additional samples included in the analyses (and
corresponding to the samples deployed in the Southern Ocean) are
available at the European Nucleotide Archive (ENA, http://www.ebi.ac.
uk/ena)81 with the study accessionnumber PRJEB67891. The rawARMS-
MBON sequence files used for this study are available from the ENA as
well, with the study accession numbers PRJEB37740, PRJEB33796,
PRJEB37751, PRJEB37741, PRJEB48198, PRJEB48199. The run accession
numbers for all samples available at ENA are listed in the Supple-
mentary Data 3, while all additional information for each sample
(depth, environmental data, date, etc.) is available in Supplementary
Data 5. All raster layers, corresponding to the satellite data down-
loaded, as well as the shapefiles created for the identification of high
energy availability coastal areas are available at FigShare https://doi.
org/10.6084/m9.figshare.25957663.

Code availability
All scripts and files used for the bioinformatic and statistical analyses, as
well as those to produce the NSI raster layer, are available at the two
GitHub repositories https://github.com/MatteoCe/ARMS_seasonal and
https://github.com/MatteoCe/vgpm_nsi. The steps adopted todownload

the .fastq files of the samples gathered from the published papers are
described in the former repository.
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