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Winter arctic sea ice volume 
decline: uncertainties reduced 
using passive microwave‑based sea 
ice thickness
Clement Soriot 1,2*, Martin Vancoppenolle 3, Catherine Prigent 1,4, Carlos Jimenez 2,4 & 
Frédéric Frappart 5

Arctic sea ice volume (SIV) is a key climate indicator and memory source in sea ice predictions 
and projections, yet suffering from large observational and model uncertainty. Here, we test 
whether passive microwave (PMW) data constrain the long‑term evolution of Arctic SIV, as recently 
hypothesized. We find many commonalities in Arctic SIV changes from a PMW sea ice thickness (SIT) 
1992‑2020 time series reconstructed with a neural network algorithm trained on lidar altimetry, 
and the reference PIOMAS reanalysis: relatively low differences in SIV mean (4615  km3, 37%), SIV 
trends (46  km3, 17%), and phased variability  (r2=0.55). Key to reduced differences is the consistent 
evolution of many SIV contributors: seasonal and perennial ice coverage, their SIT contrast, whereas 
perennial SIT provides the largest remaining uncertainty source. We argue that PMW includes useful 
SIT information, reducing SIV uncertainty. We foresee progress from sea ice reanalyses combining 
dynamical models and data assimilation of PMW SIT estimates, in addition to the already assimilated 
PWM sea ice concentration.

Arctic sea ice loss is attributed to anthropogenic  CO2  emission1,2, a key element in favor of an anthropogenic ori-
gin of climate  change3. Empirical knowledge of Arctic sea ice loss mostly comes from satellite Passive MicroWave 
(PMW) retrievals of sea ice fractional  coverage4,5. Available since 1979, hence providing the longest continuous 
climate time  series3,6, PMW records show a decrease in sea ice coverage in any month of the year since  19797,8 
exceeding 10% per decade during summer  months9.

Sea Ice Thickness (SIT) provides a more in-depth characterization of sea ice changes than coverage. Indeed, 
SIT directly relates to the negative storage of thermal energy in sea ice. In addition, spatially integrated SIT deter-
mines the Sea Ice Volume (SIV). To date, compilation of observational sources and ice-ocean model reanalyses 
have established a significant SIT decrease above 60% of the mean in the Central Arctic between the 1970s and 
the  2010s10,11, along with a corresponding SIV  loss12–14. Both findings are rated with very high confidence in 
recent IPCC assessment  reports7,8. In Fram Strait, the primary gateway for Arctic sea ice, the longest consistent 
SIT record available confirms thinning, and reveals a regime shift in 2005-2007, marked by a rapid reduction in 
modal SIT, variance, and thick ice  prevalence15.

Quantitatively however, uncertainties in Arctic SIV are considered to exceed 50% for the absolute value and 
30% for the long-term  trend8,12,13,16,17, for several reasons. First, in situ sources (e.g. airborne, submarine, drilling) 
inconsistently and unevenly sample  SIT10,18–21. Furthermore, space-borne lidar and radar altimeter SIT retriev-
als cover less than two decades with noncontinuous  observations22,23 and suffer from error propagation, mostly 
from uncertain snow  depth16,24–26. Finally, ice-ocean model reanalyses, while benefiting from the assimilation 
of PMW Sea Ice Concentration (SIC) and Sea Surface Temperature (SST), are hindered by SIT model errors, 
resulting in a large SIV inter-model  spread12–14.

PMW could provide an alternative, consistent observational source for SIT time series. Recent work has 
uncovered relationships between SIT and PMW signals not only for sea ice up to 50 cm - 1  m27–30, but also 
for thicker  ice31. Building on this, several groups developed machine-learning based algorithms using PMW 
data, trained on lidar and/or radar satellite altimetry SIT data. These algorithms demonstrated comparable 
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performance with standard altimetry when tested against independent airborne SIT  observations31–33. The PMW 
SIT  algorithm31 processes the few PMW channels available over several decades and therefore offers means to 
provide several decade-long of consistent SIT time series. On this basis, we produced and evaluated a new 1992-
2020 SIT estimate and SIV volume PMW time series over the pan-Arctic for the cold month (October-March), 
with  the31 algorithm. It is applied on a long time series of climate-quality satellite observations from Special 
Sensor Microwave / Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) (Fundamental 
Climate Data  Record34).

In this work, we examine whether a new PMW SIT estimate  records31 improves our knowledge of Arctic 
SIV and its long-term changes. To accomplish this, the new PMW SIT retrieval product is evaluated against the 
PIOMAS (Pan-Arctic Ice-Ocean Modelling and Assimilation  System35) reanalysis. The PIOMAS SIT product 
has been thoroughly evaluated against in situ SIT  observations12 and is considered as a reference. Similar to 
PIOMAS (and other modelling systems assimilating sea ice concentration), the new SIV time series benefits from 
the well-resolved ice-water contrast by PMW emissions, for the estimation of the sea ice concentration. A key 
distinction between PMW and PIOMAS lies in the fact that PMW SIT relies on PMW observations only, using a 
neural-network-based algorithm, while PIOMAS SIT derives from model calculation and data assimilation (see 
Methods), leading to different uncertainties. PIOMAS suffers from model biases stemming from improper model 
physics, numerics or calibration. The  algorithm31 trained on 2018-2019 lidar altimetry data inherits altimetry 
issues, in addition to PMW sensitivity to snow melt in the spring, and has larger uncertainties in the earliest 
sections of the time series, particularly in the 1990s, when the thickest ice on record was present in the Arctic 
Basin. Nevertheless, we find the PMW and PIOMAS SIT and SIV time series over the last three decades similar 
in many respects, including changes in volume, thickness distribution, and the seasonality of these changes.

Results
PMW and PIOMAS similarly depict Arctic sea ice thinning and volume loss
SIV is the spatially-integrated SIT over sea ice area. To estimates SIV, two SIT datasets were utilized: the v2.1 
PIOMAS  reanalysis35 and a PMW SIT  estimates31. The PIOMAS record is based on a simulation with a sea ice-
ocean model assimilating passive microwave SIC and infrared SST  records12,35. The PMW SIT data set is based 
on a neural network retrieval algorithm trained with SIT lidar altimetry data (ICESat-2), from the 2018-2019 
cold season (Methods). The algorithm was applied to the inter-calibrated SSM/I and SSMIS Fundamental Cli-
mate Data  Record34 over 1992-2020, from October to March. Later in the spring, the PMW signals are affected 
by snow  melt36, and the accuracy of the PMW SIT is reduced.

PMW and PIOMAS SIT records have in common a poleward increase in thickness, relatively thin seasonal 
ice in marginal Arctic seas, and thicker multi-year ice mostly in the Arctic Basin (Fig. 1). Remarkably, SIT is on 
average 0.53 m higher in PMW than in PIOMAS, giving a corresponding SIV excess in PMW of 4615 ± 1852  km3 
(Table 1). More detailed reasons for the SIT and SIV differences between the two datasets are given later in the 
text. PMW also features the pan-Arctic 1992-2020 sea ice thinning already documented in both observational 
datasets and model outputs including  PIOMAS13,14,37, as maps shown in Fig. 1 indicate.

Figure 1.  Decline of the Sea Ice Volume between 1992 and 2020 for October and March, estimated by Passive 
MicroWave (PMW) satellite observations and by the PIOMAS model, along with their associated linear trends. 
The maps show the average Sea Ice Thickness fields for every winter (Oct-Mar) in the period, as derived from 
the PMW observations.
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The Arctic SIT reduction is largely consistent in PMW and PIOMAS datasets. In both, sea ice thinning is 
widespread, all-month, and strongest in the Central Arctic (Fig. 2, upper panels). Also, thinning trends are 
largest where the ice is the thickest. Indeed, the thick sea ice that was systematically found in the Central Arctic 
and regularly located on the Siberian Shelf in the 1990s, has become rare in recent years and confined to areas 
north of the Canadian Arctic Archipelago and north of Greenland. Quantitatively, over 2016-2020, the total area 
where SIT is above the third quartile (3.3 m in PMW and 2.4 m in PIOMAS) was drastically reduced as com-
pared with 1992-1996 – by a factor of 3.5 in PMW (4.5 in PIOMAS). The rapid thinning of thick ice is consistent 
with a thermodynamic response to thermal forcing perturbations, stemming from the sea ice growth-thickness 
 relationship38. Seasonally, thinning trends are largest in October, reaching up to 9 cm/year in the Eastern Arctic 

Table 1.  Summary of 1992-2020 Sea Ice Volume statistics (Oct-Mar) for the PMW and PIOMAS time series. 
From left to right: mean SIV, mean SIV trend, standard deviation of monthly detrended anomalies, standard 
deviation of year-to-year change in monthly values, average Oct-Mar volume increase.

< SIV > |Oct−Mar Trend |Oct−Mar σIA σY2Y �SIVMar−Oct

[103km3] [103km3/yr] [103km3] [103km3] [103km3]

PMW 17.5 ± 5.0 0.31 ± 0.03 1.42 1.81 10.8 ± 0.9

PIOMAS 12.6 ± 4.3 0.27 ± 0.02 0.76 0.92 10.1 ± 0.9

Figure 2.  Changes in Sea Ice Thickness (SIT) between 1992 and 2020. Upper panels: Spatial distribution of 
the PMW SIT trends for October (a), December (b), and March (c) (with P-values  ≪ 0.05). Middle panels: 
Evolution of the average SIT and SIA for the whole Arctic during October (d), December (e), and March (f) 
between 1992 and 2020 for PMW (dots) and PIOMAS (cross). Lower panels: Evolution of the SIT distribution 
between 1992 (blue) and 2020 (red) over (g) the whole Arctic, (h) over seasonal sea ice, and (i) over perennial 
sea ice (distributions of the PMW SIT in the upper half of the figures and PIOMAS SIT in the lower half). SIT 
are binned over 10 cm.
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Basin and on the Siberian Shelf in PMW whereas PIOMAS thinning trends reach 8 cm/year in the Central 
Arctic and North of Greenland (Fig. 2, upper panels), consistently with the effects of late sea ice advance largest 
in early  fall39,40.

PMW and PIOMAS are also highly consistent in terms of SIV changes ( r2 > 0.9 for most months, Table 2), 
and this despite their differences in mean SIV. A mostly linear decline is identified for all investigated months, 
with an Oct-Mar mean SIV trend of 312  km3/year in PMW, 17% larger than in PIOMAS (Table 2). In both 
records, SIV trends are larger early in the ice season (Oct-Dec) than in March, in agreement with previous 
 findings11. We note, however, that the seasonal decrease in trend magnitude from October to March is more 
than 2 times larger in PIOMAS than in PMW. SIV trends are also largely sensitive to the period of interest: both 
PMW and PIOMAS agree on larger trends in the 2000-2010 decade and smaller trends over 2010-2020 (not 
shown) and trend can vary by 20-30% by changing the period of interest. Finally, inter-annual SIV variations 
are found in both records.

PMW and PIOMAS agree on the key impact of perennial ice loss on SIV trends, not on how 
much
In general, the patterns of thinning and volume loss are comparable in both PIOMAS and PMW datasets, even if 
the datasets result from different paradigms (the first is a combination of model calculations and data assimila-
tion, and the second is based on a statistical PMW SIT retrieval trained on lidar altimetry). However, discrepan-
cies exist between these records, warranting a more in-depth investigation to better characterize these differences. 
The primary cause of SIV change in both records is mean SIT, rather than Sea Ice Area (SIA), as illustrated in the 
middle panels of Fig. 2. From November to March, thinning contributes to 92% of the observed changes in SIV, 
while shrinking accounts for the remaining 8% (Fig. 2). In October, the SIA loss associated with late  advance39,40 
also contributes to 34% of SIV changes, whereas the remaining 66% can still be attributed to SIT. Hence, the SIV 
trends differ among PMW and PIOMAS most likely due to SIT differences, which we now further investigate.

Ice thickness changes are readily observable when organized into thickness categories (Fig. 2g). As expected, 
both PMW and PIOMAS feature significant amounts of ice thicker than 3 m during the 1990s (blueish curves, 
Fig. 2g) that is much less prevalent in the 2010s (reddish curves, Fig. 2g). However, we now see that the PMW-
PIOMAS broad consistency does not hold as much in thickness space. In PMW, consistently with thicker ice, 
the thick ice peak is more developed than in PIOMAS. Also, the shape of the SIT distribution differs among the 
two sources: in PMW it is multimodal (with two to four peaks depending on the years) whereas in PIOMAS it 
has only two modal values. Thinning is also distributed differently across thickness categories. In PMW, thick 
ice drastically decreases in prevalence whereas thin ice becomes more likely, with no change in modal thickness 
(2.1 m), suggesting a replacement of thick ice by thin ice. In PIOMAS, next to the loss of the thickest ice, the 
whole distribution sweeps towards thinner ice, including a decrease in modal thickness.

Understanding the PMW-PIOMAS SIT differences benefits from splitting the SIT distribution over sea-
sonal and perennial ice (Methods, and Fig. 2, panels h and i), which emphasizes issues for the latter ice type, in 
particular. Perennial, or multi-year ice, refers to sea ice that survives summer melt. In the Arctic, perennial ice 
tends to be thicker than younger seasonal ice, and has experienced significant losses over the past few decades. 
Perennial and seasonal ice can be identified on a yearly basis by analyzing the seasonal cycle of SIC, typically by 
counting the number of ice-free  months40 or above a threshold as used here (Methods). We applied this diag-
nostic approach to PMW and PIOMAS records, utilizing PMW SIC records (Methods) and find that perennial 
ice is, on average, 89 cm thicker in PMW compared to PIOMAS. This discrepancy is greater than for the mean 
(53 cm) or for seasonal ice thickness (40 cm).

What are the consequences of SIT differences on SIV changes? Said differently, how can SIV trends be rela-
tively close despite SIT differences? To address this question, we decomposed SIV into seasonal (S) and perennial 
(P) contributions ( SIV = SIAS · SITS + SIAP · SITP ) and analyze the contributions of area and thickness changes 
for each ice type (Table 3). In this framework, PMW and PIOMAS agree on the sign and relative importance of 
the SIV terms. Arctic SIV loss is dominated by perennial ice shrinking, with contributions from seasonal and 
perennial ice thinning.

The most important contribution to the difference in trend between PMW and PIOMAS SIV is, as expected, 
the loss of perennial ice volume due to shrinkage, which is 65  km3/yr greater in PMW than in PIOMAS. The 
perennial ice is thicker in PMW, so the loss of the same area of perennial ice (the same perennial ice shrinking 

Table 2.  Statistics of PMW and PIOMAS SIV time series. Trends ± uncertainties are given for each month 
between October and March. r2is obtained from a linear fit between monthly mean PMW and PIOMAS SIV 
time series.

PMW trend (− 1)  [km3/yr] PIOMAS trend (− 1)  [km3/yr] PMW-PIOMAS trend difference  [km3/yr] PMW vs PIOMASr2

Oct 319 ± 35 302 ± 21 17 (5 %) 0.92

Nov 314 ± 33 284 ± 19 30 (10 %) 0.92

Dec 321 ± 36 267 ± 19 54 (18 %) 0.93

Jan 318 ± 35 255 ± 19 63 (22 %) 0.91

Feb 309 ± 36 250 ± 16 59 (21 %) 0.86

Mar 291 ± 27 236 ± 15 55 (21 %) 0.94

Oct-Mar 312 ± 33 (11 %) 266 ± 17 (6%) 46 (17 %) 0.91
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rate dSIAP/dt has been applied) has a greater impact in PMW than in PIOMAS. We note that 65  km3/yr is 
greater than the total trend difference between PMW and PIOMAS SIV. This is due to compensations, reducing 
the latter by about half. Firstly, seasonal ice thinning is less intense in PMW than in PIOMAS; secondly, the 
increase in SIV due to seasonal ice expansion is greater in PMW because seasonal ice is thicker in PMW than 
in PIOMAS. We also note that the SIC threshold used to delineate perennial and seasonal sea ice influences the 
budget decomposition, but not the PMW-PIOMAS differences.

The evolution of the SIT distribution over the years is also different in the two datasets. In PIOMAS, the 
changes in SIT are rather gradual, whereas PMW reveals a sharper transition (from the blueish to the reddish 
curves in Fig. 2i) around the year 2007, a well-documented minimum in Arctic sea ice  extent41. In the Central 
Arctic region (Supplementary Information, Fig. S1), this rapid transition is particularly remarkable. Such abrupt 
change in SIT around 2007 has been reported in the Fram Strait from the 30-yr-long upward-looking-sonar 
record, which argues in favor of a regime  shift15. One can speculate that PIOMAS, because it is a reanalysis 
product, is less capable of capturing abrupt mechanisms behind this regime shift.

PIOMAS better captures mean thickness, PMW better retrieves variations
PMW and PIOMAS provide different SIT and SIV estimates. Can either be considered more reliable? To address 
this, PMW and PIOMAS SIT were colocated in time and space with available in situ SIT measurements, from 
Upward Looking Sonar (ULS) onboard  submarines19.

In situ data do not distinctly favor either PIOMAS or PMW SIT as more realistic; PIOMAS better captures 
the mean SIT, while PMW better captures SIT variability. Indeed, over the three common periods of availability 
analyzed, PIOMAS tends to miss both the thinnest and thickest ice, whereas PMW shows occurrences of both, 
consistent with observations, but tends to produce thicker ice than observed (Supplementary Information, 
Fig. S2). More broadly, PMW appears to produce a more realistic multi-modal SIT distribution, consistent with 
various in situ sources, including airborne electromagnetic induction sounding  surveys42,43, under-ice upward 
looking-sonar  records15, and satellite-borne  altimetry44. These findings are in line with previous evaluation 
 exercises12,14,31. The assimilation in the PIOMAS reanalysis acts as a restoring term which could contribute to 
reduce the SIT variance in this dataset.

The origin of SIT biases in PMW and PIOMAS differs. In PMW, issues primarily stem from the availability of 
training data, with limited incorporation of data resembling the very thick ice conditions observed in the  1990s31. 
In this context, PMW can be considered reliable for ice <2 m, where the training dataset is providing enough data, 
but more uncertain for thicker ice, particularly for the oldest years in the record, where higher SIT are observed.

In PIOMAS, SIT biases arise from issues in model physics, forcing or assimilated data. As for PMW, the thin-
nest ice is the most likely to be well reproduced by the model, as sea ice thermodynamic processes have been 
studied for a long  time38,45,46, and are rather well reproduced in large-scale sea ice  models47. By comparison, the 
simulated ice drift and deformation are more  uncertain48 and can have a large influence on sea ice via residence 
type and  ridging15,49, posing more complex challenges than thermodynamics. Hence, significant SIT uncertain-
ties may stem from model ice dynamics, particularly  rheology50 and ridging  schemes51, which remain subjects 
of long-standing debate and active research in the sea ice modelling  community52–54.

In this line of thought, it is complicated to designate PIOMAS reanalysis or the PMW estimates as more real-
istic: only a few in situ data are available, and both sources have different and time-dependent issues. The origin 
of these problems is different, and in both cases, thick sea ice is more affected than thin ice.

Sea ice volume inter‑annual variability is in phase between PMW and PIOMAS
A final objective of our analysis is to examine how consistent PMW and PIOMAS are in terms of inter-annual 
SIV variability. Inter-annual SIV variations superimpose upon long-term trends in both products and Fig. 3 
indicates many common features in the PMW and PIOMAS detrended anomalies (Supplementary Information, 
Fig. S3 also shows time series of year-to-year anomalies for each of the investigated months). Notably, PMW 
and PIOMAS generally agree on which years on record have high or low SIV, as evidenced by an r2 value of 0.55 
for detrended anomalies. The decomposition of SIV detrended anomalies into the contributions of the SIT and 
the SIC (Methods and Supplementary Information, Fig. S4) show that the SIT anomalies provide the dominant 
contribution to PMW and PIOMAS SIV anomalies, around six times higher than the absolute contribution 
from SIC anomalies for PMW (and five times for PIOMAS), similar from previous  observations55. Inter-annual 
variations are also remarkably consistent in space (Supplementary Information, Fig. S5).

Inter-annual SIV variations are nonetheless larger in PMW than in PIOMAS: year-to-year relative differences 
in SIV are 1.9 times higher in PMW than in PIOMAS, and the standard deviation of detrended SIV anomalies 
is 2.7 times higher for PMW (Table 1). Yet both sources concur that variability in SIV is relatively higher than 

Table 3.  Decomposition of Oct-Mar SIV budget (1992–2020) into four seasonal and perennial ice shrinking 
and thinning contributions. Because of temporal averaging errors, the sum of terms is not rigorously identical 
to dSIV/dt.

Product

dSIAS

dt
· SITS Seasonal ice 

area change  [km3/yr/yr]
SIAS ·

dSITS

dt
 Seasonal 

icethinning  [km3/yr/yr]

dSIAP

dt
· SITP Perennial ice 

area change  [km3/yr/yr]
SIAP ·

dSITP

dt
 Perennial ice 

thinning  [km3/yr/yr] � terms  [km3/yr/yr] dSIV

dt
  [km3/yr/yr]

PMW 42 − 59 − 225 − 67 − 309 − 312

PIOMAS 31 − 70 − 159 − 64 − 263 − 266

PMW-PIOMAS 11 (17%) 11 (33%) − 65 (15%) − 3 (4%) − 46 (17%) − 46 (17%)
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for SIA: the standard deviation of detrended October to March SIV anomalies is 8% of mean SIV for PMW and 
6% for PIOMAS, which is 3-4 times larger than comparable values for SIA (< 2%). Both also agree on highest 
inter-annual variability occurring early in the ice season: year-to-year variations are almost three times larger in 
October than in March, for both PIOMAS and PMW (Supplementary Information, Fig. S3).

The anomaly time series emphasizes several events which occurred during the last decades that are also seen 
on Fig. 1. The early winter anomaly in polar winter 2006-2007 has already been documented from submarine 
 measurements15, and it is associated to a low sea ice  extent41. PMW and PIOMAS also feature the strong SIV 
increase in 2014, after a low melting in 2013, as measured with CryoSat-256. The replenishment of multiyear sea 
ice in 2013 and 2014, north of Greenland and the Canadian  Archipelago57 on the spatial fields of detrended SIT 
anomalies is confirmed for both PMW and PIOMAS (maps in Fig. 3 and in Supplementary Information, Fig. S6).

The analysis of individual years perhaps shows a limit of the PMW record. Indeed, the highest absolute PMW 
SIV anomaly of 4000  km3 which occurs during winter 1996–1997 is 3000  km3 higher than PIOMAS anomaly. 
In any case, this year seems outside the possible range of SIV, with a replenishment of nearly 6000  km3 between 
October 1996 and October 1997. PIOMAS also sees a positive anomaly but about half as large. Therefore, part of 
the anomaly might be realistic and related to the strong ENSO (El Niño Southern Oscillation) event that occurred 
around  199758,59, as sea ice was reported to have been affected by the ENSO  event60,61.

Discussion and Conclusion
We present the first consistent multi-decadal (1992-2020) satellite-based time series of winter pan-Arctic SIT 
and SIV, covering up to 87.6 °N. These time series are derived from inter-calibrated SSM/I- SSMIS, using an 
algorithm trained on a cold season of Arctic lidar altimetry-derived SIT. We compare the new PMW SIT retrieval 
dataset with PIOMAS, a reference SIT product, based on an ice-ocean model forced by atmospheric reanalyses 
and assimilating PMW sea ice  concentration35.

Despite relatively large mean state SIV differences (4.6 ×  103  km3,  37% ), we find many commonalities in the 
way the PMW SIT dataset and PIOMAS represent Arctic SIV and its changes. The PMW and PIOMAS linear SIV 
trends are 0.27− 0.31× 103  km3/yr, only differing by 46  km3/yr (17%) on average. Inter-annual SIV variations 
are consistently phased, and represent 7-11% of the mean. Finally, both products indicate the preferential loss 
of thick ice, and largest SIT trends in October.

These differences in volume and mean trends between the two datasets are substantially lower than current 
uncertainty estimates. 4.6 ×  103  km3 is larger than the 1.35 ×  103  km3 estimated for  PIOMAS12, but much smaller 
than the inter-model SIV spread from model-based reanalyses (> 10 ×  103  km3,13) retained in the IPCC last 
 assessment62. Furthermore, the PMW-PIOMAS SIV trend differences (30  km3/yr) are less than 3 times smaller 
than uncertainties evaluated for PIOMAS (100  km3/yr,12) thus an order of magnitude lower than inter-model 
spread found among reanalysis systems (526  km3/yr,13). That high and low SIV years are consistent between 
PIOMAS and PMW can also be seen as positive, as it is not the case for reanalysis  systems13.

Such comparatively low PMW-PIOMAS differences in SIV mean and trends stem from consistent represen-
tation of key SIV contributors in the two products, namely seasonal and perennial ice coverages, seasonal ice 
thickness, and the fact that both products also capture the thickness contrast between relatively thin seasonal and 
relatively thick perennial ice. However, perennial ice thickness differences (89 cm on average) remain the largest 
uncertainty source, both for mean SIV and SIV trends. This higher uncertainty in SIT can be due to the lack of 
high SIT in the training database for the PMW retrieval, as well as to the more complex physics of perennial ice in 

Figure 3.  Detrended Sea Ice Volume Anomalies from PMW and PIOMAS. The maps show the detrended Sea 
Ice Thickness anomaly fields from PMW for every winter (Oct-Mar) in the period.
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models for PIOMAS. In contrast, we argue that as seasonal sea ice is thin, its thickness can be retrieved from data 
with increased  confidence31, and PIOMAS faithfully analyzed the well-known seasonal thermodynamic growth.

It is also noteworthy that key features of the long-term SIV changes found in both PMW and PIOMAS are 
physically consistent. That thick ice is preferentially lost stems from basic sea ice  thermodynamics38. The reduced 
SIV trend over the last decade has been explained as a consequence of negative feedbacks provided by increased 
growth and reduced SIV export due to sea ice  thinning63. Largest trends in beginning of winter can be seen as 
a consequence of later  advance39,40.

Based on the above arguments, we first defend that Arctic SIV uncertainties are not as high as the spread in 
Arctic sea ice model reanalyses suggests. This considered, SIV uncertainties are probably overestimated in sea 
ice model reanalysis, in particular when including simulations with no use of data assimilation. By contrast, 
PIOMAS and PMW could be considered as more reliable references, although neither PMW nor PIOMAS should 
be considered as absolute truth. PMW suffers from an identified thick bias for oldest perennial ice on record, 
whereas PIOMAS is known to underestimate SIT variance. Second, we argue that the analysis presented in this 
paper shows that long-term PMW time series includes useful SIT information. Therefore, the incorporation of 
these PMW SIT and SIV retrievals into model simulations could benefit to Arctic sea ice reanalyses (such as 
PIOMAS) or seasonal  predictions64, as the spatial and temporal coverage of the PMW product is well suited for 
the  assimilation65.

Improving our understanding of long-term changes in Arctic sea ice thickness and volume could benefit from 
PMW contribution. Overall and despite its limitation, our PMW record can provide important progress on the 
understanding of SIT and SIV pan-Arctic changes, particularly over the long time scales analyzed here that are 
not available from other satellite-based observations. Next to the essential improvement of altimetry-based SIT 
products, more research should be conducted to explore the potential of PMW for SIT and SIV. As the PMW 
SIT skill is not fully expected from physical  principles66, the indirect links between the PMW and the SIT should 
be investigated (e.g., ice salinity, microstructure in the volume, surface roughness). It could be worth acquiring 
PMW observations at intermediate scales (between satellite and in situ) in order to understand the effects of pres-
sure ridges or rubble fields on PMW signals, which are currently difficult to envision. The Copernicus Microwave 
Imaging Radiometer  (CIMR67) and the Copernicus Polar Ice and Snow Topography Altimeter  (CRISTAL68), 
both planned to be launched at the end of the 2020s, are primarily designed to observe the polar regions in 
support of the Integrated European Policy for the Arctic. CIMR will provide passive microwave observations, 
with unprecedented accuracy and spatial resolution (5 km at 18 and 36 GHz used in this study). Exploiting the 
synergies between CIMR and CRISTAL passive and active microwave observations is strongly encouraged, for 
an improved quantification of the sea ice thickness and volume changes in the future.

Methods
Data
The SSM/I and SSMIS passive microwave observations
The Special Sensor Microwave / Imagers (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) 
sensors, on board the USA Defense Meteorological Satellite Program (DMSP) span more than 30 years of passive 
microwave observations, with almost global coverage of the Arctic (up to 87.6° N). These instruments acquire 
brightness temperatures at different microwave frequencies, including the 18 and 36 GHz that are used here to 
calculate the SIT, and then the SIV. The change from the SSM/I series to the SSMIS corresponds to a significant 
modification of the instrument, with the addition of sounding channels as well as different observation strate-
gies. The observations from the multiple instruments over time have been carefully intercalibrated so they can 
be used for climate  applications34. The corresponding datasets used in this study (from the satellites F11, F13, 
F14, F15, F16, F17 and F18) are available from the Climate Satellite Application Facility at EUMETSAT. The 
brightness temperatures have been gridded on an equal area grid at 12.5 km resolution, the same as the grid 
used by the OSI-SAF for the  SIC69.

PIOMAS
The Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) combines a coupled sea-ice-ocean with 
observations using data assimilation. Satellite-derived Sea Ice Concentration (from passive microwaves) as well 
as Sea Surface Temperature (from infrared) are assimilated into PIOMAS, to provide an alternative approach to 
estimate regional trends in  volume35. It has been designed to estimate Sea ice Thickness and then Sea Ice Volume 
(among other climate variables) since the beginning of sea ice satellite observations. Here, we use the 2.1 version 
of the  PIOMAS12 from 1992 to 2020. PIOMAS is formulated in a generalized orthogonal curvilinear coordinate 
(GOCC) system and is here projected on the Northern EASE-Grid 2.0 at 12.5 km resolution for better compari-
son with the other datasets used in this study.

In situ measurements
The sea ice thickness climate data record (sea ice CDR) of in situ observations of ice draft and  thickness70 inte-
grates measurements from submarine Upward Looking Sonar (ULS) from U.S.  submarines71. Only segments 
acquired between October and March, up to 87.6° N are kept.

A total of 3 months are providing temporally and spatially collocated in situ measurements, i.e. October 1996 
and 2000, and November 2005. All of them have been acquired in the Central Arctic. Data from the ULS have 
been reprojected on the Northern EASE-Grid 2.0 at 12.5 km resolution and averaged on the same temporal 
window for better comparison with the PMW and PIOMAS data.
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Sea Ice thickness product from passive microwave radiometers
Sea Ice Thickness is retrieved from brightness temperatures acquired by the SSM/I and SSMIS passive microwave 
radiometers. The methodology has been described in  detail31, here we summarize the theoretical basis of the 
algorithm. The algorithm uses the statistical relationships observed between passive microwave observations and 
SIT to train a Neural Network (NN) to reproduce ICESat-2 SIT from brightness temperatures at 18 and 36 GHz. 
The NN has been trained on the polar winter 2018-2019 where it showed good performance when compared 
to the CryoSat-2 satellite retrieval and the Operation Ice Bridge airborne  measurements31. NNs have already 
been widely used in satellite remote sensing for the retrieval of numerous geophysical parameters, including sea 
ice  variables32,72,73. We adopted a classic NN architecture called Multi Layered Perceptron (MLP)74 to establish 
the non-linear relationship between the observed brightness temperatures and SIT. This MLP architecture is 
appropriate to approximate multivariate non-linear  relationships75–77, and is being applied to build the statistical 
model reproducing the mapping between brightness temperatures and SIT. The ICESat-2 SIT is expected to be 
independent of passive microwave  observations23 and is retrieved from a different frequency domain (visible 
versus microwave)78.

Sea Ice volume
The SIV represents the spatial integration of the SIT field over the area dA of each grid cell. Here we integrated 
the SIT over the Sea Ice Area (SIA), defined as the area where the Sea Ice Concentration (SIC) is ≥ 15 % , taking 
into account the SIC for each location:

The SIC is provided from EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF)6. The EASE Grid 
2.0 at 12.5 km of resolution being an equal area grid, each cell represents the same area, here 12.5 km × 12.5 km.

Seasonal and perennial sea ice
The SIC is also used to discriminate between seasonal and perennial sea ice: pixels with SIC greater than 80% 
year-round are considered as perennial ice. This simple yet efficient method does not rely on some other products 
than SIC also estimated from PMW brightness temperatures, but does not take into account the drift of sea ice 
over the year.

SIV anomalies
SIV anomalies, SIV’, are obtained from the time series of pan-Arctic SIV by removing the 1992-2020 trend for 
each month. The SIV anomalies can also be decomposed as  follows55:

where primes represent the anomalies of SIC and SIT, bars represent the untrended climatology, and A represent 
the area.

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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