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Global patterns of organic carbon transfer 
and accumulation across the land–ocean 
continuum constrained by radiocarbon data

Chenglong Wang    1,5  , Yifei Qiu    1,5, Zhe Hao    2, Junjie Wang    3, 
Chuchu Zhang    1, Jack J. Middelburg    3, Yaping Wang    1 & Xinqing Zou    1,4 

Radiocarbon (Δ14C) serves as an effective tracer for identifying the origin and 
cycling of carbon in aquatic ecosystems. Global patterns of organic carbon 
(OC) Δ14C values in riverine particles and coastal sediments are essential for 
understanding the contemporary carbon cycle, but are poorly constrained 
due to under-sampling. This hinders our understanding of OC transfer and 
accumulation across the land–ocean continuum worldwide. Here, using 
machine learning approaches and >3,800 observations, we construct a 
high-spatial resolution global atlas of Δ14C values in river–ocean continuums 
and show that Δ14C values of river particles and corresponding coastal 
sediments can be similar or different. Specifically, four characteristic OC 
transfer and accumulation modes are recognized: the old–young mode for 
systems with low river and high coastal sediment Δ14C values; the young–old 
and old–old modes for coastal systems with old OC accumulation receiving 
riverine particles with high and low Δ14C values, respectively; and the young–
young mode with young OC for both riverine and coastal deposited particles. 
Distinguishing these modes and their spatial patterns is critical to furthering 
our understanding of the global carbon system. Specifically, among coastal 
areas with high OC contents worldwide, old–old systems are largely neutral 
to slightly negative to contemporary atmospheric carbon dioxide (CO2) 
removal, whereas young–old and old–young systems represent CO2 sources 
and sinks, respectively. These spatial patterns of OC content and isotope 
composition constrain the local potential for blue carbon solutions.

Coastal margins play a key role in the global carbon (C) cycle, constituting 
<10% of the entire ocean area, but contributing >90% to the overall organic 
carbon (OC) burial in global oceans1,2. Coastal margins serve as the inter-
face between terrestrial and oceanic C pools and receive a diverse mixture 
of organic compounds from both allochthonous terrestrial inputs and 
autochthonous marine primary production3,4. However, OC with differ-
ent origins exhibits distinct signatures, reactivities and ages4,5, therefore 
responding differently to remobilization and alteration processes in 

coastal oceans5,6. For instance, rivers transport ~200 megatonnes of 
particulate OC per year to oceans7, of which 55–80% is remineralized 
along continental margins3. Furthermore, anthropogenic activities have 
substantially altered regional and global C cycling (for example, produc-
tion, transport, preservation and burial of OC) along river–ocean con-
tinuums8,9. Therefore, obtaining accurate information about the nature 
and burial of OC in global coastal sediments is challenging but crucial for 
developing robust C budgets and predicting future C dynamics.
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Fig. 1). So far, a high-resolution dataset of Δ14C with global coverage 
is lacking for both river particles and coastal sediments. Moreover, 
available observations in river basins and coastal sediments are usu-
ally disconnected, complicating a systematic analysis of Δ14C along 
river–ocean continuums. Scaling up unevenly distributed site-level 
Δ14C observations to the global scale at a high spatial resolution for 
both global rivers and coastal zones is imperative to better constrain 
the global C cycle in a spatially explicit manner.

Machine learning has emerged lately as a powerful tool for scal-
ing up site-level observations to high-resolution global patterns, 
particularly in the fields of Earth system science22, terrestrial C and 
nitrogen biogeochemistry23,24 and marine sediment geochemistry25,26. 
These machine learning applications offer a new approach to the chal-
lenging high-resolution mapping of Δ14C values in global river–ocean 
continuums.

In this Article, we outline the compilation of Δ14C data for 2,559 
observations (737 locations) of riverine particles and 1,325 observations 
(1,325 locations) of coastal surface sediments (depths <5 cm) worldwide 

Radiocarbon (Δ14C) of OC has emerged as a powerful tool for 
investigating contemporary aquatic C biogeochemistry10–12, offer-
ing insights into the average age of the local OC mixed with various 
organic compounds of different ages4. More-negative Δ14C values (that 
is, 14C-depleted) indicate older 14C ages (that is, a predominance of old 
OC, possibly mixed with some modern OC) and vice versa. The Δ14C 
value not only serves as a tracer of OC sources with diverse ages (for 
example, 14C-enriched young photosynthetic C, 14C-depleted aged 
petrogenic C and pre-aged C somewhere in between)4,12, but also pro-
vides a window on the dynamics of C transfer between surface C reser-
voirs on Earth13. Recent studies have elucidated basin-scale variations 
of Δ14C in some riverine and marine C pools (for example, refs. 14,15) 
and attempts have been made to compile available Δ14C information 
to obtain their global patterns13,16–21.

However, although the number of Δ14C measurements has increased  
greatly, available data cover only a fraction of global river basins and 
coastal zones and are unevenly distributed spatially, with frequent 
measurements at some locations and none in others (Extended Data 
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Fig. 1 | Environmental variables driving Δ14C values of riverine particles and 
coastal sediments. a–f, Importance of environmental variables in driving Δ14C 
values of riverine particles (a–c) and coastal sediments (d–f) based on correlation 
analysis (a and d), the random forest approach (b and e) and plots of overall 
prediction performance using the feature-selected SVM for Δ14C values (c and f). 
*P < 0.05; **P < 0.01; ***P < 0.001. The percentage of increase in the mean square 

error (MSE) represents the importance of environmental variables in driving 
Δ14C using the random forest approach. Belowground NPP_20, belowground net 
primary productivity at 20 cm depth; Belowground NPP_200, belowground net 
primary productivity at 200 cm depth; R2, coefficient of determination; MAE, 
mean absolute error.

http://www.nature.com/naturegeoscience


Nature Geoscience | Volume 17 | August 2024 | 778–786 780

Article https://doi.org/10.1038/s41561-024-01476-4

(Extended Data Fig. 1) from published literature and databases, includ-
ing Circum-Arctic Sediment Carbon Database (CASCADE), Modern River 
Archives of Particulate Organic Carbon (MOREPOC) and Modern Ocean 
Sediment Archive and Inventory of Carbon (MOSAIC)19–21 (Methods). 
We also compiled extensive data for environmental variables known to 
regulate C delivery and accumulation (Supplementary Table 1). These 
data were used to train and test machine learning models (Fig. 1) and 
to generate a high-resolution global map of Δ14C values in river–ocean 
continuums. We also performed machine learning simulations for 
total OC (TOC) contents and δ13C values of global coastal sediments. 
Using a combination of the high-resolution global patterns of TOC 
contents and Δ14C and δ13C values, we identified accumulation hotspots 
for modern and aged OC from marine and terrestrial sources in coastal 
oceans worldwide.

Global mapping of OC Δ14C values in river–ocean 
continuums
Using the machine learning approach and compiled data, we generated 
a high-resolution Δ14C atlas for river particles and coastal sediments 
with good agreement with observations (Methods and Supplementary 
Discussion). This atlas provides high-spatial resolution Δ14C values with 
complete global coverage (Fig. 2). We further converted Δ14C values into 
14C ages to obtain high-resolution global patterns of 14C ages (Extended 
Data Fig. 2 and Methods).

Spatially, the predicted Δ14C values of global riverine particles 
exhibit variability and vary sharply with latitude (Fig. 2a,b). Posi-
tive or less-negative Δ14C values are predominantly located in South 
America, Africa and Southern and Southeastern Asia (Fig. 2a). The 
most-negative Δ14C values are mainly found in the Arctic permafrost 
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Fig. 2 | Global distributions and latitudinal patterns of predicted Δ14C values 
in riverine particles and coastal sediments. a–d, Global distributions (a and c)  
and latitudinal patterns (b and d) of predicted Δ14C values in riverine particles 
(a and b) and coastal sediments (c and d). The map in a is shown at river orders 
1–7, as defined by the classical ordering system of HydroBASINS (https://www.

hydrosheds.org/products/hydrobasins) and includes 22,442 predicted values 
(Methods). The map in c is shown at a spatial resolution of 10′ × 10′ and includes 
99,807 predicted values (Methods). The coloured lines in b and d represent mean 
values and the grey shading represents s.d.
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region, highlands such as the Qinghai–Tibet and Mongolian Plateaus 
and mountainous regions such as Taiwan Island and the Western United 
States (Fig. 2a). Along the latitudinal gradient, Δ14C values are more 
negative in high-latitude regions (beyond 60° N or 60° S) and less 
negative (or more positive) in low-latitude regions (between 30° N 
and 30° S) (Fig. 2b).

This spatial variability also exists in the predicted Δ14C values of 
global coastal sediments (Fig. 2c,d). Positive or less-negative Δ14C val-
ues are primarily in the Subarctic shelf, Sunda shelf, Caribbean Sea and 
parts of the African coast (Fig. 2c). The most-negative Δ14C values are 
mainly in wide shelf areas such as the Arctic shelf, East China Sea and 
northern shelf of Australia, as well as near mouths of rivers such as the 

Amazon, Huanghe, Indus, Mississippi and Irrawaddy estuaries (Fig. 2c). 
The latitudinal trend of Δ14C of global coastal sediments is similar to that 
of global riverine particles, with more-negative values in high-latitude 
regions and less-negative values in low-latitude regions (Fig. 2d).

The predictive uncertainty of Δ14C values in global riverine parti-
cles ranges from 0.01–22.74%, with an average of 3.15 ± 2.27% (Fig. 3a). 
Similarly, the predictive uncertainty of Δ14C values in coastal sediments 
ranges from 0.13–15.34%, with an average of 2.04 ± 2.70% (Fig. 3c). One 
important reason for the predictive uncertainties is the low spatial den-
sity of sampling, together with the high spatial variability of observed 
Δ14C values. High predictive uncertainties occur in regions with limited 
or no observations (for example, high-altitude or high-latitude regions, 
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such as the Arctic continent and Subarctic coastal ocean; Fig. 3a,c and 
Extended Data Fig. 1a,b). In addition, Δ14C values may vary with river 
discharge13,17, while small, mountainous rivers in the mid-latitudes 
(for example, Taiwan Island and Southeast Asia) are under-sampled 
at high-discharge times (Fig. 3a and Extended Data Fig. 1). Along the 
latitudinal gradient, the predictive Δ14C uncertainties for riverine 
particles show variability, with higher values in high-latitude regions 
and much lower values in low-latitude regions (Fig. 3b). For coastal 
sediments, the latitudinal variation in uncertainties is characterized 
by higher values in the Northern Hemisphere and lower values in the 
Southern Hemisphere (Fig. 3d).

Overall, the utilization of machine learning techniques, together 
with available observations, has enabled high-resolution prediction 
of Δ14C values in global river–ocean continuums, with uncertainty, 
accuracy and spatial coverage that compare favourably with existing 
databases19–21. The global patterns of Δ14C values in riverine particles 

and coastal sediments produced in this study can be applied to inves-
tigation of the C cycle regionally and globally.

Critical modes of river–coastal OC 14C ages 
worldwide
Four distinct modes emerged in this study (Fig. 4): the old–young 
mode describes old 14C ages in riverine particles accompanied by 
young 14C ages in corresponding coastal sediments; the young–old 
mode describes young 14C ages in riverine particles coupled with old 
14C ages in corresponding coastal sediments; the young–young mode 
describes young 14C ages in both riverine particles and corresponding 
coastal sediments; and the old–old mode describes old 14C ages in both 
riverine particles and corresponding coastal sediments.

The old–young mode is common in the Subarctic river–ocean 
continuum (Fig. 4c), western coast of the United States and coast 
of South Africa (Fig. 4a and Table 1). The annual export of riverine 
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particles of old 14C ages (mainly petrogenic C) to these coastal regions 
is limited3, with pulsed transport and burial of riverine OC occurring 
over days to weeks, associated with storms but possibly not captured 
in the sampling dates3. The young (that is, recently produced) OC in 
these coastal sediments may mainly originate from marine primary 
productivity27 (Supplementary Fig. 1). The hotspots of young 14C ages 
on the western coast of the United States (for example, offshore Cali-
fornia), coast of South Africa (for example, coast of Cape Peninsula) and 
Subarctic regions (for example, Shelikhov Gulf and Sakhalinskiy Bay) 
match the locations of reported upwelling zones28–30, where upwelling 
of nutrient-rich water stimulates in situ primary productivity27 (Sup-
plementary Figs. 1 and 2). However, in the Subarctic river–ocean con-
tinuum the predicted 14C ages are highly uncertain (Fig. 3c) due to the 
scarcity of local observations.

The young–old mode is primarily in low-latitude regions, such 
as the Amazon, Congo and Fly river–ocean continuums (Fig. 4d). 
These systems have extensive floodplains with large standing stocks 
of biomass, which can be transported by rivers to coastal zones dur-
ing flooding periods31. This pattern is also in some subtropical to 
temperate river–ocean continuums, such as the Changjiang, Indus, 
Irrawaddy and Mississippi and their estuaries (Fig. 4a and Table 1). Riv-
ers in these regions typically receive OC from terrestrial ecosystems 
and have large in situ algal production; high temperature and high 
precipitation enhance terrestrial and freshwater primary production 
(Supplementary Fig. 3). Eglinton et al.18 proposed that the ages of 
riverine biospheric C are positively correlated with the turnover time 
and 14C ages of soil OC. Negative relationships have been observed 
globally between the logarithmic OC turnover time and temperature 
or precipitation32,33. Thus, soil OC in low-latitude regions (with high 
temperature and high precipitation) tends to have shorter turnover 
times and younger 14C ages31,34. In their corresponding coastal zones, 
marine primary productivity may also be high due to large riverine 
nutrient inputs (Supplementary Fig. 1). However, 14C ages in these 

coastal sediments are old and do not reflect the young 14C ages in river 
particles or the high marine primary production. This is because the 
young terrestrial, freshwater and marine OC is preferentially degraded 
in the highly dynamic shallow environments with extensive sediment 
reworking, as is reflected by their thick sediment mixed layers (SMLs)26; 
for example, a maximum SML thickness of ~200 cm in the Amazon 
Estuary and large SML thicknesses of ~30 cm in other aforementioned 
coastal regions (Supplementary Fig. 4). The thick SMLs are primarily 
attributed to physical perturbation and bioturbation, which cause 
continuous resuspension–redeposition loops.

The young–young mode primarily occurs in low-latitude regions, 
typically in the Sunda river–ocean continuum (Fig. 4e), Caribbean 
coastal regions, western coast of Mexico and South China Sea (Fig. 4a 
and Table 1). As for the young–old mode, rivers in these regions receive 
large amounts of OC from terrestrial primary production and have high 
freshwater production, leading to young 14C ages for river particles. 
These rivers also transport substantial nutrients from land to sea, 
enhancing marine primary production (Supplementary Figs. 1 and 5). 
The 14C ages in their corresponding coastal sediments are also young, 
which differs from those in the young–old mode. This may be due to 
the lower hydrodynamics in these coastal zones, resulting in rather 
stable sedimentary environments and thin SMLs (Supplementary 
Fig. 4). Therefore, younger OC originating from both autochthonous 
(for example, phytoplankton detritus) and allochthonous sources (for 
example, plant debris and phytoplankton detritus) can be effectively 
deposited and preserved. Moreover, such stable hydrodynamics trig-
gers frequent hypoxic events through oxygen consumption during 
OC decay and limitations in water–sediment exchange35. The hypoxic 
conditions may further limit bioturbation and microbial respiration 
and contribute to the preservation of young OC35,36, as can be seen in 
the western coast of Mexico, Caribbean coastal regions and Northwest 
European Shelf (Fig. 4a and Supplementary Fig. 6).

The old–old mode can be divided into two sub-modes: the old–old 
A mode, which is common in the Arctic river–ocean continuum (Fig. 4b) 
with a wide shelf; and the old–old B mode in mountainous river–ocean 
continuums in Taiwan Island and eastern Australia with a narrow shelf 
(Fig. 4a and Table 1). In the old–old A mode, despite high uncertainties 
in the predicted 14C ages in Arctic rivers due to limited data coverage 
(Extended Data Fig. 1), the 14C ages of river particles exported by Arctic 
rivers are overall older than those in mid- to low latitudes. Such old riv-
erine 14C ages are primarily attributed to the 14C-depleted soils, such as 
permafrost and Yedoma in Arctic river basins34. For example, a recent 
study37 showed that the majority of terrestrial OC in the circum-Arctic 
region originates from near-surface soils (61%) and permafrost (30%). 
Although another recent study suggests that the warming Arctic may 
enhance the export of riverine aquatic biomass production38, it is 
important to recognize that most of this biomass produced in aquatic 
environments may be degraded during cross-shelf transport39. The 
marine primary production in Arctic coastal regions tends to be low 
because of low temperature, low nutrient inputs and low water trans-
parency (Supplementary Figs. 3, 5 and 7). In the old–old B mode, the old 
14C ages in coastal sediments are attributed to the substantial input of 
aged petrogenic OC transported by mountainous river draining areas 
of high erodibility40,41.

Implications for coastal OC accumulation and 
present CO2
Previous studies have explored the global distribution of sedimen-
tary OC in coastal margins25,42,43, primarily focusing on OC content. 
Information regarding OC source, composition and burial potential 
remains very limited. Traditionally, OC accumulation is discussed in 
terms of the balance between OC input/production on the one hand 
and OC degradation/export on the other. OC accumulating in coastal 
systems is then considered a sink of carbon dioxide (CO2). However, 
such a mass balance approach largely ignores the source and ageing 

Table 1 | Five modes of OC 14C ages in river–ocean 
continuums worldwide, their typical regions and their role 
in the contemporary coastal C cycle

14C age 
mode

Typical regions Coastal OC 
accumulation hotspots

Contribution 
to removing 
contemporary 
atmospheric C

Old–
young

Southeastern 
coast of Australia, 
western coast of 
United States and 
coast of South 
Africa

Yes, for young OC 
accumulation

Positive

Young–
old

Amazon, 
Changjiang, 
Indus, Irrawaddy, 
Mississippi and 
Fly estuaries, and 
northwestern 
and northeastern 
Australia

Yes, for old OC 
accumulation

Negative

Young–
young

Caribbean Sea, 
Sunda river–ocean 
continuum, 
western coast of 
Mexico and South 
China Sea

Yes/no, for young OC 
accumulation

Positive/
negative/
no effect—
vulnerable to 
change

Old–old 
A

Arctic shelf 
and Argentine 
continental shelf

Yes, for old OC 
accumulation

Negative

Old–old 
B

Mountainous river–
ocean continuums 
of Taiwan and 
eastern Australia

Bypass, non-hotspots No to (slightly) 
negative
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of OC, and this might bias the inferred implications for contemporary 
atmospheric CO2 levels14.

To further elucidate coastal C dynamics, the TOC contents and 
δ13C values of global coastal sediments were predicted using similar 
machine learning techniques (Methods), with satisfying performance 
of model training and testing (Supplementary Table 2). Using a combi-
nation of our high-resolution data of global coverage for TOC contents, 
δ13C values and 14C ages, we identified the hotspots of OC accumulation 
potential in coastal oceans worldwide by accounting for not only OC 
quantity, but also OC source, composition and ambient environmen-
tal conditions. The hotspots of high coastal OC content reported by 
Bianchi et al.44 were also found in our study (Extended Data Fig. 3a). 
Moreover, we identified three different types of hotspots of coastal 
OC accumulation in surface sediments (hereafter referred to as OC 
accumulation).

Coastal regions with both high TOC content and the old–young 
riverine–coastal 14C age mode are the primary hotspots for young OC 
accumulation (Table 1 and Extended Data Fig. 3a). These regions exhibit 
less-negative δ13C values (Extended Data Fig. 3c), indicating that their 
OC primarily originates from autochthonous marine primary pro-
duction. This OC origin is also supported by the spatial overlap of OC 
accumulation hotspots with upwelling zones (supporting high primary 
production; Supplementary Figs. 1 and 2) and oxygen minimum zones 
(supporting efficient young OC preservation; Supplementary Fig. 6)36. 
Accumulation of young OC in these hotspots has a positive effect on 
the removal of contemporary atmospheric CO2. This result is also 
consistent with the sea–air CO2 flux synthesized by Roobaert et al.45, 
in which the southeastern coast of Australia and coast of South Africa 
are a sink of atmospheric CO2 (Supplementary Fig. 8).

Coastal oceans with high TOC content and the young–old river-
ine–coastal 14C age mode are primary hotspots for old OC (pre-aged 
OC and aged petrogenic OC) accumulation (Table 1 and Extended 
Data Fig. 3a). The δ13C values of OC in these coastal sediments are 
predominantly more negative (Extended Data Fig. 3c), indicating that 
the OC buried here primarily originates from terrestrial inputs. This is 
supported by the results of n-alkanes in the Changjiang Estuary46, as 
well as the more frequently detected petroleum (aged petrogenic OC) 
compared with biogenic hydrocarbons by mooring observations in 
northeastern Australia47. The highly dynamic conditions due to physi-
cal disturbances (reflected by thick SMLs) induce degradation of labile 
OC (both young riverine material and locally produced marine OC) in 
these coastal regions3,5, as is reflected by their coastal CO2 effluxes to 
the atmosphere (particularly the Amazon Estuary and northeastern 
Australia; Supplementary Fig. 8). Consequently, the coastal accumula-
tion of old OC does not contribute to contemporary atmospheric CO2, 
but the degradation of young OC causes CO2 emissions, collectively 
forming a source of contemporary atmospheric CO2.

Organic-rich sediments in the old–old A mode are another hot-
spot of old OC accumulation. In the Arctic region, the OC in coastal 
sediments is mainly from the erosion of permafrost37, along with minor 
inputs from aquatic biomass that would probably degrade during 
cross-shelf transport39. This is re-affirmed by the more-negative δ13C 
values in these coastal sediments (Extended Data Fig. 3c) and biomarker 
evidence on the predominant terrestrial source and in situ marine OC 
degradation48. Moreover, the local marine primary production is low 
(Supplementary Fig. 1) because of low temperature, limited nutrient 
inputs and low water transparency (Supplementary Figs. 3, 5 and 7). 
However, not all terrestrial-sourced old OC along these river–coastal 
continuums is preserved. Molecular degradation proxies indicate that 
~1.7 Gg yr−1 of old OC in the Arctic shelf is degraded during cross-shelf 
transport49, making systems of this type negatively impact the removal 
of contemporary atmospheric CO2.

Furthermore, we also identify regions characterized by relatively 
low TOC content and the young–young riverine–coastal 14C age mode, 
whose roles in the contemporary C cycle are variable (Table 1 and 

Extended Data Fig. 3a). The relatively less-negative δ13C values of OC in 
most of these regions indicate a dominant source from marine primary 
production, except for the nearshore South China Sea with relatively 
more-negative δ13C values (Extended Data Fig. 3c). This is supported 
by the combination of terrestrial- and marine-sourced OC in the South 
China Sea shown by multi-proxy molecular biomarker analyses50. The 
OC in riverine particles in these tropical regions is mainly composed 
of plant and phytoplankton debris18,51, thus showing young 14C ages 
(Fig. 4). This riverine input of young OC, together with young OC from 
marine primary production, contributes to the young coastal OC in the 
relatively stable sedimentary environment. These young–young sys-
tems can represent a sink or source for atmospheric CO2; for instance, 
the sea-air CO2 flux density atlas shows a CO2 sink of the northern shelf 
of the South China Sea (preservation of terrestrial-/riverine-produced 
OC) and a CO2 source of the Sunda shelf (consumption of terrestrial 
OC; Supplementary Fig. 8). Irrespective of whether the C is imported 
or locally produced, the role of these regions as the source or sink of 
atmospheric CO2 depends on the OC balance of the local system, which 
is vulnerable to global warming because of the labile nature of the 
young OC. In warmer waters, the temperature-dependent metabolic 
rates of heterotrophic bacteria increase, thereby accelerating remin-
eralization of the young OC. This process has been used to explain the 
elevated organic matter recycling efficiency and decreased OC burial 
in warm climates52.

In contrast, coastal margins characterized by low TOC content and 
the old–old B riverine–coastal 14C age mode (Table 1) accumulate only 
a small amount of C and play a minor role in contemporary CO2. For 
instance, OC in the mountainous river–ocean continuums in Taiwan 
Island and eastern Australia mainly originate from weathering and 
erosion of bedrocks40,53. In the coastal zone of eastern Australia, the 
in situ marine OC production is very low (Supplementary Fig. 1). In 
the Taiwan Strait, the relatively enriched 13C and old 14C ages, together 
with low TOC contents (Extended Data Fig. 3a,b), indicate a dominant 
contribution of aged petrogenic OC from Taiwan Island40, rather than 
marine OC, which rapidly degrades in the highly dynamic environment 
during transport (Supplementary Figs. 1 and 2). Degradation of old (and 
sometimes young) OC lowers the TOC contents in these regions, with a 
slightly negative impact on removing contemporary atmospheric CO2.

Our study provides new insights into the spatial patterns of global 
coastal OC accumulation potential by combining machine learning 
approaches with comprehensive observational data for Δ14C, δ13C and 
TOC and their environmental drivers. The high-resolution global maps 
of Δ14C values and OC fate in river–ocean continuums from this study, 
if incorporated, can substantially improve the robustness of C cycling 
prediction and climate change projections in Earth system models 
and have far-reaching implications for developing effective zero-CO2 
strategies and national C budgets, including blue C stocks. The char-
acteristic patterns of 14C ages of riverine particles and corresponding 
coastal sediments demonstrate the relative importance of terrestrial 
inputs and marine primary production on coastal OC and how ocean 
margin C budgets relate to factors such as temperature, precipitation 
and sedimentary dynamics. Our results also point out critical regions 
with poor data availability (for example, high-altitude or high-latitude 
regions), necessitating further investigation efforts to understand their 
local OC dynamics and improve their prediction accuracy. Notably, 
this study only focuses on particulate OC, while dissolved OC (DOC) 
also accounts for a large fraction of C in river–-ocean continuums2. 
Including DOC dynamics in future modelling efforts (for example, 
machine learning or process-based modelling) will further enhance 
our understanding of global C cycling, in addition to our findings on 
C dynamics of riverine particles and coastal sediments.

Online content
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Methods
Data source and processing
Most of the OC Δ14C values of riverine particles worldwide were col-
lected from the MOREPOC database19. The compiled Δ14C values from 
the database were counterchecked with the reported values in the 
original references to ensure data accuracy. We also searched key-
words, including ‘Δ14C values/radiocarbon/OC 14C content’ and ‘Δ14C 
values/radiocarbon/OC 14C content of riverine particles’ in the Web of 
Science, ResearchGate and Google Scholar and added to our database 
the Δ14C data from the most recent publications (that is, those not in 
MOREPOC). Finally, data of 2,559 observations from 737 sampling sites 
distributed globally were compiled (Extended Data Fig. 1a).

The Δ14C values of coastal sediments were mainly collected from 
the CASCADE and MOSAIC 1.0 published databases20,21. Similarly, we 
added the latest literature-reported data by searching using the Web of 
Science, ResearchGate and Google Scholar for keywords such as ‘Δ14C 
values/radiocarbon/OC 14C content’ and ‘Δ14C values/radiocarbon/
OC 14C content of sediments’. In the end, we compiled a global dataset 
of 1,325 coastal sites with Δ14C values (Extended Data Fig. 1b). In addi-
tion, 4,496 sites of TOC contents and 1,554 sites of δ13C values in global 
coastal sediments were collected from MOSAIC 1.0 for further analysis.

Data of all environmental variables were collected from published 
databases (Supplementary Table 1), with 28 variables used for riverine 
OC Δ14C value projections and 15 for marine OC Δ14C value projections. 
Pearson correlation analysis showed a weak to moderate correlation 
between pairs of variables within the full set of variables (Extended 
Data Figs. 4 and 5). Climatic variables that control primary productiv-
ity, soil microbial communities and surface weathering and erosion are 
potential drivers for Δ14C values of riverine particles18,32,54, including the 
aridity index, air humidity, mean annual precipitation, mean annual 
temperature, surface soil temperature and subsurface soil tempera-
ture. Geomorphology is considered an important factor that controls 
weathering and erosion and influences river export of particulate OC 
with various Δ14C values13,53. To characterize the effect of geomorphol-
ogy, variables of elevation, slope, modelled sediment yield, discharge, 
soil loss, R factor of rainfall erosivity, K factor of soil erodibility, C factor 
of vegetation cover, slope length and steepness factor were included. 
Soil properties may influence the degradation and preservation of OC 
by affecting microbial activities and may change the Δ14C values of soil 
OC. The variables used to describe soil properties include clay, silt, 
sand, soil OC content, pH, cation exchange capacity and soil biodiver-
sity. Anthropogenic activities have been demonstrated to drastically 
perturb the terrestrial C pool and further influence the export of soil 
OC18,55. To represent various anthropogenic perturbations, variables 
of population density, human development index and gross domestic 
product were used. Primary productivity indexes such as net primary 
productivity and belowground net primary productivity (at 20 and 
200 cm depths) are also considered important factors of the Δ14C values 
of riverine particles and were used in this study.

The environmental variables used to predict the Δ14C values of 
coastal sediments were grouped into physical properties, chemical 
properties, climate properties, primary productivity indexes and 
sedimentary properties (Supplementary Table 1). The physical proper-
ties included flow velocity, tidal range, mixed-layer thickness, sus-
pended sediment concentration and water depth. Among them, flow 
velocity, tidal range, mixed-layer thickness and water depth are hydro-
dynamic parameters that potentially influence OC degradation or 
preservation in coastal zones by influencing the transport and exchange 
of OC and oxygen, as well as their oxygen exposure time39,56. For 
instance, a high flow velocity, large tide range and thick mixed layer 
may prolong the oxygen exposure time and hence the interaction 
between oxygen and OC, which accelerates the degradation of OC. 
Chemical properties such as salinity, pCO2 and dissolved inorganic C 
may influence photosynthesis and microbial activities57–59 and further 
impact the Δ14C values of coastal sediments. Climate properties such 

as sea surface temperature and sea subsurface temperature may also 
influence photosynthesis and microbial activities. Relatively high 
temperature can stimulate primary productivity and microbial activi-
ties, thus affecting the production and consumption of OC. Primary 
productivity indexes such as phytoplankton concentration and net 
primary productivity were also involved in model building. Sedimen-
tary properties, such as sediment mixed-layer thickness, sediment 
thickness and TOC content, were the main controlling factors of OC 
degradation and burial in sediments26,60.

Detailed information for the data of all of these environment vari-
ables, including spatial resolution, time period and sources, is provided 
in Supplementary Table 1. To ensure the spatial correspondence of 
each environmental variable dataset, we resampled all of the datasets 
to match a 10′ × 10′ resolution.

Feature selection and machine learning models
A global dataset of 2,559 river particle observations and 1,325 coastal 
surface sediment observations (Extended Data Fig. 1a,b) was compiled 
to train and test machine learning models. A total of 28 and 15 environ-
mental variables were selected, respectively, to build up reliable predic-
tive machine learning models for river particles and coastal sediments. 
For machine learning models, more variables may not necessarily 
improve model performance, but may sometimes lead to poor model 
performance, unnecessary (and undesirable) high model complexity 
and uncertainty propagating therein61. To obtain the optimal assembly 
of explanatory variables, we used Pearson correlation analysis and the 
random forest method to filter out the most important variables. Spe-
cifically, correlations were examined between Δ14C values and each 
environmental variable using SPSS, and important variables were 
selected based on correlation coefficients and significances. The ran-
domForest R package was used to train the models with different predic-
tor combinations by examining the tenfold cross-validation and electing 
the optimal combination of independent variables with the best agree-
ment between predicted and observed Δ14C values. The optimal assem-
bly of explanatory variables was determined by combining these two 
feature selection methods. Eleven variables are included in the model 
for predicting Δ14C values of riverine particles, including mean annual 
temperature, mean annual precipitation, elevation, slope, modelled 
sediment yield, R factor of rainfall erosivity, contents of clay and silt, 
soil OC content, cation exchange capacity, net primary productivity 
and gross domestic product. To predict Δ14C values in coastal sediments, 
different sets of environmental variables were used for Arctic regions 
and non-Arctic regions. The optimal variables in the Arctic region 
include dissolved inorganic C, salinity, pCO2, flow velocity, tidal range, 
net primary productivity, phytoplankton concentration, sea subsurface 
temperature, seawater transparency, mixed-layer thickness and water 
depth. The optimal variables in the non-Arctic region include TOC 
content, flow velocity, phytoplankton concentration, salinity, tidal 
range, sea subsurface temperature, sea surface temperature, water 
depth, dissolved inorganic C, pCO2 and sediment thickness.

To build up reliable models for predicting the Δ14C values of 
riverine particles and coastal sediments, we compared the different 
approaches, including multivariable linear regression, k-nearest neigh-
bour, decision tree, neural network, boosting, random forest and 
support vector machine (SVM). The multivariable linear regression 
method is mainly used to describe the linear relationship between 
explanatory variables with dependent variables. However, when the 
number of dependent variables is too large, the model can overfit or 
underfit. The k-nearest neighbour method is a nonparametric approach 
that assigns weights to distances based on sample proximity, to reduce 
the impact of outliers and to improve model robustness25. The decision 
tree is a hierarchical classifier that recursively partitions a dataset into 
increasingly homogenous subsets (referred to as nodes) to predict 
class membership62. However, deep decision trees with sparse leaf 
nodes may lead to overfitting, thus reducing the model’s generalization 
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ability. The neural network is usually a set of neurons that connects the 
input layer, hidden layers and output layer, and the key parameters are 
the number of hidden layers and neurons26.

Compared with the single model described above, ensemble mod-
els (including bagging, boosting and stacking algorithms) improve 
the model’s generalization ability by amalgamating multiple mod-
els, thereby mitigating the risk of overfitting associated with a single 
model. The boosting method, such as Gradient Boosting and eXtreme 
Gradient Boosting, is currently the dominant tree-based ensemble 
learning algorithm due to its powerful and robust predictability63,64. 
The boosting algorithm enhances weak learners through iterative 
training on a dataset, adjusting their sample weights based on error 
rates until a set number of weak learners is attained. These are then 
amalgamated into a robust learner. Models such as Gradient Boost-
ing and eXtreme Gradient Boosting, renowned for their efficacy in 
ensemble settings, mitigate overfitting by fine-tuning tree parameters, 
step size and penalty coefficients. In contrast, bagging diverges by 
randomly sampling the dataset for each weak learner’s creation, fos-
tering multiple independent learners via random sampling. Random 
forest advances bagging by employing decision trees as weak learn-
ers and incorporating random feature selection, thereby optimizing 
generalization and curbing overfitting through precise tree parameter 
adjustments. The SVM method operates under the assumption that the 
joint distribution of the input and output variables is unknown, yet a 
correlation between them exists65. The SVM method projects the input 
features into a higher-dimensional feature space using kernel func-
tions, thereby transforming linearly inseparable features to separable 
ones and iteratively adjusting the hyperplane to find the optimum 
solution66,67. SVM can enhance prediction accuracy by utilizing the 
outputs of multiple models as inputs to train a new model through a 
stacking algorithm.

All compiled datasets were randomly divided into two parts, with 
70% of the full dataset used for training and the remaining 30% used 
for testing. Traditional evaluation methods may lack accuracy when 
assessing a model’s performance with limited test data, often due to 
the potential lack of representativeness. Cross-validation mitigates 
this by partitioning the data into multiple folds and iteratively train-
ing and validating the model across different folds. This approach 
yields a more reliable and consistent evaluation of performance, 
which further reduces the risk of overfitting or underfitting. A ten-
fold cross-validation method was used to evaluate the model perfor-
mance. During this tenfold cross-validation process, data for model 
training were divided into ten subsets of the same size; every nine 
subsets of data were used for model training, with the one left used for 
model validation. To reduce the uncertainty associated with stochas-
tic sampling and identify the most predictive models, we trained the 
machine learning models 100 times and optimized for the highest R2. 
In each run, we employed three iterations of tenfold cross-validation 
for model training. In addition to ensuring an adequate sample size 
in the training dataset, employing ensemble models and performing 
cross-validation methods, suitable feature selection can also help 
to mitigate overfitting because it can reduce the model complexity 
and reduce the impact of irrelevant or redundant features. For Δ14C in 
riverine particles and coastal sediments, we respectively constructed 
several models based on the compiled datasets, using the randomFor-
est R package with feature selection and the MATLAB toolbox (the 
Statistics and Machine Learning Toolbox and Deep Learning Toolbox) 
without feature selection. We evaluated modelling performance by 
comparing the coefficient of determination (R2) and mean absolute 
error value; higher R2 and lower mean absolute error values represent 
better model performance. Among the seven models used, the SVM 
performed the best. Optimizing hyperparameters in the SVM, such 
as the regularization parameter C and the type of kernel function, can 
improve model effectiveness. Regularization reduces model complex-
ity, prevents overfitting and improves generalization to new data. The 

kernel function in SVM addresses nonlinearity in data and the radial 
basis kernel function is often preferred because of its better simplic-
ity and performance compared with linear and polynomial kernels in 
most cases. To identify the optimal combination of hyperparameter 
settings for the SVM, we conducted hyperparameter tuning using the 
tenfold cross-validation method for the environmental variables based 
on grid search and optimization algorithms. Ultimately, the particle 
swarm optimization SVM (PSO-SVM), based on biological optimization 
algorithms, showed the best performance in predicting Δ14C values of 
riverine particles among a series of SVMs; the grid search method-based 
SVM (GSM-SVM) showed the best performance in predicting Δ14C val-
ues, δ13C values and TOC contents in coastal sediments. The GSM-SVM 
was therefore used to predict the Δ14C values in global river particles, 
and GSM-SVM was used for Δ14C values, δ13C values and TOC contents 
in global coastal sediments.

Conversion from Δ14C values to 14C ages
Radiocarbon data are variably reported as Δ14C values, fraction modern 
(Fm) values and/or radiocarbon ages (14C ages). We used the following 
formulas68 to convert Δ14C values to 14C ages:

Δ14C = 1,000 × (Fm × exp−λ(y−1,950) − 1) (1)

Fm = ((Δ 14C/1,000) + 1) × expλ( y−1,950) (2)

14 Cage = −8,033 × ln [Fm] (3)

whereby λ = 1/8,267 yr−1 and y is the year of sample collection and 
measurement. Notably, we assume identical years of collection and 
measurement because such information is typically not reported and 
because their minor difference (less than 5 years) does not introduce 
a significant error in the context of this study17.

Global mapping of predictors
For riverine particles, the geographic location of prediction points 
is defined according to the classical ordering system in the attribute 
table of the HydroBASINS database69. In this classical ordering system, 
order 1 represents the main stem river from sink to source, order 2 rep-
resents all tributaries that flow into an order 1 river, order 3 represents 
all tributaries that flow into an order 2 river and so on.

First, we calculated the coordinate of the geometric centre of each 
sub-basin (corresponding to river order 7) in each river basin using the 
Calculate Geometry function in the ArcGIS attribute table. Then, we 
allocated the predicted riverine Δ14C values at the sub-basin centre to 
the nearest river order 7 using the Near function in ArcToolbox. Finally, 
22,442 data points were allocated across global river basins.

For coastal sediments, global maps with a consistent spatial resolu-
tion of 10′ × 10′ were generated using ArcGIS Pro, representing 99,807 
sites of the coastal margins with water depths of no more than 200 m. 
First, the attributes of selected explanatory variables at each site were 
extracted in ArcGIS Pro and exported to the predictor database. Then, 
we fed the predictor database to the trained GSM-SVM to predict the 
gridded Δ14C values, TOC contents and δ13C values in global coastal 
sediments.

Data availability
Source data are provided with this paper in the Supplementary Infor-
mation and archived at https://doi.org/10.6084/m9.figshare.24268657 
(ref. 70).

Code availability
The code generated and/or used for the analyses in this study is 
archived at https://doi.org/10.6084/m9.figshare.24268657 (ref. 70).
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Extended Data Fig. 1 | Global distributions of Δ14C observations in riverine particles and coastal sediments. (a) riverine particles (n = 2,559); (b) coastal sediments (n 
= 1,325).
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Extended Data Fig. 2 | Global distributions and latitudinal patterns of 
predicted 14C ages in riverine particles and coastal sediments. a-d: (a, c) 
Global distributions and (b, d) latitudinal patterns of predicted 14C ages in (a, b) 
riverine particles and (c, d) coastal sediments. The high-resolution global map of 
the predicted 14C ages of riverine particles (a) is shown at river orders 1-7 defined 
in the ‘Classical ordering system’ of HydroBASINS (https://www.hydrosheds.org/

products/hydrobasins) and includes 22,442 predicted values (Methods). The 
global map of the predicted 14C ages of coastal sediments (c) is shown at a 10′ × 10′ 
spatial resolution and includes 99,807 predicted values (Methods). In panels (b, 
d), ‘SD’ means standard deviation. The predicted 14C ages are converted from the 
predicted Δ14C values in Fig. 2 following the approach in Methods.
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Extended Data Fig. 3 | Global distributions and latitudinal patterns of 
predicted TOC contents and δ13C values in coastal sediments. a-d: (a, c) Global 
distributions and (b, d) latitudinal patterns of (a, b) predicted TOC contents 

and (c, d) δ13C values in coastal sediments. The global maps of predicted TOC 
contents and δ13C are shown at a 10′ × 10′ spatial resolution and include 99,807 
predicted values. In panels (b, d), ‘SD’ means standard deviation.
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Extended Data Fig. 4 | The Pearson correlation coefficients between explanatory variables for riverine particles. ‘*’ represents p < 0.001. ‘Belowground NPP_200’ 
represents belowground net primary productivity at 200-cm depth, and ‘Belowground NPP_20’ represents belowground net primary productivity at 20-cm depth.
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Extended Data Fig. 5 | The Pearson correlation coefficients between explanatory variables for coastal sediments. (a) Arctic regions and (b) non-Arctic regions. In 
the figures, ‘*’ represents p < 0.001.
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