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Since 2018, severe and recurrent copepod depletions have been observed in Belgian coastal waters. These de-
pletions have been described as temperature-induced mass mortality events. This paper confirms the relation of
copepod abundance anomalies with periods of high temperature based on new data. Although severe, the effects,
consequences and implications of this depletion remain unknown. Our study suggests that the absence of
zooplanktonic predators in autumn, together with the availability of nutrients discharged via the Scheldt estuary,
allowed a bloom of the diatom Bellerochea, in a season otherwise characterised by low phytoplanktonic activity.
Although the bloom reaches high abundances, its effects on the marine environment are not yet visible. The
enormous abundances are likely to induce small-scale oxygen depletions which might further translate to the
environment. Communities of Calanoida, Canuelloida and Cyclopoida tend to recover from the annual autumn
depletion, although the typical autumn peak is entirely missing in the years subject to severe heat waves and
associated high water temperatures. As a result, copepod dynamics have drastically changed since the first
observed depletion and associated bloom of Bellerochea in 2018.

1. Introduction importance to society.

The response of marine zooplankton to climate change, and rising

Marine ecosystems are under threat by human induced environ-
mental changes, including those arising from climate change. For
instance, temperature rise, pollution, eutrophication, oil spills and
nuisance of invasive species are known to disrupt the ecological balance
(Hoegh-Guldberg and Bruno, 2010). Climate change, and associated
heat waves especially, have proven to alter marine ecosystems leading to
regime shifts (e.g., Beaugrand, 2004; Capuzzo et al., 2017), oxygen
depletion (e.g., Richardson, 2008), mass mortality events (e.g., Roberts
et al.,, 2019; Garrabou et al., 2022), acidification (e.g., Blackford and
Gilbert, 2007), habitat degradation and phytoplankton blooms (e.g., de
Rijcke, 2017; Nohe et al., 2020). These issues are frequently and
increasingly studied in marine scientific papers, for their obvious
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sea surface temperatures, is of critical importance to the oceanic food
web and fish stocks (Chivers et al., 2017). Zooplankton is a critical link
between phytoplankton and higher trophic levels in the pelagic zone
through predation; and to the benthic zone through sedimentation of
faecal pellets (Wexels Riser et al., 2002). So, effects of changing
zooplankton communities will translate to other communities (Mitra
et al,, 2014; Heneghan et al., 2020). Furthermore, zooplankton are
crucial contributors to the carbon cycle and climate regulation as they
actively participate in the biological pump. They play a vital role in this
process by assisting in the uptake and transfer of carbon dioxide:
initially, CO2 is absorbed and converted into organic matter by phyto-
plankton; followed by zooplankton consuming this organic matter,
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contributing to the formation of marine snow. Consequently, carbon is
deposited through this sedimentation process (Wexels Riser et al., 2002;
Richardson, 2008) or consumed by higher trophic levels if not sedi-
mented (Lampitt et al., 1993). Because zooplankton is known to rapidly
respond to environmental changes due to their rapid life cycles, they are
applicable as bio-indicators of ecosystem change (Chiba et al., 2018).

In autumn 2018, a severe copepod depletion was observed in the
coastal waters of the Belgian part of the North Sea (BPNS), suggested to
be induced by high sea surface temperatures, which exceeded the
thermal physiological threshold of the most dominant zooplankton
species in this region, i.e. the calanoid copepod Temora longicornis
(Mortelmans et al., 2021; Semmouri et al., 2023). This threshold of
22.5 °C (Halsband-Lenk et al., 2002; Sahota et al., 2022) was exceeded
for the first time since the start of the temperature time-series in 2002, in
the summer of 2018 (Flanders Marine Institute (VLIZ), Belgium, 2024).
The major shortfall in Mortelmans et al. (2021) is the low taxonomic
resolution of the considered dataset, and the reason for depletion could
only be made at the level of orders. Therefore, this autumn anomaly was
further examined on the level of species: the depletion in 2018 was
proven to be related to the absence of Temora longicornis (Semmouri
etal., 2023). Strikingly, the anomaly proved to be recurrent and in 2022
calanoid copepod abundances in nearshore regions dwindled towards
zero (Semmouri et al., 2023). Both events were found to be temperature
related (Semmouri et al., 2023), but other factors might also contribute
to the observed dynamics.

Finally, temperature will not only affect zooplankton, but most likely
also phytoplankton. Most common and best-known blooms from the
southern bight of the North Sea, are those of Phaeocystis (Rousseau et al.,
2000; Daro et al., 2008) and Noctiluca (Vasas et al., 2007, Ollevier et al.,
2021). Favourable conditions, often enhanced by the environmental
changes discussed above, might trigger species of phytoplankton to
bloom (Anderson et al., 2017). Although these blooms are not neces-
sarily negative (Da Silva et al., 2021), they are often detrimental to
marine communities especially because the associated bacterial activity
on decaying phytoplankton depletes dissolved oxygen, causing hypoxia
(Harrison et al., 2017; Mohd-Din et al., 2020) and associated dead zones
(Altieri and Diaz, 2019). Furthermore, blooming species can drastically
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change the environment by accumulation of toxins in the food web
(Richlen et al., 2010; Hallegraeff and Bolch, 2016); and are often
considered nuisance as they might form foams or high cell densities that
can clog the filter apparatuses and gills of fish (Hallegraeff, 2003).

In this study, we use imaging techniques to explore how copepod
autumn depletions affect associated planktonic communities. Digitized
samples allow to retroactively go back in time and work on historically
scanned samples. Unlike stored physical samples, which can quickly
decay, scanned samples are preserved indefinitely. From the BPNS, a
recent time series on zooplankton has been created with observations
since 2014 (see Mortelmans et al., 2021). Alongside the measured
zooplankton abundances, information on Bellerochea was unintention-
ally collected, as this taxon appeared in the scans but was initially
classified as ‘detritus’. However, as Bellerochea is consistently measured
by the device, it is now part of the image recognition algorithms to
facilitate detection in the future. Here, 569 samples from 5 stations
between 2014 and 2022 were processed, to detect Bellerochea (see
Fig. 1A, B). From the resulting dataset, we aimed to map and explore
Bellerochea dynamics and obtain first insights in the association with the
observed environmental changes and copepod dynamics.

2. Material and methods
2.1. Study area

The Belgian part of the North Sea is one of the most intensively used
seas in the world. The BPNS is part of the Southern Bight of the North
Sea and covers ~3.447 km? (Fig. 1) and is characterised by a series of
subtidal sandbank systems (Verfaillie, 2008; Lescrauwaet et al., 2013).
On average, the BPNS has a shallow depth around 20 m with maximum
depths up to 45 m (Lescrauwaet et al., 2013). The entire region is heavily
impacted by anthropogenic activities: shipping, tourism, fisheries, wind
farms and pollution (Lescrauwaet et al., 2013).

2.2. Data collection

Data was collected monthly between 2014 and 2022 on 5 stations in
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Fig. 1. Habitus of Bellerochea, as detected by the ZooScan (plot A). Habitus of Bellerochea, as detected by light microscopy (plot B). Sampling locations (130:
51.27083 N, 2.905 E; 330: 51.43333 N, 2.808333 E; 700: 51.376667 N, 3.22E; 710: 51.44083 N, 3.138667 E; 780: 51.47117 N, 3.058 E) (plot C).
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the Belgian part of the North Sea: three stations (700, 710 and 780)
perpendicular to the coast in front of Zeebrugge, which are influenced
by the Scheldt estuary especially, and two (130 and 330) in front of
Oostende, which have influence from more clear, nutrient poor waters
coming from the Atlantic Ocean (Fig. 1C). On each of these stations,
mesoplankton (including Bellerochea) was sampled with a 200-pm WP2
net, which was deployed vertically and equipped with a flowmeter,
following the protocol of Mortelmans et al. (2019). Zooplankton
collected in the cod-end was sedated by soda water and fixated in 4%
formaldehyde solution. In the lab, the fixative was changed to 70%
ethanol solution. The samples were digitized by the ZooScan plankton
imaging device (Hydroptic, ZooScan M3) and processed by ZooProcess
and Plankton Identifier in order to detect and classify the digitized ob-
jects (Grosjean et al., 2004; Gorsky et al., 2010). Images were manually
checked and validated to the 25 taxonomic categories (full list is found
in Mortelmans et al., 2019). Throughout the manuscript, we will use
‘Calanoida-group’ for the group consisting of Calanoida, Canuelloida,
Cyclopoida, as these taxa were not discriminated on the collected im-
ages. The existing data series on zooplankton was entirely reprocessed to
detect occurrences of Bellerochea. On each of these stations, profiles data
on conductivity (S/m), temperature (°C), depth (m), salinity of the water
body (Practical Salinity Units), the density of the water body (kg/m®),
the pressure of the water body (decibel), the sound velocity through the
water body (m/s), the optical backscatter (OBS) and the turbidity of the
water body (Nephelometric Turbidity Units) were collected with a
Seabird SBE25plus CTD. Finally, data from the underway systems
aboard the RV Simon Stevin are recorded nearly continuously, with
temperature (°C) being measured using a Seabird SBE38. Only data
around a 2 km buffer around the five stations is considered. All data is
published via Flanders Marine Institute (2020). In addition, heat waves,
as measured by the Royal Meteorological Institute (Royal Meteorolog-
ical Institute (RMI), 2023) are included in the dataset as well.

To assess historic prevalence of Bellerochea, the dataset provided by
Nohe et al. (2018) was explored to obtain counts of this genus. Nohe
et al. (2018) provided a compilation of phytoplankton data from
different research projects focused on the BPNS from Harden-Jones,
1968 to Hoegh-Guldberg and Bruno, 2010 and is considered as a valu-
able resource for historic data.

2.3. Taxonomic account of Bellerochea

The genus Bellerochea consists of six species: B. horologicalis, B. ind-
ica, B. polymorpha, B. spinifera, B. malleus and B. yucatanensis (Hasle and
Syvertsen, 1997). The species are widespread and occur around the
globe (Stosch von Stosch, 1977). The species Bellerochea malleus is
extremely variable in morphology, as indicated by Hustedt (1930) and
von Stosch (1977, 1987), making species identification very difficult.
Although scanning electron microscopy allowed the authors to identify
the Belgian bloom to be B. horologicalis, we remain careful with species
identifications of this genus in literature and rather use Bellerochea
throughout this manuscript. The ZooScan images do not allow for spe-
cies recognition. To date, only B. malleus and B. horologicalis are
mentioned to occur in the BPNS (Van Heurck, 1884; Nohe et al., 2018;
Lagaisse, 2020).

2.4. Downstream analysis

Plankton abundances and distributions through the water column
were visually represented in R (V 2023.06.1 + 524) in the RStudio
environment (RStudio Team, 2023), using the following packages: Dplyr
1.0.9 (Wickham et al., 2022), ggplot2 3.3.6 (Wickham, 2016), ggpubr
0.4.0 (Kassambara, 2020), hrbrthemes 0.8.0 (Rudis, 2020), Hmisc 4.7.2
(Harrell, 2022), lattice 0.20.45 (Deepayan, 2008), lubridate 1.8.0
(Grolemund and Wickham, 2011a, 2011b), magrittr 2.0.3 (Bache and
Wickham, 2022), mgev 1.8.40 (Wood, 2017), PerformanceAnalytics
2.0.4 (Peterson and Carl, 2020), reshape 0.8.9 (Wickham., 2007), scales
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1.2.0 (Wickham and Seidel, 2022), Tidyr 1.2.0 (Wickham and Girlich,
2022), and tidyverse 1.3.2 (Wickham et al., 2019).

2.5. Statistics

To assess the parametric assumptions of our dataset, we performed
several statistical tests. The Shapiro-Wilk test for normality indicated
significant deviation from normal distribution (W = 0.171, p < 2.2e-16),
supported by the Kolmogorov-Smirnov test (D = 0.443, p < 2.2e-16).
Levene’s test for homogeneity of variances across stations yielded a non-
significant result (F = 1.55, p = 0.187), suggesting variances were
approximately equal. The assumption of normality was not met
although variances were homogeneous. Based on the assumptions a
Kruskal-Wallis test was used to examine the differences in the abun-
dance of Bellerochea between the years before or equal to 2017 and after
2017.

Seasonal generalized additive mixed models (GAMM) are applied to
the Calanoida-group: two for nearshore stations (700, 130, 710) before
and after January 2018; and an additional two for offshore stations (330,
780) before and after January 2018. One cubic regression spline was
used to model the seasonal trend across one year. This approach employs
a smoothing technique that maintains continuity throughout the year,
ensuring that the trend’s value transitions smoothly from the start to the
end of each observed time period (Zuur et al., 2009). Covariates used in
the GAM models were month and year. The variable “station” was added
to both sets as a random mixed effect, excluding any spatial autocorre-
lation. The model fit of the GAMs was assessed following the method of
Zuur et al. (2009), i.e., using the Akaike Information Criterion (AIC) and
inspecting the homogeneity and normality of the model residuals. The
minimum AIC was used to select the best-fit GAM model.

3. Results
3.1. Dynamics of the Calanoida-group

Abundances for the Calanoida-group are presented on a log-
transformed scale (Fig. 2). The seasonal pattern consisted of promi-
nent spring peaks in March, a secondary peak in May, and a third very
small one in October. These spring peaks were each time followed by a
subsequent decline in abundances. During December and January
abundances were at their lowest, rising again from February onwards to
the first spring peak. Notably, from January to June, the abundance
levels are stable without major discrepancies between the years. How-
ever, in August and September 2018, a first depletion of the Calanoida-
group is seen, whose abundances only recovering in October 2018. The
next, more severe, depletion occurred from July to October 2022,
recovering only in November 2022.

The dynamics of species abundance were analyzed using GAMM
(Fig. 3). In the nearshore stations, the period before January 2018
exhibited a consistent increase in abundances from January to May,
peaking in late May and maintaining relatively high levels through the
summer months (Fig. 3A). In contrast, the period after January 2018
showed a similar increase from January to May but experienced a
decline from June to September, stabilizing through December (Fig. 3B).
This shift indicates an alteration in autumn abundance dynamics post-
2018 compared to the earlier period. For offshore stations, before
January 2018, three distinct peaks in abundance were observed: March,
June, and October, followed by a decline to winter levels in December
(Fig. 3C). After January 2018, a similar peak pattern persisted, but with
declines in August and September, followed by a recovery towards the
end of the year (Fig. 3D). The fitted lines are provided, highlighting per
subset the main trend of the trends provided: a first set shows the fitted
line for nearshore stations, in which the period after 2018 has a major
depletion in autumn months (where it had been much higher before
2018), recovering towards end of the year (Fig. 3E). A second set shows
the fitted line for offshore stations, in which the period after 2018 has a
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A: Abundance of the Calanoida-group (ind/m*)(2014-2022) per month, log-transformed
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Fig. 2. Log-transformed (x + 1) abundances of the Calanoida-group over the month, per year, in order to visualize variation per month. Boxplots indicated in green
are considered as striking events with reduced/absent abundances. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

major depletion in autumn months (where it had been much higher
before 2018), recovering much faster compared to nearshore stations
and abundances increase to pre-2018 levels in November (Fig. 3F).

3.2. Bellerochea dynamics

Abundances for Bellerochea are presented on a log-transformed scale
(Fig. 4A). In the years 2014 to 2017 only low abundances were observed
for Bellerochea. In the years 2018 to 2022 a shift is seen: the taxon
became very abundant from July to October, only depleting in
November. The year 2017 is a transition, with only one month of high
abundances. From January to June the taxon is present in very low
abundances only. The results of the Kruskal-Wallis showed a significant
difference in abundance of Bellerochea before 2018 and after or equal to
2018 (p < 0.001).

Finally, absolute abundances of Bellerochea, presented as a barplot
(per month, per year), are combined with sea surface temperatures and
heat waves (Fig. 5A). Over the time series air-heatwaves are seen in
2015 (6 days, 30.5 °C), in 2016 (5 days, 30.2 °C), one in 2017 (5 days,
30.6 °C), two in 2018 (15 days, 28.9 °C and 10 days, 30.1 °C), three in
2019 (8 days, 28.4 °C; 5 days, 33.8 °C; 6 days, 30.2 °C), one in 2020 (12
days, 31.3 °C), and one in 2022 (8 days, 30.2 °C) (Royal Meteorological
Institute (RMI), 2023) (Fig. 5A). A section of Fig. 5A is given in Fig. 5B,
only plotting the highest sea surface temperatures exceeding 21 21 °C.
The horizontal line given in Fig. 5A is set at 22.5 °C, which is the thermal
threshold for Temora longicornis: in 2018, 2020 and 2022 this line is
crossed. The difference in abundance of Bellerochea before 2018 and
after or equal to 2018 is obvious.

4. Discussion
4.1. Autumn anomalies of the Calanoida-group
The coastal ecosystem in the southern North Sea is changing. Both

Mortelmans et al. (2021) and Semmouri et al. (2023) described severe
depletions of copepods in the BPNS in autumn of especially 2018 and

2022. These depletions were down to low abundances of four dominant
calanoid taxa: Temora longicornis, Acartia clausi, Centropages spp. and
Calanus helgolandicus (Semmouri et al., 2023). We argue these autumn
depletions were distinct from regime shifts (Beaugrand, 2004; Alvarez-
Fernandez et al., 2012; Capuzzo et al., 2017) or interannual variations
(Greve et al., 2004; O’Brien et al., 2011) as an entire trophic level was
lost in August and September 2018 and 2022, only to recover in Octo-
ber-November on nearshore locations. The main loss during the deple-
tion could be attributed to Temora longicornis (Semmouri et al., 2023),
previously identified as a sentinel species for climate change (Semmouri
et al., 2019, 2020), and the dominant zooplankton species in the BPNS
(Van Meel, 1975; Van Ginderdeuren, 2013; Deschutter et al., 2017;
Semmouri et al., 2019, 2021). Temora longicornis is relatively well
studied in the BPNS: it is an omnivorous calanoid copepod that is present
all year round in coastal waters of the North Sea, with maximum
abundances in spring (Fransz et al., 1992, Williams et al., 1994;
Deschutter et al., 2017; Semmouri et al., 2023). Importantly, it has been
shown that T. longicornis in Belgian waters is herbivorous during fall and
winter, while during spring and summer it needs heterotrophic food to
meet its energetic demands for egg production (Antajan et al., 2004;
Gentsch et al., 2008). Since a dominant herbivorous species was entirely
lost in autumn of 2018 and 2022, it is suggested its (phytoplanktonic)
prey will now have lost a predator and might thrive if environmental
conditions allow it. It is noteworthy that the depletion of 2022 had a
temporally longer impact compared to 2018 — as the abundances only
recovered in December (or even January 2023), where in 2018 abun-
dances were back to normal in October.

4.2. Detection of Bellerochea by the ZooScan

The abundances described here are underestimations of true abun-
dances: the samples are collected over the entire water column, while
colonies are especially seen in the surface layers, which implies an un-
derestimation in terms of abundance. A further underestimation comes
from the fact we measured colonies, not cells as in Nohe et al. (2020).
Moreover, overlapping colonies on the scan were measured as one,
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A: Abundance of Bellerochea spp. (colonies/m?®)(2014-2022) per month, log-transformed
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after the associated heatwaves. The critical temperature for Temora longicornis, 22.5 °C, is illustrated with a dashed line (plot B). (For interpretation of the references
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further underestimating final abundances. Nevertheless, the measured for B. horologicalis in the bay of Tunis (Yahia-kefi et al., 2005)). For that
abundances are consistently high compared to historic data from both reason, it is safe to say this is the first documented bloom of Bellerochea
Belgium (Nohe et al., 2018; Nohe et al., 2020), but also compared to in the BPNS.

other published records on the species (e.g., a maximum of 5000 cells/L For the BPNS, historic mean abundances of Bellerochea are 325.99
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cells/L, with a maximum of 21,000 cells/L detected 9th of May 1978 on
station ‘smeets westl’ [directly in front of Ostend, 51.241667° N,
2.9111° E] (Nohe et al., 2018, Nohe et al., 2020). Although this
maximum is higher to the maximum we observe, the reasons for our
underestimation need to be considered. As noted in Nohe et al. (2020),
there are no historic accounts available between 1978 and 1994; and
between 2010 and 2018. The interrupted time series is therefore not
indicating absences of Bellerochea, but absences in sampling. Bellerochea,
interestingly, was described from Belgium by Van Heurck (1884),
indicating the long-term presence of this genus in the BPNS.

Finally, as reported by von Stosch (1977), Bellerochea malleus grows
well at 21 °C, but unfortunately von Stosch (1977) does not mention the
optimal growth temperature. Von Stosch (1977) did mention optimal
growth temperature for B. yucatanensis, which is set at an astonishing
29 °C, and a maximum near 34 °C in aerated cultures (von Stosch, 1977).

4.3. Bellerochea in Belgium

In the BPNS, nutrient enrichments show a clear gradient for phos-
phates, nitrites, nitrates, silicates and ammonia with highest concen-
trations near the Scheldt estuary towards lowest concentrations in
offshore regions (Rousseau et al., 2006; Otero et al., 2023). The abun-
dances of Bellerochea are high over the studied stations, but especially
near the mouth of the Scheldt Estuary highest abundances are seen. In
the Mediterranean, B. horologicalis has been reported to occur in eutro-
phic waters such as the Nile delta (Dowidar, 1974) and the Gulf of
Naples (Marino and Modigh, 1981) [both were initially published as
B. malleus, but identifications have been rectified in Yahia-Kéfi et al.
(2005) and Ismael, 2014], and B. malleus is reported from the eutrophic
water in the Venice lagoon (Tolomio and Moschin, 1994). For that
reason, the environment of the Belgian bloom in front of Zeebrugge is
similar to blooms described in Dowidar (1974) and Marino and Modigh
(1981): both documented blooms of Bellerochea in eutrophic waters. It is
here argued that sufficient nutrient loads in this region allow Bellerochea
to bloom, in the absence of potential predators. In the highly eutrophi-
cated southern North Sea phytoplankton is controlled by grazing ac-
tivities of zooplankton, as nutrients are ubiquitous. (Rousseau et al.,
2006; Van Ginderdeuren, 2013; Otero et al., 2023).

The blooms of Bellerochea in 2018 to 2022 yielded enormous abun-
dances over the considered stations, resulting in a visually altered state
of the sea. During the several sampling campaigns, visual observations
indicated a severe bloom of Bellerochea, especially in the nearshore re-
gion in front of Zeebrugge. In the field, especially in August, the bloom
was visible as a dark green to brown, coherent mass floating in the water
column. Despite the bloom, we did not experience any nuisance in smell.

4.4. Foresight

It is impossible to predict how the coastal ecosystem of the BPNS will
cope with recurrent copepod depletions or blooms of Bellerochea. We
expect impacts on oxygen levels as decaying phytoplankton will increase
activity of aerobic bacteria which at their turn will deplete oxygen
(Schmidtko et al., 2017; Chen et al., 2021). The effects of hypoxia will
likely translate into other trophic levels (Vaquer-Sunyer et al., 2008),
and especially towards larval fish and zooplankton. In the well-mixed
nearshore region of the BPNS (van Leeuwen et al., 2015), hypoxia is
likely to affect benthic communities through bentho-pelagic coupling (e.
g., Griffith et al., 2017). If decay of Bellerochea (or any bloom of
phytoplankton in autumn) indeed triggers hypoxia, this hypoxia might
further strengthen the depletion of zooplankton (not only Copepods, but
also other taxa). Furthermore, as heatwaves are often associated with
oxygen depletion (Grodzins et al., 2016) these effects are likely to be
reinforced. Depletion of copepod abundances in August and September
especially are expected to impact larval fish, as these coastal regions are
often used as nurseries (Harden-Jones Harden-Jones, 1968). Especially
Downs herring (Clupea harengus), a species of high socio-economic

Journal of Sea Research 201 (2024) 102523

interest, is of importance as it reproduces during winter in the Eastern
English Channel (ECC) and Southern Bight of the North Sea (see Denis
et al., 2016 and references within). Finally, it is not unlikely Temora
longicornis or other calanoids, such as Centropages spp., will be replaced
by more temperature resilient species in the BPNS, similar to what has
been observed for Calanus helgolandicus/finmarchicus (Hirche, 1983;
Bonnet et al., 2005). The LifeWatch dataseries on zooplankton, phyto-
plankton, water quality and Bellerochea abundance is constantly
growing and will obviously allow us to make more predictions on the
autumn anomalies and associated events. High temperatures do allow
Bellerochea to thrive (von Stosch, 1977). It is important to track, monitor
and quickly quantify ongoing changes as implications for aquaculture,
fisheries and recreation are imminent. Right now, it is not yet known
whether Bellerochea has toxic capacities when blooming.

5. Conclusion

The first effects of a temperature-induced copepod-depletion in 2018
and 2022 are becoming visible, in the shape of an autumn bloom of
Bellerochea. This species was previously not documented to form blooms
in the BPNS. The power of image-based datasets is illustrated, as it al-
lows us to retroactively go back in time and work on unchanged samples
not subject to decay or disintegration. The depletion of copepods and the
subsequent bloom of Bellerochea are showing an increasingly pro-
nounced intensity. In 2022, both the copepod depletion and the Beller-
ochea bloom presented longer durations compared to the conditions
observed in 2018. Global warming-induced copepod depletion and
Bellerochea blooms potentially lead to oxygen depletion, impacting
trophic levels, larval fish, and zooplankton in the Belgian part of the
North Sea and the ecosystem as a whole.
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