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Species within nearly all extant animal lineages are capable of regenerating
body parts. However, it remains unclear whether the gene expression
programme controlling regeneration is evolutionarily conserved. Brittle
stars are a species-rich class of echinoderms with outstanding regenerative
abilities, butinvestigations into the genetic bases of regeneration in this
group have been hindered by the limited genomic resources. Here we
reportachromosome-scale genome assembly for the brittle star Amphiura
filiformis. We show that the brittle star genome is the most rearranged
among echinoderms sequenced so far, featuring a reorganized Hox cluster
reminiscent of the rearrangements observed in sea urchins. In addition,

we performed an extensive profiling of gene expression during brittle star
adultarmregeneration and identified sequential waves of gene expression
governing wound healing, proliferation and differentiation. We conducted
comparative transcriptomic analyses with other invertebrate and vertebrate
models for appendage regeneration and uncovered hundreds of genes
with conserved expression dynamics, particularly during the proliferative
phase of regeneration. Our findings emphasize the crucialimportance

of echinoderms to detect long-range expression conservation between
vertebrates and classical invertebrate regeneration model systems.

Brittle stars are by far the most speciose class of echinoderms; over
2,600 extant species occupy benthic marine habitats globally* How-
ever, they remain poorly documented from a genomic standpoint,
despitetheir broadinterest to diverse fields including marine (palaeo)
ecology, biodiversity monitoring, developmental biology and regen-
erative biology*”’.

The echinoderm phylum encompasses five classes with a
well-resolved phylogeny'°~": brittle stars, sea stars, sea urchins, sea
cucumbers and sealilies/feather stars. Genomicsin this phylumbegan

with the pioneering effort to sequence the genome of the purple sea
urchin (Strongylocentrotus purpuratus)*. Analysis of this genome pro-
vided broadinsightsinto the evolution of diverse traits and biological
processes” . Inrecent years, the taxonomic sampling of echinoderm
genomes has steadily expanded'?, enabling investigations into the
evolution of new body plans and developmental strategies. However,
giventhe deep evolutionary divergence of the five echinoderm classes
(480-500 millionyears ago (Ma)), the lack of robust genomic resources
for the brittle stars represents a problematic knowledge gap.

A full list of affiliations appears at the end of the paper.
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Adultechinoderms share acharacteristic pentameral symmetry,
which represents the most derived body plan among Bilateria®. Early
analyses of sea urchin genomes unveiled local reorganizations within
the Hox cluster, prompting speculation that they were associated
with the evolution of this unique body plan**. However, the subse-
quent discovery of an intact Hox cluster in the crown-of-thorns sea
starrevealed that these rearrangements were not instrumental in the
establishment of the pentameral symmetry*>*'. These observations
showcase the need to examine amore comprehensive sample of echi-
noderm whole genomes to accurately identify echinoderm-specific
chromosomal rearrangements and subsequently investigate their
functionalimplications.

Echinoderms exhibit extensive regenerative abilities. Species from
each of the five classes are capable of varying levels of regeneration,
including (larval) whole-body regeneration, appendage or organregen-
eration®. Although species within nearly all major animal groups exhibit
some regenerative capacity, it is not clear whether this trait is ancestral
or independently acquired® *. A comparative analysis of whole-body
regeneration across aseastar larva, planarian worm and hydra has sug-
gested thatbroadly conserved molecular pathways may mediate regen-
eration®. However, given the diversity of regenerative modes, additional
comparative analyses of regenerating organisms are needed to fully
understand the evolution of this complex process***. In particular,
geneexpression dynamics during regeneration have not been explicitly
compared between invertebrates and vertebrates, partly because of
the lack of gene expression profiling across comparable regenerating
structures and difficulties in identifying orthologues among distant
model systems. Echinoderms are more closely related to vertebrates
thanother classical invertebrate models of regeneration, hence provid-
ing aunique phylogenetic perspective. However, echinoderms remain
largely underrepresented in transcriptomic assays of regeneration®*"*®,

The brittle star Amphiura filiformis is one highly regenerative
echinoderm species: fully differentiated arms regrow in a few weeks
following amputation and over 90% of individuals sampled in the wild
display signs of arm regeneration®*°. Consequently, A. filiformis is
emerging asapowerful model for animal appendage regeneration, with
awell-established morphological staging system* . Here we report a
chromosome-scale genome assembly for the brittle star A. filiformis.
This resource is crucial to accurately capture the brittle star gene
repertoire and probe genome-wide gene expression patterns during
regeneration. We investigate the complex history of karyotypes, Hox
cluster and gene family evolutionacross echinoderms and reveal that
A. filiformis displays the most rearranged echinoderm genome
sequenced so far. Moreover, wereport thatA. filiformis extensive regen-
erative capacities correlate with significant expansions of genes involved
in wound healing. Finally, we generate extensive transcriptomic data
from regenerating brittle star arms, which we analyse in acomparative
framework with previously generated datasets from the crustacean
Parhyale hawaiensis*® and the axolotl Ambystoma mexicanum®, toillumi-
nate common genetic mechanisms of animal appendage regeneration.

A chromosome-scale genome assembly for A.
filiformis

We sequenced and assembled the genome of the brittle star A. fili-
formis using high-coverage long nanopore reads assisted with prox-
imity ligation data for scaffolding (Methods). The haploid assembly
spans 1.57 Gb and contains 20 chromosome-size scaffolds (>60 Mb)
that account for 93.5% of the assembly length (Extended Data Fig. 1,
N50: 68.8 Mb (scaffolds equals to or longer than this value contain half
the assembly)). We annotated a total of 30,267 protein-coding genes
(92.7% complete BUSCO score; Methods, and Supplementary Tables 1
and 2), whichisinline with the predicted gene complements of other
echinoderms'™?°*% Inaddition, we generated manually curated lists
for A. filiformis genes associated with immunity, stemness, signalling
and neuronal function as well as transcription factors (Supplementary

Tables 3-5 and Methods). The A. filiformis genome represents to our
knowledge the first high-quality and chromosome-scale genome
assembly for the brittle star class (Supplementary Note 1) and fills an
important gap in the echinoderm genomics landscape.

The most rearranged genome among sequenced
echinoderms

Chromosome evolution in echinoderms has primarily been investi-
gated through the lens of seaurchin genomes. Sea urchins have globally
preserved the ancestral bilaterian chromosomes®*"*2, However, they
also underwent several chromosomal fusions whose origin cannot be
established without examining more echinodermgenomes. To address
this gap and document chromosome evolution across echinoderm
lineages, we took advantage of chromosome-scale genomes released
for sea stars, sea cucumbers and sea urchins'®?*** and our brittle star
genome. Using these genomes and selected outgroups, we recon-
structed the linkage groups present in their ancestor (Eleutherozoa
linkage groups (ELGs), Fig. 1a).

Only one interchromosomal macrosyntenic rearrangement
occurred in the 500 million years (Myr) of independent evolution
between the spiny sea star (Marthasterias glacialis) and the black
sea cucumber (Holothuria leucospilota)®** (Fig. 1b and Methods). By
contrast, the A. filiformisbrittle star genomeis extensively rearranged:
only three chromosomes have a direct one-to-one orthology relation-
ship with spiny sea star chromosomes (Fig. 1c). We reconstructed
the ancestral ELGs on the basis of near-perfect conservation of mac-
rosynteny between the spiny sea star and black sea cucumber and
using outgroups to disentangle derived and ancestral chromosomal
arrangements (Extended Data Fig. 2). We predicted that 23 ELGs were
presentin the eleutherozoan ancestor (Fig. 1d), descending from the
24 bilaterian linkage groups (BLGs)>* through the fusion of the BLGs
B2 and C2. The black sea cucumber maintained the 23 ancestral ELGs,
a single chromosomal fusion took place in the spiny sea star lineage
(interchromosomal rearrangement rate of 0.002 event per Myr), five
fusions occurred in the sea urchin Paracentrotus lividus (0.01 event
per Myr) and 26 interchromosomal rearrangements in the brittle star
A.filiformis (0.052 event per Myr; Extended Data Fig. 3). These results
indicate that sea cucumbers, sea stars and sea urchins have broadly
conserved the ancestral bilaterian linkage groups, whereas the brittle
star genome is highly reshuffled. Examination of additional sea star
and sea urchin genomes suggests that these trends might extend to
species within their respective classes'******" (Extended Data Fig. 3).

Among the four echinoderm genomes analysed, we find that
repetitive elements coverage correlates as expected with genome size
but notwithrates of rearrangements. Repeat coverage is highestin the
highly rearranged brittle star genome (1.57 Gb, repeat coverage 59.3%)
andslowly evolving black sea cucumber H. leucospilota (1.31 Gb, 56.0%)
compared with the sea urchin P. lividus (927 Mb, 49.2%) and spiny sea
star M. glacialis (521 Mb, 47.6%). Repetitive elements accumulated more
gradually in the slowly evolving sea star and sea cucumber genomes,
compared with both the sea urchin and the brittle star which display
recent bursts of repeat activity (Fig. 1e). Specifically, the brittle star
genome is marked by a burst of repeat activity 10-15 Ma, consisting
mostly of DNA transposons (peak of repeats with 2% divergence to
consensus; Methods). We thus speculate that the evolutionary history
of A. filiformis includes at least one period of genomic instability*®.
Together, these data highlight contrasting trends of chromosome
evolutionacross echinoderm classes and indicate that A. filiformisis the
most rearranged echinoderm genome among those sequenced so far.

Alocally rearranged Hox cluster

The organization of the Hox and ParaHox gene clusters has been docu-
mented in each class of echinoderms except for brittle stars?*?***°%%° To
further explore the enigmatic evolution of these developmental home-
obox gene clusters in echinoderms®, we investigated the structure of
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Fig.1| Chromosome evolution in echinoderms. a, Phylogenetic relationships
of the five echinoderm classes (orange), with the position of the Eleutherozoa
ancestor highlighted, and hemichordates and chordates as outgroups. Classes
with available chromosome-scale genome assembly are shownin dark orange.
Divergence times among echinoderms and with hemichordates were extracted
fromref. 13, divergence with chordates from TimeTree'. b, Synteny comparison
between the 22 chromosomes of spiny sea star and the 23 chromosomes of the
black sea cucumber. The single macrosyntenic rearrangement between the
two genomes isindicated with arrows. ¢, Synteny comparison between the 22
chromosomes of spiny sea star and the 20 chromosomes of brittle star. The
three brittle star chromosomes with a one-to-one relationship with sea star
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chromosomes are shown with a colour matching its orthologous counterpart
inspiny sea star (Fisher’s exact test P,; < 107°). d, Chromosome evolution

in Eleutherozoa. We named the ancestral ELG using established naming
conventions proposed for the 24 bilaterian ancestral linkage groups defined
previously**?. B2 + C2 corresponds to a fusion of bilaterian B2 and C2 present
inthe Eleutherozoa ancestor. e, Repeat landscapes for the brittle star and the
three selected echinoderm genomes, with the y axis representing the genomic
coverage and the x axis the CpG-corrected Kimura divergence to the repeat
consensus. Species are presented in the same order asind. The dashed red line
indicates the repeat burstin the brittle star.

the A. filiformis Hox and ParaHox clusters. Notably, the A. filiformis Hox
and ParaHox clusters both exhibit genomic rearrangements (Fig. 2,
Extended Data Fig. 4 and Methods). Anterior Hox genes (Hox1, Hox2
and Hox3) are inverted within the 3’ end of the cluster and Hox8 was
inverted and displaced between Hox9/10 and Hox11/13a. Five repeat
families are significantly expanded within the brittle star Hox cluster. The
repeat family SINE/tRNA-Deu-L2 is significantly associated with break-
point locations and may have contributed to the Hox1-Hox3 inversion
through non-homologous repair (Benjamini-Hochberg (BH)-corrected
permutation-based P< 0.05; Fig. 2b). Expanded repeats have aninferred
divergence of18-22%to their consensus, suggesting that they were active
~100 Ma (Methods). While brittle star Hox reorganizationis distinct from
the one observed in sea urchins, inboth cases one of the breakpoints is
located near Hox4 (Fig.2c). Moreover, the brittle star ParaHox cluster also
underwentdisruptions (Fig. 2d), such that Gsxwas tandemly duplicated
togeneratetwo paralogues (proteinidentity: 74%) located along distance

(>5Mb) from Xlox-Cdx. Whereas Xlox-Cdx maintained close linkage in
the brittle star, all three members of the ParaHox cluster are dispersed
over their chromosome in sea urchins®.

Hox expression throughout echinoderm embryogenesis, lar-
val stages and metamorphosis remains largely enigmatic and
spatio-temporal expression does not follow classical Hox collinearity
rules®*°. Weinvestigated Hox and ParaHox gene expression during brit-
tle star development using previously published datasets® ** (Fig. 2e,
Supplementary Table 1 and Methods). As in sea urchins®®, Hox1 and
Hox3-Hox6 are expressed at very low levels in the brittle star embryos
and pluteus larvae (normalized transcript per million transcripts
(TPM) < 2), but Hox7, Hox11/13a and Hox11/13b are highly expressed.
However, inthe brittle star, Hox2is expressed early in embryogenesis,
with maximal expression at 9 h postfertilization, whereas sea urchins
Hox2is not expressed during early development®®®*. Expression pat-
terns of the brittle star ParaHox genes (Fig. 2e) match those observedin
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Fig.2|Hox and ParaHox clusters organization across echinoderms.

a, Phylogenetic relationships among the five classes of echinoderms, with
hemichordates as the outgroup. b, Genomic organization of the brittle star
A.filiformis Hox cluster. Significantly expanded repeats at the Hox cluster
location are represented in their respective tracks below Hox genes, with the
average sequence divergence to consensus indicated (div., %). Divergence to
consensusis a proxy for repeat age, where higher divergence indicates older
repeatinsertions. Vertical grey rectangles indicate breakpoint locations.

¢, Schematic representation of Hox cluster organization across echinoderms
and outgroups, based on organization reported in Saccoglossus kowalevskii and
Ptychoderaflava™* for Hemichordata, feather star Anneissiajaponica®

for Crinoidea, brittle star A. filiformis for Ophiuroidea, crown-of-thorns sea
star A. planci'®*° for Asteroidea, Japanese sea cucumber Apostichopus
Jjaponicus®*® for Holothuroidea and purple sea urchin S. purpuratus® for
Echinoidea. d, ParaHox gene cluster organization, based on the same genomes
asinb. Doubleslashes indicate non-consecutive genes, all separated by
distances >5 Mb on the same chromosome or scaffold. e, Expression of Hox and
ParaHox genes throughout 4 brittle star developmental time points and in the
adultarm. hpf, hours post fertilization. Expression data fromrefs. 61-63 were
normalized across samples using the TMM method*° on the full set of brittle star
genes, and shown as log,(TPM +1).

seastars®™. By contrast, dispersion of the ParaHox cluster in sea urchins
isassociated with the distinct temporal activation of Gsx, Xlox and Cdx
during embryogenesis®.

These results highlight intriguing parallels in the reorganiza-
tion of developmental gene clusters and their expression patterns
between brittle stars and sea urchins. Limited data are available on
Hox gene expression in other echinoderm classes, but investigations
in crinoids and sea cucumbers suggest that even in species with an
intact Hox cluster, the anterior genes (HoxI-Hox6) exhibit low or no
expressioninearly embryonic stages, whereas Hox7 and Hox11/13b are

expressed® %, Together, these suggest that only a subset of Hox genes
have a role in echinoderm embryogenesis®. We therefore speculate
that the relaxation of expression constraints on Hox genes during
echinodermembryogenesis may have allowed for the rearranged Hox
cluster architectures seenin the sea urchin and brittle star lineages.

Expansion of regeneration-related gene families

To assess the functional implications of gene complement evolution
in echinoderms, we first documented the duplication history of phb
and luciferase genes, known to be important for echinoderm larval
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skeleton and bioluminescent abilities and extensively duplicated in
A. filiformis®*>*""° (Extended Data Fig. 5 and Supplementary Note 2).
We next inferred gene family expansion and contraction events along
echinodermevolution (Fig. 3aand Methods). In contrast to other deu-
terostome lineages, which exhibit either extensive gene losses” or
duplications’, we found that echinoderms harbour relatively stable
gene complements (790 expanded or contracted of 10,367 tested fami-
lies). Several Gene Ontology (GO) terms are systematically foundin the
expanded and contracted families of brittle star and other echinoderms
(Fig. 3b, Supplementary Tables 6 and 7 and Methods). This includes
several GO terms linked to immune-related processes (for example,
‘responseto other organisms’, ‘leucocyte migration’, ‘cell recognition’),
which encompass genes with elevated gene birth and death rates in
animals (for example, Toll-like receptors)’® . Some GO enrichments
may reflect specific aspects of echinodermbiology. For instance, recur-
rent duplications of ‘regeneration-related’ genes may underlie the
remarkable regenerative capacity of many echinoderms (Fig. 3b,c).
InA. filiformis, members of these expanded gene families (Fig. 3c) are
expressed during arm regeneration (Extended Data Fig. 6). In addi-
tion, genes within four of the seven regeneration-related expanded
families (plasminogen, carboxypeptidase B, coagulation factor and
ficolin) directly regulate coagulation and/or clotting in vertebrates™
but may have a broader role inimmune defence in echinoderms”7%,
Moreover, theficolin gene has also beenimplicatedin the early stages
of A.filiformis armregeneration’”*°, Duplications within the brittle star
may have contributed to the evolution of a rapid and efficient wound
closure process thatis prerequisite to regeneration®*®, Finally, genes
involved in keratan sulfate metabolism are overrepresented in both
expanded and contracted gene families in the brittle star, with some
members expressed in regeneration (Fig. 3b and Extended Data Fig. 6).
Increased sulfated glycosaminoglycans production has been previously
reported to be required for proper arm regeneration in A. filiformis®.
We speculate that the evolution of brittle star efficient regeneration
may have been accompanied by aspecialization of glycosaminoglycan
sulfate metabolism.

Gene expression during brittle star arm
regeneration

Togaininsightinto the transcriptional programmes that underlie brittle
star armregeneration, we profiled gene expressionin seven representa-
tiveregeneration stages following amputation and one non-regenerating
control. Stages were selected on the basis of well-established morpho-
logicallandmarks of brittle star arm regeneration** (Methods and Fig. 4a).
Using soft-clustering, we classified genes into nine major temporal clus-
ters (A1-A9) (Fig. 4a, Extended Data Fig. 6 and Methods). Functional
enrichmentanalysis of genes withinthe co-expression clusters revealed
three distinct phases of armregeneration: (1) wound healing, (2) prolif-
eration and (3) tissue differentiation (Fig. 4b and Extended Data Fig. 7).
Theseresults are consistent with morphological timelines of regenera-
tioninthe brittle star and other animals®****butimportantly capture the
underlying genome-wide transcriptional programme. We corroborate
the expression pattern of previously characterized brittle star regenera-
tiongenes and further report novel key candidates (Extended DataFig. 6
and Supplementary Tables 8 and 9).

Early regenerationis marked by the expression of genes involved
in wound response, including immunity/wound healing (clusters
A1-A2), and cell migration/tissue protection (clusters A3-A4), which
are enriched inimmune and kinase genes, respectively (Fig. 4b,c and
Supplementary Table 10). The regions surrounding transcription
start sites (TSS) of genes within cluster A2 are enriched for transcrip-
tion factor-binding motifs of NF-kB, a broadly conserved regulator of
immuneresponse (Fig. 4d). Theearly activation of NF-kB in the context
of regeneration has been evidenced in vertebrates and hydra®®, and
our findings suggest its implication in the brittle star regenerative
response as well.

Wound healing is followed by cell proliferation (clusters A9 and
A5-A7),asindicated by the overrepresentation of stemness genes and
genes involved in cell proliferation, cell division and enhanced trans-
lational activity. Accordingly, binding motifs associated with several
proliferation-related transcription factors are enriched around the TSS
of genes from clusters A5Sand A6. These transcription factors have not
been previously investigated in the context of brittle star regeneration
but are functionally well characterized in vertebrates. This includes
NRF1 and p53, which have been implicated in vertebrates in regulat-
ing (stem) cell survival and proliferation®**®, PRDM14 and YY1, which
regulate pluripotency®*, and RORa, which controls inflammation
by downregulating targets of NF-kB’° and may thus have a role in the
transition fromwound response to proliferation (Fig. 4c,d). We also find
enrichment of binding motifs corresponding to zinc-finger transcrip-
tion factors thatareinvolved in cell proliferation and pluripotency®*%.
While we note that binding motif overrepresentation analyses are
inherently biased towards more-studied vertebrate systems, transcrip-
tion factor gene expression in the brittle star is globally consistent
with reported motif enrichments (Extended Data Fig. 6). Cluster A9
encompasses genes expressed as early as 48 h post amputation (hpa)
and active throughout regeneration, including translational regula-
tors, cell division and vesicle transport genes (Fig. 4b), as well as genes
involved in signalling pathways known to promote cell proliferation
in vertebrates and fruit flies (VEGF, AKT, insulin-like and JAK-STAT
pathways)” ¢ (Fig. 4c and Extended Data Fig. 6). The VEGF and AKT
pathways have been previously implicated in brittle star regeneration*c,
Together, these data suggest that the signalling cascades that initiate
cellproliferationareinduced very early during brittle star regeneration
(cluster A9); they are activated during the wound response phase and
exhibitamplified expression during the peak of cell proliferation (stage
5;Fig.4a). The early onset of proliferation (~48 hpa) is consistent with
previous observations of cell proliferation and expression quantifica-
tion of selected marker genes*>**,

Finally, late regeneration is characterized by the expression of
genesinvolvedindifferentiation, patterning and appendage morpho-
genesis, withasignificant overrepresentation of transcription factors
(cluster A8; Fig. 4b,c). This cluster includes two T-box transcription
factors that are important for patterning in echinoderms (¢bx3-1 and
tbx3-2) and two transcription factors with key roles in neurogenesis
(ngnl-like and hey1-like)* .

These data provide a genome-wide picture of the molecular
pathways at play throughout brittle star arm regeneration and high-
light three waves of gene expression that successively mobilize genes
involved in wound response, cell proliferation and tissue differentia-
tion. These general phases have been described in many regenerating
animals, enablinginvestigationsinto the conservation of regeneration
gene expression dynamics across species.

Conserved gene expression during animal
appendage regeneration

Several key genes and pathways have been repeatedly implicated in
regeneration across animal lineages*, However, direct comparisons
oftemporal expression gene profiles throughout regeneration remain
limited.

Using a genomic phylostratigraphy approach'®®, we found that
overall, brittle stararmregeneration is mediated by ancient genes (that
is, metazoanorolder) (Fig. 5aand Methods). The exceptionis theinitial
wound-healing phase, which is enriched in genes that are specific to
the brittle star lineage. The observation that brittle star regeneration
ismostly driven by ancient genes prompted us to investigate whether
these genes are similarly involved in appendage regeneration across
animals, and whether they are deployed in the same temporal order. We
compared gene expression dynamics during appendage regeneration
in A.filiformis with comparable datasets from the axolotl (Ambystoma
mexicanum)* and the crustacean Parhyale (Parhyale hawaiensis)*®.
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Fig.3|Gene family evolution in echinoderms. a, Number of significantly
expanded (red) and contracted (blue) gene families throughout echinoderm
evolution, from atotal of 10,367 tested gene families (Methods). b, Gene
Ontology (GO) functional enrichment tests (biological process) for expanded

and contracted familiesin the

different echinoderm classes. We selected the

top 15 representative GO terms enriched in expanded brittle star gene families

and10in contracted families (

Methods). In the heat map, colours indicate

GO terms significantly enriched in expanded or contracted families in other

echinoderm classes (FDR < 0.05). Complete GO enrichment test results are

provided in Supplementary Table 6, including Pvalues, enrichment ratios,

background and foreground gene families and genes. ¢, Gene copy number
variation across echinoderms for regeneration gene families with significant
expansionin A. filiformis (>1brittle star gene in the family annotated with the GO
term ‘regeneration’). Gene families were named according to the S. purpuratus
gene name. Red and blue colours denote significantly expanded and contracted

families, respectively.

For this analysis, we defined nine major co-expression clusters during
axolotl limb regeneration (Ax1-Ax9) (Extended Data Fig. 8 and Sup-

plementary Tables 11 and
We used pairwise co

12) and used existing Parhyale clustering*®.
mparisons and permutation tests to reveal

conserved co-expression clusters across species. Co-expression
clusters were defined as conserved between two species when they
used more shared genes than expected by chance (Fig. 5b and Meth-
ods). Among the nine co-expression clusters that mediate brittle star
regeneration, five consist of genes that are also co-expressed during
axolotl regeneration (926 genes), six clusters overlap with Parhyale

(913 genes), and four clusters are consistent across the three species
(154 genes) (Fig. 5b,c and Supplementary Tables 13 and 14). Expres-
sion comparisons between the more phylogenetically distant axolotl
and Parhyale identify only two conserved co-expressed gene clusters
(370 axolotl genes); this direct comparison is thus considerably less
informative than comparisons thatinclude the brittle star. Most genes
with conserved expression patterns in the brittle star-axolotl com-
parisonlackidentifiable homologues in Parhyale, whereas genes with
aconserved expression in the brittle star-Parhyale comparison exhibit
adifferent expression patternin the axolotl (Fig. 5c). This underscores
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Fig. 4| Gene expression during brittle star arm regeneration. a, Soft-
clustering of gene expression profiles throughout regeneration time points,
yielding 9 main temporal co-expression clusters (A1-A9) (Methods and
Extended Data Fig. 6). Co-expression clusters are temporally ordered (from
top to bottom) on the basis of their first expression time point. Barplots on the
right indicate the number of genes assigned to each cluster. The RNA sampling
procedure for each stageis illustrated at the bottom. Early stages are sampled
at48and 72 hpa, when wound healing followed by regenerative bud formation
occurs. Subsequent stages are defined by morphological landmarks: stage 3
corresponds to the appearance of the radial water canal and nerve (~6 dpa),
stage 4 is the appearance of the first regenerated metameric units (~8 dpa), stage

5corresponds to advanced arm extension and differentiation onset (~9 dpa),
50% stages correspond to when 50% of the regenerated arm has differentiated
(~2-3 weeks post amputation) sampled at the distal (D, less differentiated)
and proximal (P, more differentiated) ends***”. b, GO enrichment for each
co-expression cluster (Methods, see Extended Data Fig. 7 and Supplementary
Table 10 for exhaustive GO results). ¢, Curated gene list enrichment for each
co-expression cluster (hypergeometric test, Benjamini-Hochberg P,; < 0.05;
Methods and Supplementary Table 2).d, Transcription factor (TF)-binding
motifs enriched around the TSS (5 kb upstream to 1 kb downstream) of genes
from co-expression clusters (hypergeometric test P, < 0.05; Methods).

the relevance of using the brittle star to bridge comparisons across
established regeneration models.

The broadly conserved co-expression clusters largely consist
of genes expressed during the proliferative phase and, to a lesser
extent, the initial wound-healing phase. By contrast, the genes that
comprise clusters corresponding to tissue differentiation are distinct
ineachspecies, whichis consistent with the fact that the regenerating
appendages are not homologous across species. Notably, the con-
served co-expression clusters are deployed in a consistent temporal
sequence in each species (Fig. 5c). The only identified heterochrony
concerns the matching of the axolotl cluster Ax3 (peak at 0-3 hpa) with
brittle star cluster A5 (peak at 6 days post amputation (dpa)) (Figs. 5¢
and 4a, and Extended Data Fig. 8). Previous work suggested that simi-
lar co-expression gene modules are deployed during regeneration
and development but are activated according to distinct temporal
sequences*®. We compared gene expression profiles during regenera-
tion and development from the brittle star and Parhyale. The order
in which co-expressed gene modules are activated is, as expected,
more conserved within regeneration and within developmental data-
sets across species than between regeneration and development in

individual species (Extended Data Fig. 9). Together, these results
broaden previous observations of distinct expression dynamics dur-
ing development and regeneration, and document conserved gene
expression modules recruited for animal appendage regeneration.
Wefurther investigated the functions of brittle star genes with simi-
lar temporal expression profiles during regeneration in Parhyale and/or
axolotl. Using a carefully selected background that accounts for homol-
ogy detection and functional biases of different clusters (Methods), we
found asignificant overrepresentation of kinase and stemness genes and
an underrepresentation of immune genes (gene list enrichment tests)
(Fig. 4d and Extended Data Fig. 9). Moreover, these genes conserved
in expression are enriched in general biological processes related to
cell proliferation, such as translation, chromosome segregation, DNA
replication and intracellular transport (GO enrichment tests; Fig. 4e).
Among the conservative set of 154 genes with conserved expression
profiles acrossthe three species, only two transcription factors emerge
(Supplementary Table13):/d2-like, whichactivates regeneration-induced
proliferation in mice'” and Wdhdi-like, which regulates DNA replica-
tion'*2. We thus propose that /d2 and WdhdI may have a conserved role
during animal regeneration. In addition, while several transcription
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Fig. 5| Gene expression throughout appendage regeneration across
animals. a, Gene age enrichments for brittle star arm regeneration clusters
(hypergeometric test, Benjamini-Hochberg P,q; < 0.05). Clusters are ordered
by the time of expression onset. b, Comparison of co-expressed gene clusters
deployed during appendage regeneration in axolotl, brittle star and Parhyale
(left to right: axolotl vs brittle star, brittle star vs Parhyale, Parhyale vs axolotl).
Clusters in Parhyale (clusters P1-P8) correspond to the clustering reported
previously*®, but clusters were renamed to follow temporal activation and
homogenize with respect to brittle star and axolotl clusters (Methods).
Co-expression clusters in each species are shown in order of their temporal
expression (from top to bottom), except for brittle star cluster A9 and Parhyale
clusters P6-P8 which are expressed throughout several regeneration time
points and shown at the bottom. Clusters are represented by vertical rectangles
whose sizes are proportional to the number of homologous genesin the cluster,

Enrichment ratio

and coloured according to enriched GO terms (Methods, Fig. 4 and Extended
DataFig. 8; see a for legend). Links between clusters of the two compared
species indicate cluster membership of homologous genes, with coloured links
indicating significant overlaps (permutation-based P values with Benjamini-
Hochberg correction <0.05; Methods). Credits for Parhyale silhouette: Collin
Gross (CCBY 3.0). ¢, Most genes identified as co-expressed in the brittle
star-Parhyale and brittle star-axolotl comparisons are not recovered in the
direct Parhyale-axolotl comparison. Most genes co-expressed in the axolotl
and brittle star have no identified homologues in Parhyale (54%, left pie chart).
Genes co-expressed in Parhyale and the brittle star have a divergent expression
inthe axolotl, thatis, they are not found in matched co-expression clusters
(55%, right pie chart). d, Gene list enrichment and depletion tests performed for
the set of brittle star genes with conserved temporal expression during animal
regeneration (Methods). e, GO enrichment tests, asind.

factor-binding motifs found in the vicinity of brittle star co-expressed
genesare also overrepresented near Parhyale and axolotl co-expressed
genes, only YY1and NRF1 are present in corresponding co-expression
clusters (Ax7-A6) (Extended Data Fig. 8), suggesting a possible con-
servedroleforthese transcriptionfactorsin regulating cell proliferation
during regeneration in these distantly related organisms.

Finally, we find that two temporally matched gene expression clus-
tersin brittle star and Parhyale regenerationinclude key genesinvolved
in repressing transposable elements (that is, Risc-like (A2-P1) and
Ago2-like (A9-P7)) (Supplementary Table 13). It has been proposed that
transposon repression is important for proceeding from theimmune

response phase to regeneration'®, by preserving genome integrity for
cell proliferation and differentiation. In line with this hypothesis, we
found ahigher transcriptional activity of brittle star repetitive elements
in the initial wound-response regeneration phase compared with the
proliferative phase (Extended Data Fig. 10 and Methods).

Expressionin non-regenerative and regenerative
responses

We have comprehensively characterized the genome-wide gene
expression dynamics during brittle star arm regeneration. However,
this does not allow us to directly interrogate the molecular drivers of
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regenerative as opposed to non-regenerative wound-healing responses.
Totackle this question, we performed explant experiments in which the
armis firstamputated from the body (proximal cut) and subsequently
amputated at the distal end (Fig. 6a). As in whole animals, explanted
brittle star arms regenerate from the distal tip, whereas the proximal
end undergoes a non-regenerative wound-healing response. To iden-
tify genes specifically involved in regeneration, we sampled distal,
medial and proximal explant segments for RNA-seq experiments at 3
and 5 dpa (3 to 4 replicates, for a total of 20 samples; Fig. 6a and Sup-
plementary Table 1).

Wetested for differential expression of genes at the distal and proxi-
mal end compared to control medial segments (Methods and Fig. 6a).
Asexpected, upregulated distal genes correspond to genes expressed
duringthe proliferative phase of the brittle star arm regeneration time
series, whereas upregulated genesin proximal segments correspond to
early-response/wound closure genes (Fig. 6b). We identified more differ-
entially expressed genes (DEGs) inthe distal regenerating samples than
in proximal non-regenerating samples (distal: 595 and 828 upregulated
genesat3and S5 dparespectively,238 and 562 downregulated; proximal:
148 and 373 upregulated, 27 and 97 downregulated) (Fig. 6¢). Most genes
differentially expressed in proximal segments are also differentially
expressed in distal segments (61% of the proximal DEGs are shared
with distal), whereas distal genes are largely distal specific (82% of the
distal DEGs are not shared with proximal) (Fig. 6¢). This is consistent
with the expected expression patterns, as wound closureis anintegral
partof regeneration. Altogether, we identify hundreds of differentially
expressed candidate genes (Supplementary Table 2).

Notably, five genes display drastically opposite expression pat-
terns in the wound-healing and regenerating segments (Fig. 6¢) and
are thus likely to contribute to distinct post-wounding outcomes.
Agrin-like-1 and AFI3363S are significantly downregulated during
wound healing but upregulated in regeneration. Agrin proteins are
critical for neuromuscular junction developmentin vertebrate embryo-
genesis'**. AFI33635 is an uncharacterized brittle star gene with thy-
roglobulin and methyltransferase domains, putatively involved in
regulating protease activity'®. Conversely, the three genes AW-SPI,
AFI18858 and Gdf8are significantly upregulated during wound healing
but downregulated in regeneration. AW-SPI is an antistasin/WAP-like
serine protease inhibitor, with a possible role in immune defence'.
AFI18858 is a brittle star gene with a zf-Bbox domain and is a member
of the expanded TRIM-like gene family, broadly involved in immune
responses (Fig. 3¢c). Interestingly, the myostatin gene Gdf8is amember
of the TGFf signalling pathway that inhibits skeletal muscle growth
and regenerationinmice'””'°%, Repression of Gdf8 may similarly enable
muscle regeneration in brittle stars. In summary, these five candidate
genes might be tightly linked with the transition from wound healing
toregeneration-induced cell proliferation, and some may have a con-
served functioninthe brittle star and in vertebrates (Agrin and GdfS).

Discussion

The chromosome-scale genome of the brittle star A. filiformis rep-
resents a critical resource for the fields of evolutionary genomics,
marine ecology and regenerative biology. Whereas previous stud-
ies of chromosome evolution in echinoderms were limited to sea
urchins®*!, our analyses revealed that the genomes of sea cucumbers
and sea stars display even fewer rearrangements of the bilaterian
ancestral chromosomal units than that of sea urchins. We showed
that the ‘Eleutherozoa Linkage Groups’ descend from a single fusion
of ancestral bilaterian linkages (B2 + C2). Chromosome-scale crinoid
and hemichordate genomes will reveal whether this fusionis ancestral
to Ambulacraria. Crucially, the fusion has not been observed in the
genome of Xenoturbella bocki whose phylogenetic positionis contro-
versial, and thus cannot be used to support their proposed grouping
with Ambulacraria'®®". The A. filiformis genomeis highly rearranged:
our analyses identified 26 interchromosomal rearrangements since the

Eleutherozoaancestor. Additional brittle star genomes will reveal the
precise timeline of chromosomal rearrangements and contributions
of repeat expansion, chromatin architecture and population genetics
dynamics to the rapid karyotype evolution in this group.

On amore local scale, we identified convergent rearrangements
in the Hox clusters of sea urchins and the brittle star, which could be
hallmarks of relaxed regulatory constraints within echinoderms. Hox
genes, andin particular anterior Hox, show limited expression during
echinoderm embryogenesis and are mostly expressed in adults®®¢-¢51,
We speculate that anterior and central/posterior Hox genes may belong
todistinct chromatin compartmentsin echinoderms. Small-scale rear-
rangements may have occurred through elevated physical contacts
at compartment boundaries (that is, around Hox4) and eventually
become fixed owing to relaxed selection constraints on Hox expres-
sion. We revealed expansions of transposable elements in the brittle
star Hox cluster ~100 Ma. If Hox cluster rearrangements co-occurred
with the activation of repeats, distantly related brittle star species™
may exhibit distinct Hox organizations.

The brittle star genome furthermore enables genetic characteri-
zation of the animal appendage regeneration process and remarkably
allows the detection of long-range conservation of gene expression
programmes. Incorporating the brittle star within acomparative tran-
scriptomics framework extensively increased our ability to detect
conserved co-expression modules between vertebrates (for example,
axolotl) and arthropods (for example, Parhyale). We revealed that the
proliferative phase of regeneration displays the highest expression con-
servationacross these animals, suggesting that regeneration deploys
an ancient, evolutionarily conserved proliferation machinery. These
results are consistent with two alternative scenarios for the evolution
of animal regeneration: (1) convergence, with the independent evo-
lution of wound response programmes able to recruit the ancestral
proliferative machinery or (2) homology, with an elevated divergence
of wound response gene expression through diversifying selection, as
typical forimmune-related genes. The stronger conservation of gene
expressionduring proliferation as opposed to theiinitial wound-healing
response is consistent with the elevated turnover of immunity-related
genes, broadly reported across animal lineages’” and which we also
demonstrate here in echinoderms. Our results, however, contrast with
the only previous study to have explicitly interrogated the conservation
of animal regeneration gene expression programmes, which revealed
ahigher conservation of early-response genes as opposed to the genes
expressed during proliferation®. These discrepancies might be due
to limited and asynchronous temporal sampling across species in
previous comparisons®, whichis alleviated in our study through more
comprehensive samplings of regeneration time points. Alternatively,
they could reflect genuine biological differences between (larval)
whole-body regeneration studied previously*® and adult appendage
regeneration. We nevertheless expect that future investigations into
diverse regenerating animals with comprehensive temporal sampling
will confirm the strong conservation of proliferation gene expression
dynamics. Denser temporal samplings of early regeneration are nec-
essary to confirm the limited conservation that we observe here but
are currently technically challenging in the brittle star model. The
conservation of proliferation ties in with a current hypothesis in the
field that animal regeneration may recruit ahomologous proliferating
cell type®?*, but this should also be further explored with single-cell
sequencing techniques and additional comparative analyses.

Finally, in the brittle star A. filiformis, we identify notable expan-
sions of gene families linked to regeneration-related processes and in
particular, of homologues of vertebrate coagulation regulator genes,
suggesting them as relevant candidates for follow-up in-depth func-
tional characterizations. We also propose a conserved role for Gdf8
during regeneration, asitisrepressed during regenerative proliferation
in both brittle stars and mice'*”'%, Our findings emphasize the impor-
tance of echinoderms as a powerful model for regeneration owing to
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Fig. 6| Comparison of gene expression during wound closure and
regeneration in brittle star explant experiments. a, Experimental setup.
Brittle star arms are amputated at the proximal (cut 1) and distal (cut 2) ends.
Proximal, distal and medial (control) segments are sampled for RNA-seq at 3
and 5 dpa, using 3-4 replicates each (Supplementary Table 1). We identify

DEGs in proximal (wound closure only, not followed by regeneration) segments
and distal (regenerative) segments, compared to control medial segments.
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regeneration time-course clusters (Fig. 4; hypergeometric enrichment test,
BH-corrected P< 0.05). ¢, Overlap between DEGs genes in distal and proximal
segments. Barsin the UpSet plot are coloured to highlight (i) segment-specific
DEGs, for DEGs unique to distal or proximal segments, (ii) shared proximal
and distal segments, for DEGs shared between proximal and distal, and (jii)
opposite proximal and distal segments, for DEGs upregulated in proximal and
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their unique regenerative capabilities and experimental amenability,
butalsototheir phylogenetic position crucial for comparative analyses.
The extensive genomic and transcriptomic resources we generated
forthe brittle star A. filiformis thus represent an entry point for future
studies aiming to understand the evolutionary, molecular and genetic
underpinnings of animal appendage regeneration, emergence of pen-
tameral symmetry and remarkable diversity of morphologies and
developmental strategies seen across echinoderm lineages.

Methods

Animal sampling

Adult A. filiformis were collected at 25-40 m depth from sediment
in the Gullmarsfjord in the vicinity of Kristineberg Marine Station,
Sweden, using a Petersen mud grab. Individuals were separated from
the sediment by rinsing them with seawater, and then maintained in
natural flowing seawater at 14 °C. Sperm was collected from a single
individual by dissecting the gonads from the bursae.

DNA extraction and sequencing
Sperm cells were concentrated by centrifugation, washed repeatedly
and subsequently embedded in 2% low-melting agarose. Sperm cells
werelysedinasolution of 1% SDS,10 mM Tris (pH 8) and 100 mM EDTA
andthenresuspended inasolution of 0.2% N-laurylsarcosine,2 mM Tris
(pH 9) and 0.13 mM EDTA. High molecular weight DNA was released
from the agarose blocks using 3-agarase (NEB).

Long-read sequencing was performed on six Nanopore Prome-
thlon flowcells (v.R9.4.1). Several libraries were constructed using
the ligation sequencing kit (Nanopore LSK109) using DNA sheared

to different sizes using a megaRuptor (Diagenode) to optimize yield
and contiguity. Bases were called from raw signal with Guppy (model
‘dna_r9.4.1_450bps_hac_prom’, v.2.3.5). A total of 160.56 Gb nano-
pore reads was acquired (~100x coverage). A library of 10x linked
reads was generated using the Chromium system (10x Genomics) and
sequencingonaNovaseq6000 SPlaneina2 x150 bp layout for a total
of 246 M reads (86 Gb). Genome size was estimated to 1.33 Gb with a
heterozygosity of 3.22% by counting k-mer (k = 31) in the short-read
data using jellyfish2 (ref. 112) and fitted through a four-peak model
using Genomescope2 (ref.113).

Genome assembly

We assembled Nanopore reads using flye (v.2.9-b1768)"* assuming
a coverage of 30x and a genome size of 3 Gb to account for the high
level of heterozygosity. We obtained a diploid assembly of 2.86 Gb
(N50: ~2.78 Mb), which was subsequently polished using Racon
(v.1.5.0)"™ for two iterative rounds using the nanopore reads and then
for another two rounds using the short-read Illumina reads that were
aligned to the assembly using minimap2 (v.2.24-r1122)"¢. The flye
assembly had k-mer completeness and QV base accuracy of 97% and
31.6 (thatis, 0.000683556 error rate), as reported by Merqury (v.1.3)"".
Structural accuracy was verified with Inspector (v.1.0.2)"®, revealing a
read-to-contig mapping rate of 97% and a structural quality value QV
0f 26.88 (0.002 error rate). Haplotypes were then removed from the
assembly using purge_dups (v.1.2.5)", with cut-offs visually adjusted
fromthe coverage distribution on contigs. Correct haplotype removal
was further verified by inspection of k-mer spectrum plots'” (Extended
DataFig.1a,b). Theresulting assembly had a total length of 1.57 Gb, with
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N50 and L50 (number of scaffolds containing half the genome assem-
bly) of 3.2 Mb and 154, respectively, and 96.1% complete BUSCO score.

Toscaffold this assembly, we built aHi-C library from gonadal tissue
using the Omni-C kit (Dovetail). Chromatin was fixed using paraform-
aldehyde and digested using a sequence-independent nuclease after
re-ligation and biotinylation. A sequencing library was built from puri-
fied DNA and 225 M reads sequenced on aNovaseq X (~45% coverage).
Hi-C reads were mapped to the polished haplopurged assembly using
bwa mem (0.7.17-r1198-dirty) with options -5SP -TO, and alignments
were further sanitized, sorted and duplications removed using pairtools
(v.1.0.2)"*° with options ‘~walks-policy Sunique’,‘-max-inter-align-gap
30‘and a minimum MAPQ of 40. We used YAHS (v.1.1a-r3)'* to scaffold
the genomic contigs using the Hi-C read alignment asinput. We obtained
20 main chromosome-scale scaffolds totalling 1.47 Gb, correspond-
ing to 93.5% of the total assembly length. The 20 chromosomes were
strongly supported by the Hi-C contact map (Extended Data Fig. 1c)
andalsorecovered with a perfect one-to-one matchusinganalternative
assembly methodology (3D-DNA'??). The GC level of the final genomic
sequence was 36.67% and the N50 was 68.86 Mb.

Repeat annotation

We used RepeatModeler 2.0.2 to build a de novo repeat library for the
brittle star genome and RepeatMasker 4.1.2-p to soft-mask the genome'>.
We used DeepTE™ to classify repeats that could not be classified with
the RepeatModeler homology-based classification. We retrained
a DeepTE model to classify metazoan repeats into 5 classes, using a
balanced dataset of 12,500 distinct repeats (2,500 repeats for each of
the 5 classes) from different sources including repbase'”, Dfam'*® and
homology-based classifications of repeats from 17 echinoderm and 2
hemichordate genomes (validation accuracy = 0.98 at the class prob-
ability threshold P> 0.55; Extended Data Fig. 1d). On a test set of 827
brittle star repeat families that were notincludedin the training set and
where RepeatModeler homology-based predictions serve as ground
truth, thisretrained DeepTE model has higher accuracy than the default
Metazoa model available in DeepTE (accuracy = 0.81vs 0.67; Extended
DataFig. 1e). Divergence to consensus (kimura %) were computed and
repeat landscapes plotted using the ‘calcDivergence.pl’ and ‘createRe-
peatLansdscape.pl’scripts from RepeatMasker. The same methodology
wasapplied tobuild repeatlandscapes for P. lividus, H. leucospilotaand M.
glacialis.Repeatannotations are provided in dataset_slofref.127.Repeat
ageswere estimated from divergence to consensus using aneutral substi-
tutionrate of 1.885 x 10~? per base pair per year for A. filiformis, which was
estimated with phyloFit'** from an alignment of 66,818 4-fold degenerate
sites containing 17 echinoderm and 2 hemichordate genomes.

RNA isolation, extraction and sequencing

Arm regeneration RNA-seq in brittle star (time course in whole
animals). Amphiurafiliformisindividuals were obtained in the fjord
closetothe Kristineberg Center for Marine Research and Innovation,
Sweden, at depths of 20-60 m. Samples of different regenerating
stages were obtained as previously described* for early regeneration
stages (48 hpa, 72 hpa, stages 3,4 and 5) and as described* for 50% dif-
ferentiationindex stages (50% P and 50% D). Thirty regenerates from
different individuals were used per stage. Dissection for RNA sam-
pling was performed as follows (Fig. 4a): (1) for the non-regenerating
control, we dissected one mature arm segment, (2) for48 and 72 hpa
samples, we dissected the last segment at the amputation site, (3)
for stages 3 to 5, we dissected the regenerative tissues and (4) for
50% regenerates, we sampled several segments of proximal and dis-
tal tissues, excluding the differentiated distal cap structure. The
collected regenerates were lysed in 10 volumes of RNA lysis buffer
(RLT) (Qiagen) and total RNA extracted using RNAeasy micro RNA
kit (Qiagen). RNA concentration and integrity were measured using
Bioanalyzer (Agilent). Library preparation and paired-end sequencing
was conducted by Novogene.

Armregeneration RNA-seq in brittle star severed arm experiments
(explant). We collected ~3,500 brittle stars with a 5-7 mm disc diame-
ter. While animals were sedated in 3.5% w/w MgCl, in artificial seawater,
two arms from each organism were amputated by pressing a scalpel
blade into the intervertebral autotomy plane. We first sectioned the
arms 0.5 cm from the disc (amputation 1, Fig. 6a) and then sectioned
themagainat the distal end (amputation 2, Fig. 6a). We thus produced
explants (that is, severed brittle star arms) of 1 cm length with wound
sites at the proximal and distal ends. Twenty samples (each sample con-
sisting of abatch 0f150-200 explants) were cultured in flow-through
aquariaat16 °C. Explants were sampled at3and 5 dpa, sedated in 3.5%
w/w MgCl, in artificial seawater for 15 min and then dissected into
three sections: proximal, medial and distal (Fig. 6a and Supplemen-
tary Table 1). Each explant section was flash frozen in liquid nitrogen
and collected in batches of 150-200 pieces. Each batch was individu-
ally homogenized with glass pistils and RNA was extracted with the
RiboPurekit (Applied Biosystems), following manufacturer protocol.
RNA concentrations were measured using a QuBit 2.0 RNA fluorometric
assay (Thermo Fisher) and RNA integrity was checked using 0.5% (w/v)
agarose-MOPS-formaldehyde denaturating gel electrophoresis.
Complementary DNA (cDNA) libraries were prepared using the Illu-
mina TruSeqv2 mRNA sample prep kit (Illumina), following astandard
protocol. Briefly, mMRNA was isolated with poly-A selection, followed by
cDNA synthesis, llluminastandard index adapter ligationand abriefPCR
reaction. Concentrations of the cDNA libraries were measured using a
QuBit DNA high-sensitivity assay (Thermo Fisher) and fragmentlength
distributions were assessed using an Agilent TapeStation withaD1000
tape (Agilent). cDNAlibraries were multiplexed by equimolar pooling (5
or 6 samples per pool) and then sent to the Swedish National Genomics
Infrastructure’s SNP & SEQ platformin Uppsalafor lllumina HiSeq 2500
sequencing (8lanes; 126 bp paired-end sequencing; lllumina).

Gene annotation

We annotated the brittle star genome using three types of evidence:
(1) assembled transcriptomes from 18 samples, some published pre-
viously***"*? and some newly generated (Supplementary Table 1),
(2) similarity to proteins from 27 selected Metazoa and (3) ab initio
predictions. We implemented a genome annotation pipeline'” com-
bining state-of-the-art tools. Implementation details are described in
Supplementary Note 3. This annotation had ascore 0of 92.7% complete
BUSCO[C:92.7 (S:86.2%, D:6.5%), F:5.0%, M:2.3%, n:954]°° and a total of
4,974 unique PFAM domains™, with 76% of genes (23,047) containing
aPFAM domain. Annotation files are provided in dataset_sl of ref. 127.

Synteny comparisons and Eleutherozoa ALGs

FortheseaurchinP. lividus and the black sea cucumber H. leucospilota,
we used previously reported gene annotations®*, We generated a draft
homology-based annotation for the spiny sea star M. glacialis** with
MetaEuk (6-a5d39d9)"** using proteins of the sea urchin S. purpuratus
(Spur_5.0, available in Ensembl Metazoa (v.56)"), the crown-of-thorns
seastar Acanthaster planci (OKI_Apl_1.0, available in Ensembl Metazoa
(v.56)*°) and the octopus sea star P. borealis*. One-to-one orthologous
genes were identified by reciprocal best blast hit between pairs of
compared genomes, using diamond'*. We used Circos v.0.69.8 and
circos-tools (0.23)"* to plot synteny comparisons, with the bundle-
links tool to group together neighbouring genes (maximum gap of
50 genes), filtering out bundles with fewer than 3 links. Chromosomes
were ordered using the orderchrtool. The ancestral Eleutherozoa link-
age groups were reconstructed on the basis of synteny comparisons
between the spiny sea star M. glacialis and the black sea cucumber
H. leucospilota, and with the amphioxus B. floridae and the scallop
P. maximus genomes as well as previously defined bilaterian linkage
groups (BLGs) (Extended Data Fig. 2). Only one macrosyntenic rear-
rangement occurred between the spiny sea star and the black sea
cucumber: (a) spiny seastar chr5 maps to both seacucumber chr12 and
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chr23. Comparisons with outgroups and ancestral BLGs revealed that
(a) corresponds to a derived fusion in the spiny sea star and that the
black seacucumber retained the ancestral state. Using this reconstruc-
tion, we annotated genes from matched orthologous chromosomes
between sea stars and sea cucumbers with respect to their ancestral
ELGs of origins and propagated annotations to orthologous genes in
P. lividus, A. filiformis and other available chromosome-scale echino-
dermgenomes. Karyotypes were drawn with Rldeograms'*: we painted
genes on extant chromosomes using the ancestral chromosome colour
when asignificant number of genes were inferred to descend from an
ancestral chromosome (P <1075, Fisher exact tests corrected for mul-
tiple testing with the Benjamini-Hochberg procedure). Oxford grid
plots in Extended Data Fig. 3 were plotted using the same statistical
thresholds. ELG-related datafiles are providedin dataset_s2 of ref. 127.

Hox and ParaHox genes identification

Weidentified Hox and ParaHox genes using sequence comparisons with
other echinoderm and animal genomes and phylogenetic reconstruc-
tion. Detailed procedures arereported in Supplementary Note 3. Hox
and ParaHox data files are provided in dataset_s3 of ref. 127.

Gene families expansion and contraction

Gene phylogenies and history of duplication and losses for pmarl/
phb and luciferase were reconstructed using RAXML-NG (v1.1)"** and
Treerecs™ (Extended Data Fig. 5). We used broccoli™®® to group proteins
of 28 selected Metazoa, 10 of which were Ambulacraria, into gene fami-
lies. Out of the complete set of broccoligene families, 10,367 originated
before the last common ancestor of Ambulacraria (echinoderm and
hemichordate outgroups). We used CAFE (v.5)* on the 10,367 families
toidentify significantly expanded and contracted gene families on each
branchof the Ambulacraria phylogeny. To obtain adated Ambulacraria
phylogeny, we: (1) extracted 192 one-to-one orthologues from broccoli
gene families, (2) built multiple sequence alignments for each orthol-
ogous group using MAFFT (v.7.475), (3) reconstructed a maximum
likelihood phylogeny with RAXML-NG (v.1.1)"*® using the concatenated
alignment (LG + G4 + F model with 10 parsimony starting trees), (4)
filtered out columns with over 15% gaps (47,520 retained sites) and
(5) ran PhyloBayes (v.4.1b)"*° to obtain a time-calibrated tree, with the
RAXML reconstructed tree as constrained topology and selected fossil
calibrations extracted from the literature™'*!. The chain was run for
4,166 samples and 3,500 were retained after burn-in to estimate the
posterior distributions for node ages. We next ran CAFE in 2 steps:
we estimated the lambda and alpha parameters of the 2-categories
CAFE GAMMA model excluding the 128 gene families with the largest
copy number differential and then ran CAFE on all families with these
parameters fixed to test for significant contractions and expansions
(P<0.05). Fossil calibrations, dated species tree, gene families and
CAFE output files are provided in dataset_s4 of ref. 127.

Gene lists curation

We generated lists ofimmune, neuronal, signalling, kinase, transcrip-
tion factorsand stemness genesin A. filiformis (Supplementary Table 2)
using a combination of PFAM domain annotation and lists of previously
curated genes in echinoderms and other animal lineages. Further
details of the procedure are provided in Supplementary Note 3.

Gene Ontology and gene list enrichment tests

We used eggnog-mapper'** to automatically annotate A. filiformis and P.
lividus genes with GO terms from the Biological Process domain. The GO
annotations were then transferred to the level of gene families. Specifi-
cally, for each family, we propagated all GO annotations associated with
any P, lividusor A. filiformis genes as the complete set of GO annotations
for this family. Hypergeometric tests for functional enrichments were
then conducted with the enricher function of the ClusterProfiler R
package'*®, with custom foreground and background GO annotation

sets. For functional enrichment tests on expanded/contracted gene
families (Fig. 3), tests were conducted at the level of gene families with
expanded or contracted families as foreground and all gene families
as background. For functional GO enrichment tests on regeneration
co-expression clusters (Fig. 4), tests were conducted at the level of brit-
tle star genes, using genes of a given cluster as foreground and genes
ofall clusters as background. We used false discovery rate (FDR) < 0.05
as significance threshold. Enrichment results were summarized with
REVIGO™*; we selected top ontology terms on the basis of REVIGO ‘dis-
pensability’ score. Similarly, for genelist enrichment and depletion tests
on the regeneration co-expression clusters (Fig. 4), we used the same
foreground and background gene definitions as for the GO enrichment
tests above. We performed hypergeometric tests with correction for
multiple testing using the Benjamini-Hochberg procedure, with the
same statistical threshold as for the GO enrichment tests (FDR < 0.05).

Clustering of the arm regeneration expression series
Geneexpression was quantified for allsamples using the alignment-free
methodKkallisto (v.0.48.0)'*. We normalized TPM values across samples
using the trimmed mean of m-values (TMM) method asimplemented
in edgeR"*"” and used MFuzz (v.3.18)"*® to perform soft-clustering of
genes on the basis of their standardized expression profiles across
samples. We used the minimum centroid distance method to select the
optimalnumber of clusters (n=19; Extended DataFig. 6). Major clusters
were defined as all clusters with >1 enriched GO term and expression in
>1regenerating sample (Fig. 4 and Extended Data Fig. 6). Normalized
gene expression tables are provided in dataset_s5 of ref. 127.

Transcription factor-binding motif enrichment tests

We used HOMER (v.4.11)'* to test for enriched transcription
factor-binding motifs in the proximal regulatory domains (TSS + 5 kb
upstream, +1 kb downstream) of genes of each regeneration cluster.
We ran the findMotifsGenome.pl script from the HOMER suite, with
-htoperformhypergeometric tests, contrasting proximal regulatory
domains of genes from one expression cluster as foreground with
proximal regulatory domains of genes from all clusters as background.

Axolotllimb regeneration RNA-seq time course

RawRNA-seq datafor12limb regeneration time points fromref. 49 were
downloaded from https://www.axolomics.org/?q=node/2. We used
Trim Galore (https://github.com/FelixKrueger/TrimGalore) with default
parameters to trim and quality filter raw sequencing reads via the Cuta-
dapt tool™°. Gene expression was quantified with kallisto (v.0.48.0)'*
using the set of annotated axolotl transcripts from the latest Ambystoma
mexicanum assembly version (AmexG_v6.0-DD, available from https://
www.axolotl-omics.org/assembliesref.151). We normalized TPM values
across samples using the TMM method"***” and used MFuzz'* to cluster
genesaccordingto their expression profile (Extended Data Fig. 7). Gene
Ontology and transcription factor-binding sites (TFBS) motifs enrich-
mentwere performed asdescribedin‘Gene Ontology and genelist enrich-
ment tests’ and ‘Transcription factor-binding motif enrichment tests’.
Normalized gene expressiontables are provided in dataset_s5 of ref.127.

Parhyale limb regeneration RNA-seq time course

Parhyale leg regeneration expression datawere previously processed
and clustered into 8 co-expression gene groups using the same
approachaswe used for brittle star data*®. We directly used the cluster-
ing reported previously* but renamed the clusters so that numbering
follows temporal activation (P1is R4 in the notation described previ-
ously*s,P2isR1,P3isR8,P4isR2,P5isR6,P6isR3,P7isR5and PSisR7).

Comparison of gene expression dynamics

We used broccoli™® to build homologous gene families encompassing
genes of the brittle star A. filiformis, the axolotl Ambystoma mexicanum
and Parhyale hawaiensis, as well as 8 echinoderms, 6 vertebrates, 7
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ecdysozoans and12 other animalgenomes. We used these gene families to
identify homologous genes and compare their expression profiles during
appendage regeneration. We conducted pairwise comparisons, retaining
allhomologous gene families with >1gene and <5genesineach of the two
compared species. This resulted in a total of 5,203 homologous groups
retained for the axolotl (8,810 homologous genes)-brittle star (6,813
homologous genes) comparison, 3,137 for the brittle star (4,196)-Parhyale
(3,617) comparison and 2,299 for the axolotl (3,903)-Parhyale (2,628)
comparison (dataset_s5of ref.127). We next computed permutation-based
Pvalues to test for the overrepresentation of homologous genes across
co-expression clusters of the two compared species. Specifically, we gener-
ated, for each pairwise comparison, 10,000 randomizations of the gene
labels of species 2, keeping clusters and orthologous gene family size con-
stant to build a null distribution of the number of expected homologous
genesshared by two clusters at random. Empirical Pvalues were computed
from the null distribution and corrected for multiple testing using the
Benjamini-Hochberg procedure. To investigate functional annotation of
genes displaying co-expression across regeneration models as opposed
to genes from the same clusters that do not show co-expression across
species, we conducted gene listand GO enrichment tests as described in
‘Gene Ontology and gene list enrichment tests’ but using carefully selected
background: we used asbackgroundallbrittle star genes withahomologue
ineither Parhyale or axolotl (thatis, whose expression conservation could
be tested) and in a cluster with identified co-expressed genes in either
Parhyale or axolotl (to test for the specificity of genes of a given cluster
thatshow conservation vs those of the same cluster that do not).

Differential analysis of repeats transcriptional activity

Wetested for differentially expressed repetitive elementsin early regen-
eration (immune phase: 48 hpa and 72 hpa samples) versus middle
regeneration (proliferation: stage 3, stage 4, stage 5 samples), using
our time course brittle star arm regeneration RNA-seq data. We used a
conservative approach tofirst filter out highly duplicated genes which
could have been captured in the set of repetitive elements called by
RepeatModeler/RepeatMasker. We used diamond blastx'* to search
forhomologies between repeat consensus and proteins in the swissprot
database™*and filtered out all ‘'Unknown’ repeat families for which the
consensus sequence had a strict match in swissprot (e-value cut-off
107%), which did not correspond to transposon genes. We next used the
SalmonTE pipeline' with default parameters on the full set of filtered
repeat consensus (n = 4,695 repeat families), followed by differential
analysis with DESeq2 (v.1.42.1)"** on the estimated count values to test for
differential transcriptional activity of repeats in theimmune versus pro-
liferation regeneration phases. We retained as differentially expressed
therepetitive elements withanabsolute log, fold change >1, P,4; < 0.00L

Differential gene expression in brittle star arm explants

Gene expressionwas quantified for all samples using kallisto'. Differen-
tial expressionanalyses were conducted with DESeq2 (ref. 154) on count
values, contrasting distal replicates against medial replicates and proxi-
malreplicates against medial replicates for eachtime point. Allgenes with
aP,4;<0.05and absolutelog, fold change >1were retained as differentially
expressed. Gene expression tables are provided in datset_s5 of ref. 127.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Genome sequence and RNA-seq data have been deposited in NCBISRA
(Bioproject PRINA1029566 and PRJNA1034116) and GEO (GSE246675).
Supplemental datasets have been deposited in Zenodo'” (see sup-
plementary material for content details). These include the genome,
gene and repeat annotations, processed gene expression tables and
source data for the figures.

Code availability

The code for the genome annotation workflow is publicly available'”.
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Extended Data Fig.1| Genome assembly and repeat classification. A. K-mer
spectrum of the diploid assembly, that is before haplotype removal. Read-only
k-mers (black curve) correspond to sequencing errors, and are not represented
inthe assembly. The 1-copy k-mer peak at 15X coverage (1n, red) corresponds
to reads from heterozygous regions, whereas the 2-copy k-mer peak at 30X
coverage (2n, blue) corresponds to homozygous regions. B. K-mer spectrum of
the primary assembly, that is after haplotype removal. Following the collapse
of haplotypes, half of the k-mers of the heterozygous peaks are accordingly not
represented in the assembly anymore and homozygous regions are present

as single copies only. C. Hi-C contact map showing the density of interactions
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between binned genomic regions in the proximity ligation data. The high
contact regions are consistent witha 20 chromosome A. filiformis karyotype.
D. Validation accuracy of anew DeepTE model'*, trained to classify repeats
into 5 main classes: LTR, SINE, DNA, LINE and Rolling Circle (RC). The vertical
dotted line corresponds to the calibrated 0.55 threshold that we used on the
DeepTE scores to classify repetitive elements. E. Accuracy of the newly-trained
and the default Metazoa DeepTE models on the test set of A. filiformis repeats.
The accuracy of the new model is superior to the default model and can classify
repeats into 5 as opposed to 3 classes (repeats of Classl, Classll and ClassllII).
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Extended Data Fig. 2| Reconstruction of the ancestral Euleterozoa linkage
groups (ELG). A. Synteny comparison between spiny starfish and black sea
cucumber reveals one macrosyntenic rearrangement (red boxes). ELGs colours
areindicated at the top and correspond to colours on Fig. 1. Pairwise synteny
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comparisons with Amphioxus and Sea Scallop are similarly displayed onB.,
C.,D., E.andF, with red boxes highlighting that B3, and O2 are all on distinct
chromosomes in Amphioxus and Sea Scallop, thus confirming that the sea star
B3-02 fusionis a sea star-specific derived rearrangement.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Inter-chromosomal macrosyntenic rearrangements
since the Eleutherozoa ancestor in sequenced echinoderms. A. Synteny
comparison between ELGs and available chromosome-scale sea star

genomes ***>*, All examined sea star genomes are marked by the single B3 + 02
fusion. B. Synteny comparison between ELGs and available chromosome-scale
sea urchin genomes '#?°?5’, All examined sea urchin genomes are marked

by the (B2 + C2) + Eand B3 +J1fusion. L. variegatus underwent the additional

(B3 +]J1) +J2fusionand D + G. P. lividus underwent the additional A1 + A2, 01+ 02
and Q + R fusions (note that an additional fission of ELG D may have occurred if

thelarge unplaced scaffold noted “Scaf.” is not an assembly artefact.) C. Synteny
comparison between ELGs and brittle star chromosomes reveals a total of 26
macrosyntenic inter-chromosomal rearrangements, in the most parsimonious
scenario involving fusion, fission and translocation events. The rearrangements
canbeinferred from the oxford grid plot: 1[fusion + mixing + fission] of 3 ELGs
=3inter-chromosomal rearrangements (B3-G-O1), 3 [fusion + mixing + fission]
of 2ELGs = 6 inter-chromosomal rearrangements (B1-J1, C1-Q,J2-02) and 17
translocations (A2-N, B1J1-H, B3GO1-N, D-G, DG-L, E-I, G-H, B2 + C2-H, B2 + C2H-I,
B2+ C2HI-L, BU1-1,J202-R, K-L, K-P, M-R, J202-M, B3GO1-P).
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Extended Data Fig. 4 | Molecular phylogeny of echinoderm Hox genes. The phylogenetic tree is shown as an unrooted tree, with clades of Hox genes indicated with
the same colours asinFig. 2. The phylogenetic position of each identified Hox gene in the brittle star (“Ampfil”) is highlighted in pink.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Evolution of the pmarl/phb and luciferase-like genes
by tandem duplications. A. Molecular phylogeny of the pmaril/phb genes

in echinoderms. The tree was reconstructed with RAXML-NG™ (10 starting
parsimony trees, 1000 bootstraps, LG + G4 + F model), lowly supported nodes
(bootstrap < 60) were subsequently corrected with Treerecs' to maximise the
parsimony of duplications and losses. Species are indicated by abbreviations
(Ptyfla=P.flava, Sackow = S. kowalevskii, Annjap = A. japonica, Parliv = P. lividus,
Strpur =S. purpuratus, Apojap = A. japonicus, Acapla = A. planci, Ak = A. kochii,
Ampfil = A.filiformis). Inferred duplication nodes are showninred. pmar1/
phb full gene sequences were identified based onref. 23,70 (Dataset_s4'%).

B. Phylogeny of luciferase genes in echinoderms, as in A. Luciferase-like

genes were identified based on sequences from® (Dataset_s4'%’). C. Genomic
location of tandem-duplicated A. filiformis phb genes. D. Genomic location of
tandem-duplicated A. filiformis luciferase genes. E. phb expression throughout
4 brittle star developmental time points and in the adult arm, showing the
early developmental expression of phb genes (hpf: hours post-fertilization).
Expression across samples was normalised using the TMM method"*® on the full
set of brittle star genes, and is shown as log2(TPM + 1). F. Luciferase-like gene
expression during brittle star arm regeneration, showing that most luciferase-
like genes are expressed in differentiated arms only: control arms and the latest
regeneration time point (hpa: hours post-amputation, see Fig. 4 for staging
details). Expression normalisation asin E.
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Extended Data Fig. 6 | Clustering of gene expression during the brittle star
armregeneration. A. Optimal number of clusters estimated using the centroid
distance. After n =19 clusters, there is no continuous decrease of the centroid
distance. B. Normalised expression profiles (expression of the centroid)

for each of the n =19 clusters. Clusters with genes expressed over asingle
regeneration time point (or one regeneration point + control) were defined

as minor clusters and not presented in the main text as these typically do not
display significant enrichments and may be driven by noisy gene expression. C.
Signalling pathways enrichment for each co-expression cluster (hypergeometric
test, Benjamini-Hochberg adjusted p-values < 0.05, Methods). D. Expression of
brittle star genes previously implicated in arm regeneration (gene names are
from previous studies, see Supplementary Table 8). Co-expression clusters are
shown on the left, gene names on the right, with red indicating availability of
published insitu data. E. Expression of core genes in each co-expression cluster.
Genes were filtered based on their cluster membership score (Supplementary
Table 9, “acore” score) to retain the top 5% core genes in each cluster, and the
five genes with the highest expression were selected for the heatmap. Gene
names starting with ‘Unchar’ indicate genes without significant blast hits in

the swissprot database. F. Expression of key TF genes during regeneration, as
identified by binding motifs overrepresentation analysis (Fig. 4d). TF genes
were identified by reciprocal blasts with mouse and swissprot blast hits; several

copies were reported where blast results were ambiguous. TF genes with
consistent expression and binding motifs overrepresentation are showninred.
No homologue for ZNF268 could be identified in brittle star and the expression
of theidentified p53 homologue does not match motif enrichment results

(but p53 pathway activation is consistent with p53 motif enrichments, see C).
G. Expression throughout arm regeneration of genes in the expanded gene
families annotated with the GO term ‘regeneration’ (see Fig. 3b,c). Gene family
membership (correspondence with Fig. 3¢) are indicated with colours on the
right of the expression heatmap, clusters are shown on the left. H. Duplicated
genes from expanded ‘regeneration’ gene families significantly associate with
specific regeneration co-expression clusters (hypergeometric test, Benjamini-
Hochberg adjusted p-values). Significant associations (FDR < 0.05) are presented
in colour, non-significant enrichments (enrichment ratio >1but FDR > 0.05) in
grey (Supplementary Table 7). I. Expression throughout arm regeneration of
the brittle star genes in the expanded and contracted gene families annotated
with the GO term ‘keratan sulfate metabolism’ (see Fig. 3b). Representation is
asin G. Note that oneidentified contracted gene family contains no brittle star
genes (ST3GALI-like) and is thus absent from the figure. . Genes from expanded
and contracted keratan sulfate gene families are associated with specific
regeneration clusters (Supplementary Table 7). Representationis asin H.
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Extended Data Fig. 7 | Gene ontology enrichment results for brittle star arm regeneration co-expression clusters. GO enrichment tests were performed on each
co-expression cluster and summarised using REVIGO (Methods). The complete list of enriched terms is presented in Supplementary Table 10.
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Extended Data Fig. 8 | Clustering and functional enrichments for the axolotl
and Parhyale limb regeneration gene expression time series. A. Normalised
expression profiles (expression of the centroid) for each of the n =12 axolotl limb
regeneration co-expression clusters. Raw expression data were re-processed
from Stewart et al.”’ (Methods). Barplots on the right indicate the number of
genes assigned to each cluster. Clusters with genes expressed over asingle
regeneration time point were defined as minor clusters and not presented in

the main text as they may be driven by noisy gene expression. B. Gene ontology
enrichment for each co-expression cluster (Methods, Supplementary Table 6). C
TF binding motifs enriched around the TSS of genes from axolotl co-expression

clusters (hypergeometric test adjusted p-value < 0.05, Methods). Note that only
TFBS motifs enriched in brittle star clusters are represented. D. Optimal number
of clusters estimated using the centroid distance. We selected n =12 clusters
since further increase of the number of clusters does not result in a significant
decrease of the centroid distance until n = 16, which, on the basis of functional
enrichment tests, over-clusters the data. E. TF binding motifs enriched around
the TSS of genes from Parhyale co-expression clusters as in C. Parhyale clusters
were renamed from Sinigaglia et al.*® as follows: P1is R4 in the notation of
Sinigagliaetal., P2isR1, P3isR8,P4isR2,P5isR6, P6isR3, P7is R5and P8is R7.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Comparison of co-expression gene clusters during
regeneration and development. A. Clustering of the brittle star development
time series. Normalised expression profiles for each of the n = 8 development
co-expression clusters. Processing, clustering procedure and representation
isasin (Fig. 4, Extended Data Fig. 8). RNA-seq source listed in Supplementary
Table 1. B. Gene ontology enrichment for each co-expression cluster. C. Curated
gene lists enrichment for each co-expression cluster (hypergeometric test,
Benjamini-Hochberg adjusted p-values < 0.05). D. Comparison of co-expressed
gene clusters deployed during embryonic development and appendage
regeneration in the brittle star. Note that the embryonic development in brittle
star does not produce appendages and is thus less informative than Parhyale
development data. Clusters are represented by vertical rectangles whose

sizes are proportional to the number of homologous genes in the cluster, and
coloured according to enriched GO terms. Genes are linked across clusters, with
coloured links indicating significant overlaps (hypergeometric test with the

Benjamini-Hochberg correction <0.01, darker shades indicate p-values <10-

15). E. Comparison of co-expressed gene clusters deployed during appendage
regeneration in the brittle star and leg development in Parhyale. Clustersin
Parhyale (clusters PE1to PE4) correspond to the clustering reported in Sinigaglia
etal.”s, but clusters were renamed to follow temporal activation (PE1 corresponds
toE2,PE2to E4, PE3 to E1, PE4 to E3). Coloured links indicating significant
overlaps (permutation-based over-representation p-values with Benjamini-
Hochberg correction <0.05, Methods). F. Comparison of co-expressed gene
clusters deployed during development in the brittle star and leg development
inParhyale, asin E. G-K. Gene list enrichment tests, for genes with a conserved
expression profile during appendage regeneration, as in Fig. 5d, but sub-divided
by cluster and species comparisons (hypergeometric tests, p-values corrected
for multiple testing with the BH procedure, * p-values < 0.05, ** p-values < 0.01,
***p-values < 0.001).
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Extended Data Fig. 10 | Differential transcriptional activity of repetitive
elementsin theimmune and proliferative phases of brittle star arm
regeneration. A. Differentially expressed repetitive elementsin early
regeneration (immune phase: 48 hpa and 72 hpa samples) versus middle
regeneration (proliferation: Stage3, Stage4, Stage5 samples). Coloured dots
represent repeat families with significant up-expression inimmune (blue) or
proliferation phases (orange) (absolute log fold change > 1, FDR < 0.001, two-
sided Wald test p-values corrected for multiple testing using the BH procedure,
Methods). B.Immune up-expressed repeat families (n = 80) have a higher
genomic coverage than proliferation up repeat families (n = 23), regardless of
repeat class. Coverage is shown subdivided by repeat class, where classification
was performed first using the homology-based approach of RepeatModeler,
then with DeepTE for repeats that could not be classified by RepeatModeler
(Methods). We note that the DeepTE classification has higher false positives than
the RepeatModeler classification. C. Immune up-expressed repeat families have
significantly lower divergence to their consensus (Kimura distance, Methods)
than proliferation up-expressed repeat families (Mann-Whitney U test, one-
sided p-value corrected for multiple testing with the BH procedure,

*p-values < 0.05), indicating they are younger repeats with a higher potential to

still be active mobilisable transposable elements. Distribution details [minima,
bottom whisker, q1, median, q3, top whiskers and maxima] are as follows: not
DE[0,0,5.02,10.48,17.75,36.81,49.97], upimmune [0.4, 0.4, 4.62, 8.76,15.44,
31.43,33.7], up proliferation [0.88, 0.88, 6.56,15.12,22.26, 35.93,35.93].
D.Immune up-expressed repeat families with low divergence from their consensus
have significantly higher fraction of intergenic repeat instances, suggesting
up-expression s less likely to be a side-effect of host gene transcription. P-values
and boxplot colours are as in C (grey = no significant differential expression, blue
=upinimmune, orange = up in proliferation). Repeat families were subdivided in
4 balanced categories based on their divergence to consensus (Kimura distance,
d):d <5.02 (verylow),5.02<d <10.48 (low),10.48 <d <17.73 (medium), 17.73 <d
(high). Distribution details asin C are as follows (boxes from left to right): [0.0,
0.19,0.46,0.56,0.64,0.91,1.0],[0.34, 0.34,0.47,0.53,0.61,0.66, 0.66],[0.18,
0.35,0.39,0.47,0.5,0.65,0.65],[0.0,0.2,0.46,0.56,0.64,0.9,1.0],[0.18,0.41,
0.52,0.6,0.66,0.76,0.76],[0.41,0.41,0.44, 0.57,0.62, 0.62,0.941,[0.0, 0.19, 0.46,
0.56,0.64,0.9,1.0],[0.2,0.57,0.6,0.63,0.66,0.71,0.78],[0.31, 0.31,0.36, 0.43,
0.47,0.47,0.64],[0.0,0.22,0.48,0.58,0.66,0.91,1.0],[0.33,0.47,0.58, 0.64, 0.67,
0.79,0.79]1,[0.29,0.29,0.37,0.43,0.48,0.56, 0.56].
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Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to determine sample size. For explant experiments, 20 samples, each derived from 150-200 explants were
used, and sample size was based on experimental capabilities and common practice in transcriptomic analyses.

Data exclusions | No data points were excluded
Replication 3-4 replicates were generated for each condition
Randomization  No randomization was used

Blinding Blinding was not relevant to our study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals No laboratory animals were used.
Wild animals All experiments were performed on adult brittle stars collected from the Gulmarsford.
Reporting on sex The sex of the brittle stars used for experiments was not determined. The genome of a male was sequenced.

Field-collected samples  For experiments, brittle stars were maintained at the Kristineberg laboratory in sea water aquarium and amputations were
performed as reported in the paper.

Ethics oversight Brittle stars are invertebrates and not under any animal experimental regulation

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-atthentication-procedures foreach seed stock-tised-or-novel-genotype generated.—Describe-any-experiments-tsed-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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