
High‐Resolution Neural Network Demonstrates Strong CO2
Source‐Sink Juxtaposition in the Coastal Zone
P. J. Duke1 , R. C. Hamme1 , D. Ianson1,2 , P. Landschützer3 , N. C. Swart1,4 , and
P. A. Covert2

1School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2Institute of Ocean Sciences, Fisheries
and Oceans Canada, Sidney, BC, Canada, 3Flanders Marine Institute (VLIZ), Ostend, Belgium, 4Canadian Centre for
Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada

Abstract The role of coastal oceans in regulating atmospheric carbon dioxide remains poorly quantified
and understood. Here, we use a two‐step neural network approach to generate estimates from sparse
observational data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with
coverage in the nearshore (0–25 km offshore). We compiled partial pressure of carbon dioxide (pCO2)
observations as well as a range of predictor variables including satellite‐based and physical oceanographic
reanalysis products. With the predictor variables representing processes affecting pCO2, we created non‐linear
relationships to interpolate observations from 1998 to 2019. Compared to in situ shipboard and mooring
observations, our coastal pCO2 product captures broad spatial patterns and seasonal cycle variability well. A
sensitivity analysis identifies that the parameters responsible for the neural network's ability to capture regional
pCO2 variability are associated with mechanistic processes, including mixed layer deepening, mesoscale eddies,
and gyre upwelling. Using wind speed and atmospheric CO2, we calculated air‐sea CO2 fluxes. We report an
anticorrelation between annual air‐sea CO2 flux and its seasonal amplitude with the relationship driven by
circulation, opposing seasonal upwelling/relaxation versus downwelling, and the effects of winter mixing and
primary productivity. We show that the inclusion of nearshore net outgassing fluxes lowers the overall regional
net flux. Overall, our results suggest that the region is a net sink (− 0.7 mol m− 2 yr− 1) for atmospheric CO2 with
trends indicating increasing oceanic uptake due to strong connectivity to subsurface waters.

Plain Language Summary The importance of the coastal ocean as a hub of exchange for carbon
between terrestrial ecosystems, the open ocean, and the atmosphere is still unclear. In this study, we investigate
howmuch carbon dioxide moves between the ocean and the atmosphere in the coastal Northeast Pacific. We use
a mathematical technique (i.e., machine learning) to transform limited observational data to a high‐resolution
estimate of this exchange across the entire region. We found this method effectively captured the big picture
patterns and seasonal changes in ocean carbon dioxide levels. We report that the coastal Northeast Pacific
absorbs slightly more carbon dioxide than it releases, helping regulate atmospheric levels of this greenhouse
gas. However, there are large differences regionally with some coastal zones absorbing substantial amounts of
carbon dioxide and others releasing the gas, such as the nearshore. We report a trend of increasing ocean uptake
over time, suggesting the region may play an increasingly important role in reducing atmospheric carbon
dioxide levels. This study provides valuable baseline information for efforts to reduce carbon dioxide in the
atmosphere through artificially enhancing ocean uptake in the region.

1. Introduction
The global ocean takes up nearly a quarter of anthropogenic carbon dioxide (CO2) emissions annually (Fried-
lingstein et al., 2023). It has been suggested that coastal oceans contribute disproportionately to oceanic CO2
uptake relative to the global ocean by surface area (Bourgeois et al., 2016; Chau et al., 2022; Laruelle et al., 2014;
Resplandy et al., 2024; Roobaert et al., 2019, 2024), but exhibit far greater heterogeneity in air‐sea CO2 fluxes
(Liu et al., 2010) and may be changing at a different rate compared to the open ocean (Laruelle et al., 2018;
Resplandy et al., 2024). Coastal oceans serve as an important hub of exchange, outgassing carbon delivered by
terrestrial ecosystems to the ocean (Regnier et al., 2022), while facilitating transport between the coast and open
ocean, and directly absorbing CO2 from the atmosphere (Bauer et al., 2013; C. Chen & Borges, 2009; Mackenzie
et al., 1998; Ward et al., 2020). However, the role of the coastal ocean in the global carbon budget is not well‐
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constrained due to lack of observations relative to the complexity of highly localized variability (Chavez
et al., 2007; Dai et al., 2021, 2022).

Gap filling approaches (i.e., methods to interpolate sparse observations) used to inform coastal ocean air‐sea CO2
flux estimates are often at coarse resolution and methods of construction are potentially opaque to many users.
Interpolation techniques have been widely used to inform air‐sea CO2 flux estimates in the coastal ocean both
regionally and globally (e.g., S. Chen et al., 2016; Hales et al., 2012; Laruelle et al., 2017; Parard et al., 2015,
2016; Roobaert et al., 2019, 2024; Sharp et al., 2022; Xu et al., 2019). These approaches extend the temporal and
spatial coverage of partial pressure of CO2 in seawater (pCO2) observations from community synthesis efforts
(e.g., through the Surface Ocean CO2 Atlas (SOCAT); Bakker et al., 2016) into regions where no observations
exist, and can be used to calculate integrated air‐sea CO2 fluxes using wind speed and atmospheric CO2
(Wanninkhof, 2014). Historically, coastal ocean approaches have been adopted from their open ocean counter-
parts (Chau et al., 2022; Landschützer et al., 2020), and thus most of these estimates have at best a monthly, 1/
4° × 1/4° latitude by longitude resolution, which is incapable of resolving smaller scale processes in coastal
regions, especially nearshore, that experience high variability and short autocorrelation length scales (Jones
et al., 2012). Interpolation techniques, which lack transparency, also rarely probe internal relationship de-
pendency between variables.

Large heterogeneity in air‐sea CO2 fluxes exists in the coastal Northeast Pacific, with substantial expanses of the
coast completely devoid of observations (Benway et al., 2016). Large discrepancies exist between previous air‐
sea CO2 flux estimates within this region, with disagreement over the net annual flux magnitude and direction
(i.e., as a net sink or source for atmospheric CO2; Duke, Richaud, et al., 2023; Fennel et al., 2019). Air‐sea CO2
flux variability in the region is heavily impacted by coastal processes such as upwelling, river plumes, tidal
mixing, and coastal currents (Evans & Mathis, 2013; Evans et al., 2012, 2019; Hales et al., 2005; Ianson
et al., 2003; Nemcek et al., 2008). Upwelling along the Pacific eastern boundary shelf has contrasting impacts on
the oceanic CO2 sink reflected in complex interactions between biological carbon drawdown fueled by upwelled
nutrient and carbon‐rich waters (Hales et al., 2005; Messié & Chavez, 2015; Ribalet et al., 2010) and outgassing
associated with the same subsurface waters brought to the surface (Chan et al., 2017; Christensen, 1994; Evans
et al., 2011; Feely et al., 2008; Hales et al., 2005; Ianson & Allen, 2002). Closer to shore, within the Salish Sea,
and along Alaska's Inside Passage, air‐sea CO2 fluxes into and out of the ocean are highly episodic and spatially
heterogeneous (Evans et al., 2022; Jarníková, Ianson, et al., 2022). Binning regional pCO2 observations in three
dimensions into monthly, 1/12° × 1/12° grid cells over the period 1998–2019 (same gridded resolution as created
continuous pCO2 product; Section 2), reveals the data scarcity (Figure 1). Of the 6,030,816 spatial and temporal
grid cells just 0.6% have an associated gridded pCO2 value. Observations are concentrated along shipping lanes,
have a summer bias, and increase in frequency during later years (Figure 1). No observations exist in vast areas of
the coastal Gulf of Alaska and along extensive stretches of shoreline (Figure 1c).

Here we investigate how well a high‐resolution regional artificial neural network (ANN) approach can determine
air‐sea CO2 fluxes in the coastal Northeast Pacific (NEPc). We build on an existing global setup (Landschützer
et al., 2013) adopted previously in stepping to a higher spatial resolution in the open Northeast Pacific (Duke
et al., 2023b). In Section 2, we describe the creation of a gridded pCO2 data product for the coastal Northeast
Pacific monthly from January 1998 to December 2019 at an unprecedented 1/12° × 1/12° resolution to resolve
coastal ocean processes. In Section 3, we demonstrate that our product robustly recreates gridded observation
data, comparable to a less variable open ocean product. In Section 4, we directly compare our pCO2 product with
in situ shipboard and mooring observations and detail potential capabilities and limitations in the continuous,
gridded product. In Section 5, we examine the regional patterns of variability in the net annual air‐sea CO2 flux
relative to the seasonal cycle and describe potential drivers through a spatial sensitivity analysis. We conclude by
calculating surface ocean pCO2 trends in the last decades.

2. Data and Methods
We created a coastal pCO2 data product spanning a geographic area within 45°N–62°N 120°W–155°W and from
6 to 300 km offshore, building on the methods of Duke et al. (2023b) (ANN‐NEPc; Duke et al., 2024). Briefly, our
first step identified grid cells with similar environmental characteristics, provinces, using a self‐organizing map
approach (SOM) (Landschützer et al., 2013). In the second step, within each province, we used a feed‐forward
neural network (FFN) to create non‐linear functional relationships between pCO2 observations and
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independent predictor variables (Landschützer et al., 2013). Third, we applied these relationships to the predictor
data to generate continuous monthly sea surface pCO2 maps from 1998 to 2019 in the coastal Northeast Pacific
(NEPc). ANN‐NEPc fills the gap between open ocean (>300 km offshore) pCO2 (Duke et al., 2023b) to as close
to the shoreline as reanalysis and satellite‐based products reach. In stepping to 1/12° spatial resolution
(approximately 9 km latitude by 5 km longitude), this work represents a three times increase in spatial resolution
over previous 1/4° global and regional coastal ocean products with an overlapping domain (Landschützer
et al., 2020; Laruelle et al., 2017; Roobaert et al., 2024; Sharp et al., 2022), with extended coverage into the
nearshore (defined here as 0–25 km offshore). The increased resolution derives from high‐resolution predictor
data used to create the product and available in situ measurements (Table 1; Figure 1).

2.1. pCO2 Observations

ANN target pCO2 data came from the Surface Ocean CO₂ Atlas (SOCAT) v2021 (Bakker et al., 2016), the
Fisheries and Oceans Canada February 2019 Line P cruise (https://www.waterproperties.ca/linep/), a West Coast
Ocean Acidification cruise from July and August 2010 (Evans et al., 2012), and La Perouse cruises from May
2007 and May 2010 (Tortell et al., 2012). Sea surface CO2 fugacity ( fCO2) was converted to sea surface pCO2

(Text S1 in Supporting Information S1; Körtzinger, 1999). We did not correct in situ pCO2 observations to sea
surface mass boundary layer temperature, because following previous techniques introduced significant addi-
tional uncertainty in our coastal study area (Text S2 in Supporting Information S1). pCO2 observations were bin‐

Figure 1. Number of grid cells (of 54,782 total spatial grid cells) with coastal pCO2 observation data (Section 2.1) in
(a) months reveals a summer bias, and (b) years showing increased sampling closer to present. (c) Total number of months of
observational coverage per grid cell displays better coverage along shipping routes. 300 km offshore line shown for coastal/
open oceanic boundary used in this study (solid blue line labeled “300”).
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averaged to match predictor resolution for robust FFN training (monthly from 1998 to 2019, at 1/12° × 1/12°),
computing the mean and standard deviation within each grid cell.

2.2. Predictor Data

Predictor data were chosen based on accessibility and ability to represent processes that mechanistically impact
surface ocean pCO2 (Table 1). Selected predictor variables primarily originate from satellite observations or
reanalysis models (Table 1; Text S3 in Supporting Information S1). Predictors differ slightly from a regional open
ocean estimate (Duke et al., 2023b). Here, we used a high‐resolution regional wind speed product and not
reanalysis model derived mixed layer depth. Capturing greater variability in the coastal ocean required a high‐
resolution regional wind speed product over a low‐resolution global product (Figure S2 in Supporting Infor-
mation S1). Latitude, longitude, and time were not used as predictor variables.

2.3. Neural Network Construction

To reach the optimal ANN‐NEPc architecture, we performed a series of tuning tests using the MATLAB Neural
Network Toolbox, with sequential improvements impacting future tests (Duke et al., 2023b). The choice of three
dynamic (i.e., changing shape at every timestep) SOM based clusters represented the lowest number for a typical
clustering structure to emerge (supplementary Figure S3a in Supporting Information S1). All spatial grid cells
within the study area belong to more than one SOM cluster at some point over 1998–2019 (Figure S3b in
Supporting Information S1). SOM predictor variables (sea surface temperature (SST), sea surface salinity (SSS),
sea surface height (SSH) only; Table 1) were normalized to a mean of 0 and standard deviation of 1. The second
FFN step used all six predictor variables in Table 1, in addition to each predictor variable anomaly (i.e.,
deseasonalized; calculated by subtracting the climatological monthly mean), bringing the total number of pre-
dictors to 12. Anomaly values were used to highlight interannual to decadal variability within our predictor data
sets. The number of neurons within the first hidden layer varied by province with the optimal number of neurons
determined in a pre‐training run (Landschützer et al., 2013, 2014). The second hidden layer used seven static
neurons, which slightly improved performance by up to 5 μatm compared to independent measurement (Sec-
tion 3.3). To further decrease the risk of overfitting, we used a 10‐fold cross‐evaluation approach to create an
ANN ensemble (Duke et al., 2023b; Li et al., 2019, 2020) and a bootstrapping method (Landschützer et al., 2013).
Observation cruises were randomly divided into 10 equal subsamples (10% each) using expocodes (i.e., unique
identifiers corresponding to complete underway cruise tracks or mooring deployments) prior to gridding, leaving
some data splits with more (or less) gridded pCO2 targets (Section 2.1). We repeated the FFN training step 10
times, using each of the 10 subsamples once as the internally withheld evaluation data set and the rest as the
training data set (with a separate independent data always withheld; Section 2.4). In each iteration, we trained the
ANN for 10 rounds. The robustness and reliability of an ANN estimate has been shown to be significantly
improved by combining a ANN ensemble (Duke et al., 2023b; Fourrier et al., 2020; Linares‐Rodriguez
et al., 2013; Sharkey, 1999). Here, we take the mean of the 10‐fold estimates.

2.4. Evaluation

Comparisons of ANN output to training and independent withheld data were made throughout tuning tests. ANN‐
NEPc performance for each tuning test was evaluated using five statistical metrics: root mean squared error
(RMSE), coefficient of determination (r2), mean absolute error (MAE), mean bias (calculated as the mean re-
sidual), and the slope of the linear regression (c1) between the ANN and the corresponding gridded pCO2 ob-
servations. One subset of data was selected from the observation data using associated expocodes to be entirely
withheld from the FFN training step. We tested 100 random independent withheld data splits and selected the one
with the best observational coverage over a wide range of seasons, years, and locations (Figure S4 in Supporting
Information S1). These independent withheld data represented approximately 4.5% of the total study area gridded
pCO2 data.

2.5. Sensitivity Analysis

We used a perturbation approach to quantitatively assess the impact of each predictor variable on estimated pCO2

(e.g., Broullón et al., 2018; Li et al., 2020; Sun et al., 2021). To diagnose how important different predictor
variables were across the study area, a single set of non‐linear relationships was used inside a single uniform SOM

Journal of Geophysical Research: Oceans 10.1029/2024JC021134

DUKE ET AL. 5 of 22

 21699291, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JC

021134, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



cluster. We then applied this single FFN to our continuous, gridded predictor data set and to perturbed versions of
that data set. For each predictor variable separately, we introduced a perturbation increasing the value within each
grid cell by 50% of the standard deviation within that grid cell (X′ = X + 0.5(std(X )); N = 264 months per grid
cell; de Oña & Garrido, 2014) and calculated the resulting predicted pCO2. We then took the difference between
the perturbed run and a baseline run using unperturbed predictor variables.

2.6. Computation of Air‐Sea Fluxes

Using our pCO2 product, we calculated the air‐sea CO2 flux (FCO2; mol m
− 2 yr− 1):

FCO2 = K0k∆pCO2, (1)

from the Henry's Law solubility constant (K0; mmol m
− 3 μatm− 1) as a function of temperature and salinity

(Table 1;Weiss, 1974), gas transfer velocity (k; m day− 1), and the gradient between pCO2 in the surface ocean and
the atmosphere (ΔpCO2; μatm). Here, the gas transfer velocity is derived fromWanninkhof (2014), a function of
wind‐speed at 10 m elevation (Table 1) and the temperature dependent Schmidt number specific to CO2
(Wanninkhof, 2014). Negative flux values indicate CO2 uptake by the ocean. We assume that the uncertainty in
our air‐sea CO2 flux estimate results from a 20% uncertainty in k (Wanninkhof, 2014) and the overall product
uncertainty in estimated pCO2 (θpCO2; Section 3.3 below). As the uncertainty of ΔpCO2 is dominated by the
uncertainty in estimated surface ocean pCO2, we neglect the contribution from atmospheric CO2 despite potential
point source effects nearshore (Palter et al., 2023). In our study area there are minimal industrial sources along
much of the coastline, prevailing westerlies, monthly averaging, and air‐sea disequilibrium is most often large
nearshore (e.g., Salish Sea; Section 5.1). In addition, existing atmospheric pCO2 products are not designed to
capture nearshore biases (e.g., Wu et al., 2024). Wind speed product uncertainty, which would contribute to a
larger overall flux uncertainty, is not included. This uncertainty is difficult to evaluate in the nearshore where the
standard deviation of global wind speed products (Atamanchuk et al., 2020; Roobaert et al., 2018) is likely not an
appropriate measure of the uncertainty of our chosen coastal‐specific wind product that we use (Figure S2 in
Supporting Information S1).

3. Network Performance
3.1. Evaluation With Respect to Observational Data

Comparing our estimated pCO2 product with the gridded observations across both the training data (Figure 2a)
and independent withheld data (Figure 2b) demonstrates fits with anMAE less than 30 μatm and RMSE of around
40 μatm. The mean bias is negligible over the full range (<0.2 μatm, smaller than observational uncertainty;
Section 3.3). 70% of the calculated residuals fall within the − 20 to 20 μatm range, while 47% of the grid cells have
absolute residuals <10 μatm especially further offshore (Figure S5 in Supporting Information S1). Despite biases
in the seasonal and annual coverage of the observations (Figure 1; Section 2.1), our product performs similarly
across different months and years (Table S1 in Supporting Information S1). The ANN ensemble model mean
demonstrated improved performance compared to each individual ensemble member (Text S4 in Supporting
Information S1). Overall, individual ensemble members showed relatively little deviation (RMSE < 25 μatm)
from the ensemble mean (Figure 2c).

Larger bias exists at the upper and lower limits of the gridded pCO2 observational range. Our product un-
derestimates pCO2 observations greater than the 90th percentile (>412 μatm; mean bias = − 28 μatm), and
overestimates values less than the 10th percentile (<306 μatm; mean bias = 13 μatm). The spatial structure of the
residuals reflects this bias distribution (Figure S5 in Supporting Information S1), with negative residuals in the
strong mixing regions of the Salish Sea commonly characterized by high pCO2 (Evans et al., 2012, 2019; Jar-
níková, Ianson, et al., 2022), and positive residuals along the upwelling zone off the west coast of Washington
State, and Oregon characterized by low pCO2 (Evans et al., 2011). Observation‐based pCO2 products commonly
overestimate pCO2 in highly biologically productive coastal upwelling regions (Chau et al., 2022; Hales
et al., 2012; Roobaert et al., 2024; Sharp et al., 2022). Chlorophyll (Table 1) as a proxy for biological productivity
in training may not fully represent biological control on pCO2. Ford et al. (2022) showed that in regions with high
biological activity and nutrients supplied from depth (i.e., South Atlantic upwelling mesoscale eddies) regional,
algorithm‐derived net community production estimates (Ford et al., 2021) improved ANN pCO2 estimates.
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Creation of coastal, regionally specific net community production algorithms, and inclusion as a predictor var-
iable, may help reduce bias of low pCO2 values in our study area.

In relative terms, our pCO2 product performs nearly as well as an open ocean product, even nearshore (Table 2).
Nearshore pCO2 exhibits a much larger range of variability compared to the continental shelf and the offshore
marine environment. Table 2 displays relative percent error (RPE) binned by distance offshore (d) calculated as:

RPEd = RMSEd/[prctile95 (pCO
obs
2 d) − prctile5 (pCO

obs
2 d)] × 100, (2)

where RMSEd is the RMSE from gridded observational data averaged over the distance bin, prctile95 (pCOobs
2 d) is

the 95th percentile observed pCO2 in that distance bin and prctile5 (pCOobs
2 d) is the 5

th percentile. Compared to a
high‐performance, regional open ocean product (Table 2; Duke et al., 2023a), RMSE increases moving toward
shore but so does the range in pCO2 such that the RPE is constant within a factor of two.

3.2. Comparison to Other Products

Our pCO2 estimate agrees well with one other Northeast Pacific coastal ocean estimate but diverges from coarser
resolution global products (Figure S7 in Supporting Information S1). The regional Sharp et al. (2022) product
within the northern extension of the California Current System (45°N to 59°N, east of 140°W) is nearly equivalent

Figure 2. Our ensemble mean pCO2 estimate (ANN‐NEPc) against (a) observed pCO2 training data, (b) observed pCO2
independently withheld data, and (c) individual ensemble member estimates. Data are binned into 5 μatm by 5 μatm bins with
data density shown in the colorbar on a log scale (note order of magnitude difference between panels). Dashed black line is
the 1:1. Dotted blue line is the least squares best fit. Also shown are number of observations (N), root mean squared error,
coefficient of determination (r2), mean bias (calculated as the mean residual), the slope of the linear regression (c1), and mean
absolute error.
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to our pCO2 product within reported uncertainties (r
2 = 0.57; Figure S7a in

Supporting Information S1). However, our product produces estimates closer
to shore (Section 5.2 below). Compared to our product and in situ observa-
tions, a global coastal climatology (Landschützer et al., 2020; Laruelle
et al., 2017) and multiyear product (Roobaert et al., 2024) do not capture the
same pCO2 range (Figures S7c, S7e, and S8 in Supporting Information S1).
For example, both global products underestimate winter pCO2 values closer
to shore in the coastal Gulf of Alaska region (>52°N and <50 km offshore;
area‐averaged climatological winter pCO2 of 300 and 290 μatm respectively
compared to 330 μatm in this study; Figures S7d and S7f in Supporting In-
formation S1), highlighting the importance of finer resolution in coastal
systems. This region also has the scarcest pCO2 observations within our study
area (0.37% coverage; Figure 1). Global SOM clusters commonly group the
California Current System with the Northwest European shelf and Sea of
Japan (Laruelle et al., 2017; Roobaert et al., 2024). FFN non‐linear re-
lationships inside such clusters may not be suitable for regionally specific
processes dominated by downwelling (Stabeno et al., 2004), glacial runoff
(Pilcher et al., 2018; Siedlecki et al., 2017), significant seasonal biological

productivity (Coyle et al., 2012; Fiechter & Moore, 2009; Hermann et al., 2009), and the influence of the up-
welling subpolar Alaskan Gyre (Duke et al., 2023b; Hauri et al., 2021). This finding supports the Sharp
et al. (2022) recommendation of increasing the number of SOM clusters for observation‐based coastal ocean
pCO2 estimates to capture more regionally specific non‐linear relationships, cognizant of SOCAT observation
data density.

3.3. Uncertainty Estimate

Uncertainty in the ANN‐NEPc estimated pCO2 product was determined following Duke et al. (2023b). The
overall pCO2 product uncertainty (θpCO2 = 50 μatm in our coastal product) is calculated from the square root of
the sum of the four squared errors (i.e., added in quadrature): observational uncertainty based on reported SOCAT
QA/QC flags (θobs = 3.7 μatm), gridding uncertainty based on the average standard deviation from gridding
observations into monthly 1/12° × 1/12° bins (θgrid = 22.4 μatm; with an increasing gradient shoreward), ANN
interpolation uncertainty based on the RMSE comparing the ANN‐NEPc estimated pCO2 to independent with-
held data (θmap = 42.9 μatm; Section 3.1), and ANN run randomness uncertainty based on the mean standard
deviation between 10‐fold ensemble members (θrun = 6.8 μatm; Figure S9 in Supporting Information S1). ANN
interpolation uncertainty is the largest contribution overall. Combining the reported uncertainty in the gas transfer
velocity (Section 2.6) and the overall pCO2 product uncertainty yields an average uncertainty of
±0.2 mol m− 2 yr− 1 in the air‐sea gas flux across all grid cells, with the largest fraction of the error stemming from
the uncertainty in the gas transfer velocity.

Our reported total uncertainty may appear high relative to other coastal pCO2 products, but we include higher
variability regions and more stringent error estimates. Other observation‐based interpolated pCO2 products in the
coastal ocean report lower uncertainty values (RMSE values generally between 10 and 35 μatm in regional es-
timates detailed in S. Chen et al. (2016); 29 μatm globally in Roobaert et al. (2024); approximately 30 μatm in the
California Current System in Sharp et al. (2022); 55 μatm in the coastal subpolar Pacific in Chau et al. (2022)).
However, most other estimates did not use independent withheld data to report total product uncertainty. Roobaert
et al. (2024) point out their largest RMSE values are calculated along the Cascadia Shelf in our study area
(62 μatm). Our pCO2 product is also the only estimate that includes the nearshore, introducing higher variability
(Table 2). Excluding the nearshore across all components of the uncertainty calculation yields an overall un-
certainty of 40 μatm, more comparable to other coastal ocean estimates.

4. Comparison to High‐Resolution Observations
Comparison to in situ observations shows that our ANN‐NEPc estimated pCO2 product resolves seasonal vari-
ability and broad spatial patterns well. Despite high spatial resolution, our design of a monthly timestep product
means the ANN cannot reproduce short temporal (e.g., days) events. Predictor variable inaccuracy also con-
tributes to pCO2 estimate uncertainty, particularly in the nearshore where data assimilation into reanalysis models

Table 2
Error Statistics for Our Ensemble Mean pCO2 Estimate Against All Gridded
Observation Data Binned by Distance Offshore: Number of Observations (N)
per Bin, Observed Range of Variability (Range; Difference Between the 95th
and 5th Percentile), Root Mean Squared Error (RMSE), and Relative
Percent Error (RPE; Equation 2)

Distance offshore (km) N Range (μatm) RMSE (μatm) RPE (%)

0–25 (nearshore) 8,669 481 54 11

25–50 4,763 215 33 16

50–100 5,770 153 24 15

100–150 3,324 114 16 14

150–200 3,317 90 12 13

200–300 6,501 106 10 10

High‐resolution Northeast Pacific open ocean product (Duke et al., 2023a)

>300 34,096 83 7 8
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is limited (e.g., SSS and coastal limitations of Argo float array) and retrieval issues affect satellite estimates (e.g.,
SST and cloud masking, impact of aerosols, diurnal variability, uncertainty estimation, and validation). In situ
measurements show that biogeochemical and hydrographic variability in our region occurs on spatial scales of
less than 20 km (Nemcek et al., 2008), with spatial autocorrelation lengths increasing offshore (Murphy
et al., 2001), and timescales of days to weeks (Evans et al., 2011, 2012, 2019; Fassbender et al., 2018). Our
product is constrained by initial binning of observations to 1/12° × 1/12° (approximately 9 km by 5 km) and a
monthly time step, as well as scarcity of observations used to train (Figure 1). Comparing it directly with in situ
mooring and shipboard underway pCO2 system measurements in the coastal zone provides insight into when and
where the ANN is both capable and incapable of resolving variability. This direct data comparison is not intended
for evaluation (as in Section 3), but rather to showcase the ability of the ANN to resolve observed pCO2 vari-
ability, given constraints.

Our pCO2 estimate captures the observed seasonal cycle (phase and amplitude) at regional mooring time series
sites well (Figure 3; full time series at all five regional mooring sites in Figure S8 in Supporting Information S1).
At NOAA's Gulf of Alaska Ocean Acidification (GAKOA) site south of Alaska's Kenai Peninsula, our product
tends to overestimate seasonal summer minima and winter maxima values (Evans & Mathis, 2013). Our product
also predicts an increase that is slightly early with respect to autumn observations, which is potentially due to the
lack of autumn data included in SOCAT. However, overall, it captures seasonal cycle timing well with a similar
average seasonal amplitude even during times when not all mooring data are included in SOCATv2021 (Figure 3,
black points that are not overlain with red) and training data remain scarce (this study average range = 144 μatm;
GAKOA = 169 μatm; Figure 3b). At another NOAA Gulf of Alaska mooring site south of Kodiak Island, our
estimate also captures the phase of the seasonal cycle well (r2 = 0.89; N = 31 months; Figure S8a in Supporting
Information S1).

The ANN recreates the seasonal cycle well at Hakai Institute's Quadra Island Station, but its monthly timestep
does not capture higher frequency variability (Figure 3c). In some instances, measured pCO2 at the Quadra
mooring increases over 500 μatm within 3 days (e.g., 9–12 June 2015), leading to a strong outgassing signal. The
ANN monthly estimate does not capture such short events. Monthly binning impacts net annual air‐sea CO2

Figure 3. (a) Map of mean estimated surface ocean pCO2 seasonal amplitude (1998–2019; range; annual maximum minus minimum) in μatm. Nearshore mooring time
series at (b) Gulf of Alaska Ocean Acidification mooring, (c) Quadra, and (d) Cape Elizabeth mooring in situ pCO2 data (black diamonds; not all included in
SOCATv2021) plotted with co‐located gridded SOCATv2021 (orange solid line), this study pCO2 (blue solid line), and atmospheric pCO2 (light blue dashed line).
Kodiak and Chá bă and Roobaert et al. (2024) comparison time series in Figure S8 in Supporting Information S1.
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fluxes within a single grid cell (2015 mean annual flux from daily mooring pCO2 and wind speed:
0.08 mol m− 2 yr− 1; compared to this study: 0.26 mol m− 2 yr− 1) but likely has a smaller impact when quantifying
the larger regional flux. Near the end of the time series (late 2017 to 2020), the gridded SOCAT data deviates from
the in situ mooring data due to inclusion of nearby shipboard data, yet our estimated pCO2 continues to better
represent the mooring seasonal cycle. When evaluating ANN performance (Section 3.1), this difference from the
gridded observation data contributes to a higher measure of uncertainty, yet in situ representation is still preserved
compared to the mooring data.

The ANN does capture part of the signal from somewhat longer (i.e., weeks) summer high pCO2 events at
NOAA's Cape Elizabeth mooring off the west coast of Washington State (Figure 3d). Horizontal advection of
freshwater (July 2007) or upwelling events (>500 μatm; July 2008; Evans et al., 2015) can cause high summer
pCO2 values. These extreme events impact bin‐averaged training data, allowing the ANN to recover some of the
short duration signal, albeit at a lower value. Our product reproduces both persistent, weeks long events <35 km
offshore, in line with the monthly averaged observations.

Direct comparison to a cruise from July/August 2010 provides another example of our pCO2 product's ability to
capture broadscale patterns. The ANN estimate resolves undersaturated pCO2 conditions in the Salish Sea at the
start of the cruise well (point 1; Figure 4). Through Johnstone Strait (50.5°N, 126.5°W), a strong tidal mixing zone
(Evans et al., 2022), lack of predictor data coverage prevents estimation of pCO2 in those grid cells at all (point 2;
Figure 4). The ANN captures the lower variability continental shelf and slope environment in Queen Charlotte
Sound and around Haida Gwaii well (between points 2 and 4; Figure 4). Differences between estimated and

Figure 4. (a) pCO2 along 2010West Coast Ocean Acidification cruise track from 21 July 2010 to 15 August 2010 (Evans et al., 2012). Data is gridded into 1/12° by 1/12°
bins. Events indicate (1) cruise start, (2) Johnstone Strait, (3) Hecate Strait, (4) intense upwelling plume near Brooks Peninsula, and (5) Juan de Fuca Strait, respectively.
Subplots against time along cruise track for (b) pCO2 where underway in situ pCO2 data (black diamonds) are plotted with co‐located monthly gridded data (orange solid
line), this study pCO2 (blue solid line), and atmospheric pCO2 (light blue dashed line). (c) Sea surface salinity (SSS) with underway in situ SSS (light blue dots) and co‐
located reanalysis SSS (dark blue solid line; used as a predictor variable). SSS values near cruise start as low as 15 in situ and 24 from reanalysis (not shown). (d) Sea
surface temperature (SST) with underway in situ SST (red dots) and co‐located satellite‐based SST (dark red solid line; used as a predictor variable). Gray boxes
highlight tidal mixing zones (e.g., Johnstone Strait, Juan de Fuca and Haro Straits and connecting waters).
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observed pCO2 exist in Hecate Strait (point 3; Figure 4) likely due to strong underestimation of SSS as a predictor
in the reanalysis product (point 3; Figure 4c). Along the west coast of Vancouver Island, shipboard observations
captured an upwelling event off Brooks Peninsula (50.14°N, 127.78°W; Asher et al., 2017), visible in decreased
temperatures, elevated salinity, and high in situ pCO2 (point 4; Figure 4). The ANN does not replicate this short
upwelling event (i.e., days; Asher et al., 2017). High pCO2 driven by tidal mixing in the Juan de Fuca and Haro
Straits are captured by the ANN (point 5; Figure 4; Jarníková, Olson, et al., 2022). An abundance of consistently
high pCO2 observations results in a strong reconstruction by the ANN in this region (Evans et al., 2012).

5. Air‐Sea CO2 Flux and pCO2 Drivers
Long‐term (1998–2019) mean air‐sea CO2 fluxes display a pronounced juxtaposition between strong uptake and
outgassing regions in the coastal Northeast Pacific Ocean (Figure 5c). Overall, air‐sea CO2 flux estimates from
our product show this coastal zone acts as a net sink for atmospheric CO2, drawing down 0.96 ± 0.25 Tg C yr− 1

with a mean flux of − 0.7 mol m− 2 yr− 1 but high variability with a standard deviation of 1.4 mol m− 2 yr− 1. Mean
pCO2 and air‐sea CO2 fluxes display similar patterns, with high pCO2 nearshore leading to outgassing and low
pCO2 along the transition zone and continental shelf environments taking up atmospheric CO2 (Figures 5a and
5c). Canada's West Coast exclusive economic zone has a CO2 uptake of 0.61 ± 0.11 Tg C yr− 1. Compared to the
open ocean region of the Northeast Pacific (Duke et al., 2023b), the adjacent coastal ocean is a weaker sink for
atmospheric CO2 by area (40% weaker compared to − 1.2 mol m− 2 yr− 1 in the open ocean), taking up 64% less
CO2 total within 40% less area (open ocean uptake = 2.63 ± 0.53 Tg C yr− 1; open ocean surface
area= 1.8 × 106 km2; coastal ocean surface area= 1.1 × 106 km2). Elevated pCO2 and outgassing is also reported
in the subpolar Alaskan Gyre system (Figures 5a and 5c), consistent with Duke et al. (2023b).

5.1. Regional Patterns

Spatially, the study area can be divided into four distinct regions based on air‐sea CO2 flux patterns in our product.
The net annual air‐sea CO2 flux is anti‐correlated with the mean air‐sea CO2 flux seasonal amplitude (r

2 = 0.56;
p < 0.01; Figure 5e). We identify four regions that drive this pattern frommost offshore to inshore: the transitional
zone connecting the open ocean and the coast is a net sink with a small seasonal cycle, the Cascadia Shelf where
the net sink is even stronger but the seasonal cycle remains low, nearshore regions with large seasonal cycles, and
semi‐enclosed estuaries with strong outgassing. To further disentangle driving processes between these four
regions we decompose the estimated pCO2 into a thermal (pCO2 (T)) and biophysical (pCO2 (BP)) component
(Text S5 in Supporting Information S1; Takahashi et al., 1993, 2002). We then take the ratio (RT BP

− 1) of the
seasonal amplitude (climatological maximum minus minimum) of the two components (pCO2 (T)/pCO2 (BP);
Figure 5b), where biophysical processes dominate if RT BP

− 1 is less than one and vice versa.

Much of the offshore transitional zone (medium blue colors, closer to 300 km offshore coastal/open oceanic
boundary in Figure 5c) acts as a sink for atmospheric CO2 year‐round where thermal and biophysical pCO2

components are nearly balanced. Low air‐sea CO2 flux seasonal amplitudes in the transitional zone (>50 km
offshore; excluding the subpolar Alaska Gyre) correspond to net annual atmospheric CO2 uptake. In the southeast
of the study area (Figure 5b), the North Pacific Current region experiences a relative balance of opposing thermal
and biophysical pCO2 components seasonally (RT NT

− 1 approximately= 1; Duke et al., 2023b; Sutton et al., 2017;
Takahashi et al., 2006; Wong et al., 2010). Along most of the transitional zone where RT NT

− 1 is closer to one
(Figure 5b), we also report low pCO2 seasonal amplitudes (Figure 3a) allowing for continuous pCO2 under-
saturation with respect to the atmosphere and continuous annual uptake with low air‐sea CO2 flux seasonal
amplitudes (Figure S12 in Supporting Information S1; Figure 5d). Advection of low pCO2 (Duke et al., 2023b;
Takahashi et al., 2006) water by the North Pacific Current from the open ocean toward the coast causes overall
pCO2 undersaturation in this region (Reed & Schumacher, 1986; Thomson, 1981; Weingartner et al., 2002). The
low pCO2 amplitudes are maintained by the effect of temperature on pCO2 (increasing during warming and
decreasing during cooling) dampening changes due to spring phytoplankton blooms (drawing down pCO2) and
winter surface mixed layer deepening (increasing pCO2).

The most prominent CO2 sink region is found along the Cascadia Shelf, inshore of the transitional zone, with a
mean flux of − 1.5 mol m− 2 yr− 1 (darkest blue colors along West Coast Vancouver Island, Washington State, and
Oregon in Figure 5c). Along the continental shelf and within much of the nearshore, biophysical processes (e.g.,
coastal upwelling, seasonal biological drawdown, mixing) dominate the seasonal cycle of pCO2 with RT NT

− 1
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Figure 5.
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values< 1. Summer upwelling fuels primary productivity causing surface pCO2 drawdown as waters are advected
offshore (Hales et al., 2005; Teeter et al., 2018; Ware & Thomson, 2005). Winter downwelling drives onshore
transport of low pCO2 offshore waters and prevents subsurface waters, with elevated respiratory CO2, from
mixing to the surface (i.e., coastal nutrient trap; Ianson et al., 2009; Wilkerson & Dugdale, 1987; Whitney
et al., 2005). This general circulation of shelf waters maintains low seasonal flux amplitudes and strong CO2
uptake on the Cascadia Shelf.

Much of the nearshore tends to experience seasonally strong, juxtaposing air‐sea CO2 fluxes, leading to near zero
net annual CO2 fluxes (nearshore white colors in Figure 5c). For example, closer to shore north of 50°N and south
of the Southeast Alaska Archipelago, winter mixed layer deepening brings water rich in nutrients and CO2 from
respired organic matter to the surface, increasing pCO2, leading to strong CO2 outgassing to the atmosphere when
light is limiting (Figure S12a in Supporting Information S1; Marchese et al., 2022). In the spring and summer,
substantial primary productivity draws down pCO2 (Marchese et al., 2022), reverting the region to a prominent
sink for atmospheric CO2 (Figures S12b and S12c in Supporting Information S1). This large seasonal amplitude
results in a net neutral flux.

Semi‐enclosed, nearshore estuarine environments display strong CO2 outgassing in our product, that is not always
observed in regional high‐resolution models. High pCO2 values and outgassing fluxes (mean CO2 flux of
0.7 mol m− 2 yr− 1) occur in Cook Inlet, the Salish Sea, and the Southeastern Alaska Archipelago (Figure 5c).
Globally, the source strength of these integrated estuarine environments is comparable to (or smaller than) other
nearshore source regions that decrease averaged coastal ocean CO2 uptake (Section 5.2 below; Duke, Richaud,
et al., 2023; Fennel et al., 2019; Laruelle et al., 2018). In high‐resolution regional models, the Salish Sea has been
reported as a weak net annual source (this study: 1.0 mol m− 2 yr− 1; comparable to Jarníková, Ianson, et al. (2022):
0.69 mol m− 2 yr− 1), and Cook Inlet as a net sink (Hauri et al., 2020; Pilcher et al., 2018). Limited observations
used to constrain both our observation‐based estimate and regional models may create discrepancies between
them. Our estimate is based on all available surface ocean pCO2 observations along with a suite of predictor
variables (Figure 1; Table 1), whereas regional process‐based models using data for boundary conditions simplify
and parameterize mechanisms (Hauri et al., 2020; Jarníková, Ianson, et al., 2022; Pilcher et al., 2018). Global
observation‐based estimates and models also disagree, where model fluxes are often more negative (stronger
sink) at northern latitudes, attributed to a smaller seasonal pCO2 amplitude (Resplandy et al., 2024).

5.2. Nearshore Fluxes

The nearshore coastal environment (0–25 km offshore) exhibits large air‐sea CO2 fluxes, over a relatively small
surface area, impacting regional marine carbon budgeting. As our estimate wraps around the coast from primarily
E‐W to primarily N‐S, we split the region along the 140°W meridian (Figure 5a). Averaging grid cells
approximately parallel to the regional coastline along longitudinal bands (155°W to 140°W west of 140°W;
Figures 6a and 6b) and along latitudinal bands (56°N to 45°N east of 140°W; Figures 6c and 6d), the inclusion or
exclusion of the nearshore environment creates large differences in estimated net annual air‐sea CO2 fluxes, for
example, between 154°W and 149°W encompassing Cook Inlet (absolute flux difference of 250%, switching
from a net sink to a source; Figure 6b). North to south from 56°N to the northern extension of the California
Current System at 45°N (Figure 6d), including the nearshore leads to a slightly weaker net annual sink for at-
mospheric CO2. The difference is largest within latitudinal bands inclusive of the Salish Sea (49–51°N; 20%
weaker). Differences in zonally averaged pCO2 and air‐sea CO2 fluxes also exist between products with varying
nearshore coverage (Section 3.2; Roobaert et al., 2024; Sharp et al., 2022). Inclusion of the nearshore changes the
annual exchange with the atmosphere within the study area by 0.06 Tg C yr− 1 (6%). These results highlight the
importance of including the nearshore in regional marine carbon budgets.

Figure 5. (a)Mean pCO2 (1998–2019) in μatm. 140°Wmeridian divide used in Section 5.2 analysis shown for reference. (b) Ratio of pCO2 seasonal amplitude in thermal
component (i.e., changes due to temperature; pCO2(T)) and biophysical component (i.e., changes due to circulation, mixing, gas exchange, and biology; pCO2(BP)).
(c) Mean air‐sea CO2 flux (1998–2019) in mol m

− 2 yr− 1. Negative flux values indicate CO2 uptake by the ocean. (d) Mean air‐sea CO2 flux seasonal amplitude (range;
annual maximumminus minimum) in mol m− 2 yr− 1. (e) Mean air‐sea CO2 flux versus mean air‐sea CO2 flux seasonal amplitude (grid cell by grid cell). Dotted blue line
is the least squares best fit. Dashed black line separates values of outgassing (positive) from uptake (negative). Alaskan Gyre andNorth Pacific Current labels indicate the
approximate location where these circulation features impinge on the study area (Franco et al., 2021).
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5.3. Dominant Controls on Variability

Four distinct tiers of predictor variable importance rankings emerged from a perturbation‐based spatial sensitivity
analysis in estimated pCO2 (Figure 7a). The ANN is purely a set of empirical, not mechanistic, relationships
between pCO2 observations and predictor variables, though variables were selected with mechanism in mind
(Table 1). We used a perturbation‐based spatial sensitivity analysis (Section 2.5) to probe the dependency of the
ANN relationships on each variable, as they cannot be viewed directly (unlike a multiple linear regression).
Atmospheric pCO2 and atmospheric pCO2 anomaly (removing the seasonal cycle; Section 2.2) are the most
important predictors, followed by SST, and then process‐driven controls whose importance varies spatially.
Atmospheric pCO2 and atmospheric pCO2 anomaly are the only two predictor variables that capture a trend in
time from 1998 to 2019 (i.e., increase of 2.12 μatm yr− 1 due to anthropogenic emissions). Due to the trend, these
variables also experienced the largest absolute value perturbation (mean study area wide increase of 7 μatm), at
least one order of magnitude greater than other variables. The third most important predictor for estimating pCO2

is SST. Study area wide, the sensitivity test introduced a mean SST increase of 1.5°C, resulting in a mixed pCO2

response where generally there was a decrease, outside of the Gulf of Alaska central glacial drainage basin where
pCO2 increased (Figure S13a in Supporting Information S1). This result does not follow the mechanistic reduced
solubility of CO2 in warmer water. However, it emphasizes the importance of the SST seasonal cycle as a pre-
dictor (strong correlation, typically negative, between pCO2, and SST; Figure S13b in Supporting
Information S1).

Excluding the three most dominant controls (atmospheric pCO2, atmospheric pCO2 anomaly, and SST), the
spatial distribution of predictor variable importance rankings can be explained by mechanistic drivers even
though the ANN is purely empirical. SSH anomaly is important along the Alaskan Gyre boundary, where the
upwelling gyre exerts control over local biogeochemistry (Figure 7b; Duke et al., 2023b; Hauri et al., 2021). Wind
speed (as a proxy for mixed layer depth) is important throughout most regions along the continental shelf and the
outer coast as winter mixed layer deepening brings CO2‐rich subsurface waters to the surface (a mean study area
wide perturbation increase of 0.4 m s− 1 resulted in a pCO2 increase of 1.7% from the baseline; Figure 7b). SSH
and SSH anomaly are additionally important offshore of Sitka, Alaska (57°N, 143°W) and Haida Gwaii (52°N,
133°W) where mesoscale anticyclonic eddies with enhanced primary productivity and high SSH propagate away
from the continental margin (Figure 7b; Batten & Crawford, 2005; Crawford & Whitney, 1999; Crawford
et al., 2007; Whitney & Robert, 2002; Whitney et al., 2005). In the North Pacific Current influenced region
southeast of the study area, SST anomaly and wind speed anomaly are the most important predictors linked to the
relative balance of opposing mechanisms (i.e., thermal and biophysical pCO2 components; Figure 5b).

Figure 6. Longitudinally averaged estimates west of 140°W of mean (a) pCO2 and (b) air‐sea CO2 flux of: this study (dark blue), this study removing the nearshore
(cyan). Panels (c, d) are latitudinally averaged estimates east of 140°W respectively. Additional observation‐based estimates with overlapping domains (1998–2019)
including: Sharp et al. (2022) (dot‐dash beige), and Roobaert et al. (2024) (dashed lime green). Sharp et al. (2022) air‐sea CO2 fluxes calculated following Section 2.6.
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Nearshore regions experience a range of predictors with prominent features mostly controlled by salinity (SSS
and SSS anomaly) in coastal estuarine areas (Figure 7b), and tidally mixed areas (e.g., Juan de Fuca Strait,
Johnstone Strait; Figure 4a). In additional regions where freshwater discharge is important (e.g., Table S2 in
Supporting Information S1), SSH and SSH anomaly emerge as important predictors potentially linked to
discharge associated changes to nearshore sea level (Figure 7b; Durand et al., 2019). In the nearshore Gulf of
Alaska, SSH could also be linked to coastal downwelling strength (Hauri et al., 2024). Neither perturbation to Chl
nor Chl anomaly resulted in the largest absolute mean pCO2 change from baseline over 264 months in a single
grid cell (Figure 7b). However, seasonally Chl emerges as a prominent predictor in scattered grid cells along
nearshore West Coast Vancouver Island and in the Southeast Alaska Archipelago during the spring (i.e., March,
April, and May; not shown).

5.4. Air‐Sea pCO2 Trends

Trends in the last decades (1998–2019) in ΔpCO2 (sea‐air) display spatial heterogeneity in the coastal Northeast
Pacific, with a gradient of smaller trends moving offshore. A linear fit was applied to the ΔpCO2 anomaly time

Figure 7. (a) Predictor variables ordered by absolute mean pCO2 change from baseline run during perturbation‐based spatial
sensitivity analysis (Section 2.5). (b) Most dominant process‐based predictor variable mapped by largest absolute mean
pCO2 change from baseline run during perturbation‐based spatial sensitivity analysis (excluding top three variables from
(a)). No grid cells displayed Chl or Chl anomaly as the largest absolute mean pCO2 change from baseline over the full study
time range (1998–2019). Major river outflows are labeled for reference.
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series within each grid cell to calculate the trend and standard error (i.e., deseasonalized; Section 2.2). Regions
that experience an increase in surface ocean pCO2 close to the increase in atmospheric (i.e., resulting in a small
ΔpCO2 trend) are spatially distinct from those that have an insignificant trend in pCO2 leading to a large
divergence with the atmosphere (i.e., large ΔpCO2 trend). Grid cells with a small ΔpCO2 trend are dominantly
located in the outer coast (>50 km offshore) and in the southeast of the study area (Figure 8a). Trends are closer to
the atmospheric trend in this region (2.12 μatm yr− 1), meaning any change in the carbon sink due to anthropogenic
climate change will require long observation time series to detect, as the signal is small relative to internal
variability (Gooya et al., 2023; McKinley et al., 2016; Resplandy et al., 2015; Sutton et al., 2019). We report
trends in pCO2 that are similar to those observed at time series sites along Fisheries and Ocean Canada Line P
stations (this study: P4 = 1.3 ± 0.1 μatm yr− 1; P12 = 1.6 ± 0.1 μatm yr− 1; comparable to Franco et al. (2021):
P4 = 1.0 ± 1.4 μatm yr− 1; P12 = 1.5 ± 0.6 μatm yr− 1).

Large ΔpCO2 trends (and low or insignificant pCO2 trends) occur in regions experiencing strong connectivity to
the older subsurface waters of the Northeast Pacific (e.g., subpolar Alaskan Gyre, west coast upwelling zone;
Figure 8a). This older water has a lower anthropogenic carbon load (Carter et al., 2019; Clement & Gruber, 2018;
Gruber et al., 2019; Sabine et al., 2004), which may be responsible for the lag in the increase in surface ocean
pCO2 (e.g., Duke et al., 2023b). The ΔpCO2 trend in the Alaska Gyre is dominated by the winter trend, whereas
the west coast upwelling zone is dominated by the summer trend (Figure S14 in Supporting Information S1).
These seasonal trends coincide with the timing of greatest connectivity to depth in each region. Strongest Alaskan
gyre upwelling occurs in winter (Gargett, 1991; Talley, 1985), whereas the coastal upwelling season is spring and
summer (Dorman & Winant, 1995; Hsieh et al., 1995) with downwelling occurring in the winter (Section 5.1;
Thomson & Ware, 1996). In the nearshore (e.g., Southeast Alaska Archipelago, Salish Sea), subsurface waters
exchange through estuarine flow and tidal mixing. In these regions, we report low or insignificant winter ΔpCO2
trends and large negative summer trends in agreement with regional model results (e.g., Jarníková, Ianson,
et al., 2022). Increasing summer air‐sea pCO2 disequilibria enhances ocean CO2 uptake, whereas winter air‐sea
disequilibria has remained relatively constant, maintaining ocean outgassing. In winter, light limits biological
productivity, resulting in higher total CO2 in the surface (Evans et al., 2019; Ianson et al., 2016; Simpson
et al., 2022). This increase in total CO2 reduces the buffer capacity of the carbonate system (Revelle &
Suess, 1957), so that the pCO2 increase due to anthropogenic carbon uptake is larger than it is in summer in many
temperate zones (e.g., Jarníková, Ianson, et al., 2022; Landschützer et al., 2018). Our findings are consistent with
global ΔpCO2 trend estimates where most coastal regions appear to exhibit negative ΔpCO2 trends likely
becoming stronger atmospheric CO2 sinks or weaker sources (Fennel et al., 2019; Laruelle et al., 2018; Resplandy
et al., 2024; Roobaert et al., 2024; Wang et al., 2017). However, the rate of change in the air‐sea CO2 flux can be

Figure 8. 1998–2019 trend in (a) ΔpCO2 anomaly (i.e., deseasonalized) where more negative (darker) values indicate an increase in air‐sea pCO2 disequilibria with time.
Black crosshatches show grid cells with an insignificant calculated trend (outside the 95% confidence level; p ≥ 0.05; 0.4% of total grid cells). (b) Standard error of the
estimated slope in the ΔpCO2 trend fit.
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amplified or dampened in some regions by changes in wind speed patterns (Griffin et al., 2010; Resplandy
et al., 2024; Roobaert et al., 2024).

6. Conclusions
Our high‐resolution, neural network created pCO2 product reproduces observed coastal Northeast Pacific Ocean
variability well, from the outer transitional zone to the nearshore (0–25 km offshore). We interpolated sparse
observations using non‐linear relationships developed with a neural network based on predictor data from satellite
and reanalysis products to create a continuous, gridded monthly pCO2 estimate at a 1/12° spatial resolution,
inclusive of the nearshore. This pCO2 product provides a baseline environmental context for pCO2 and air‐sea
CO2 flux variability in the study area with an uncertainty of 50 μatm and 0.2 mol m− 2 yr− 1, respectively. The
product resolves seasonal variability (phase and amplitude) and broad spatial patterns well compared to high‐
resolution in situ observations. The product is not designed to capture daily—weekly variability. While high
frequency, in situ measurements in SOCAT provide valuable insights for specific process studies and can inform
the development and parameterization of mechanistic regional models, they are limited in coverage. The created
product here addresses this gap by offering continuous estimates in the study area lacking observations, making it
a powerful tool for model evaluation.

A unique ANN sensitivity analysis shows that variations in pCO2 results agree with mechanistic drivers even
though the ANN itself is purely empirical. ANNs are not based on predefined equations but their ability to capture
information inherent to the training data, preventing any explicit explanation of how predictor variables and their
output are related. We suggest a new systematic sensitivity analysis introducing perturbations to predictor var-
iables, with a consideration for natural spatial variability, to produce mapped variable importance rankings. This
approach offers insight providing greater transparency to complex ANN techniques.

We quantify the coastal Northeast Pacific as a net sink for atmospheric CO2. The region displays large spatial
heterogeneity between outgassing in the nearshore and uptake on the outer coast. Net annual air‐sea CO2 flux is
largely anticorrelated with seasonal air‐sea CO2 flux amplitude. Patterns inherent to specific regions drive this
anticorrelation, including circulation and opposing seasonal upwelling/relaxation versus downwelling, and may
make the relationship regionally specific rather than applicable to the wider global coastal ocean. Our results also
emphasize the importance of including nearshore fluxes (often omitted by other coastal products), which are
likely to be a source reducing the net coastal sink, when constructing marine carbon budgets (e.g., Legge
et al., 2020). These findings could be potentially important considerations for reporting marine carbon dioxide
removal approaches in the study area, as interventions impacting source areas are treated differently from those
enhancing natural sinks (Verra, 2023).

Trends over the last decades show outer coast pCO2 may be experiencing the largest increase in air‐sea pCO2

disequilibrium, due to strong connectivity with subsurface waters low in anthropogenic CO2, while pCO2 in the
North Pacific Current region tracks increasing atmospheric pCO2 more closely. Trends reported here across the
coastal Northeast Pacific indicate most regions are likely to become stronger atmospheric CO2 sinks or weaker
sources.

Improving regional observational coverage and continuity and advancing the ANN approach will improve future
air‐sea CO2 flux estimates. Some regions in the coastal Gulf of Alaska display large net annual air‐sea CO2 fluxes
(e.g., Cook Inlet) yet are extremely sparsely monitored. A higher temporal resolution, such as daily, could enable
the ANN to capture highly episodic air‐sea CO2 flux events common to the nearshore. However, this approach
would dramatically reduce the percent coverage of observation training targets. A solution may be creating ANN
non‐linear relationships to interpolate pCO2 directly from in situ observations. Using high frequency, collocated
sensors and non‐uniform “highest available resolution” satellite and reanalysis data sets for predictor variables not
collected in situ, a higher temporal and/or spatial resolution coastal product could be developed without sub-
stantial loss in ANN training targets.
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Data Availability Statement
All data used is publicly available. ANN‐NEPc pCO2 and air‐sea CO2 flux fields created for this publication are
available through the National Center for Environmental Information (NCEI Accession 0290365; Duke
et al., 2024). pCO2 data are from the Surface Ocean CO₂ Atlas (SOCAT) v2021 (available at https://www.socat.
info/; Bakker et al., 2016) as well as additional data from the Fisheries and Oceans Canada February 2019 Line P
cruise, a West Coast Ocean Acidification cruise from July and August 2010 (Evans et al., 2012), and La Perouse
cruises from May 2007 and May 2010 (available at https://www.waterproperties.ca/linep/). Sea surface tem-
perature and chlorophyll‐a are from the European Space Agency Climate Change Initiative (available at https://
climate.esa.int/en/odp/#/dashboard; Good et al., 2019; Sathyendranath et al., 2021). Sea surface salinity and SSH
are from Copernicus Marine Environment Monitoring Service (E.U. Copernicus Marine Service Information
(CMEMS), 2020). Ocean surface wind data at 10 m height are from Regional Deterministic Reforecast System
(available at https://caspar‐data.ca/caspar; detailed here https://github.com/julemai/CaSPAr; Mai et al., 2020).
Atmospheric pCO2 values are from Jersild et al. (2017) (NCEI Accession 0160558), version v2020. A description
of the calculation from χCO2_atm_dry to pCO2_atm_wet are presented in Landschützer et al. (2013). Mooring data
used in analysis are also available through the National Center for Environmental Information (NOAAmoorings:
NCEI Accession 0173932; Sutton et al., 2018); and Hakai Institute Quadra Island Field Station: (NCEI Accession
0208638; Evans et al., 2020).
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