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Seasonal metabolic dynamics of microeukaryotic plankton: a 
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ABSTRACT Seasonal fluctuations profoundly affect marine microeukaryotic plankton 
composition and metabolism, but accurately tracking these changes has been a 
long-standing challenge. In this study, we present a year-long metatranscriptomic data 
set from the Southern Bight of the North Sea, shedding light on the seasonal dynam­
ics in temperate plankton ecosystems. We observe distinct shifts in active plankton 
species and their metabolic processes in response to seasonal changes. We characterized 
the metabolic signatures of different seasonal phases in detail, thereby revealing the 
metabolic versatility of dinoflagellates, the heterotrophic dietary strategy of Phaeocystis 
during its late-stage blooms, and stark variations in summer and fall diatom abundance 
and metabolic activity across nearby sampling stations. Our data illuminate the varied 
contributions of microeukaryotic taxa to biomass production and nutrient cycling at 
different times of the year and allow delineation of their ecological niches.

IMPORTANCE Ecosystem composition and metabolic functions of temperate marine 
microeukaryote plankton are strongly influenced by seasonal dynamics. Although 
monitoring of species composition of microeukaryotes has expanded recently, few 
methods also contain seasonally resolved information on ecosystem functioning. We 
generated a year-long spatially resolved metatranscriptomic data set to assess sea­
sonal dynamics of microeukaryote species and their associated metabolic functions 
in the Southern Bight of the North Sea. Our study underscores the potential of meta­
transcriptomics as a powerful tool for advancing our understanding of marine ecosys­
tem functionality and resilience in response to environmental changes, emphasizing 
its potential in continuous marine ecosystem monitoring to enhance our ecological 
understanding of the ocean's eukaryotic microbiome.

KEYWORDS microeukaryotes, metatranscriptomics, seasonal dynamics, marine 
plankton, ecosystem monitoring

M arine microeukaryotic plankton play a pivotal role in primary production, global 
oceanic biogeochemical cycles, ecosystem stability, and climate regulation (1–4). 

They exhibit pronounced spatiotemporal dynamics with recurring seasonal phenologi­
cal patterns (5). Such phenological rhythms, like the yearly blooms of both phototro­
phic microalgae and heterotrophic grazers, are particularly sensitive to disruption by 
anthropogenically altered environmental drivers (6–9). In the face of current climate 
change, understanding the patterns and drivers of seasonal microeukaryote ecosystem 
dynamics, i.e., cyclic variations in species composition, biomass, and metabolic activity, is 
paramount for deciphering marine ecosystem functionality and resilience (10).

Recent advances and maturation of methodological approaches in the marine 
sciences, including plankton abundance time series (11, 12), large-scale -omics surveys 
(13–16), and expansion of genetic reference databases (17–21), have been propelling a 
deeper understanding of marine ecosystems. However, many studies only track natural 
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microeukaryotic plankton assemblages over limited periods of time (22) or only at 
a few dates of the seasonal cycle (23), whereas complete seasonal trajectories are 
needed to fully understand the temporal dynamics of plankton assemblages and the 
associated metabolic functions. Metatranscriptomic profiling provides an underused 
opportunity for a more comprehensive characterization of coastal microeukaryote 
plankton ecosystems (24–27). The systematic capture of microeukaryotic plankton gene 
expression profiles over time from fixed locations generates ecosystem snapshots that 
facilitate the reconstruction of the turnover and relationships of active species and their 
metabolic responses to environmental fluctuations.

In this study, we aim to capture the phenological patterns and metabolic functions 
that follow seasonal turnover in temperate microeukaryotic plankton assemblages of 
the coastal Southern Bight of the North Sea. This shallow marginal sea is characterized 
by a complex subtidal sand bank system and high nutrient input from the Rhine-Meuse-
Scheldt estuary (28). We generated a year-long time series of metatranscriptomic data 
which elucidate the unique functional properties of various ecosystem states and reveal 
typical metabolic traits of dominant plankton groups. Additionally, we investigate key 
features of the Southern Bight plankton assemblages such as the relationship between 
biodiversity and functional richness, the spatial variation resulting from the mixing of 
oceanic and estuarine waters, and seasonal shifts in feeding modes of certain microeu­
karyote species.

RESULTS

The Belgian North Sea

Six locations in the Belgian North Sea were sampled monthly to construct time series 
of oceanographic, meteorological, nutrient, pigment, biotic, and metatranscriptomic 
data (see Materials and Methods; Table S1; Fig. 1). Water temperature in the southern 
North Sea measured between 2.17°C and 22.54°C in winter and in summer, respectively. 
Nutrient concentrations rose over winter, reaching the highest values in February, and 
were depleted by April (Data Set S1). Suspended particulate matter (SPM) and salinity 
also varied, with fresher and more turbid water in winter, and more saline and clearer 
water in summer/fall. Spatially, levels of SPM, nitrate, phosphate, and silicate differed 
across locations, with stations 130 and 700 often showing the highest concentrations 
(Fig. 1; Data Set S1). Spatial differences in nutrient load and salinity in the study area are 
structured according to proximity to the Scheldt estuary in the east, with its freshwater 
discharge decreasing salinity and increasing nutrient levels in the Belgian coastal waters, 
while the inflowing North Atlantic water through the English channel from the west 
buffers temperature variations (29).

Phenology of taxonomic groups

Our metatranscriptomic analysis yielded over 1.049 billion raw reads and 7 million 
unique transcripts (see Fig. S1 and details in the supplemental information). Diatoms 
were present year-round (Fig. 2) but different diatom assemblages succeeded each other 
(Fig. S2 and S3). The prymnesiophyte algae Phaeocystis bloomed in April and was 
detected in three of the four stations visited that month (Fig. 3). From May to July, the 
microeukaryote ecosystem was characterized by high relative abundances of dinoflagel­
late transcripts (Fig. 2 and 3), with Noctiluca accounting for the highest fraction of 
dinoflagellate transcripts (Fig. S4 and S5). In fall and winter, arthropods were relatively 
more abundant. Some taxonomic groups only occurred in certain months, e.g., high 
ctenophore abundances (Mnemiopsis leidyi), were found in August (Fig. S6). Microplank­
tonic biomass, determined as cell densities per liter of seawater using FlowCam automa­
ted microscopy, peaked in July (Fig. 2c). The estimated transcripts per liter (TPLs; see 
supplemental information) varied considerably between seasons and stations (Fig. S6). 
These “absolute” abundance estimates allow better assessment of differences in 
abundances and activity of specific taxa across samples than the relative abundance 
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measure “transcripts per million” (TPM), but both measures are similarly biased by 
varying cell lysis and RNA extraction efficiencies across taxa and potential biases during 
other steps of sample processing such as filtering (see Materials and Methods) (31, 32). 
TPL is therefore not to be taken as a truly absolute expression measure and can only be 
used to compare expression levels across samples for taxa with similar biases in terms of 
lysis and RNA extraction efficiency (Fig. S6 through S8).

FIG 1 Sampling stations and their temporal and oceanographic context. (a) Geographical location of the six sampling 

locations in the Belgian North Sea (30). (b) Location of the sampling area in the wider North Sea region (map by NordNordW­

est/Wikipedia, distributed under a CC-BY-SA-3.0-DE license). (c) From July 2020 to July 2021, metatranscriptomic data were 

generated from these six stations. Gaps (in red) are due to canceled campaigns because of stormy weather conditions or 

coronavirus disease 2019 measures. For October 2020 and March 2021, weather conditions were too harsh to visit any 

station. (d) Seasonal changes in temperature, salinity, and suspended particulate matter (SPM) for near- and offshore stations. 

(e) Seasonal changes in nitrate, phosphate, and silicate nutrient levels for near- and offshore stations.
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The spatial variability in taxonomic composition and relative transcript abundance 
across the six stations is substantial (Fig. 3). For example, we detected Hemistasia, a 
flagellate predator of Phaeocystis and other protists (33), in only one of the three stations 
that had a Phaeocystis bloom. Diatoms exhibited lower relative abundance in autumn 
at stations 780 and 700 (Fig. 3), and in absolute (TPL) terms, high diatom abundances 
were found in July and August 2020 at stations 120 and 130 (Fig. S6 and S7). Distinctive 
blooms were observed at stations ZG02 and 330 in June 2021 (Fig. S6), likely of the genus 
Guinardia (Fig. S3). Nearshore stations 120, 130, and 700 exhibited substantially higher 
TPL levels for ctenophore transcripts in August 2020 than the offshore stations (Fig. S6). 
The observed spatial differences likely reflect geographical and hydrodynamic differen­
ces between the sampled stations (such as depth, distance to shore, and the presence 
of a mixing zone where inflowing North Atlantic waters meet outflowing Rhine-Meuse-
Scheldt waters) and associated differences in, e.g., water temperature, nutrient load, and 
salinity.

Exploring functional diversity

Absolute transcript abundance was found to be highest when FlowCam-derived cell 
abundance levels were at their peak (Fig. 2, details in supplemental information).

FIG 2 Monthly biomass fluctuations and turnover in taxonomic composition. (a) Monthly estimates for the number of 

extracted transcripts per liter of sea surface water, averaged across sampling stations. (b) Monthly relative transcript 

abundance fraction of high-level taxonomic groups annotated using EukProt (>60% sequence identity with reference), 

averaged across stations. The relative abundance fraction of a group in a given month was calculated as the sum of transcripts 

per million (TPM) annotated to that group divided by the TPM sum over all groups of that month (excluding unannotated 

transcripts). When the relative abundance fraction of a group was <2%, it was labeled as “rare.” (c) Monthly number of particles 

per liter of seawater, averaged across stations, calculated using FlowCam automated image analysis (excluding unannotated 

particles). (d) Relative cell densities of taxonomic groups per month, averaged across stations, as observed through FlowCam 

automated image classification. When the relative cell density of a group was <2%, it was labeled as rare.
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Functional richness, however, quantified as the number of unique enzymatic 
functions [Kyoto Encyclopedia of Genes and Genomes Orthology (KEGG KO) identifi­
ers] present in a sample, did not differ between months [Fig. S9; analysis of variance 

FIG 3 Monthly relative transcript abundance and relative taxonomic composition at each sampling station. (a) Monthly 

relative transcript abundance (TPM, top panels) and relative transcript abundance fraction (bottom panels) for taxonomic 

groups annotated using EukProt, per offshore sampling station. The relative transcript abundance represents the sum of TPM 

belonging to a taxonomic group. The relative abundance fraction of a group in a given month was calculated as the TPM 

sum of transcripts annotated to that group divided by the TPM sum over all groups for that month (excluding unannotated 

transcripts). When the relative abundance fraction of a group was <2%, it was labeled as “rare.” (b) Spatial location of the 

six sampling stations in the Belgian North Sea. (c) Monthly relative transcript abundance (top panels) and relative transcript 

abundance fraction (bottom panels) for taxonomic groups annotated using EukProt, per nearshore sampling station. Relative 

transcript abundances and fractions were calculated as for the offshore stations.
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(ANOVA), F(10,51) = 1.062, with degrees of freedom 10 and 51 representing #groups −1 
and #samples − #groups, P = 0.40]. Similarly, no significant differences were observed 
between stations [ANOVA, F(5,56) = 0.594, P = 0.704] or when considering the number 
of unique protein families (PFAM) instead [Fig. S10; ANOVAmonths, F(10,51) = 0.896, P = 
0.544; ANOVAstations, F(5,56) = 0.731, P = 0.604]. Principal component analysis of KEGG 
KO relative expression profiles (TPM), however, revealed temporal and spatial variations 
in the relative expression of metabolic functions in the microeukaryotic ecosystem across 
sampling months and stations (Fig. S9a). The functional dissimilarity between seasons 
coincides with distinct nutrient and temperature regimes, while the differences within 
summer months correlate with differences in suspended particulate matter load (Fig. S9; 
Fig. 1a).

Active species richness averaged across stations was higher from September to 
February and lower from May to July [Fig. S11; ANOVA, F(10,51) = 9.872, P = 6.185 × 10−9]. 
No strong correlation was found between functional richness and the number of active 
species [Pearson’s correlation (PC), r = 0.18, df = 60, P = 0.151]. A negative correlation 
was found between log-transformed FlowCam cell abundances and the number of active 
species (r = −0.43, df = 60, P = 0.0008). Likewise, there is a weak negative correlation 
between functional richness and log-transformed FlowCam cell abundances (r = −0.28, 
df = 55, P = 0.036). These negative correlations likely arise from non-homogeneous 
distribution of species in high biomass situations, which impacts the detection of rare 
species with the given sequencing depth (34) (Fig. S11).

In conclusion, from September to February, there is an increase in the number 
of metabolically active species. This increase, however, does not result in increased 
functional richness.

Functional seasonal dynamics of microeukaryotic plankton

To get a better understanding of how metabolic functions vary and co-vary in the 
Southern North Sea microeukaryotic plankton assemblages and how this is related to the 
presence of particular taxa, we applied weighted gene co-expression network analysis 
(35) to the KEGG KO relative expression profiles across samples. Ten distinct modules of 
co-expressed functional identifiers were identified (Fig. 4). Analysis of module eigengene 
expression revealed fall and winter clusters (M3, M8, M9, and M10) that are correlated 
with the relative transcript abundance of copepods and/or certain diatom genera, and 
spring/summer clusters that represent different ecosystem states: a Phaeocystis bloom in 
April (M1), a dinoflagellate dominance from May to August (M4–M6), diatom assemb­
lages in June and July (M2), and the occurrence of Mnemiopsis in August (M7) (Fig. 4). 
For each module, we then determined characteristic KEGG pathways that were strongly 
represented in the module (see Materials and Methods) and quantified the contribution 
of the genus whose absolute abundance was most strongly correlated to the module’s 
eigengene expression to the overall expression of these pathways.

Module M1 eigengene expression predominantly correlates with increased relative 
transcript abundance of the prymnesiophyte genus Phaeocystis (Fig. 4b). KOs involved 
in cell cycle control and lysine and brassinosteroids biosynthesis displayed significantly 
higher ranked correlations with M1 eigengene expression than KOs associated with 
other pathways (Data Set S2). For lysine biosynthesis and cell cycle control, most 
taxonomically annotated transcripts that were expressed during the April Phaeocystis 
bloom were indeed annotated to Phaeocystis (Fig. S12; Data Set S2 and S3). None 
of the transcripts associated with brassinosteroids biosynthesis were annotated as 
Phaeocystis. This indicates that either the Phaeocystis reference transcriptome did not 
include genuine Phaeocystis genes involved in the biosynthesis of brassinosteroids, 
or that another unidentified organism produces brassinosteroids during a Phaeocystis 
bloom. Brassinosteroids have been associated with growth, development, and protec­
tion against abiotic stress in plants and could have similar functions in Phaeocystis (36).

The module M2 eigengene profile exhibits a correlation with a spring/summer 
diatom assemblage, mainly with the genera Rhizosolenia, Leptocylindrus, Chaetoceros, 
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and Asterionellopsis (Fig. 4). Functionally, this module contains KOs involved in the 
biosynthesis of amino acids and co-factors, biotin, and vitamin B6 metabolism (Fig. S12; 
Data Set S2). Additionally, the identification of pathways related to porphyrin metabo­
lism may imply regulation of pigments in response to light and nutrient availability. 
Taxonomic attribution of these pathways’ expression indicates a substantial relative 
diatom contribution in fall, but not in spring, likely because Guinardia was not included 
in the EUKprot reference database (Fig. S12). Furthermore, the module predominantly 
encompasses pathways that are broadly expressed over time, indicating that their 
presence is not exclusive to this module or its associated diatom assemblage.

Eigengene expression of modules M3 and M8–M10 is correlated with the absolute 
abundance of a diverse range of genera, from copepods to diatoms. These modules 
encompass KOs from a diverse suite of pathways linked to fundamental aspects of 
(multicellular) cell growth, regulation, and maintenance such as ribosome synthesis and 
mRNA surveillance, signaling (based on transcripts homologous to genes involved in, 
e.g., the ErbB and Hippo signaling cascades in mammals) and synthesis of glycolipids
and glycosaminoglycans, vital for cell adhesion and communication and as structural 
components. Moreover, the presence of pathways associated with responses to bacterial 

FIG 4 Module eigengene expression and correlation with taxonomic groups. (a) Heatmap of module eigengene expression levels across samples, ordered by 

station and month of sampling. Eigengenes represent the first principal component of a module. Modules were calculated using weighted gene correlation 

network analysis on TPM expression values of KEGG KO identifiers. (b) Pearson correlation of module eigengene expression per sample with log-transformed 

relative genus abundances of EukProt-annotated transcripts (TPM sums per sample). Black stars indicate correlations with q values (Benjamini and Hochberg 

adjusted P values) of <0.05.
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and viral infections suggests an important role of host defense (Fig. S13 through S16; 
Data Set S2 and S3).

Module M6 eigengene expression, peaking in late spring and summer, correlates 
with the relative (and absolute) transcript abundance of dinoflagellate genera such as 
Noctiluca, Tripos, and Effrenium. Module M6 is linked to the synthesis of acarbose and 
validamycin, suggesting a capacity for antimicrobial compound production. Further­
more, module M6 is associated with the degradation of various aromatic compounds, 
emphasizing the dinoflagellates’ role in organic matter breakdown and heterotrophic 
activities. Particularly noteworthy is the involvement of pathways related to the 
degradation of benzoate, flavonoids, and limonene, indicating the potential recycling 
of xenobiotic metabolites in sea surface waters by these assemblages. Additionally, 
module M6 is associated with metabolic functions encompassing vitamin B6 synthesis, 
polyketide sugar unit biosynthesis, biosynthesis of various plant secondary metabolites, 
and teichoic acid biosynthesis. Transcripts involved in these pathways were confirmed to 
be expressed by Noctiluca (Fig. S14).

Module M7 eigengene expression was strongly correlated with increased relative 
(and absolute) transcript abundances of the comb jelly genus Mnemiopsis and peaked 
in all stations (except 780) in August. This module is associated with homologs of 
mammalian genes involved in the ErbB signaling pathway, natural killer cell-mediated 
cytotoxicity, and bacterial invasion of epithelial cells (Data Set S2). While these pathways 
are detected across all months, a large part of the expression of these pathways in 
August could be attributed to Mnemiopsis (Fig. S13). Enzymes within these pathways are 
likely involved in either defense against microorganisms or the mechanisms of predation 
deployed by Mnemiopsis.

Lastly, module M4, with peak eigengene expression in summer, was associated with 
the degradation of limonene and flavonoids. Module M4’s eigengene expression showed 
a correlation with the relative transcript abundance of the dinoflagellate genus Tripos 
and the cnidarian genus Clytia. Transcripts involved in these pathways were confirmed to 
be expressed by Tripos (Fig. S13) and Noctiluca (Fig. S14) with expression profiles peaking 
in summer, even though relative transcript abundances of Noctiluca did not significantly 
correlate with M4 eigengene expression (Fig. 4; Data Set S3). Both genera are thus likely 
capable of catabolizing biotic carbon sources. Modules and their contents can be further 
explored in the supplemental data (Data Set S2).

The case of dinoflagellates, diatoms, and Phaeocystis

We focused on the most abundant taxonomic groups to gain a better insight into how 
functional richness links to the number of active species and how this relates to their 
ecology. The overall relatively most abundant microeukaryote groups detected in the 
metatranscriptome were diatoms, dinoflagellates, and the prymnesiophyte Phaeocystis 
globosa (Fig. 2).

From September to December, we observed higher relative abundances of diatom 
transcripts (Fig. S2 and S3) accompanied by a significant increase in the number of active 
diatom species [Fig. S17; Kruskal-Wallis, H(10,51) = 38.003, P = 3.791 × 10−5]. The fall 
assemblage was dominated by the genera Trieres, Ditylum, Thalassiosira, Odontella, and 
Helicotheca. A smaller peak in relative diatom abundance [but a large peak in estimated 
absolute abundance (TPL), Fig. S6] was observed at stations ZG02 and 330 during June 
and July 2021, where the community was mainly composed of Guinardia (based on 
PhyloDB, Fig. S3). Stations closest to the Scheldt estuary, i.e., 700 and 780, exhibited 
the lowest relative diatom abundances. Diatom communities showed clear temporal 
structuring, aligning with temperature, and spatial gradients, including variations in 
nutrients, salinity, and SPM levels (Fig. S17d). For example, the eigengene expression of 
module M9, a set of KOs that correlates with the abundance of a Thalassiosira dominated 
diatom community, correlates significantly with elevated nutrient levels [Fig. 4; Fig. S18; 
NO3

− r(10) = 0.32, P = 0.01; PO4
3− r(10) = 0.36, P = 0.004; Si r(10) = 0.27, P = 0.04]. 
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The diatom genera that correlate most with module M9 eigengene expression are most 
abundant at stations 130, 120, 330, and ZG02 (Fig. S2).

The diatom community’s functional richness appeared relatively consistent through­
out the year and scales with the number of species present [Fig. S17c; linear model: MSE 
= 236,859.62 (SD = 103,071.89), R2 = 0.3044 (SD = 0.1924); second-degree polynomial 
model: MSE = 279,665.89 (SD = 130,398.46), R2 = 0.1720 (SD = 0.3299); a paired t-test 
revealed no statistically significant difference between the performance of the two 
models, P = 0.466]. In the fall, diatoms contributed most to the metabolic activity of 
the microeukaryotic plankton, exhibiting the highest relative expression of transcripts 
involved in primary production processes such as photosynthesis, carbon fixation, and 
fatty acid biosynthesis (Fig. 5; Fig. S19). Predictions from the trophic mode classifier 
model by Lambert et al. (37) consistently identified diatom species bins as autotrophic 
(Fig. S20 and S21; see Materials and Methods), although predictions were not feasible for 
smaller transcriptome bins.

Dinoflagellates showed peak relative and absolute abundance from May to July (Fig. 
3; Fig. S8), with Noctiluca being the most abundant genus (Fig. S4 and S5). The functional 
profiles of dinoflagellates varied predominantly along a temperature gradient (Fig. S17h). 
Module 6, associated with Noctiluca, also positively correlated with temperature (Fig. 4; 
Fig. S18; r = 0.27, df = 10, P = 0.03), underscoring a seasonal trend in dinoflagellate 
abundance and activity. Notably, Noctiluca persisted in the colder, nutrient-rich, and less 
saline waters of stations 780 and 700 during fall and winter months (Fig. S4 and S5). Few 
active dinoflagellate species were detected across samples (Fig. S17). However, one to 
three active species of dinoflagellates can display a wide variety of functions, with 
maximum values that exceed double the number of diatom functional richness. 
Intriguingly, the Lambert et al. model (37) predicted the EukProt-annotated Noctiluca 
scintillans taxonomic bin as consistently phototrophic (Fig. S20), while the PhyloDB 
annotated Noctiluca scintillans bin was predicted to be heterotrophic during the summer 
months, from May to September, and phototrophic in other months (Fig. S21). Similarly, 
based on PhyloDB annotations, Tripos fusus was predicted as heterotrophic in July 2021 
and phototrophic during other months (Fig. S21), whereas the EukProt annotated Tripos 
bin was consistently predicted as phototrophic (Fig. S20). Very few transcripts involved in 
photosynthesis were linked to dinoflagellates, while they do express transcripts involved 
in autophagy, fatty acid degradation, and carbohydrate digestion and absorption, 
among others (Fig. 5; Fig. S19; Data Set S3). The observed dinoflagellates’ ability to rely 
on both photo- and heterotrophy may contribute to the higher functional richness 
observed in dinoflagellate transcriptomes.

The prymnesiophyte Phaeocystis globosa bloomed in April, dominating the micro­
plankton community in the Southern Bight in both relative and absolute abundance and 
metabolic activity (Fig. 2 and 3; Fig. S6). This bloom did not show high TPL values, 
potentially due to the lower amount of seawater filtered due to clogging filters (Data Set 
S1). The spring Phaeocystis bloom did not significantly correlate with distinct tempera­
ture, salinity, or nutrient values (module M1 in Fig. S18). The Lambert et al. (37) trophic 
model predictions based on both PhyloDB and EukProt annotation sources indicated 
that these Phaeocystis blooms were heterotrophic (Fig. S20 and S21). However, they also 
expressed transcripts involved in photosynthesis and carbon fixation (Fig. 5). Further­
more, we found that Phaeocystis was a major contributor to the expression of genes 
involved in specific pathways, such as the α-lipoic acid metabolism, the biosynthesis of 
polyketide sugar units, and the biosynthesis of antibiotics (Fig. 5; Fig. S19). Surprisingly, 
for samples that contained Phaeocystis blooms, we found very high expression of genes 
involved in certain pathways that were not annotated as Phaeocystis, e.g., zeatin 
biosynthesis or flagellar assembly. These might constitute vital processes in the Phaeo­
cystis life cycle that are currently not represented in the reference transcriptome, e.g., an 
investment in motile microflagellate cells after the blooming phase (38) (Fig. S19).

High relative abundance of diatoms, dinoflagellates, or Phaeocystis is often accompa­
nied by a high relative expression of genes related to viral infection, e.g., homologs of 
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genes involved in pathways related to coronavirus and papillomavirus infections in 
humans (Fig. S19). This indicates that higher abundances of these taxa are associated 

FIG 5 Expression of selected pathways and generalized additive model (GAM) regression fits for the expression of diatom, 

dinoflagellate, or Phaeocystis transcripts. Each panel shows the TPM expression profiles of transcripts associated with a given 

KEGG pathway of interest (top figures), alongside GAM regression fits to the summed TPM expression profiles of pathway 

transcripts that were annotated to diatoms, dinoflagellates, or Phaeocystis (>90% sequence identity) (bottom figures). The 

top figure in each panel contrasts the summed TPM expression levels of taxonomically annotated versus unannotated 

transcripts associated with the KEGG pathway concerned. The lines are GAM fits, with the shaded areas representing the 95% 

confidence intervals for the smoothed mean estimates. Eight pathways are displayed: (a) “metabolic pathways,” an umbrella 

term containing all metabolic activities; (b) photosynthesis; (c) carbon fixation in photosynthetic organisms; (d) fatty acid 

biosynthesis; (e) biosynthesis of various plant secondary metabolites; (f) fatty acid degradation; (g) carbohydrate digestion and 

absorption; and (h) biosynthesis of vancomycin antibiotics.
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with a heightened viral activity or prevalence, which suggests that viral infections may 
be a significant factor in microeukaryotic population dynamics (39).

DISCUSSION

The observed seasonal shifts in taxonomic assignments of gene transcripts echo 
well-documented phenological patterns in the Southern Bight. These include the early 
spring bloom of Phaeocystis globosa (40), the prevalence of Noctiluca scintillans between 
May and July (41), and the late summer bloom of the invasive ctenophore Mnemiopsis 
leidyi (42). These phenological patterns are intricately linked to the seasonal oscillations 
of abiotic factors such as temperature, nutrient availability, or solar irradiance. Our study 
further reveals seasonal partitioning of key metabolic pathways among the predomi­
nant groups. For example, we observed a shift between diatoms and dinoflagellates 
alternating in their contribution to the production of fatty acids and other secondary 
metabolites.

The first plankton bloom of the year in the Southern Bight occurs in diatoms in spring, 
leveraging the elevated temperatures and sunlight to utilize the accumulated winter 
nutrients derived from river discharge, atmospheric deposition, and sediment resuspen­
sion (29, 43). We observed a rise in metabolic activity of diatoms already in February, 
preceding the actual increase in cell densities detected by imaging in spring. After 
the first diatom bloom, Phaeocystis globosa capitalizes on favorable light and nutrient 
concentrations and forms colonies that heavily invest in primary production (44, 45). 
Recent laboratory studies have shown that these Phaeocystis blooms attract a specialized 
bacterial community (46). Our in situ findings suggest that Phaeocystis implements a 
heterotrophic strategy at later stages of the bloom. This might represent an adaptive 
strategy where Phaeocystis cultivates and attracts bacteria during favorable periods 
and subsequently feeds on them following bloom senescence and nutrient depletion. 
While we did not find clear evidence of mixotrophy for Phaeocystis in trophic mode 
predictions, we observed the expression of transcripts involved in both photosynthesis 
and heterotrophy (45).

Noctiluca scintillans likely deploys different feeding strategies across seasons, 
potentially underpinning their ecological success. The pronounced functional richness of 
dinoflagellates confirms an elevated level of metabolic flexibility, a hypothesis supported 
by the ambiguous trophic mode predictions and the presence of degradation, diges­
tion, and absorption pathways. This versatility potentially confers a competitive edge in 
fluctuating environments (47).

From summer to fall, diatoms exhibited higher abundances and increased expression 
of transcripts involved in primary production processes such as photosynthesis, carbon 
fixation, and fatty acid biosynthesis.

The increased expression of antimicrobial or immunity-related pathways during 
blooms of Phaeocystis globosa and Mnemiopsis leidyi points toward the critical role of 
biotic interactions in shaping community dynamics (48). The occurrence of transcripts 
associated with the production of antibiotics in Phaeocystis suggests a mechanism by 
which the Phaeocystis colonies could defend against a Hemistasia infection (33). These 
observations align with the growing consensus on the importance of parasites and 
pathogens in regulating bloom events (49).

Our study demonstrates the value of metatranscriptomics data to characterize the 
dynamics of taxonomically resolved metabolic functions during the seasonal succession 
of planktonic communities. In microbial communities, such metabolic functions are 
important predictors of the food web position and ecological role of the individual 
species (50). Facing unprecedented environmental perturbations due to anthropogenic 
change, knowledge of the natural dynamics of metabolic functions of individual taxa 
will be critical to understanding and ultimately predicting the stability and resilience of 
planktonic communities.

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.00383-2411

https://doi.org/10.1128/mbio.00383-24


MATERIALS AND METHODS

Sampling

The data presented in this study were obtained from seagoing campaigns from July 2020 
to July 2021. Several stations in the Belgian North Sea were sampled every month with 
the R/V Simon Stevin (51, 52) (offshore stations: ZG02, 330, and 780; nearshore stations: 
120, 130, and 700; see Fig. 1; Data Set S1). When at sea, navigation, meteorological, and 
oceanographic data were measured using the ship’s underway system. At each sampling 
station, temperature (Celsius) and depth (meter) profile (CTD) data were collected with a 
Seabird SBE25plus CTD (Sea-Bird Scientific, Bellevue, WA USA). Additionally, the following 
parameters were quantified: salinity of the water body, expressed in practical salinity 
units, dissolved oxygen, pH, Secchi depth, electrical conductivity of the water, density 
of the water body, fluorescence of the water body, optical backscatter as turbidity of 
the water body, photosynthetic active radiation, pressure, and the concentration of SPM 
in the water body (expressed in milligram per liter) (Data Set S1). Water samples were 
taken with Niskin bottles at a depth of 3 m and were analyzed for nutrient and pigment 
concentrations. For more detail on sampling procedures, see Mortelmans et al. (51).

Microphytoplankton biomass was estimated using FlowCam analysis, which involved 
collecting 50 L of sea surface water, filtering, and processing with a FlowCam VS-4 
benchtop model (Fluid Imaging Technologies, Yarmouth, Maine, USA) to classify particles 
into distinct taxonomic groups; further details are provided in the Supplemental 
Methods and Martínez et al. (11).

Samples for metatranscriptomic analysis were collected as follows: at each sampling 
location, 50 L of sea surface water was manually collected with stainless-steel buckets 
and filtered through two stacked stainless-steel sieves with mesh sizes of 250 and 50 µm. 
In case of extreme bloom events, smaller volumes were filtered due to the high biomass 
clogging the filters. From the 50-µm sieve, the collected residue was resuspended in 9–
45 mL of seawater, with the eluate volume depending on the residue biomass (Data Set 
S1). The samples were then stored in cryovials and flash­frozen in liquid nitrogen within 5 
minutes of collection. Back in port, samples were transferred to a −80°C ultra-freezer until 
RNA extraction.

Extraction and quality control of RNA, library preparation, and sequencing of 
cDNA

RNA was extracted with the RNeasy Mini Kit (Qiagen), according to a modified ver­
sion of the manufacturer’s protocol. Briefly, samples were thawed, centrifuged, and 
the supernatant seawater was removed. Lysis buffer with 700 mg of RNA-free silica 
beads (350 mg each of 0.1 and 0.5 mm) was added to the sample, after which sam­
ples underwent two cycles of homogenization and cooling on a metal cooling block 
(−20°C) for 1 minute each. The RNA was then extracted using the kit’s spin columns. 
Depending on the season and biomass of microplankton, different starting volumes 
were used for RNA extraction (Data Set S1). The extracted RNA was eluted in 52 µL of 
RNAse-free water and stored in the −80°C freezer. Two microliters of the total RNA eluate 
was used for quality and yield analysis. Total RNA yield was measured using a Qubit 
fluorometer (Invitrogen), RNA quality was assessed using a Bioanalyzer (Agilent). After 
extraction, samples were shipped to the VIB Nucleomics core facility (https://nucleomic­
score.sites.vib.be/) on dry ice. There, RNA concentration and purity were determined 
spectrophotometrically using the Nanodrop ND-8000 (Nanodrop Technologies), and 
RNA integrity was assessed using a Bioanalyzer 2100 (Agilent). A standard volume of 
external RNA controls consortium (ERCC) spike-in mix was added before starting the 
library preparation (but after lysis, extraction, and RNA yield measurement, allowing us to 
maintain an ERCC spike-in/total RNA proportion around 1%, thereby avoiding over­
whelming the sequencing libraries with spike-in sequences). Per sample, an amount of 
200 ng of total RNA was used as input. Using the Illumina TruSeq Stranded mRNA Sample 
Prep Kit (protocol version: # 1000000040498 v00 October 2017), poly-A containing mRNA 
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molecules were purified from the total RNA input using poly-T oligo-attached magnetic 
beads. In a reverse transcription reaction using random primers, RNA was converted 
into first­strand cDNA and subsequently converted into double-stranded cDNA in a 
second-strand cDNA synthesis reaction using DNA polymerase I and RNAse H. The cDNA 
fragments were extended with a single “A” base to the 3′ ends of the blunt-ended cDNA 
fragments, after which multiple indexing adapters were ligated, introducing different 
barcodes for each sample. Finally, enrichment PCR was carried out to enrich those DNA 
fragments that have adapter molecules on both ends and to amplify the amount of DNA 
in the library. Sequence libraries of each sample were equimolarly pooled and sequenced 
on Illumina NovaSeq 6000 [SP300 flow cell, PE150 (151-8-8-151)] at the VIB Nucleomics 
Core.

Preprocessing, assembly, and translation

Raw sequences were inspected using FastQC and MultiQC (53). Sequencing adapt­
ers were trimmed from the reads using Trimmomatic (54) (version 0.39, param­
eters: ILLUMINACLIP:ADAPTERS:2:30:7 LEADING:2 TRAILING:2 SLIDINGWINDOW:4:2 
MINLEN:50). Ribosomal RNA sequences were removed using RiboDetector (55). Quality-
controlled, trimmed non-rRNA PE reads were assembled in nucleotide space using 
rnaSPAdes (version 3.15.3, parameters: --rna -k 75,99,127) (56). All assemblies were 
then combined and clustered at 95% identity using MMseqs2 easy-linclust algorithm 
(version 13–45111) (46, 57). The contig names of the resulting metatranscriptome 
were standardized with anvi-script-reformat-fasta from Anvio (version 7.1) to reduce 
their size and facilitate subsequent analysis (58). Assembled transcripts that matched 
the ERCC92 spike-in RNA sequences were identified using MMseqs2 easy-search and 
removed, resulting in the final metatranscriptome (57). Protein coding regions in the de 
novo assembled transcripts were identified by Transdecoder (version 5.5.0, parameters: 
--single-best-only) (59).

Transcript annotation and quantification

To assign taxonomic information to the assembled and translated sequences, they 
were searched against EukProt (20) and an extended version of PhyloDB (version 
1.075; https://allenlab.ucsd.edu/data/), using MMseqs2 (57). The PhyloDB database was 
extended with sequence data from ENA for species that were identified in FlowCam data 
but were not included in the database (60). If a published shotgun assembly transcrip­
tome existed for that species, it was added to the reference database. For both databa­
ses, best alignment hits with a sequence identity of >90% or >60% (>60% sequence 
identity when considering taxonomic classes) were retained for subsequent analysis (27, 
61). Peptide translations of the de novo assembly were functionally annotated using 
the eggNOG reference database (62) and the eggNOG-mapper tool (version 2.1.7) (63). 
Transcript and ERCC spike-in standards were quantified using Kallisto, yielding TPM 
counts for every transcript (64). The relative abundance fraction of a given taxonomic 
group was calculated as the sum of all TPM values belonging to that level divided by 
the total TPM sum of all taxonomically annotated transcripts for that sample or month, 
ignoring unannotated transcripts. Transcripts per liter were estimated by relating the 
TPM counts to the spike-in recovery values while accounting for sample processing 
volumes and RNA yield (27) (see Supplemental Methods).

Statistical analysis

Principal component analyses were performed on pre-processed, log-transformed TPM 
values using sci-kit learn in python (version 1.1.3) (65, 66). Arrows representing the 
correlation between the first two principal components and environmental parameters 
were added to the plots.

A weighted gene co-expression network analysis was performed using the weighted 
gene correlation network analysis (WGCNA) package (35) (version 1.72–1) in R (65). The 
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approach was modified from the analysis pipeline described in Cohen et al. (47). Briefly, 
we aimed to identify co-expression modules of KEGG KO identifiers based on log-normal­
ized count sums across annotated transcripts. The expression matrix was pre-processed 
by setting TPM values below 1 to 0 and removing KOs with aggregate counts less than 10 
across all samples. Outlier samples were detected using the WGCNA scaled connectivity 
measure, and sample dendrograms were constructed using average linkage hierarchical 
clustering on the PC network of KEGG KOs. After pre-processing, a correlation network 
was constructed from the expression matrix. The optimum number of modules was 
determined by exploring a range of soft-thresholding powers to ascertain the mini­
mum value for which a scale-free topology was achieved, using the pickSoftThreshold 
function from the WGCNA package (Fig. S22). Module detection was performed using 
the WGCNA dynamic tree cut algorithm (minimum module size: 70, deepSplit = 4), 
and modules with highly similar expression profiles (PC >0.6) were merged. Module 
eigengenes, representing the first principal component of each module, were calculated 
using the WGCNA package moduleEigengene function, and their expression across 
samples and correlations with environmental parameters and the TPM abundances of 
taxonomic groups was assessed. Connectivity within modules was quantified using 
module membership, allowing for the pinpointing of functions that closely follow the 
module’s overall expression pattern. Module membership was defined as the Pearson 
correlation between module eigengene expression and KEGG KO identifier. To determine 
whether certain metabolic pathways were more associated with a highly connected 
gene function, we performed Mann-Whitney U tests to assess which pathways were 
more represented at the top of a ranked list of KEGG KO identifiers, ordered according 
to decreasing module membership, than expected by chance. Resulting P values were 
adjusted for multiple testing with the Benjamini-Hochberg procedure, which controls the 
false discovery rate (67, 68).

KEGG pathway expression was analyzed by collecting the total TPM expression 
of assembled transcripts that were annotated with a KO involved in that pathway. 
For these, we retrieved EukProt annotations with >90% sequence identity to be able 
to calculate the annotated and unannotated fraction or to assess which taxonomic 
group contributed most to the given pathway. For pathways identified as character­
istic of modules identified through WGCNA, we visualized the total TPM expression 
of transcripts involved in each pathway and the fraction that could be assigned to 
the genus whose relative abundances correlated most with expression of the mod­
ule eigengene. Generalized additive models (GAMs) were constructed with the mgcv 
package in R (version 1.8–40) to assess the temporal dynamics of gene expression for 
KEGG pathways (69, 70). To complement the GAM analysis, we aggregated the data by 
month and calculated the total TPM for each pathway, both for all transcripts and for 
transcripts that had a EukProt taxonomic annotation (>90% sequence identity). This was 
visualized alongside the GAM fits to provide a more comprehensive view of the pathway 
activity over time (71).

To obtain active species richness estimates of samples, taxonomic bins of transcripts 
with >90% sequence identity with sequences in reference databases were considered. 
Only taxonomic bins that had more than 100 non-zero expressed transcripts in at least 
one sample were retained, and their occurrence per sample was quantified. Functional 
richness was defined as the amount of unique KEGG KO identifiers found in a sample.

We used the classification machine learning model by Lambert et al. to predict 
the trophic mode of protist taxonomic bins (37). The training data, parameter set­
tings, and selected features were used as in the original study (we implemented the 
XGBoost classifier with reported precision of 88% ± 10% in the original publication). 
Taxonomically annotated transcripts were binned to species level (>90% seq. id), and 
the model was trained with the MinMax-scaled MMETSP training data set from the 
original publication containing the union of selected features (37). Predictions were then 
generated for each sample by subsetting each profile to contain the union of selected 
features, imputing missing values with zeros, and scaling profiles with the pre­fitted 
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MinMax scaler. Predictions could only be made for subsetted transcriptional profiles that 
contained >800 non-zero expressed PFAMs, as required by the Lambert et al. model (37). 
Monthly consensus predictions were determined by the majority vote of the individual 
samples’ predictions for the month.
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