## The global diversity and biogeography of Isopoda

Lena Hartebrodt

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Marine Science

The University of Auckland

May 2024

#### Abstract

The order Isopoda is a species-rich and morphologically diverse taxon of peracarid crustaceans. They not only occur in marine environments but have also successfully conquered freshwaters and the terrestrial realm. This thesis examines the global diversity and biogeographic patterns of isopods within all three environments. After summarising what is known about their natural history, distribution, and ecological and economic importance, attention is drawn to the taxonomic diversity of isopods and their rate of description. A global list of accepted species names, including their authorities and the year of first description, was gathered from the World Register of Marine Species (WoRMS). Since the first formal description of an isopod species by Linnaeus in 1758, 10,687 isopod species in 1,557 genera and 141 families have been described by a cohort of 755 first authors. Although the number of authors has increased manyfold over time, the average number of species described per first author has declined, and the description rate has slowed down. Shifting the attention to global biodiversity patterns within isopods, the latitudinal diversity gradient (LDG) in species richness is first examined, followed by bioregionalisations within aquatic and terrestrial environments. To do so, a dataset of worldwide occurrence records was compiled from the Ocean Biogeographic Information System (OBIS) and the Global Biodiversity Information Facility (GBIF). Isopods exhibit a bimodal LDG with higher species richness in the southern hemisphere for marine isopods and in the northern hemisphere for non-marine isopods. Sampling bias in the data does not significantly affect the overall shape of the LDG. However, when accounted for, the location of diversity peaks tends to move towards tropical latitudes compared to the observed species richness, which is highest in mid-latitudes. A clustering algorithm was employed to identify distinct biogeographic regions based on their species composition. It delineated 33 marine, 28 terrestrial, and 23 freshwater bioregions – all with high endemicity – many of which agree with other biogeographical frameworks in the respective environments. The analysis also revealed substantial geographical gaps in the data, especially in Africa, Asia, Indonesia, South America, and offshore marine areas, which future research should aim to close.

#### Acknowledgements

I would like to thank my former main supervisor, Prof. Dr. Mark J. Costello, for providing me with the opportunity to start this PhD back in 2018. Thank you for always giving quick feedback, letting me know that you appreciate my work, and for not giving up on me when I was forced to suspend my PhD for an indefinite amount of time.

I am also grateful to my current main supervisor, Dr. Richard Taylor, who "adopted" me and my PhD project when the need arose to find a new supervisory team. Thank you for giving me the opportunity to finish what I started. In this regard, too, I must thank Dr. Brendon Dunphy for taking on the role of my co-supervisor. Thank you for acknowledging the hardship I went through.

I appreciate the company and friendship of many colleagues who came and went during my prolonged PhD journey. Thank you for enjoyable lunchtime conversations, the occasional after-work drinks, and the warm welcome you gave me when I could finally continue my work.

Many thanks to my family for letting me go my own way even though you could not comprehend it. Thank you for still being proud of me and not forcing me to give up my dream when my whole world crashed. Mum, even with all the consequences I had to face, I am grateful that I could be with you at the end. I love you, and I miss you terribly! I wish I could let you know that, eventually, I got the chance to finish my PhD.

Finally, I am most grateful to my partner Jonathan. You have been an enormous emotional support, and you stood by my side when I went through the worst. Thank you for staying through the bad days! Now it is time for the good days to return and hopefully to last ... for a while.

## **Table of Contents**

| Abstract                                                                                                                                    | i   |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Acknowledgements                                                                                                                            | ii  |
| Table of Contents                                                                                                                           | iii |
| List of Tables                                                                                                                              | v   |
| List of Figures                                                                                                                             | vi  |
| Chapter 1 – General Introduction                                                                                                            | 1   |
| 1.1. The world's biodiversity                                                                                                               | 1   |
| 1.2. Global biogeographic patterns of species richness                                                                                      | 2   |
| 1.2.1. The latitudinal diversity gradient                                                                                                   | 2   |
| 1.2.2. Bioregionalisation                                                                                                                   | 3   |
| 1.3. The taxon of interest: Isopoda Latreille, 1816                                                                                         | 4   |
| 1.4. Thesis objectives and structure                                                                                                        | 5   |
| Chapter 2 – The superdiverse order Isopoda (Crustacea: Peracarida) – what is known about their natural history, diversity and distribution? | 8   |
| 2.1. Systematics and fossil record                                                                                                          | 8   |
| 2.2. Morphology                                                                                                                             | 9   |
| 2.3. Feeding modes and life history                                                                                                         | 11  |
| 2.4. Habitat                                                                                                                                | 16  |
| 2.5. Biogeography                                                                                                                           | 18  |
| 2.6. Ecological and economic importance                                                                                                     | 21  |
| Chapter 3 – Progress in the discovery of isopods – is the description rate slowing down?                                                    | 26  |
| 3.1. Introduction                                                                                                                           | 26  |
| 3.2. Methods                                                                                                                                | 27  |
| 3.2.1. Data source and processing                                                                                                           | 27  |
| 3.2.2. Data analysis                                                                                                                        | 29  |
| 3.3. Results                                                                                                                                | 30  |
| 3.3.1. Species diversity                                                                                                                    | 30  |
| 3.3.2. Predictions of yet to be named species                                                                                               | 34  |
| 3.3.3. Taxonomic effort                                                                                                                     | 35  |
| 3.4. Discussion                                                                                                                             | 38  |
| 3.4.1. Named and unnamed species diversity                                                                                                  | 38  |
| 3.4.2. Cryptic diversity                                                                                                                    | 40  |
| 3.4.3. Taxonomic effort                                                                                                                     | 41  |

| Chapter 4 – Isopod taxonomic diversity is bimodal with latitude | 45  |
|-----------------------------------------------------------------|-----|
| 4.1. Introduction                                               | 45  |
| 4.2. Methods                                                    | 47  |
| 4.2.1. Data source and cleaning process                         | 47  |
| 4.2.2. Data analysis                                            |     |
| 4.3. Results                                                    |     |
| 4.4. Discussion                                                 | 57  |
| Chapter 5 – Global bioregionalisation and endemicity of isopods |     |
| 5.1. Introduction                                               | 63  |
| 5.2. Methods                                                    | 66  |
| 5.2.1. Data source                                              |     |
| 5.2.2. Data analysis                                            | 66  |
| 5.3. Results                                                    | 67  |
| 5.3.1. The marine realm                                         | 67  |
| 5.3.2. The terrestrial realm                                    |     |
| 5.3.3. Freshwater biomes                                        |     |
| 5.4. Discussion                                                 | 90  |
| 5.4.1. The marine realm                                         |     |
| 5.4.2. The terrestrial realm                                    | 95  |
| 5.4.3. Freshwater biomes                                        | 97  |
| Chapter 6 – General Discussion                                  |     |
| 6.1. Summary of the main findings                               |     |
| 6.2. Limitations                                                |     |
| 6.3. Future directions                                          |     |
| References                                                      |     |
| Appendices                                                      |     |
| Appendix A – Chapter 3                                          |     |
| Appendix B – Chapter 4                                          | 144 |
| Appendix C – Chapter 5                                          |     |
| Appendix D – List of subterranean isopods                       | 207 |
| Appendix E – List of parasitic isopods                          | 221 |

### List of Tables

| Table 3.1 A list of the 32 most species-rich families, each with more than 100 species           |
|--------------------------------------------------------------------------------------------------|
| <b>Table 4.1</b> Number of occurrence records and species per hemisphere                         |
| Table 5.1 Bioregions of marine Isopoda 69                                                        |
| <b>Table 5.2</b> List of marine isopod species that were recorded in more than five bioregions74 |
| Table 5.3 Bioregions of terrestrial Isopoda 80                                                   |
| Table 5.4 List of terrestrial isopod species that were recorded in more than five bioregions     |
|                                                                                                  |
| Table 5.5 Bioregions of freshwater Isopoda                                                       |
| Table 5.6 List of freshwater isopod species that were recorded in more than one bioregion        |
|                                                                                                  |

## List of Figures

| Figure 3.1 Cumulative numbers of isopod species described per year                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.2 The number of isopod species described per year                                                                                                                                                                                  |
| <b>Figure 3.3</b> The observed and predicted cumulative number of isopod species described over time                                                                                                                                        |
| <b>Figure 3</b> <i>A</i> The number of first authors per year (solid line) and the average number of                                                                                                                                        |
| species described per author per year (dotted line)                                                                                                                                                                                         |
| Figure 3.5 Breakpoint analysis for the average number of species described per number of authors in any given year                                                                                                                          |
| <b>Figure 3.6</b> The annual number of descriptions for all species (dotted line). The solid blue line shows the multi-authored contributions per year, and the solid orange line shows the number of descriptions made by one-time authors |
| Figure 3.7 The number of descriptions published by sole (black circles) and multiple authors      (blue triangles) in each decade                                                                                                           |
| Figure 4.1 Latitudinal patterns of species richness and sampling effort of the order Isopoda                                                                                                                                                |
| Figure 4.2 Latitudinal patterns of species richness and sampling effort of marine isopods51                                                                                                                                                 |
| Figure 4.3 Latitudinal patterns of species richness and sampling effort of shallow-water      marine isopods    52                                                                                                                          |
| <b>Figure 4.4</b> Latitudinal patterns of species richness and sampling effort of marine isopods in the intermediate depth category                                                                                                         |
| Figure 4.5 Latitudinal patterns of species richness and sampling effort of deep-sea isopods                                                                                                                                                 |
| Figure 4.6 Latitudinal patterns of species richness and sampling effort of terrestrial isopods                                                                                                                                              |
| Figure 4.7 Latitudinal patterns of species richness and sampling effort of freshwater isopods                                                                                                                                               |

| Figure 4.8 Latitudinal patterns of species richness and sampling effort of parasitic isopods |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
| Figure 4.9 Latitudinal patterns of species richness and sampling effort of subterranean      |
| isopods                                                                                      |
| Figure 5.1 Bioregions of marine Isopoda73                                                    |
| Figure 5.2 Venn diagram of marine isopod species shared between the shallow (0 to 200 m),    |
| intermediate (>200 to 500 m) and deep (>500 m) datasets75                                    |
| Figure 5.3 Bioregionalisation within the different marine depth categories77                 |
| Figure 5.4 Bioregions of terrestrial Isopoda79                                               |
| Figure 5.5 Bioregions of freshwater Isopoda                                                  |

Chapter 1

#### **1. General Introduction**

#### 1.1. The world's biodiversity

Biodiversity can be measured at different scales, from genes to ecosystems. At the global level, a commonly used metric is species richness: the number of species that exist on Earth. But how many species are there? (See section 3.1. for a few examples of global estimates.) There is not only the known biodiversity, i.e. species that have been described and documented in the scientific literature, but also an unknown component of yet undescribed and undiscovered species. So, how can we estimate Earth's biodiversity? Estimates are based mainly on the following methods: expert opinion polls, proportions of undescribed species in samples, and extrapolation from past description rates (Appeltans et al., 2012). Expert opinion and proportions of undescribed species tend to extrapolate regional knowledge and data to a global scale, which is problematic since species richness varies between regions; therefore, regional data should not be used to estimate global species diversity (Poore & Wilson, 1993). For marine isopods, for instance, high species richness with considerable proportions of undescribed species is documented for Australian waters (Poore et al., 1994, 2015) and for the Southern Ocean (Brandt, Brix, et al., 2007), while the deep-sea of the Norwegian and Greenland seas yields only low species numbers in comparison (Poore & Wilson, 1993). Extrapolations of species richness of either one of these regions would lead to a highly biased global estimate. Ideally, extrapolations should be based on a global dataset to get a more comprehensive estimate of the overall species richness and buffer regional biases. Today, centralised, continuously updated and curated databases like the World Register of Marine Species (WoRMS, https://www.marinespecies.org) provide the opportunity to perform global analyses with a datadriven approach. However, extrapolations based on past description rates may be associated with large margins of error unless a taxon's species inventory is at least 90% complete (Bebber et al., 2007). A few studies have previously included the isopod data compiled in WoRMS in their analyses (marine isopods: Appeltans et al., 2012; Costello et al., 2012; parasitic isopods: Costello, 2016). However, at the time of these studies, the isopod inventory in WoRMS was still highly incomplete, and no meaningful estimate of global species diversity could be made. Furthermore, none of these works incorporated data for the whole order Isopoda, including freshwater and terrestrial species. No comprehensive and detailed review of the known and estimated biodiversity of aquatic and terrestrial Isopoda has been done to date. Such an assessment is performed in Chapter 3.

#### 1.2. Global biogeographic patterns of species richness

Biodiversity is not uniformly distributed across the globe, with some regions being exceptionally rich in species while others are notably lacking in diversity. Biologists have aimed to describe and understand general biodiversity patterns for two centuries. Early naturalists who pondered broad-scale relationships between organisms and the environment include Alexander von Humboldt, Charles Darwin and Alfred Russel Wallace. Wallace was among the first to divide the terrestrial realm into distinct biogeographic regions based on the animal communities they harbour (Wallace, 1876). Similar attempts to structure the marine realm were made much later, and in the early stages, boundaries between oceanic biogeographic regions were thought to be much more blurry than on land (Briggs, 1974; Ekman, 1953). Since then, countless other studies have dealt with various gradients in diversity and scrutinised the geographical distributions of animals and plants on multiple spatiotemporal scales.

#### 1.2.1. The latitudinal diversity gradient

One of the most outstanding and extensively studied patterns in biogeography is the latitudinal gradient in species richness. For a long time, it was considered a unimodal bell shape with increasing diversity from the poles toward the equator (e.g., Stehli et al., 1969). This pattern holds true for some terrestrial organisms (Clarke & Crame, 1997; Dantas & Fonseca, 2023) and a few marine groups (e.g., Boltovskoy & Correa, 2017). However, the latitudinal diversity gradient is taxon-specific, and in recent years, evidence has accumulated showing that for most taxa, the gradient is indeed bimodal with a dip at or near the equator (Cerezer et al., 2022; Chaudhary et al., 2016). Claims that the observed bimodal pattern stems from insufficient sampling of equatorial regions (Fernandez & Marques, 2017) could be refuted, with several studies showing that sampling bias does not affect the overall shape of the gradient (e.g., Chaudhary et al., 2017; Rivadeneira & Poore, 2020). Although the generality of the pattern itself is widely accepted (Hillebrand, 2004a), no consensus about the underlying causes that form and maintain the latitudinal diversity gradient has yet been reached (Currie et al., 1999). Numerous hypotheses have been presented, which can be roughly grouped into evolutionary and ecological processes. Some researchers propose that the modern latitudinal diversity gradient has been formed due to varying speciation and extinction rates (Allen & Gillooly, 2006; Crame, 2023; Krug et al., 2007). Others have shown strong correlations between latitudinal species richness and environmental variables like temperature, salinity, and precipitation (Boltovskoy & Correa, 2017; Cruz-Motta et al., 2020; Dantas & Fonseca, 2023) or else an effect of predation intensity (Ashton et al., 2022; Freestone et al., 2021) or the seasonality of primary productivity (Crame, 2020; S. J. Culver & Buzas, 2000). Many agree, however, that there is no single underlying cause and that local and regional processes also play an important role (Condamine et al., 2012; Cruz-Motta et al., 2020; Gaston, 2000). While early broad-scale studies on biogeographic patterns in isopod species richness often did not find a clear latitudinal gradient within the group or broader region they examined (Kussakin, 1973; G. D. F. Wilson, 1998), current research points to a well-formed bimodal latitudinal diversity gradient both in the ocean and on land (Rivadeneira & Poore, 2020; Saeedi et al., 2022; Sfenthourakis & Hornung, 2018). Rivadeneira and Poore (2020) performed the most comprehensive analysis of the latitudinal diversity gradient of marine isopods in spatial and taxonomic scales and the amount of data so far. They, too, used occurrence records obtained from the Ocean Biogeographic Information System (OBIS, https://obis.org) as is done in this thesis. However, the data their analysis was based on are several years old now and include only a bit over half the number of marine species in this thesis' analysis. Moreover, no comprehensive study of latitudinal patterns in species richness of the whole order Isopoda has been done yet. Here, data obtained from OBIS are complemented with occurrence records from the Global Biodiversity Information Facility (GBIF, https://www.gbif.org) to include freshwater and terrestrial isopod species. Based on such an extensive dataset, a global analysis of latitudinal diversity gradients of and within Isopoda is performed in Chapter 4.

#### 1.2.2. Bioregionalisation

Since Wallace's famous division of the terrestrial realm into six zoogeographic regions (Wallace, 1876), abundant biogeographic studies encompassing a growing body of empirical data have been conducted on various spatiotemporal and taxonomic scales. For instance, Holt et al. (2013) analysed the distributions and phylogenetic relationships of more than 21,000 vertebrate species to refine Wallace's biogeographic world map. They identified 20 distinct zoogeographic regions, further grouped into 11 larger realms. Before that, Olsen et al. (2001) had developed a detailed map of the world's terrestrial ecoregions (nested within biomes and realms), which was refined in 2017 (Dinerstein et al., 2017). Abell et al. (2008) developed a similar map of the world's freshwater ecoregions with the same aim as its terrestrial counterpart in acting as a base map for conservation planning. Similar frameworks for the marine realm have been produced through meta-analysis by Spalding and colleagues focusing on shallow coastal waters (Spalding et al., 2007) and pelagic surface waters (Spalding et al., 2012),

respectively. Further biogeographic maps of the world's oceans were drawn for the mesopelagic zone (Sutton et al., 2017) and the deep sea (Watling et al., 2013). In contrast to approaches that were mainly based on oceanographic features, the marine biogeographic realms (both continental-shelf and offshore deep-sea realms) delineated by Costello et al. (2017) were based on the analysis of empirical distribution data of 65,000 marine species. Recently, a growing number of studies have been conducted on the geographic diversity patterns of specific taxa regionally and globally. Examples include global studies on bioregionalisation in brittle stars (Bribiesca-Contreras et al., 2019; Victorero et al., 2023), deep-sea anthozoans (Watling & Lapointe, 2022), polychaetes (Pamungkas et al., 2021), and amphipods (Arfianti & Costello, 2020), as well as regional research on polychaetes and isopods from the northwestern Pacific Ocean and adjacent Arctic Ocean areas (Saeedi et al., 2022) or shallow-water isopods from the East Pacific (del Carmen Espinosa-Pérez & Hendrickx, 2006). Plenty of regional-scale studies, often with a taxonomic focus on a specific isopod family or genus, can be found in the scientific literature. However, a comprehensive global study of bioregionalisation in isopods is still lacking and is performed in Chapter 5 for marine, freshwater and terrestrial realms.

#### 1.3. The taxon of interest: Isopoda Latreille, 1816

Isopods are a species-rich group of benthic peracarid crustaceans. A detailed overview of their natural history, biodiversity and geographic distribution is presented in Chapter 2. Here, only a general summary of the taxon shall be given.

In Isopods a carapace is absent and oostegites form a ventral brood pouch, in which the eggs are deposited and undergo a direct development into a juvenile manca stage (Ax, 2000). The taxon is morphologically diverse (see Fig. 1.1), but generally, they have a segmented, dorsoventrally flattened body with usually seven pairs of pereopods commonly employed for walking and crawling. Even though some isopod species have evolved the ability to swim, walking is their preferred method of locomotion, with swimming acting more as an escape mechanism (Hessler, 1993; Hessler & Strömberg, 1989). Given their weak dispersal abilities, isopods are expected to show distinct biogeographic patterns with high endemicity. The ubiquity of isopods in all of the world's oceans and on almost every continent makes them an ideal taxon for the analysis of basic global diversity patterns.



**Figure 1.1.** Examples of diverse isopod morphologies. (a) *Neastacilla tuberculata* (Arcturidae), with long antennae and an elongated, cylindrical body; (b) *Paranthura punctata* (Paranthuridae), another example of a long and slender body outline; (c) An egg-bearing, distorted female of a species of Bopyridae; (d) *Cirolana* sp. (Cirolanidae), ventral view, displaying the typical elliptical body shape of an isopod; (e) *Idotea metallica* (Idoteidae), oval body shape with a distinct square telson; (f) *Paraserolis polita* (Serolidae), with a trilobite-like appearance; (g) *Scyphax ornatus* (Scyphacidae), with styliform uropods and pereopods with many stout setae; (h) *Plakarthrium typicum* (Plakarthriidae), ventral view, extensions of coxae and peduncular articles of antennae forming oval outline; (i) *Gnathia* sp. (Gnathiidae), gravid female carrying about 30 eggs, scale bar: 1 mm; (k) *Munna neozelanica* (Munnidae), with long, slender pereopods. Photos are from museum specimens. After Hartebrodt (2020).

#### 1.4. Thesis objectives and structure

One can find plenty of local and regional studies in the published literature that report on the geographical distribution of either selected isopod species or a genus, a family, or an ecological group of isopods that has been studied in the area. Only a few review articles attempted to

summarise the diversity and/or biogeography of isopods on a global scale. However, these reviews only dealt with certain suborders, families, or isopods occurring in a specific environment. So far, no comprehensive study has been published detailing the diversity and biogeography of the whole order Isopoda. This species-rich order consists of marine, freshwater and terrestrial species, and this thesis aims to objectively analyse the number of species in this taxon and how this diversity is distributed globally.

The following chapters aim to give an overview of the global biodiversity and biogeography of the order Isopoda:

## Chapter 2: The superdiverse order Isopoda (Crustacea: Peracarida) – what is known about their natural history, diversity and distribution?

This chapter gives an overview of the species-rich crustacean order Isopoda. It summarises their natural history, including the fossil record and the general morphology of isopods. Further, it details the various habitats in which isopods occur and reviews the extent of biogeographic work conducted on numerous groups of the order. Finally, it outlines the ecological and economic importance of Isopoda.

A condensed version of this chapter, which focused on marine isopods only, has been published as an encyclopaedia article in Elsevier's "Encyclopedia of the World's Biomes": <u>https://doi.org/10.1016/B978-0-12-409548-9.11682-3</u>.

#### Chapter 3: Progress in the discovery of isopods – is the description rate slowing down?

The objective of this chapter is to review the progress in the formal description of isopod species and outline their biodiversity. From data available in the World Register of Marine Species (WoRMS), a global list of accepted species names, including their authorities and year of description, was compiled. Changes in the rate of description over time are examined in relation to the number of taxonomists involved. Additionally, by applying a statistical model, predictions about the number of new species descriptions until the end of the 21st century are provided.

This work has been published in PeerJ: https://doi.org/10.7717/peerj.15984.

#### Chapter 4: Isopod taxonomic diversity is bimodal with latitude

In this chapter, the pattern of the latitudinal diversity gradient in species richness is analysed for the order Isopoda as a whole as well as for various environmental and ecological subgroups. A global dataset of occurrence records compiled from the Ocean Biogeographic Information System (OBIS) and the Global Biodiversity Information Facility (GBIF) is used to examine patterns in alpha and gamma diversity. Additionally, Hill numbers are employed to account for sampling bias in the data and to explore how it affects the shape of the gradient.

#### Chapter 5: Global bioregionalisation and endemicity of isopods

This chapter explores the global biogeographic structuring of isopods. Making use of the interactive web application "Infomap Bioregions" and occurrence data available in the Ocean Biogeographic Information System (OBIS) and the Global Biodiversity Information Facility (GBIF), bioregions within the marine, terrestrial, and freshwater realms are identified based on their species composition. Additionally, rates of endemicity are calculated for each resulting bioregion.

# 2. The superdiverse order Isopoda (Crustacea: Peracarida) – what is known about their natural history, diversity and distribution?

#### 2.1. Systematics and fossil record

The speciose peracarid order Isopoda Latreille, 1816 is one of the morphologically and ecologically most diverse taxa within the subphylum Crustacea. The over 10,600 described isopod species have been classified into 12 suborders, just over 140 families and more than 1,550 genera (WoRMS, 2023). Such extensive taxonomic diversity has attracted the attention of many experts trying to resolve the questions of isopod systematics, though they often do not reach a consensus (Martin & Davis, 2001). While there is broad agreement that Isopoda are a monophyletic group (Brusca & Wilson, 1991), the argument about their sister taxon still needs to be settled. Based on morphological characters many experts favour the hypothesis that Amphipoda is the sister group to isopods (Poore, 2005; Wills, 1998), whereas other studies, some of which include molecular data to corroborate their results, do not find evidence for this claim and instead suggest a sister-group relationship between Tanaidacea and Isopoda (Richter & Scholtz, 2001; G. D. F. Wilson, 2009). The suborders Phreatoicidea (which is confined to freshwater environments) and Asellota (a very species-rich group that comprises many marine and some freshwater species) are generally considered as the oldest isopod lineages (Brusca & Wilson, 1991; Dreyer & Wägele, 2002). The Oniscidea, a group of almost entirely terrestrial isopods, are also seen as one of the earliest derived isopod lineages (Brusca & Wilson, 1991), but there are still arguments about the monophyly of this taxon (Dimitriou et al., 2019; Dreyer & Wägele, 2002; Lins et al., 2017). Phylogenetic analyses continue to reshuffle isopod systematics. For example, a long-standing taxon, the Flabellifera, is now widely disregarded (Brandt & Poore, 2003; Brusca & Wilson, 1991), while new evidence supports the reinstatement of Epicaridea as a suborder (Yu et al., 2018). Numerous taxonomic revisions keep changing the classification of isopod species by transferring them into new genera, placing them into synonymy, etc. (e.g., Boyko & Williams, 2023). With many new species described each year that shed new light on isopod taxonomy and phylogeny, there is still a long way to go until the systematics and taxonomy of Isopoda are fully resolved.

The fossil record of isopod crustaceans is rich compared to other peracarid taxa (Etter, 2014), although fossils of individual groups can be quite rare, and specimens are often incomplete. The absence of a waxy epicuticle in most isopods tends to lead to rapid decay after death and,

therefore, hinders fossilisation (Girling, 1979). Nevertheless, isopods can become fossilised in a wide variety of depositional environments (Etter, 2014). The oldest known fossil isopod, Hesslerella shermani, was described by Schram (1970) as a representative of Phreatoicidea and dates back to the late Carboniferous more than 300 million years ago (mya). The first, and until recently only, known asellote fossil was discovered in slabs dating back to the Triassic period around 210-215 mya (Selden et al., 2016). Fossil records from the Jurassic period are more abundant and include fossilised trackways (Gaillard et al., 2005) and a well-preserved cirolanid isopod (Etter, 2014). The earliest specimens of parasitic isopods (assumed to be representatives of Gnathiidae and epicarideans) also stem from this period (Klompmaker et al., 2014; Nagler et al., 2017). Another rare, fossilised case of parasitism by a cymothoid isopod was found in deposits from the Cretaceous, showing the isopod still attached to its host fish (Stinnesbeck et al., 2022). While it is common for terrestrial isopods to be preserved in amber (Lu et al., 2023), it is very rare to find marine forms preserved in this way. Schädel et al. (2021) described such a fossil from Myanmar, having an assemblage of more than 100 epicaridean larvae or paedomorphic males enclosed in a single piece of 100-million-year-old amber. A diverse assemblage of shallow-water isopod species from the Upper Cretaceous, which can be linked to the extant suborders Cymothoida, Asellota and Valvifera, provides evidence for the existence of a fairly modern isopod fauna as early as 100 mya (G. D. F. Wilson & Morel, 2022). The fossil record also shows that all major modern families of the terrestrial Oniscidea were already present and widely distributed in the mid-Cenozoic era, about 20 mya (Broly et al., 2013; Lu et al., 2023).

#### 2.2. Morphology

As mentioned earlier, isopods display a great diversity in body plans. Most are dorsoventrally flattened and broadly oval, whereas the body outline of others is narrow and elongate, sometimes cylindrical and rather vermiform. One outstanding characteristic that Isopoda share with Amphipoda and Ingolfiellida is the absence of a carapace (Ax, 2000; Lowry & Myers, 2017). Generally, the isopod body is divided into three sections: the cephalon, pereon and pleon. All segments of the cephalon are fused, including the first (and sometimes second) thoracomere. It bears two pairs of antennae, mandibles, two maxillae and maxillipeds, which are the appendages of the first fused thoracic segment (Menzies & Kruczynski, 1983). Most isopods have well-developed sessile compound eyes, although in subterranean, deep-sea, and

some parasitic species, eyes can be greatly reduced or completely absent. The pereon usually has seven free segments, each bearing a pair of uniramous percopods. Gnathiid isopods, most notably, differ in this regard by having only five pairs of percopods and their respective body segments (Lawrence & Keast, 1990; Menzies & Kruczynski, 1983). The pleon comprises five segments that can be fused to various degrees and a pleotelson, which is formed by the telson and a fused sixth abdominal segment (Lawrence & Keast, 1990). This fused pleonite bears the biramous uropods, which can vary from styliform to broad and often form a tail fan with the telson (Ax, 2000; Lawrence & Keast, 1990). The anterior five pleonites each bear a pair of biramous lamellar pleopods, which perform a respiratory function and can aid swimming. It is assumed that the aforementioned gill function of the pleopods correlates with the caudal displacement of the heart in isopods (Ax, 2000). In male isopods, the second (and sometimes first) pleopods are modified to bear an appendix masculinum and assist in sperm transfer (Lawrence & Keast, 1990; G. D. F. Wilson, 1991). The location of the two penes varies from the coxae of the last percopod pair (in Phreatoicidea) over the sternum of perconite 7 (in most isopods) to the pleotelson (in Valvifera) (G. D. F. Wilson, 1991). Another outstanding feature of Isopoda is their biphasic moult, during which they first shed the posterior half of their body, followed by the anterior half a few hours to a few days later (Carpenter, 2021; Tait, 1917). A characteristic of adult females - the marsupium - is formed during a reproductive moult (Warburg, 1993). Such a ventral brood pouch is an aspect all Peracarida have in common. It is formed by thin, broad, medially overlapping oostegites (Ax, 2000). The number of oostegite pairs varies between species. In addition or instead of such lamellar plates, some isopods form the marsupium from anterior and/or posterior pockets. Further, a few species brood their eggs in internal pouches (Harrison, 1984).

Given the highly diverse ecology of isopods, many modifications to the general body plan can be found within the group. In cave-dwelling and deep-sea species, too, adaptations not only include the loss of eyes but often also more elongated and slender appendages equipped with many mechanoreceptory setae and chemosensors for orientation in their dark environment (Botosaneanu, 2001). A parasitic lifestyle also makes several adaptations necessary. Epicarideans are the most highly modified isopods and often show little resemblance to freeliving forms, with females being hardly more than sacks of eggs (Lawrence & Keast, 1990; Williams & Boyko, 2012). Hence, sexual dimorphism can be very pronounced in parasitic groups. Gnathiidae display very different sexes, with rather slender males with large cephalons and protruding mandibles, and unimposing, juvenile-like females greatly enlarged with eggs (Chong et al., 2015). In many free-living isopods the only notable difference between sexes is usually a size dimorphism – much less pronounced than in parasitic forms – often with males being larger than females (Ayari et al., 2021; Brook et al., 1994; Kitaura & Nunomura, 2019), as well as the other way round (Thiel, 1999). The size range within the whole order extends from less than 1 mm to the largest confirmed record of a giant isopod at 421 mm (Soto & Mincarone, 2001). However, the majority of isopods range between 3 and 20 mm (Poore & Bruce, 2012). The group also shows a striking diversity in surface ornamentation, with spines, setae, microscales, pits, tubercles, tricorns and papillae being common features (Powell & Halcrow, 1982). Overall, most isopods are cryptically coloured or patterned (Poore & Bruce, 2012). Even strong colouration like striking reds or greens in some herbivorous marine isopods aids camouflage by matching the algae these isopods feed on. A few species can have several colour morphs and, depending on the species' life history may have the ability to change colour with the next moult cycle (Lee, 1966; Lee & Gilchrist, 1972). With regards to a subterranean lifestyle in many freshwater and terrestrial isopods, depigmentation and the absence of surface ornamentation is common (Botosaneanu, 2001).

#### 2.3. Feeding modes and life history

Keeping in line with the overall high diversity within the order, members of Isopoda display an abundance of feeding methods. Generally speaking, isopods can be considered as omnivores. Different groups specialise in different feeding strategies like filter feeding, detritus feeding, grazing, carnivory or feeding on the body fluids and tissue of host organisms as parasites. However, many isopods feed opportunistically on food items other than their main food source. For example, Brökeland et al. (2010) described the diet of four deep-sea asellote species. The most frequent food items found in gut contents were mineral particles and mucous material, but diatoms, foraminifers and their faecal pellets were also abundant. Therefore, those isopod species were classified as phytodetritus feeders. Similarly, the estuarine anthurid *Cyathura polita* (Stimpson, 1855) is known as a detritus feeder that includes diatoms in its diet. Furthermore, in laboratory settings, it has been observed preying on smaller crustaceans and scavenging on dead fish (W. D. Burbanck, 1962). In the scientific literature, many examples can be found of not only predatory but also herbivorous isopods opportunistically scavenging on carrion (e.g., Johnson, 1976; Paris, 1963). On the other hand, numerous species are primarily characterised as scavengers. In the deep sea, for instance, isopods are frequently encountered at natural as well as artificial food falls of various stages (Linse et al., 2014; McClain et al., 2019). Common food items of marine predators are polychaetes, amphipods and small bivalves (Ejdung & Elmgren, 2001; Johnson, 1976), or larger prey like fish in the case of micropredators that attach temporarily to their "host" to feed on tissue and body fluids (Delaney & Brusca, 1985). In some species, cannibalism has been observed as well. While feeding on conspecifics is quite common in laboratory settings, it occurs on smaller scales in the field. In natural settings, adults may prey on mancas or small juveniles, which in turn actively avoid the cannibalistic adults by occupying distinct microhabitats (Jormalainen & Shuster, 1997; Leonardsson, 1991). Apart from this, wood-boring limnoriid species ingest the scraped-off plant material, while boring sphaeromatids do not and are considered filter-feeders (Si et al., 2002). Most terrestrial isopods are decomposers that predominantly feed on decaying plant litter on the soil surface (Paris, 1963; Zimmer, 2002). Only a few species climb up plants to feed on living leaves (Glazier & Kleynhans, 2015) or plant seeds (Saska, 2008). Decaying leaf litter has already been colonised by microbes and fungi, which makes it more palatable and easier to digest (Zimmer, 2002). To additionally enhance nutrient assimilation, terrestrial isopods are known to practice coprophagy (Paris, 1963; Wieser, 1978; Zimmer, 2002). Horváthová and Bauchinger (2019) have shown that terrestrial isopods do not primarily rely on the cellulose content of leaves but on the biofilm associated with them. Hence, they classified this feeding type as biofilmivory. Biofilmivory, mostly along with detritus feeding, is also a prevalent feeding method in cave species (Brad et al., 2021; Ercoli et al., 2019). Moreover, Lindquist et al. (2005) reported on the association between marine isopods and episymbiotic microbes (mainly cyanobacteria) in coral reefs of Papua New Guinea. The isopods appear to farm their symbionts by actively exposing themselves on sun-lit substrates. The photosymbionts serve as a food source for the isopods and act as a defence mechanism by producing chemicals repulsive to fish. Therefore, they allow the isopods to be active during daylight (when more predators are active, too), which increases foraging opportunities and decreases competition with other nocturnal isopod species.

In addition to all the above-discussed feeding strategies, there is the parasitic feeding mode. The evolutionary origin of the parasitic lifestyle from scavenging or predatory feeding modes in several isopod families is still debated. Nagler et al. (2017) hypothesised that parasitism within isopods arose only once from a scavenging lifestyle in an early cirolanid-like ancestor. Subsequent diversification of parasitic strategies is proposed to have followed independent evolution within several clades, during which in some lineages a change of hosts from fishes to crustaceans occurred (Dreyer & Wägele, 2001; Ketmaier et al., 2008). In brief, species within Cymothoidae and Gnathiidae are ectoparasites of fishes (Cohen & Poore, 1994; Smit et al., 2014), and epicarideans are parasites of crustaceans (Williams & Boyko, 2012). Most Epicaridea are ectoparasitic as well. However, some species are endoparasites. While some parasites are highly host-specific, others have a larger pool of hosts. For instance, sequencing of blood meals from gnathiid isopods in the Caribbean revealed 70 host fish species in 27 families (Hendrick et al., 2023). However, this study also showed that even with such low host specificity, these gnathiids still have detectable host preferences, with fish species from the families Haemulidae and Lutjanidae exploited more frequently than others. There are also examples in the scientific literature of accidental infections of unusual hosts, like cephalopods or sea snakes (Pascual et al., 2002; Saravanakumar et al., 2012). Furthermore, in a few cases, isopods are parasitic on other parasites, like barnacles or bopyroids, which is termed hyperparasitism (Oanh & Boyko, 2020; van As, 2019). Usually, the parasite load of a host individual of bopyrid or cymothoid parasites is restricted to a single infestation by a female and accompanying male/s. Double infestations are rare but do occur sometimes (Cericola & Williams, 2015; Corral et al., 2019). However, Aneesh et al. (2022) reported an unusual case of simultaneous double infestation of individual host fishes by two different cymothoid species - a surface-attaching species and a buccal-infesting one.

A particularly interesting parasite-host relationship is the one between *Cymothoa exigua* Schioedte & Meinert, 1884 and its fish hosts. The feeding activity of this cymothoid isopod causes the degeneration of the host's tongue, which is then functionally replaced by the isopod itself (Brusca & Gilligan, 1983). While in this case, the host fishes appear to be in otherwise good condition, in various instances, isopod parasites can have detrimental effects on their hosts when they act as parasitic castrators. Infected hosts do not only show a reduction in growth rate and biomass, but the parasites also target their gonads or otherwise reduce their reproductive output, i.e. through feminisation of host males (modification of external secondary sex characters) (Beck, 1980; Corral et al., 2019; Fogelman et al., 2009). Many free-living isopods have to deal with their own parasites, too. For example, several, mainly terrestrial isopod species are commonly infected with *Wolbachia* strains. These maternally inherited proteobacteria cause functional feminisation of infected males (Bouchon et al., 1998). Other parasites, too, compromise the reproductive output of their isopod hosts. Larval acanthocephalans, for instance, have been shown to prevent female freshwater isopods from attaining sexual maturity (Kakizaki et al., 2003). Furthermore, an epicaridean isopod that has

been found in the brood pouch of an idoteid isopod causes breeding failure by destroying the entire brood (Salemaa, 1986). Other more or less commonly encountered parasites of isopods are nematodes (Poinar Jr., 1981; Rusconi et al., 2023), copepods (Kakui et al., 2023) and nematomorphs (Kakui et al., 2021). Apart from this, a very well-known case of parasitism in terrestrial isopods is an iridovirus infection that induces a colour change to an iridescent blueviolet along with behavioural changes like slower movements and responses, as well as reduced food consumption (Lupetti et al., 2013).

Moving onward to the topics of life cycles and reproduction, isopods also display an array of diverse strategies in these areas. Mating strategies and mating systems vary widely from gonochorism to sequential hermaphroditism and from social monogamy to polygamy and promiscuity. While the majority of isopods are gonochoristic (reproducing as either a male or a female throughout their lifetime), protogynous, as well as protandrous sex change is not uncommon, especially in parasitic isopods (Aneesh & Kappalli, 2020; Brook et al., 1994; M. P. Burbanck & Burbanck, 1974; Tsai et al., 1999). Furthermore, for several parasitic isopod species a socially monogamous mating system has been suggested, for instance, for the bopyrid Robinione overstreeti (Adkinson & Heard, 1995) in which pairs that are closely matched in body size share the same host individual over long periods of time (Bortolini Rosales et al., 2021). In the desert isopod Hemilepistus reaumurii (H. Milne-Edwards, 1840), which shows highly developed social behaviour, adults form lifelong monogamous cooperative pairs and later, with their offspring, strictly closed family communities (Linsenmair, 1984). Gnathiidae, on the other hand, practice polygamy. Hayashi et al. (2020) give an example of a polygynous mating system in Caecognathia sp., where males mate with several females, but a female mates only once with a single male. Within Gnathiidae it is not uncommon for males to form harems of up to 43 females depending on the species (Tanaka, 2007, and references therein). In one such harem-forming species, Tanaka and Nishi (2011) noticed an alternative male form that was often found amidst the females in a harem. These smaller males have inconspicuous mandibles and are thought to be sneaker males. Similarly, Shuster (1987) described alternative male forms in the sphaeromatid Paracerceis sculpta (Holmes, 1904). He termed them alpha-, beta- and gamma-males and noted that all morphs have mature sperm-producing organs. The large, ornamented alpha-males attract females and guard them in spongocoels where mating and brooding occur. Intermediate-sized beta-males resemble females and gain access to spongocoels by deceiving the bigger alpha-males. Finally, gamma-males, the smallest male form, are satellite males that resemble immature individuals but have the highest gonadal

investment of the three male morphs. In terrestrial isopods, instead, promiscuity is widespread. In *Armadillidium vulgare* (Latreille, 1804), for example, where both sexes mate with several partners, a single brood could be fathered by up to 5 different males (Durand et al., 2020). Polygynandry has also been suggested as a probable mating system in marine isopods. Nakamachi and Asakura (2020) observed that reproductive aggregations of an intertidal isopod were frequently composed of several males and females, sheltering together in a barnacle shell.

Isopoda, like other peracarids, are brooders with direct development that lack a planktonic larval phase. They do not have true larvae, as their young hatch from the brood pouch as miniature versions of the adults apart from lacking the last pair of percopods (for a detailed account of the various larval types of isopods see Boyko & Wolff, 2014; Martin, 2014). As with everything in Isopoda, the morphology of the marsupium can be quite variable (see section 2.2.), and even exceptional cases of internal brooding are known (Harrison, 1984; Klapow, 1970). After release from the marsupium, isopods develop generally over three manca stages (Montesanto et al., 2012), increasing their size with each moult (Carpenter, 2021). The seventh pair of percopods is fully developed after the moult from the third manca to a juvenile stage, and further moults are required to develop the secondary sexual characters of adults (Boyko & Wolff, 2014). Depending on the species and environmental conditions, breeding in isopods can either be seasonal (e.g., Ayari et al., 2021; R. J. Ellis, 1971; Kitaura & Nunomura, 2019) or occur throughout the year (e.g., Boos et al., 2021; Carpenter, 2021; Johnson, 1976). Lifespans vary from only several months up to more than 20 years in the case of the cave-dwelling species Bahalana geracei Carpenter, 1981 (Carpenter, 2021). Female isopods may be either semelparous (producing only one brood during their lifetime), or iteroparous (having multiple broods before they die). For example, females of the desert isopod Hemilepistus reaumurii (H. Milne-Edwards, 1840) produce a single brood within their 14-month-lifespan (Ayari et al., 2021), whereas females of the fish parasite Anilocra pomacentri Bruce, 1987, which have a similar life expectancy, can produce three broods (Adlard & Lester, 1995). Brood size varies widely from only 1-4 eggs in an anthurid species (Kensley, 1984) to several thousand in parasitic isopods (Bortolini Rosales et al., 2021; Cericola & Williams, 2015) and is positively correlated with female body size (e.g., Adlard & Lester, 1995; Brook et al., 1994; Carpenter, 2021). Brooding in itself is already a form of parental care, and in several species it has been observed that females create an aerating water current through the marsupium with their maxillipeds (Cericola & Williams, 2015; R. J. Ellis, 1971; Harrison, 1984). However, some isopods even provide extended parental care to their offspring, usually through cohabitating within the

parents' shelter (Kitaura & Nunomura, 2019; Thiel, 1999, 2003; Zaixso et al., 2009), or in the case of a social isopod species through providing food and offering protection for weeks after hatching (Linsenmair, 1984). Many isopod species are also known to show precopulatory mate guarding behaviour (e.g., Jormalainen et al., 2000; Kitaura & Nunomura, 2019; Shuster, 1981). Males of the freshwater asellid Caecidotea tomalensis (Harford, 1877) seize mature females and carry them until they have completed their posterior moult, at which point the male inseminates the female and releases it (R. J. Ellis, 1971). Another quite peculiar case of mate guarding has been observed in the janirid Iais pubescens (Dana, 1853) (Thiel, 2002). In this species, males manipulate the marsupium of adult females about to release their young to obtain virgin juveniles. The juveniles are then carried by the adult males for approximately seven days until they moult and are then fertilised and released. It is assumed that mate guarding evolved as a response to short female receptivity to copulation. The marsupium forms during the reproductive moult and males can only pass sperm into the marsupium as long as the exoskeleton is still soft, which leaves only a short time window for copulation. In a semelparous Caecognathia species, where females only have one chance for mating, female larvae can prolong their larval phase if adult males are absent (Hayashi et al., 2020). Contrary to aquatic isopods, oniscideans usually do not practice mate guarding. Zimmer (2001) assumes that this is due to the loss of temporal restrictions to female receptivity since copulation can occur throughout the entire moult cycle, and therefore, costs outweigh the gains.

#### 2.4. Habitat

Isopods are ubiquitous. They thrive in marine, brackish and freshwater environments, as well as in terrestrial habitats. More than half of all described species are marine and can be found from the intertidal zone to the deep sea. However, shallow coastal waters harbour the highest diversity of marine isopods (Poore & Bruce, 2012). Isopods inhabit soft sediments, where they frequently burrow into the sediment (Hessler & Strömberg, 1989), with some species having a completely interstitial lifestyle (W. D. Burbanck, 1962), as well as hard substrates, on which isopods tend to shelter in crevices and cracks, and – especially during low tide in the intertidal zone – hide under rocks to avoid predation (Johnson, 1976). Herbivorous aquatic isopods live on macroalgae that are also their food source (Lee & Gilchrist, 1972). In general, isopods are a cryptic component of ecosystems, often inhabiting substrates or associating with fauna and flora that offer protection. For instance, harem-forming gnathiids inhabit sponges (Shuster,

1987) or polychaete tubes (Tanaka & Nishi, 2011), while aggregations of the intertidal isopod Dynoides dentisinus Shen, 1929 can be found sheltering in barnacle shells (Nakamachi & Asakura, 2020). Other isopod species can sometimes be found firmly attached to the external tube wall of Ceriantharia, tube-dwelling anemones, surrounded by ptychocyst filaments and safely out of reach of the anemone's tentacles (Ceriello et al., 2020). Furthermore, Glynn (1968) reported on cases of facultative commensalism between sphaeromatid isopods and chitons. The isopods usually occurred along the pallial groove of the chitons, intercepting food scraps that the host did not ingest. Similarly, the idoteid isopod Edotia doellojuradoi Giambiagi, 1925 has been reported in association with a mussel (Zaixso et al., 2009). However, this once as commensalism regarded relationship is now assumed to be a case of parasitism since only mussels infested with isopods had gill damage and reduced weight. Another idoteid isopod, Synidotea variegata Collinge, 1917, lives as a symbiont on a sea urchin (Yesudas et al., 2021). Moreover, several marine isopods are known to live in and on scyphozoans. One such example is the deep-sea isopod Anuropus sp., which inhabits the bell cavity of its host (Barham & Pickwell, 1969); another is the sphaeromatid Cymodoce gaimardii (H. Milne-Edwards, 1840) that attaches to the external surface of the jellyfish (Browne et al., 2017). In both cases, it is not clear whether the symbiosis might be of a parasitic nature. As already mentioned above, there are groups of obligate parasites within Isopoda that infect either fish (Smit et al., 2014) or crustacean hosts (Williams & Boyko, 2012). Most of these are external parasites attaching to the skin or appendages or within the buccal and branchial cavities. Only a few, like the Entoniscidae, are endoparasitic and live in the body cavities of their hosts. While isopods are generally benthic organisms, some epicaridean larvae are sometimes observed as rare components of the zooplankton community, where they search for their intermediate copepod hosts (Williams et al., 2022). However, those larvae still tended to be found in the highest abundances near the bottom. Isopods are also some of the most abundant organisms in the deep sea, where the macrobenthic communities are often dominated by asellotes (O'Hara et al., 2020). They occur down to hadal depths in the various trenches of the world's oceans (Kniesz et al., 2018, and references therein). The deepest recorded isopod species, Macrostylis mariana Mezhov, 1993, was discovered in the Mariana Trench at depths below 10,000m (Mezhov, 1993). Other rather patchily distributed habitats in which isopods have been documented are seamounts (Svavarsson, 2006) and hydrothermal vent biotopes, both in shallow (Kamenev et al., 1993) and deep waters (Malyutina & Golovan, 2022). All these examples illustrate again how diverse Isopoda are and that they successfully evolved under a multitude of environmental conditions. Furthermore, many isopod species can tolerate a wide range of abiotic conditions; for example, a lot are euryhaline and are adapted to live in brackish habitats like estuaries (Newman et al., 2007) or inland salt lakes (P. Ellis & Williams, 1970) where they experience a wide range of salinities. Some terrestrial species are adapted to live in similarly abiotically stressful habitats, like salt marshes (Dias et al., 2005). Also, a great variety of isopods inhabit subterranean habitats like caves and groundwater environments (e.g., Botosaneanu, 2001; Brad et al., 2021). Epigean freshwater species can be encountered in lotic as well as lentic habitats (G. D. F. Wilson, 2008a). Moreover, as the most successful group of truly terrestrial crustaceans, Isopoda, specifically the Oniscidea, have colonised all imaginable land habitats from the littoral zone (Campos-Filho et al., 2018) to woodlands (Achouri et al., 2021) as an important component of the soil macrofauna. Additionally, a few terrestrial species are known to be myrmecophiles and live as symbionts in ant nests (Parmentier et al., 2017)

#### 2.5. Biogeography

As already established in the previous section, members of the order Isopoda can be found almost everywhere on Earth, with terrestrial Antarctica being the notable exception due to its present-day inhospitable conditions. Marine isopods are prevalent from the intertidal zone over sun-lit, shallow coastal waters to the deepest, lightless areas of the world's oceans. Non-marine isopods have colonised nearly every continent and can be found on continental as well as oceanic islands. They display remarkable adaptability, thriving in diverse habitats both above and below ground, and occur at various altitudes, from the shoreline to considerable elevations within mountain ranges. The current biogeographic distribution of any taxonomic group is shaped by a complex interplay of factors, such as the region's geological history, the evolutionary history of the taxon in question, and a variety of abiotic and biotic aspects. In the scientific literature, many studies document the biogeography of isopods and provide hypotheses about how those patterns arose. However, the spatial and taxonomic scales of these surveys vary widely. Some studies only investigate isopod distributions on local or small regional scales (Doti et al., 2020; Janssen et al., 2019) or focus on small taxonomic units like a specific species (Elsner et al., 2013; Recuero & Rodríguez-Flores, 2019) or a single genus (Malyutina et al., 2018; Riseman & Brusca, 2002). Nonetheless, the majority of biogeographic research deals with broad regional to continental/ocean basin scales (Bruce, 1986; Castelló et al., 2020; Kensley, 2001), either focusing on the whole isopod community within the general region (Brusca, 1987; Menzies & Glynn, 1968) or concentrating on ecological or taxonomic groups (Bruce, 1986; Brusca & Wallerstein, 1979; G. D. F. Wilson, 2008b). Only a few studies have documented the distribution of species-rich isopod families on a global scale (Cohen & Poore, 1994; Delaney, 1989; Markham, 1986).

Isopods, being predominantly benthic brooders with direct development, are considered weak dispersers, therefore endemism is expected to be high. For instance, 87% of endemism is reported for Southern Ocean isopods (Brandt, De Broyer, et al., 2007) and a similar percentage (86%) for Australian cirolanids (Bruce, 1986). Lower but still high endemism has been observed within isopods from the Galapagos region (51%) (Brusca, 1987). Moreover, in the Indian Ocean, between 46% to 79% of species in various subregions have been characterised as endemic (Kensley, 2001). Biogeographic studies with relatively big spatial scales frequently find that isopod communities of different regions tend to form well-separated clusters (Brandt et al., 2012; del Carmen Espinosa-Pérez & Hendrickx, 2006). The Southern Ocean, for instance, appears to be inhabited by a diverse and distinct isopod fauna (Brandt, De Broyer, et al., 2007; Brandt et al., 1999; Held, 2000), which probably evolved due to biogeographic isolation promoted by the Antarctic Circumpolar Current (Barker et al., 2007; Crame, 1999). In contrast, other regions like the Mediterranean Sea or the deep Sea of Japan seem to be areas of rather low diversity, likely due to extinction events during periods of low sea level or severe anoxic conditions, respectively (Cartes & Figueroa, 2020; Elsner et al., 2013). The deep sea was long thought of as a very homogeneous and rather uninhabitable environment with limited biodiversity. However, once more efficient sampling methods became available, it was discovered that diversity in the deep sea is indeed much higher than previously believed (Hessler & Sanders, 1967). Only very few, if any, deep sea peracarids are considered to be truly widespread (Brandt et al., 2012) and ridges and trenches often form effective dispersal barriers for non-swimming species (Bober et al., 2018; Johannsen et al., 2020). Isopods have colonised the deep sea on multiple occasions (Lins et al., 2012; Raupach et al., 2009) with some deep-sea families having evolved and radiated there (Hessler et al., 1979), while others invaded the deep sea more recently from high-latitude shallow waters (Held, 2000; Kussakin, 1973).

The origin of terrestrial isopods has been dated back to pre-Pangaean times in the late Paleozoic, and phylogenetic analyses suggest that the terrestrial environment has been colonised multiple times (Broly et al., 2013; Lins et al., 2017). To successfully shift from an aquatic life to an entirely terrestrial one, Oniscidea had to evolve several morphological,

physiological and behavioural adaptations (Hornung, 2011; Schmidt & Wägele, 2001). Those adaptations helped them to conquer the land, spread across almost every continent, and become the most successful group of crustaceans in the terrestrial realm. Oniscidea show a great variety of distribution patterns on different spatial scales. On a fine spatial scale, their distribution is highly connected to environmental heterogeneity (Sfenthourakis & Hornung, 2018), and desiccation resistance appears to be a key feature in shaping these distributions (Csonka et al., 2018). In parallel to the marine realm, temperature is a limiting factor, too. In a cartographic analysis of isopod distributions in the former USSR, for instance, it was observed that no isopods occurred north of the isocline of 120 days per year with temperatures above 10°C (Kuznetsova & Gongalsky, 2012). A particularly well-studied area in terms of biogeographic patterns within Oniscidea seems to be the Mediterranean region. Several studies have focused on the isopod fauna of Mediterranean islands and islets. Although similarity values between some islands are often found to be relatively high (Gentile & Argano, 2005; Triantis et al., 2008), different island groups were found to form distinct clusters (Gentile & Argano, 2005; Sfenthourakis, 1996). The observed structure reflects the interconnectivity between archipelagos and the most proximate mainland and evolutionary events acting on a local scale. Rates of endemism reported for terrestrial regions seem to be lower than in the ocean. Sfenthourakis (1996) documented 20% of oniscidean species from the central Aegean islands as endemic, a similar proportion to that of other Mediterranean archipelagos and indicative of geologically recent isolation from the mainland. Likewise, the observed percentage of endemism in the Transdanubian region of western Hungary, albeit considerably smaller than previously mentioned oceanic regions, is 16% (Hornung et al., 2008). Faunal influences from neighbouring regions show that Transdanubia is a diverse biogeographical crossroad for terrestrial isopods.

Peracarid fossils provide evidence that early ancestors of freshwater isopods had an incursion into continental ecosystems in the late Devonian, more than 360 mya (Robin et al., 2021). Further, fossils of phreatoicidean isopods show that this group was present in freshwater by the Triassic (~238 mya) and widespread on Gondwana by the Jurassic (G. D. F. Wilson, 2008b). This Gondwanan ancestry with subsequent vicariant events explains the modern biogeographical distributions of this group well. Continental drift is also the most probable explanation for the distribution of closely related freshwater microcerberids across Europe and North America (Wägele et al., 1995). Consequently, this group must be older than the Atlantic Ocean with at least a middle Cretaceous origin. Many freshwater isopods are stygobionts,

living in caves, various groundwater ecosystems, or the interstitial. Aquatic hypogean environments were colonised multiple times by members of nearly all suborders (Wägele, 1990). Stygobiontic cirolanids, for example, are considered to be derived from ancestors with a widespread Tethyan distribution that were left stranded in newly developing subterranean habitats by marine transgressions and regressions (Holsinger et al., 1994). According to Wägele (1990), colonisation of subterranean aquatic biotopes occurred in two ways. He assumes that a few families entered the new environments via the coastal groundwater. Most families, however, are supposed to be derived from epigean freshwater ancestors. In the present day, many aquatic species are increasing their ranges, often with humans playing an important role as vectors in their dispersal (Kemp et al., 2020). The construction of canals, ship traffic and recreational fisheries greatly increased the connectivity of freshwater ecosystems and aided in the introduction of species to new regions.

#### 2.6. Ecological and economic importance

Isopods are important components of healthy and functioning ecosystems. Since many isopods are scavengers or decomposers, they play an important role in nutrient recycling, both in aquatic and terrestrial ecosystems (Zimmer, 2002). They also act as bioturbators, resuspending fine soil particles, e.g., when numerous scavenging cirolanids emerge from the substratum in response to olfactory cues from carrion (Frutos & Sorbe, 2010). The giant isopod *Bathynomus* giganteus A. Milne-Edwards, 1879, too, generates considerable sediment disturbance while feeding on large carcasses (McClain et al., 2019). In the Baltic Sea, the predatory isopod Saduria entomon (Linnaeus, 1758) can alter the composition of the macrobenthic community by selectively preying on its preferred amphipod prey. However, when that is scarce, S. entomon picks the smallest size classes of a common bivalve to feed on, influencing the size distribution of the bivalve and consequently reducing intraspecific competition and decreasing population fluctuations (Ejdung & Elmgren, 2001). Isopods are themselves an important food source for an abundance of animals. Invertebrates that prey on aquatic or terrestrial isopods include insects, arachnids, centipedes, and hard corals (Brad et al., 2021; De Smedt & Henrard, 2022; Paris, 1963; Paula et al., 2021; Toft & Macías-Hernández, 2021). While predator-prey relationships with native predators usually do not threaten local isopod populations, in the case of an introduced crab in the Baltic Sea, predators can have a profound impact on naïve prey that has not yet learned an anti-predator response to the new threat (Yli-Renko et al., 2022). Besides invertebrates, a wide variety of fish are known to include isopods in their diet (W. D. Burbanck, 1962; Kim et al., 2022; Reed et al., 2018). For example, parasitic gnathiids on coral reefs are the predominant prey items consumed by cleaner fishes (Artim et al., 2017; Grutter, 1997). Other fish species include isopods in their diet while they are still small-sized juveniles but not as fully grown adults (Fischer et al., 2022; Jacobson et al., 2019). Moreover, in California, non-native terrestrial isopods have emerged as a significant seasonal energy source in the diet of trout (Rundio & Lindley, 2021). Further vertebrates that prey on isopods include birds, reptiles, amphibians, as well as mammalian predators like shrews (W. D. Burbanck, 1962; Churchfield, 1982; García-Padrón, 2021; Lo Valvo & Pieri, 2021; Paris, 1963). Recently, it has been observed that a few isopod species can aid with the fertilisation of seaweeds and with fungal spore dispersal. Lavaut et al. (2022) have demonstrated that individuals of Idotea balthica (Pallas, 1772) living on red algae carry the alga's spermatia on their bodies. When the isopods moved from a male to a female alga, they significantly increased the fertilisation success of the alga. Similarly, in the terrestrial realm, Oniscus asellus Linnaeus, 1758 has been shown to act as a short-distance spore disperser for a truffle species (Thomas & Thomas, 2022). The fruitbodies of the truffle are a food source for terrestrial isopods, and ingested spores pass through the isopods' digestive tract and get excreted within faecal pellets up to 18 days postfeeding. In a nutshell, isopods play an essential role in food webs and are a crucial part of functioning ecosystems. However, isopods can also have adverse impacts on natural environments. When burrowing sphaeromatids occur in high densities, they have a significant bioerosive effect on the coastline, albeit localised. In Malaysia, Sphaeroma triste Heller, 1865 burrows into intertidal sandstone where, in some instances, it can remove between 20% to 50% of rock volume from the outcrop surface, therefore increasing the area exposed to erosion and significantly weakening the rock (Dodge-Wan & Nagarajan, 2020). In the same fashion, erosive effects of the invasive isopod Sphaeroma quoianum H. Milne-Edwards, 1840 alter salt marsh habitats in California. Their burrowing activities enhance sediment loss from banks and marsh edges, in some cases causing undercutting, which can lead to losses exceeding 100cm per year (Talley et al., 2001). With further degradation of the ecosystems, these bioerosive effects are only likely to increase in severity. Likewise, wood-boring isopods pose a threat to mangroves, destabilising the trees and consequently making the sediment prone to erosion. As a result of sphaeromatids burrowing into the prop roots of mangroves, the relative root growth rate is reduced by 55% (Ellison & Farnsworth, 1990). The isopod burrows provide easy access to the roots for decomposing bacteria and fungi, thus accelerating their fouling (Rehm & Humm, 1973). However, Ellison and Farnsworth (1990) also found that an epibiontic layer of certain sponge and ascidian species inhibits isopod colonisation, indirectly facilitating root growth and mitigating the destructive impact of isopods on mangrove fringes. Another instance of isopods exerting a detrimental impact on natural ecosystems involves an introduced bopyrid infecting mud shrimps in North American estuaries. The parasitic castrator *Orthione griffenis* Markham, 2004 caused population collapses and local extinctions of its previously abundant new host *Upogebia pugettensis* (Dana, 1852), a critical ecosystem engineer (Chapman et al., 2012). Consequently, the services provided to the ecosystem and the mud shrimp's dependent symbionts were greatly diminished.

Members of Isopoda are not only of ecological importance but also have economic significance. Though no isopod species are harvested commercially and reports of isopods as part of human diets are somewhat anecdotal (Poore & Bruce, 2012), isopods can profoundly impact commercial fisheries and aquaculture. As already pointed out earlier, there is a myriad of parasitic isopods and micropredators that either target fish or crustaceans. Reports of isopods attacking fish caught in traps and nets, resulting in the fish being unmarketable, are not unusual (Stepien & Brusca, 1985), and isopod infestations and attacks on cultured fish and prawns are well documented. In India, for example, bopyrid isopods are considered one of the prime threats to the emerging prawn industry. Freshwater prawns in an aquaculture facility were infested with a prevalence of overall 46.2% (Gopalakrishnan et al., 2017). Female prawns, however, had a much higher infestation rate than males and were rendered infertile by the parasite. In fish aquaculture isopods will often infest or attack juvenile stocks, reducing growth and causing deformations that will see the fish discarded (Čolak et al., 2018), or even causing up to 100% mortality within short time periods (Rajkumar et al., 2005), leading to severe economic losses (Ali et al., 2022; Sanil et al., 2009). Treatments of isopod infestation in cultured fish customarily include the use of chemicals. In this regard, deltamethrin, trichlorfon and diflubenzuron have been shown to be effective against isopods (Ali et al., 2022; Athanassopoulou et al., 2009). As an environmentally safe alternative to chemical treatment, Kavanat Beerahassan et al. (2021) suggested the use of a microbial consortium of exoskeletondegrading bacterial strains to control outbreaks of parasitic isopods. Unlike the previously mentioned negative impacts of isopods on aquaculture, Svane and Barnett (2008) reported a positive effect of scavenging isopods at tuna farms. The scavengers were active at night and played an important role in removing waste feed from beneath the tuna farms that had sunken to the bottom. In ornamental aquaculture hatcheries, the use of the freshwater isopod Asellus aquaticus (Linnaeus, 1758) for biological prevention has been suggested. Since unfertilised fish eggs facilitate the spread of fungal and bacterial infections, they must be removed from the rearing tanks. Manual removal, however, is time-consuming and labour-intensive. Isopods held in the hatchery tanks feed on the microbial and fungal films that develop on dead eggs, therefore preventing the spread of infections, while at the same time posing no threat to newly hatched fish larvae (Kucska et al., 2022). Regarding another matter in aquaculture, isopod meal, which is rich in minerals and vitamins, has been proposed as an inexpensive and sustainable alternative food source for animals (Xu et al., 2021). Another group of isopods that collectively cause enormous damage and costs worldwide are the boring isopods - many Sphaeromatidae and Limnoriidae. The global damage to marine wooden infrastructure by woodborers (an umbrella term which also includes shipworms) in the early 2000s was estimated at US\$ 1 billion per year (Rayes et al., 2015). Furthermore, Davidson (2012) reported widespread damage to polystyrene floats used in aquaculture facilities and the resulting microplastic pollution caused by boring isopods. He estimated that a colony of 100,000 individuals can potentially produce 490-630 million plastic particles during their burrowing activity. From a more favourable perspective, Davidson (2012) also demonstrated that floats encapsulated with a polyethylene cover, or simply a different type of float, namely extruded polystyrene, inhibit boring and, therefore, can prevent isopods from generating further microplastic pollution. Staying on the subject of pollution, isopods have long been contemplated as biomonitors for the accumulation of toxins and heavy metals in the environment. They ingest heavy metals through or with their food or by way of surface adsorption (O'Callaghan et al., 2019) and then store them in special organelles of the hepatopancreatic tissue (Zimmer, 2002), which gives them a high bioaccumulation capability. Van Der Spuy et al. (2023) showed that the marine parasite Cinusa tetrodontis Schioedte & Meinert, 1884 accumulated significantly higher concentrations of elements than its fish host, thereby presenting the potential to act as an early warning model organism. Apart from this, Ahadi et al. (2020) explored the potential use of terrestrial isopods in composting raw sewage sludge, which also contains many heavy metals. They demonstrated that the utilisation of isopods, especially in combination with earthworms, can significantly improve the physiochemical properties of sewage sludge, rendering it suitable for use as an agricultural fertiliser. Moreover, isopods can not only tolerate high heavy metal concentrations in the environment, but they are also highly resilient to radioactive contamination. Effects of chronic radiation exposure have been studied in isopods from freshwater lakes in the surroundings of Chernobyl. Radionuclide contamination neither impacted development (Fuller et al., 2017) nor reproductive output (Fuller et al., 2018), nor did it influence the genetic diversity of the studied

isopod populations (Fuller et al., 2019). Given their resilience and their role as decomposers, isopods are generally appreciated for returning nutrients into the soil. However, if they occur in excessive numbers, they become a nuisance and are seen as pests. For example, the lack of pesticides and large amount of compost used in organic greenhouses, provide an ideal habitat for terrestrial isopods. When there is a population explosion, occasional feeding of isopods on greenhouse plants can cause serious damage (Messelink & Bloemhard, 2007). On the other hand, a favourable reduction of fungal pathogens on stored potatoes has been observed in the presence of isopods (Mészárosné Póss et al., 2022) contradicting their reputation as "storage pests". Finally, direct interactions between isopods and humans are rare. Only a few reports of isopod "attacks" on humans exist in the scientific literature. Stepien and Brusca (1985) mention that they had been bitten by cirolanids during nocturnal SCUBA dives, with the bites feeling much like horsefly bites. Similarly, Garzón-Ferreira (1990) described being attacked by another species of micropredatory isopod, which has weak host preferences, while snorkelling over seagrass meadows and patches of fire coral. He notes that after only a few minutes, a diver could have five or more individuals firmly attached to his skin and that the isopods began to feed immediately after attachment. In Australia, Tiemensma et al. (2017) documented a case of post-mortem scavenging of two cirolanid species on a human cadaver that had likely been submerged in the ocean for approximately 11.5 hours. In contrast to this destructive effect, Yue et al. (2019) consider isopods a promising source of novel medicinal compounds. They presented evidence that an extract from Ligia (Megaligia) exotica Roux, 1828 possesses antiinflammatory and analgesic effects, hence supporting its use as a means for pain-relief in Chinese folk medicine.

Chapter 3

#### 3. Progress in the discovery of isopods – is the description rate slowing down?

#### **3.1. Introduction**

Species richness is a commonly used metric to measure biodiversity. Knowing how many different species there are in space and time is vital for all biodiversity-based research and sustainable conservation strategies. Scientists have long tried to answer the intriguing question of how many species exist on Earth. Estimates range from about 2 million species (Costello et al., 2012) to 10 million species (Grassle & Maciolek, 1992). Even numbers from "at least 1 billion to 6 billion" species have been estimated based on various assumptions like parasite-host ratios and a very high ratio of bacterial to animal species (Larsen et al., 2017). Many recent estimates of total species richness for different taxa are based on observed description rates, often from a global dataset which buffers local biases, and are of a more conservative nature (e.g., Bebber et al., 2007; Costello, 2016; Deng et al., 2016).

The first question to ask when it comes to estimating total species richness is how many species have already been described. At the beginning of this century this question was still difficult to answer. Compiling global datasets for various taxa would have been very time-consuming and tedious. The bulk of knowledge in the field of taxonomy was hidden away in large and expensive printed monographs or low-impact and regionally restricted print-only journals that could be hard to come by (Godfray, 2002). Godfray (2002) also stated that "taxonomy is made for the web" and needs to reinvent itself "as a twenty-first-century information science" where the global knowledge and achievements of the field are collected in one place and made easily accessible for everyone. Now, with the publication of continually updated databases like the Catalogue of Life (Bánki et al., 2021) and the World Register of Marine Species (S. T. Ahyong et al., 2023), which also account for some known synonymies, assessing the number of already described species is a lot easier, and many studies make use of these data (e.g., Arfianti et al., 2018; Costello et al., 2012; Mora et al., 2011; Pagès-Escolà et al., 2020; Pamungkas et al., 2019).

The rate of description of new species also depends on the number of taxonomists working towards a complete inventory of life on Earth. Some studies raised concerns that taxonomy was in crisis (Bacher, 2012; Gaston & May, 1992; Hopkins & Freckleton, 2002). While this may be true in some institutions and for some taxa, it does not apply to the global workforce. Other studies found that, in contrast to a proposed decline in the taxonomic workforce, the number of people describing new species has been increasing over recent decades (e.g., Appeltans et al.,

2012; Arfianti et al., 2018; Costello, Wilson, et al., 2013; Eschmeyer et al., 2010; Songvorawit et al., 2021). However, the average number of species described per taxonomist showed a decrease (Costello et al., 2012), sometimes interpreted as a sign that it is getting harder to find new species from the shrinking pool of still undescribed species (Joppa et al., 2011b).

Isopods are a species-rich taxon of crustaceans found globally in terrestrial, marine and freshwater habitats. Based on expert opinion, Isopoda were said to be a promising taxon for tens of thousands of new species (Appeltans et al., 2012). Nevertheless, Poore and Bruce (2012) noted that the description rate of non-asellote marine isopods has slowed down since the 1990s. In a review by Williams and Boyko (2012) it was briefly mentioned that descriptions for parasitic isopods from the superfamilies Bopyroidea and Cryptoniscoidea (which were excluded from Poore and Bruce (2012)) showed two apparent peaks during the 1880–1930s and 1980–2000, while Costello (2016) found that the rate of description of parasitic isopods overall was declining since the 1990s. Previously, Costello et al. (2012) tried to predict the number of yet undescribed marine isopods based on past description rates. However, their statistical model yielded high uncertainties because the accumulation curve of species numbers still showed a steep increase and was not yet nearing an asymptote. Since these studies, many more species names have been added to WoRMS and more synonymies have been resolved. With this matured dataset of isopods available, this study examines the description rate for the whole order Isopoda, including terrestrial, marine and freshwater species, and subsets of parasitic and subterranean species. Moreover, an estimate of still undescribed isopod species is calculated by the non-homogeneous renewal process (NHRP) model after Wilson and Costello (2005). The NHRP is designed for this purpose and takes into account the variation between years to produce confidence limits around its predictions (S. P. Wilson & Costello, 2005). Additionally, indicators of taxonomic effort, such as the number of authors describing species, potentially biased by varying publication lifetimes of authors over time and changing trends in authorship practices, were analysed.

#### 3.2. Methods

#### 3.2.1. Data source and processing

Data including species names, authorities, the year of description and environment for the order Isopoda Latreille, 1816 were downloaded from the World Register of Marine Species (WoRMS) on 19<sup>th</sup> July 2018 (WoRMS, 2018) and updated on 20<sup>th</sup> February 2023 (WoRMS, 2023) after a delay due to the Covid-19 pandemic. All results, figures and tables in this chapter refer to the

updated 2023 dataset. During the cleaning process of the update some substantial changes to the taxonomy of bopyroid and cryptoniscoid isopods, addressed in Boyko and Williams (2023), came to our attention and were incorporated into the update. Although WoRMS is predominantly a database for species that occur in marine habitats, it contains sub-registers like the World Marine, Freshwater and Terrestrial Isopod Crustaceans database. Therefore it was possible to extract data not only for marine isopods but also for freshwater and terrestrial species, allowing an analysis of the whole order Isopoda. To avoid overestimating the actual global number of isopod species, only species names listed in WoRMS as "accepted" and checked by a taxonomic editor have been included in the analysis. Moreover, only extant species and those ranked as "species" were analysed, excluding more than 30 fossil isopods and more than 500 subspecies, though their status was "accepted". That left a species list with 10,333 entries for the 2018 dataset (Hartebrodt, 2019) and 10,687 accepted species in the updated list from 2023 (Hartebrodt, 2023b).

The data were checked for issues that may affect the analysis, and uncertainties were doublechecked with WoRMS and corrected. The most common issues were misspellings and different spellings of authors' surnames like "Magniez" and "Magneiz/Magnez/Magiez" or "Wägele" and "Waegele". Those were corrected and only one spelling for each surname was used. In cases where different authors had the same surname, it was checked back with the original species descriptions to sort out individual authors. They were distinguished by adding their given names' initials (e.g., E.H. Williams, J.D. Williams, and W.D. Williams). The number of taxonomists describing species over time is an indicator of taxonomic effort, which could be biased by changing authorship practices (Costello, Wilson, et al., 2013; Essl et al., 2013; Fisher et al., 2018; Joppa et al., 2011a). For the purpose of this paper, every author who published a scientific description of an isopod species is termed a "taxonomist" without any regard for the extent of his/her expertise in isopod taxonomy. In this analysis, only first authors have been considered to provide a minimum estimate of effort.

Isopods were classified as marine, freshwater or terrestrial species according to the environmental information available in WoRMS. Species inhabiting brackish environments were grouped with the marine species. In addition, subgroups of parasitic and subterranean isopods were classified from the literature. Only isopods that are obligate parasites were classified as "parasitic". Therefore, species of Corallanidae and Aegidae, often termed as parasites, were not included since those are micropredators (Brusca, 1983a) rather than parasites by definition. In the subterranean category, stygobionts and troglobionts were included but not
stygophile or troglophile isopod species because these usually have populations that live entirely aboveground.

#### 3.2.2. Data analysis

The data were analysed in several ways to get an accurate picture of the description rate of isopod species over time. First, the cumulative number of species described per year was plotted to see whether there was a levelling out in recent years. Second, the annual number of species' descriptions was plotted to investigate the general trend of the description rate. Additionally, the non-homogeneous renewal process (NHRP) model of Wilson and Costello (2005) was used to make predictions about future discoveries. The model not only extrapolates the rate of description but also takes into account that description rates differ over time. It was used to estimate numbers on how many isopod species might be described by the years 2050 and 2100 with a 95% confidence interval. The equation used by the NHRP model is the following:

$$t = \frac{N}{1 + \exp\left(-\beta(t - \alpha)\right)}$$

Here t is the number of isopod species described by a particular year; N is the total number of species to be described;  $\beta$  stands for the overall rate of description, and  $\alpha$  is the year of the maximum rate of description. A larger  $\beta$  implies a faster rate of description.

To estimate taxonomic effort, the number of first authors per year was plotted. Furthermore, the average number of species described per number of authors in a year was analysed over time. To determine the breakpoint from whereon the yearly average number of species described per author started to decline, a piecewise regression analysis was performed in R version 4.1.1 (R Core Team, 2021) using the "Segmented" package (Muggeo, 2008).

The publication lifetime of first authors was calculated as the number of years from an author's first description of an isopod species to their most recent. Decreasing lengths of publication lifetimes might suggest a decrease of taxonomists specialised in isopods. To examine whether there was a change in the span of authors' publication lifetime, linear regressions of publication lifetime against the year of an author's first species description were performed. Also, linear regressions on publication lifetime against the average number of species described by each author per year were performed to examine whether it has a significant effect on productivity. The regressions were done for all authors, once including and once excluding Vanhöffen, who

published the descriptions of all 67 species he described in one extensive monograph resulting in a publication lifetime of only one year.

Authorship practices change over time and might bias the overall estimate of taxonomic effort. Over the years, there might be a trend toward multi-authored species descriptions, termed the "et al." effect. During the analysis, the number of descriptions with multiple authors was counted, as well as the number of descriptions that had only a single author. Both were plotted per decade to compare them. The number of one-time authors, who described only a single isopod species, was also counted and was plotted as a proportion of all species descriptions per decade.

### 3.3. Results

## 3.3.1. Species diversity

Between 1758 and 2023 a total of 10,687 extant isopod species have been described by a cohort of 1,144 authors (755 first authors). Of the first authors analysed here, 282 were one-time authors who described only a single isopod species. The 21 most prolific authors, each describing more than a hundred species, together described about 43% of all accepted species (see Table A1). More than half of all named species are marine species — 6,151 in number. Isopods are the most species-rich crustaceans on land, with 3,840 terrestrial isopod species and 696 freshwater species. Approximately 14% of all species are obligate parasites, and 9% can be categorised as subterranean (i.e., cave-dwellers, groundwater species, inhabitants of interstitial spaces). A list of all subterranean species can be found in Appendix D, and an annotated list of parasitic isopod species is provided in Appendix E. The order Isopoda consists of 12 suborders comprising 141 families and 1,557 genera. The most species-rich genera, each containing over 100 species, are *Porcellio, Armadillidium, Cirolana, Gnathia, Venezillo, Proasellus* and *Trichoniscus*. The most species-rich isopod families are Sphaeromatidae, Armadillidae and Bopyridae (Table 3.1). At the other end of species richness, there are 15 monotypic families, which have only one genus containing a single species.

**Table 3.1.** A list of the 32 most species-rich families, each with more than 100 species. Families are ranked by the number of species. The percentage of species described within a family by certain time points is given.

| Family          | Number<br>of genera | Number<br>of species | First<br>species<br>described | Last<br>species<br>described | % of species described by |      |      |      |
|-----------------|---------------------|----------------------|-------------------------------|------------------------------|---------------------------|------|------|------|
|                 |                     |                      |                               |                              | 1850                      | 1900 | 1950 | 2000 |
| Sphaeromatidae  | 100                 | 664                  | 1787                          | 2021                         | 6                         | 17   | 45   | 89   |
| Armadillidae    | 82                  | 647                  | 1816                          | 2023                         | 1                         | 14   | 60   | 94   |
| Bopyridae       | 170                 | 639                  | 1798                          | 2023                         | 1                         | 9    | 46   | 83   |
| Cirolanidae     | 63                  | 525                  | 1804                          | 2023                         | 1                         | 10   | 25   | 77   |
| Trichoniscidae  | 87                  | 524                  | 1818                          | 2023                         | 1                         | 4    | 46   | 89   |
| Philosciidae    | 112                 | 508                  | 1763                          | 2023                         | 1                         | 5    | 27   | 83   |
| Cymothoidae     | 45                  | 384                  | 1758                          | 2023                         | 9                         | 38   | 50   | 85   |
| Munnopsidae     | 43                  | 342                  | 1861                          | 2022                         | 0                         | 11   | 26   | 81   |
| Asellidae       | 19                  | 333                  | 1758                          | 2022                         | 1                         | 5    | 26   | 90   |
| Porcellionidae  | 19                  | 330                  | 1804                          | 2023                         | 7                         | 35   | 72   | 96   |
| Anthuridae      | 26                  | 309                  | 1808                          | 2022                         | 1                         | 3    | 12   | 89   |
| Armadillidiidae | 18                  | 272                  | 1798                          | 2023                         | 5                         | 19   | 58   | 84   |
| Eubelidae       | 50                  | 257                  | 1873                          | 2018                         | 0                         | 14   | 53   | 94   |
| Gnathiidae      | 12                  | 237                  | 1804                          | 2023                         | 1                         | 8    | 32   | 72   |
| Idoteidae       | 24                  | 190                  | 1766                          | 2017                         | 13                        | 32   | 57   | 93   |
| Agnaridae       | 14                  | 189                  | 1771                          | 2022                         | 3                         | 9    | 44   | 77   |
| Paramunnidae    | 45                  | 185                  | 1864                          | 2022                         | 0                         | 4    | 21   | 46   |
| Janiridae       | 22                  | 175                  | 1814                          | 2022                         | 2                         | 11   | 38   | 94   |
| Arcturidae      | 14                  | 161                  | 1806                          | 2021                         | 2                         | 14   | 48   | 83   |
| Aegidae         | 8                   | 149                  | 1758                          | 2023                         | 8                         | 35   | 56   | 73   |
| Desmosomatidae  | 20                  | 145                  | 1864                          | 2020                         | 0                         | 6    | 19   | 75   |
| Platyarthridae  | 8                   | 136                  | 1833                          | 2021                         | 1                         | 9    | 44   | 83   |
| Haploniscidae   | 8                   | 125                  | 1877                          | 2017                         | 0                         | 1    | 7    | 74   |
| Trachelipodidae | 8                   | 125                  | 1833                          | 2017                         | 3                         | 16   | 56   | 90   |
| Styloniscidae   | 17                  | 124                  | 1853                          | 2022                         | 0                         | 4    | 35   | 69   |
| Munnidae        | 6                   | 114                  | 1839                          | 2023                         | 3                         | 10   | 36   | 91   |
| Ligiidae        | 6                   | 113                  | 1767                          | 2022                         | 7                         | 20   | 54   | 78   |
| Ischnomesidae   | 9                   | 109                  | 1866                          | 2019                         | 0                         | 6    | 22   | 80   |
| Scleropactidae  | 26                  | 108                  | 1854                          | 2021                         | 0                         | 10   | 34   | 77   |
| Serolidae       | 22                  | 107                  | 1775                          | 2015                         | 4                         | 21   | 36   | 80   |
| Antarcturidae   | 18                  | 106                  | 1881                          | 2022                         | 0                         | 10   | 34   | 89   |
| Leptanthuridae  | 14                  | 105                  | 1853                          | 2021                         | 0                         | 9    | 21   | 93   |

The first 100 years of discovery after the publication of Linnaeus' Systema Naturae in 1758, in which the first seven still valid isopod species were described, yielded relatively few species. Until the end of the 18<sup>th</sup> century an average of only 6 species were described per decade. The following 50 years saw, on average, 43 species descriptions per decade, many of which were contributed by the three most prolific taxonomists of that time. Leach described 30 species between 1814 and 1818; J.F. Brandt contributed 37 species descriptions between 1831 and 1841; and H. Milne-Edwards added 34 new species in 1840, at which point the overall number of named isopod species had climbed to 194. For a detailed history of the discovery of marine isopods see Poore and Bruce (2012). From the 1850s to the end of the 19<sup>th</sup> century the average number of new species per decade climbed to 209. Descriptions of new isopod species started to accumulate faster, and after the 1880s the rate increased swiftly and steadily up to the 1970s, when the slope of the curve got even steeper (Fig. 3.1a). The terrestrial subgroup follows this overall pattern very closely (Fig. 3.1c), whereas for marine isopods the cumulative number of species seemed to plateau for short periods of time in the 1890s and the mid-20<sup>th</sup> century, before resuming a steep increase after the 1960s (Fig. 3.1b). A dip in descriptions during World War II and its aftermath is clearly visible in almost all groups (Fig. 3.2). Only freshwater isopods show a small peak in species descriptions during that time, largely due to Nicholls' work, who published 36 descriptions of freshwater isopods in 1943 and 1944 (Fig. 3.2b). Besides having far lower species numbers than marine isopods, discoveries of freshwater species stayed low until the 1880s (Fig. 3.1b). The discovery of subterranean species started later, and most were discovered after the 1950s (Fig 3.1d).



**Figure 3.1.** Cumulative numbers of isopod species described per year. (a) all isopods, (b) marine (black circles) and freshwater (grey triangles), (c) terrestrial and (d) parasitic (black circles) and subterranean (grey triangles). Note that the scales vary.

Isopods showed a peak of discovery in the late 20<sup>th</sup> century, with an all-time high of 200 species described in the year 1982 (Fig. 3.2a). Most subgroups peaked during the same period, except for freshwater isopods, which had their highest peak at the beginning of the 21<sup>st</sup> century and terrestrial species having their main peak earlier in the 1930s (Figs. 3.2b-d). In the past three decades the number of species described per year has decreased notably in overall species descriptions and specifically marine isopods. Yearly descriptions of freshwater isopods are generally low, although 2020 was a record year that saw 34 freshwater species described. This was more than 10-times the average of the previous 10 years. On average one third of yearly descriptions over the past 10 years were parasitic and subterranean species.



**Figure 3.2.** The number of isopod species described per year. (a) all isopods, (b) marine (solid line) and freshwater (dotted line), (c) terrestrial and (d) parasitic (solid line) and subterranean (dotted line). The lines are 10-year moving averages. Note that the scales vary.

## 3.3.2. Predictions of yet to be named species

The NHRP model predicted another 470 isopod species to be described by the year 2050 with a 95% confidence interval of 390 to 560 (Fig. 3.3a). Until 2100 a total of 660 (540–810) species were predicted to await scientific description, assuming the pace of description continues at its current rate. This would bring the cumulative number of isopod species up to 11,347 in 2100 (Fig. 3.3a). When split into subgroups, estimates from the model show that most of the future discoveries could be expected in marine and terrestrial environments, and only a small part will be from freshwaters (Fig. 3.3b).



**Figure 3.3.** The observed and predicted cumulative number of isopod species described over time. (a) Observed (black line) and predicted (red line) cumulative number of all isopod species. (b) The observed (black lines) and predicted cumulative numbers of species within the subgroups (dark blue: marine; green: terrestrial; purple: parasitic; yellow: subterranean; and light blue: freshwater isopods).

## 3.3.3. Taxonomic effort

Since the first scientific description of an isopod species by Linnaeus, 755 first authors have described the species known today. Over time the number of first authors per year has increased. Since the 1950s there were more than three times as many authors involved in isopod taxonomy as during the first half of the 20<sup>th</sup> century (Fig. 3.4). This pattern can be seen in almost all subgroups (Fig. A1). However, the average number of species described per author has been declining over the last century (Fig. 3.4). Nevertheless, the overall trend sees many more taxonomists describing fewer species. A piecewise regression analysis found the breakpoint in the data series to be in 1916, whether zero values were excluded or not (Fig. 3.5). Since then, the average number of species described per authors active in the same year has declined.



**Figure 3.4.** The number of first authors per year (solid line) and the average number of species described per author per year (dotted line). The lines are 5-year moving averages.



**Figure 3.5.** Breakpoint analysis for the average number of species described per number of authors in any given year. The red line is a fitted broken-line of the segmented model. The black circle indicates the breakpoint in 1916.

The average publication lifetime of an author was found to be 8.4 years, with 30% of authors ranking above the average. Although a linear regression shows a weak decreasing trend ( $R^2 = 0.006$ , P < 0.05) in publication lifetime over the years (Fig. A2a), this change was not significant ( $R^2 = 0.00004$ , P = 0.88) when data of authors who started publishing after 2010 were excluded (Fig. A2c) because these authors may still be publishing in the future. Again, a weak decreasing trend of publication lifetime ( $R^2 = 0.01$ , P < 0.05) could be detected when all one-time authors

were excluded from the linear regression analysis (Fig. A2b), but this trend was again not significant ( $R^2 = 0.0002$ , P = 0.77) when data for authors who started publishing after 2010 were also excluded (Fig. A2d). Furthermore, there was no significant evidence (P > 0.05) for a change in productivity over time, whether Vanhöffen was included (Fig. A3a) or excluded (Fig. A3b).

Multi-authored descriptions became more abundant during the late 19<sup>th</sup> century but stayed relatively low until the late 1960s (Fig. 3.6). Since the beginning of the 21<sup>st</sup> century multiauthored descriptions outnumbered the number of species described by a sole author (Fig. 3.7), peaking at a proportion of about 70% of new species descriptions during the 2010s and slightly over 90% within the first three years of the current decade (Fig. A4b). In contrast, the number of descriptions published by one-time authors is negligible (Fig. 3.6). Their proportions were high in the early history of isopod discovery (Fig. A4a) when the overall number of descriptions was low. However, since the late 19<sup>th</sup> century, the contribution of one-time authors to isopod taxonomy has been small. During this time span, the highest proportion of one-time authors was found in the current decade with close to 7% (Fig. A4a). In the last "full" decade , the 2010s, the proportion of descriptions by one-time authors was about 5%.



**Figure 3.6.** The annual number of descriptions for all species (dotted line). The solid blue line shows the multi-authored contributions per year, and the solid orange line shows the number of descriptions made by one-time authors. The lines are 2-year moving averages.



Figure 3.7. The number of descriptions published by sole (black circles) and multiple authors (blue triangles) in each decade.

### 3.4. Discussion

### 3.4.1. Named and unnamed species diversity

A decrease in the annual number of species described started more than three decades ago for all isopod species. Because this trend is not a short-term one, it cannot be explained by a time lag in data entry into the database. Estimates for future descriptions of species new to science from the non-homogeneous renewal process model predict approximately 660 additional species to be described until 2100. This suggests that 94% of isopod species that are predicted to be named by the end of this century already have been described. For other animal groups it has been estimated that about two thirds of all species are described, including stoneflies (DeWalt & Ower, 2019), scale insects (Deng et al., 2016), polychaete worms (Pamungkas et al., 2019), amphipods (Arfianti et al., 2018) and the world's marine species in general (Costello et al., 2012). Bryozoans have been labelled "one of the better-known taxa on Earth" due to the fact that about 80% of species predicted to be named by 2100 already had been described (Pagès-Escolà et al., 2020). Therefore, isopods represent a very well-known taxan. Of course, as more data will become available in the future these predictions may change. Bebber et al. (2007) showed that unless a taxon's species inventory is at least 90% complete extrapolations based on existing data may be associated with large margins of error.

Some more conspicuous taxa showed a decline in new species descriptions many decades ago, e.g., mammals globally (Fisher et al., 2018) and birds and flowering plants in the UK (Bebber et al., 2007). An asymptote in description rates was reached about one hundred years ago in well-studied regions, notably in Europe for mammals, birds, black corals, echiurans and

euphasiid crustaceans (S. P. Wilson & Costello, 2005), as well as for fish, gastropods, sponges, cnidarians, echinoderms, bryozoans and tunicates in Britain and Ireland (Costello et al., 1996). Although an asymptote has not yet been shown for taxa globally, our data suggest that it may be emerging for isopods. Time will provide the confirmation needed. Similar analyses to those presented here for other taxa may show them to be reaching an asymptote as well.

This study did not take into account the number of already discovered but not yet formally described isopod species deposited in museum and research collections. Fontaine et al. (2012) noted an average shelf life of 21 years between the discovery and the taxonomic description of a new species. However, they also found that aquatic species have a shorter shelf life than terrestrial ones and that the shelf life of newly discovered invertebrate species is shorter than for plant or vertebrate species. For recently described isopod species, shelf life varied between 0 years (Monticelli Cardoso et al., 2022) and 54 years (Williams et al., 2020) with an overall tendency toward the lower range of the spectrum. For example, Malek-Hosseini et al. (2022) described a new groundwater species from Iran within three years of sampling, additionally using molecular data to corroborate its species status. In contrast, the material from which the first bopyrid isopod species from hydrothermal vents was described was collected 21 to 10 years before its taxonomic description (Kato et al., 2022). Naturally, field sampling continues to unearth new species. Depending on the sampling location, the proportions of reported unnamed isopod species in field samples may vary from none (in historically well-studied areas like Europe) to about 18% (López-Orozco et al., 2022 identified three new terrestrial species) and up to as much as 93% (Poore et al., 2015 found that only 9 o 127 marine species from western Australia were previously known to science). From the latter study, none of the sampled species were identifiable with any of the 359 isopod species collected on the continental slope of south-eastern Australia of which 90% were undescribed at the time of sampling (Poore et al., 1994), making Australia a rich source of new isopod species. Similarly, Brandt et al. (2007) found that only 13% of the discriminated 674 deep-sea isopod species from Southern Ocean samples were known to science. Thus, the Southern Ocean as well as the waters around Australia may account for a high proportion of the yet undescribed species globally. However, when these species will be described remains unknown. A list of 21 studies which reported undescribed species (Table A2) contains 1,225 possible new isopod species, of which most were sampled in the deep sea and in and around Australia. Given the average description rate of 75 descriptions/year from the past 20 years, it would take about 16 years to formally describe all these species. It has to be noted that those species were undescribed at the time of publication of the respective study. It has not been checked whether any of the reported species have been

formally described since and might now already be part of our dataset of globally described isopod species. However, it is encouraging that a significant proportion of yet-to-be described species may already be collected and awaiting description.

Although scientists are continuously adding new names to the isopod inventory, not all of those names will prove to be valid. Several newly described species might be placed into synonymy over the years. Bouchet (2006) suggested that 10-20% of new species described each year will turn out to be synonyms. Likewise, Appeltans et al. (2012) note that it takes time to discover synonyms and estimated that for every five newly named species, at least two had already been described. Most synonymies will likely be identified and resolved during comprehensive revisions of isopod genera or families (e.g., Stransky et al., 2020; Taiti & Monticelli Cardoso, 2020). Examination of museum specimens may reveal synonyms (Hughes et al., 2020), as well as lead to the recognition of species new to science (Garcia, 2020). Thus, taxonomic revisions can decrease the number of accepted species, as well as discover new species.

## 3.4.2. Cryptic diversity

Another issue that adds to uncertainty about the number of existing isopod species is cryptic diversity whereby species can only be distinguished using molecular methods. However, isopod and other crustacean taxonomists stated they could always find morphological differences on close examination and thus true cryptic diversity in isopods is negligible (Appeltans et al., 2012, supplemental information). Recent years have seen an increase in species delimitation studies using molecular data as well as integrative taxonomic approaches (Pante et al., 2015), with some of them discovering putative new species. Species under scrutiny in such cryptic diversity studies tend to be geographically widespread species either in the deep sea (Raupach et al., 2007) or coastal habitats (Hurtado et al., 2016) or recognised species complexes already thought to harbour hidden diversity (Schnurr et al., 2018). Held (2003), for instance, tested the singlewidespread-species-hypothesis of a morphologically variable Antarctic serolid isopod and identified two strongly distinct genetic clades uncovering an overlooked species. Likewise, a molecular analysis by Schnurr et al. (2018) disentangled two widely distributed munnopsid species complexes in Icelandic waters. Their data suggested that the *Eurycope producta* species complex consists of eight separate species, and the Eurycope inermis complex harbours four distinct species. Some of the discovered genetic clades could be linked to other already described species, leaving a total of seven species new to science. Even more putative new species have been uncovered during a genetic study of Haloniscus species from groundwater,

springs, caves and salt lakes in Australia (Guzik et al., 2019). Each of the 26 new species was found to be restricted to a small geographical range. However, almost none of the previously unknown species detected by genetic sampling were truly cryptic species. Morphological characters could be found in just about every case, separating the new species from similar ones. Circling back to the problem of collected but unnamed species, few of the newly delimited species from molecular studies were formally described following their detection (Pante et al., 2015; Schlick-Steiner et al., 2007). Most studies note that additional taxonomic work is required to fully support a species hypothesis with a combination of DNA data and morphological characters (e.g., Guzik et al., 2019; Jennings et al., 2020). While molecular methods can be helpful in indicating specimens which may represent new species, and have been used since the 1980s for isopods and other taxa, there is no indication that they significantly increase description rates overall (Appeltans et al., 2012).

### 3.4.3. Taxonomic effort

The number of taxonomists describing new species of isopods has increased markedly over time, as it has for all taxa globally. Over the past fifty years, more authors have described isopod species than ever before (Fig. 3.4). Only for authors describing freshwater isopods has there been a steep decline within the past two decades (Fig. A1b), and this substantial decline is also evident in species numbers. Although it seems that freshwaters may not yield many more new species, it has been suggested that non-saline environments harbour high cryptic diversity (G. D. F. Wilson, 2008a). Indeed, a meta-analysis of cryptic diversity studies found that more posited cryptic species have been discovered in freshwater than in terrestrial or marine environments (Poulin & Pérez-Ponce de León, 2017). However, whether this genetic diversity translates into high species diversity is uncertain. Another interpretation of the decline in new freshwater species could be less taxonomic interest, but there seems no reason to assume why this may be the case.

Increasing numbers of people describing new species have been found in all similar studies (e.g., Appeltans et al., 2012; Arfianti et al., 2018; Costello, Vanhoorne, et al., 2015; Joppa et al., 2011a; Pagès-Escolà et al., 2020; Pamungkas et al., 2019; Tancoigne & Dubois, 2013), at least partly contradicting a not uncommon view that the field of taxonomy is in crisis (Bacher, 2012; Godfray, 2002; Hopkins & Freckleton, 2002). There is no doubt that taxonomy will benefit from more funding and renewed prestige (Agnarsson & Kuntner, 2007; Christenhusz & Byng, 2016; Higgs, 2016), but a lack of people describing new species is not evident from the data.

The field of taxonomy is not in decline but changing. It modernised itself from a primarily morphological discipline towards a multi-disciplinary field including genetics and phylogeny. Integration of these different skill sets could explain the now higher number of multi-authored descriptions. To avoid this trend of increasing proportions of multi-authored descriptions from affecting the trend in numbers of active taxonomists over time, only the first author of a species description was considered in our analysis. Therefore, the given numbers of authors contributing to isopod taxonomy are an underestimate of the taxonomic force. Also, the proportion of authors who described only a single isopod species has not increased for more than a century. Nor have taxonomists' publication lifetimes significantly decreased over this time. This further indicates that the increased number of taxonomic authors is an increase in effort, as concluded by others on other taxa (Appeltans et al., 2012; Essl et al., 2013; Joppa et al., 2011b), and not reduced by having proportionally more part-time taxonomists or more people who stop publishing descriptions after only a few years.

The present analysis did not consider the level of expertise of every author because this could not be determined from the available data. Some are well-established taxonomists who have spent a lifetime building up their extensive knowledge of a taxon and can therefore be considered true experts. Others are at the start of their career and still working towards expert status. Again, others contribute an essential amount of their work in other research fields, nevertheless adding valuable information with every published species description. Some people do not think it appropriate to call everyone who describes a species a taxonomist (Wheeler, 2014) and most likely, not everyone who does describe a species now and then would characterise themselves as such. However, regardless of which labels one puts on the authors of species descriptions, the fact remains that all of them contribute to the scientific inventory of the planet's biodiversity and draft testable hypotheses. Our data show that the percentage of people who publish only a single species description is tiny and has not increased for over a century. For more information on the perceived and detectable loss of expertise and the state of taxonomy in different countries, see Lovejoy et al. (2010), Boxshall & Self (2011), Coleman (2015), and the Australian Academy of Science (Taxonomy Decadal Plan Working Group, 2018). These assessments of taxonomy in the UK, Canada and Australia and New Zealand all considered people who described new species as a sub-set of all those working in taxonomy.

Although there have never been so many taxonomic authors than in recent decades, the average annual number of isopod species described per taxonomist has declined strongly over the last century. Such a decline in species per taxonomist has also been found for the closely related Amphipoda (Arfianti et al., 2018) and for other taxa, such as scale insects (Deng et al., 2016),

flowering plants (Joppa et al., 2011a), as well as spiders, amphibians, birds and mammals (Joppa et al., 2011b), marine and terrestrial parasites (Costello, 2016), fossil and extant marine bryozoans (Pagès-Escolà et al., 2020) and overall marine and non-marine species (Costello, Wilson, et al., 2013). The reduction in the description rate of isopod species observed here, despite peak numbers of taxonomists, suggests that most species have already been named, as concluded for other taxa (Arfianti et al., 2018; Joppa et al., 2011b; Pamungkas et al., 2019). Contradicting this interpretation, Sangster & Luksenburg (2015) proposed that the lower number of species described per taxonomist is rather a consequence of the improved quality of species descriptions than a slowdown of progress in species discovery. They found that the number of pages of taxonomic descriptions has increased compared to the 1930s. So has the number of specimens on which the description of a new species is based, the number of characters to differentiate it from its most closely related species and the number of illustrations in a publication. With this increased effort put into the scientific description of a species, it may take more time from the initial discovery of a species until the publication of its formal description. However, other studies point to greater efficiencies in taxonomy due to greater access to field samples and literature, and improved museum collections, laboratory methods, publication efficiency, and communication between people (Costello et al., 2014; Eschmeyer et al., 2010). We found a similar productivity of taxonomists over their isopod-description careers, indicating that modern efficiencies and co-authorships may indeed balance out the richer species descriptions.

At the upper end of productivity, 21 taxonomists (only 3% of the taxonomic workforce over time) have described approximately 43% of all known isopod species. The three most prolific authors described almost exclusively terrestrial isopod species, which are more easily accessible and can be sampled without the deployment of advanced sampling equipment by comparison with marine isopods. Accordingly, our model estimates suggest that a considerable proportion of future discoveries might be made in the less accessible marine environment. Also, because large and geographically widespread species tend to be named first (Costello, Lane, et al., 2015; Higgs & Attrill, 2015), many of the yet-undiscovered isopod species are likely to be small and/or geographically restricted species (Liu et al., 2022; Scheffers et al., 2012). There is speculation on whether most of the yet-undescribed species will be found in collections (Coleman, 2015; Scheffers et al., 2012) or will be newly discovered during fieldwork (Grieneisen et al., 2014). However, both named and unnamed species, especially freshwater and endemic species, are at risk of extinction due to human impacts (Costello, 2015; Liu et al., 2022). Because many new species tend to be discovered in biodiversity rich-spots, which already face many threats like extensive habitat loss, they will be more vulnerable (Manes et al., 2021; Scheffers et al., 2012) and are at risk of going extinct before they are even discovered (Costello, May, et al., 2013). It is therefore important that taxonomists continue to describe new species. Only named, and as such well delimited species, can be included in threat reports and conservation plans.

# 4. Isopod taxonomic diversity is bimodal with latitude

## 4.1. Introduction

Biodiversity is not uniformly distributed across Earth. One of the most striking and historically well-explored patterns of biodiversity is the latitudinal diversity gradient (LDG) in species richness. Until relatively recently, the longstanding view was that the LDG is categorically unimodal, i.e. bell-shaped with a diversity peak at or near the equator and decreasing species richness toward the poles (e.g., Stehli et al., 1969). While this pattern can indeed be observed in some terrestrial organisms (Clarke & Crame, 1997; Dantas & Fonseca, 2023) and a few marine groups (e.g., Boltovskoy & Correa, 2017), in recent years evidence has accumulated that the LDG is indeed bimodal for most taxa with a dip in the equatorial region (Cerezer et al., 2022; Chaudhary et al., 2016). Although some argued that the observed bimodality is an artefact of sampling bias due to insufficient sampling of equatorial regions (Fernandez & Marques, 2017; Menegotto & Rangel, 2018), several studies that accounted for sampling bias in their data concluded it does not affect the overall shape of the LDG (Boltovskoy & Correa, 2017; Chaudhary et al., 2017; Rivadeneira & Poore, 2020). The precise shape of the gradient is taxon-specific (Chaudhary et al., 2017), in many cases showing interhemispheric asymmetry (Crame, 2000; Hernáez et al., 2021; Kussakin, 1973) or exhibiting an inverse latitudinal pattern with diversity peaks outside the tropics (Cerezer et al., 2022; Gray & Rabeling, 2023; Krug et al., 2007).

Modern latitudinal diversity gradients have likely been maintained for millions of years. The fossil record of 50,000 marine species indicates that there has been reduced species richness at the equator during warm interglacial periods (Chaudhary et al., 2016). Studying both marine and terrestrial taxa, Crame (2023) suggested that the gradient may be a fossil feature that formed in the Early Cenozoic when evolutionary rates were higher in the tropics before extra-tropical regions expanded in the Late Cenozoic providing more opportunities for speciation in higher latitudes. Culver and Buzas (2000) assumed a similar temporal placement (~36 mya) for the origin of the LDG in their study on benthic deep-sea foraminifera. However, they argued for a seasonally fluctuating food supply in higher latitudes as a cause in the wake of global climatic cooling, an argument Crame also used in an earlier study (Crame, 2020). Focusing on planktonic foraminifera, in contrast, resulted in the hypothesis that a modern-style LDG

emerged only 15 mya when enhanced thermal niche partitioning at low latitudes led to higher speciation rates (Fenton et al., 2023).

Although the generality of the LDG is widely accepted, there is no consensus on the drivers behind this pattern (Currie et al., 1999; Hillebrand, 2004a). Even though most studies only consider an individual process or category of variables, the reality is far more complex, and there is likely no single explanatory mechanism that shaped and maintained the LDG (Condamine et al., 2012; Cruz-Motta et al., 2020; Gaston, 2000). Causes are taxon-specific, like the shape itself (Cerezer et al., 2022), and it is essential to keep in mind that, although the gradient in species richness is commonly analysed at a global scale, local and regional processes strongly influence diversity, too (Cruz-Motta et al., 2020; Dantas & Fonseca, 2023). The numerous hypotheses brought forward to explain the causality of the LDG can roughly be grouped into evolutionary and ecological processes. Some researchers propose that the modern latitudinal diversity gradient has been formed due to varying speciation and extinction rates (Allen & Gillooly, 2006; Crame, 2023; Krug et al., 2007). Others suggest that environmental variables like temperature, salinity, and precipitation (Boltovskoy & Correa, 2017; Brayard et al., 2005; Dantas & Fonseca, 2023; Hernáez et al., 2021) have shaped the gradient in species richness or else the seasonality of primary productivity (Crame, 2020; S. J. Culver & Buzas, 2000; Knauber et al., 2023). Boag et al. (2021) demonstrated a strong connection between temperature and marine diversity through time, with diversity peaks at moderate temperatures of 15-25°C (also see Costello et al., 2023). They assumed that temperature indirectly drives the gradient by affecting the aerobic scope of ectotherms (Boag et al., 2021). Similarly, Culp et al. (2019) found support within the freshwater realm for the hypothesis that physiological tolerance is an important driver of species richness. Biotic interactions like the intensity of predation and its impact on the prey community have also been hypothesised as drivers of species richness across latitudes (Ashton et al., 2022; Freestone et al., 2021).

While early broad-scale studies on biogeographic patterns in isopod species richness often did not find a clear latitudinal gradient within the group or broader region they examined (Kussakin, 1973; G. D. F. Wilson, 1998), current research points to a well-formed bimodal latitudinal diversity gradient both in the ocean and on land (Rivadeneira & Poore, 2020; Saeedi et al., 2022; Sfenthourakis & Hornung, 2018). The most comprehensive analysis of the LDG of marine isopods so far on spatial and taxonomic scales, as well as the amount of data, was performed by Rivadeneira and Poore (2020). They found an asymmetric bimodal LDG for marine Isopoda with diversity peaks in temperate areas that was variable across depth. However, a similar comprehensive global study for terrestrial and freshwater isopods is still lacking. Here, a global dataset of occurrence records for the whole order Isopoda is compiled from the OBIS (https://obis.org) and GBIF (https://www.gbif.org) databases to analyse latitudinal patterns in species richness across all environments. The resulting dataset contains almost double the number of marine species included in the study of Rivadeneira and Poore (2020) and is also analysed according to different depth categories, in addition to the overall marine gradient. In this study, it is analysed whether the LDG of isopods is bimodal in terrestrial and freshwater environments, too. Possible asymmetry and the location of diversity peaks are also examined.

### 4.2. Methods

### 4.2.1. Data source and cleaning process

Global occurrence records of isopods were downloaded from the Ocean Biodiversity Information System (OBIS, 2022) and the Global Biodiversity Information Facility (GBIF, 2022) on 10<sup>th</sup> June 2022. The datasets from the two databases were merged and cleaned in R version 4.1.1 (R Core Team, 2021). First, duplicates, records without coordinates, and those not identified down to species level were removed. Then, to minimise the number of records with data-entry errors, the dataset was further cleaned using the "CoordinateCleaner" package (Zizka et al., 2019), removing records with equal latitude and longitude coordinates, those that were geo-referenced to capitals or country centroids, and records in close vicinity (100 m) of biodiversity institutions. All species names were verified using the taxon matching tool from the World Register of Marine Species (Ahyong et al., 2022) to resolve synonyms and misspellings. Further, all records that were found to be fossil were removed during the cleaning process, and information on whether a species is parasitic or subterranean was added to the dataset. Finally, the data were mapped with QGIS version 3.28.2, and all marine records mapped on land and non-marine records mapped in the ocean were removed or, where possible, resolved according to their provided locality information. Remaining records with a coordinate uncertainty of more than 100 km were removed if they had no specific locality information, and therefore, their locations could not be verified. The resulting dataset, which was used for the analysis, contains 388,881 occurrence records of 5,935 marine and non-marine isopod species (Hartebrodt, 2023a). A list of all included datasets can be found in Appendix B (Table B1).

### 4.2.2. Data analysis

First, the latitudinal diversity gradient of isopods was examined using two components of species richness, namely alpha and gamma diversity. For alpha diversity, the number of species in each 5° latitude-longitude cell was counted, and subsequently, mean alpha diversity per 5° latitudinal band was plotted. Gamma diversity was counted as the number of distinct species in each 5° latitudinal band. This was done for the complete dataset and subsets according to habitat (marine, freshwater, terrestrial) and ecology (parasitic or subterranean isopods). Additionally, the marine subset was further divided into different depth categories because diversity patterns vary across depth (Clarke & Crame, 1997; Rivadeneira & Poore, 2020; Saeedi et al., 2022). Approximately 52% of marine occurrence records included bathymetric information. These were grouped into three depth categories: shallow (0 to 200 m), intermediate (>200 to 500 m), and deep (>500 m). Both alpha and gamma diversity are, to a varying extent, biased by sampling effort. Therefore, Hill numbers with order q = 1 (Shannon diversity) were calculated to account for differing sampling effort in each latitudinal band using the "iNEXT()" function of the R package "iNEXT" (Hsieh et al., 2022). Estimates were rounded to whole numbers so that they were counts. For an in-depth assessment of how hill diversities improve estimates of species diversity, see Roswell et al. (2021). They also recommend using the Hill-Shannon diversity metric when the research goal is to characterise gradients in biodiversity because it emphasises neither rare nor common species.

### 4.3. Results

After all cleaning steps were performed, the resulting dataset used in this analysis contained 388,881 occurrence records of 5,935 isopod species. Compared with the global species list compiled from WoRMS data in Chapter 3, this corresponds to a coverage of approximately 56% of all described isopod species. About 72% of genera and 91% of families are represented in the dataset. Of all analysed species, 4,499 are marine (coverage of ~73%), 1,048 species are terrestrial (~27%), and 388 species live in freshwater (~56%). Within the two ecological subsets, 887 (~60%) parasitic and 407 (~41%) subterranean isopod species are recorded.

There is a strong sampling bias towards the northern hemisphere (see Table 4.1 and graph b in Figs. 4.1 - 4.9). While 351,600 occurrences are recorded for the northern hemisphere, the dataset contains only 37,281 occurrences for the southern hemisphere. However, there is no such marked difference in species numbers. In the northern hemisphere, 3,257 isopod species

are recorded, and only a few less (3,183 species) in the southern hemisphere. A pattern of higher species richness in the northern hemisphere is consistent in all subsets except the marine one. Although considerably more records are documented in the northern hemisphere, the southern hemisphere is richer in marine isopod species (2,745) than the northern (2,203 species). The southern hemisphere is substantially under-sampled for freshwater isopods and species from subterranean habitats (see Table 4.1).

|              | Southern <b>F</b> | emisphere | Northern hemisphere |           |  |  |
|--------------|-------------------|-----------|---------------------|-----------|--|--|
|              | # Records         | # Species | # Records           | # Species |  |  |
| All isopods  | 37,281            | 3,183     | 351,600             | 3,257     |  |  |
| Marine       | 31,221            | 2,745     | 129,186             | 2,203     |  |  |
| Terrestrial  | 5,181             | 331       | 182,513             | 768       |  |  |
| Freshwater   | 879               | 107       | 39,901              | 287       |  |  |
| Parasitic    | 2,646             | 440       | 12,201              | 579       |  |  |
| Subterranean | 137               | 46        | 8,647               | 362       |  |  |

**Table 4.1.** Number of occurrence records and species per hemisphere for the complete dataset and the various subsets.

Both alpha and gamma diversity of all observed isopod species show a well-formed bimodal latitudinal gradient with a trough in equatorial regions (Fig. 4.1a, c). Figure 4.1b depicts the number of occurrence records per 5° latitudinal band with an extreme peak at 55°N. Nevertheless, total species richness displays two fairly symmetrical peaks of similar height (Fig. 4.1c). In both hemispheres, the peaks are situated outside the tropics at 35°S and 45°N, respectively. Still, alpha and gamma diversity are positively correlated with the number of occurrence records in each 5° latitudinal band (Spearman's rho = 0.80 for mean alpha diversity; Spearman's rho = 0.61 for gamma diversity). To account for the sampling bias in the data, Hill numbers were used as a metric for estimated species richness. Regardless, the resulting graph of the latitudinal gradient shows a bimodal pattern with a dip around the equator (Fig. 4.1d). In this visualisation, the diversity peaks move inside the tropics, and the expected diversity within the temperate northern hemisphere is considerably lower than the observed diversity in the dataset.



Figure 4.1. Latitudinal patterns of species richness and sampling effort of the order Isopoda. (a) Alpha diversity, (b) number of occurrence records (as a proxy of sampling effort), (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

The latitudinal gradients of alpha and gamma diversity of marine isopods are also bimodal with peaks outside the tropics (Fig. 4.2a, c). In contrast to the overall LDG of all isopod species, the marine gradient shows a marked asymmetry with a smaller peak in the northern hemisphere (Fig. 4.2c). The peak is situated at 35°N with 539 observed species within the corresponding 5° latitudinal band. Species richness in the southern hemisphere oceans peaks at 35°S with 800 recorded species. Again, most occurrence records are from the northern hemisphere, with a high peak at 55°N (Fig. 4.2b). The southern hemisphere peak of marine occurrences is larger (in relation to the northern hemisphere peak) than the one from the complete dataset (see Fig. 4.1b) but is still four times smaller than the northern peak. The bimodality of the gradient is retained with the estimated species diversity, again with a relatively lower estimated diversity in the temperate northern hemisphere (Fig. 4.2d). However, for estimated richness, tropical diversity is expected to be higher than it is observed in the analysed dataset.



Figure 4.2. Latitudinal patterns of species richness and sampling effort of marine isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

There are considerable differences between the diversity patterns of shallow-water isopods and species occurring below 200m. Most of the marine species were recorded in the shallow depth category (2,107 species; see Fig. 5.2 in Chapter 5). The LDG resulting from this subset of the marine data is similar to the overall marine gradient with a more prominent diversity peak in the southern hemisphere outside the tropics and a relatively higher estimated diversity within tropical regions (Fig. 4.3). Species diversity below 200m shows additional peaks at high latitudes (Figs. 4.4 & 4.5). The dataset of the intermediate depth category contains 739 species, of which only 150 species were reported exclusively between 200m and 500m. The observed species richness within this depth category is highest in northern hemisphere high latitudes but also shows considerable peaks in the southern hemisphere mid- and high latitudes (Fig. 4.4c). Estimated species diversity is, however, highest in the southern hemisphere (Fig. 4.4d). The deep category dataset with occurrences below 500m contains 1,331 species. Most of these species are recorded from mid- and high latitudes in both hemispheres, with the highest diversity peak in the southern hemisphere at 40°S (Fig. 4.5c). The latitudinal gradient of the estimated deep-sea species diversity exhibits a very similar pattern to the observed diversity, with a more marked difference between the peak heights in the northern and southern hemispheres (Fig. 4.5d).



Figure 4.3. Latitudinal patterns of species richness and sampling effort of shallow-water marine isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.



Figure 4.4. Latitudinal patterns of species richness and sampling effort of marine isopods in the intermediate depth category. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.



Figure 4.5. Latitudinal patterns of species richness and sampling effort of deep-sea isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

Like the overall marine gradient, the LDG of terrestrial isopods is asymmetrically bimodal with peaks outside the tropics (Fig. 4.6a, c). However, unlike marine isopods, terrestrial isopods have a larger peak in the northern hemisphere at 45°N. The majority of occurrence records are documented from the northern hemisphere as well, again with its peak at 55°N (Fig. 4.6b). After accounting for sampling bias, the gradient of estimated species diversity shows three peaks (Fig. 4.6d). The lower southern hemisphere peak and the trough in equatorial regions are similar to the observed species richness, though the peak moved into the tropics. However, the high northern hemisphere peak is diminished, and the now highest peak within the northern hemisphere tropics is added. This might suggest a strong effect of sampling bias on the observed latitudinal gradient of gamma diversity and under-sampled tropical regions. That is not surprising since the analysed dataset contains less than a third of all described terrestrial species and is, therefore, highly incomplete.



Figure 4.6. Latitudinal patterns of species richness and sampling effort of terrestrial isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

Freshwater isopods also exhibit an asymmetrically bimodal diversity gradient (Fig. 4.7a, c). Again, both peaks are situated outside the tropics, with the more prominent peak in the northern hemisphere at 40°N. Like within the other subsets, most occurrences are recorded in the northern hemisphere (Fig. 4.7b). According to the Hill diversity estimates, more freshwater species should be expected in tropical regions (Fig. 4.7d). Nevertheless, the highest diversity peaks are still situated outside the tropics.



**Figure 4.7.** Latitudinal patterns of species richness and sampling effort of freshwater isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

The parasitic subset contains all obligate parasite species present in the complete dataset. All parasitic isopods are aquatic, with the majority being marine. Nevertheless, unlike the entire marine group, parasitic isopods show a higher diversity peak in the northern hemisphere (Fig. 4.8a, c). The LDG of parasites is asymmetrically bimodal with peaks at 30°N and 25°S and a dip near the equator. Tropical diversity is, nonetheless, high. In addition to the high temperate northern hemisphere peak in occurrences, sampling effort is also spread out over lower latitudes in both hemispheres (Fig. 4.8b). Estimated species diversity is consistent with showing low numbers of parasite species at high latitudes and most of the diversity within the tropics (Fig. 4.8d). Species diversity in equatorial regions is expected to be slightly higher than observed in the analysed dataset.



Figure 4.8. Latitudinal patterns of species richness and sampling effort of parasitic isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

Species that were included in the subterranean subset are cave and groundwater species and species that inhabit interstitial spaces. Of the 407 recorded species, 181 live in freshwater, 128 are terrestrial, and 53 live in the marine environment. Almost all records are from the northern hemisphere mid-latitudes (Fig. 4.9b). The bimodal LDG of subterranean species is highly asymmetrical (Fig. 4.9a, c). While the small peak in the southern hemisphere is situated at the edge of the tropics at 25°S, the more than four times larger northern hemisphere diversity peak is located outside the tropics at 45°N. Hill diversity depicts a similar gradient with slightly higher diversity in tropical regions, especially in the northern hemisphere (Fig. 4.9d).



Figure 4.9. Latitudinal patterns of species richness and sampling effort of subterranean isopods. (a) Alpha diversity, (b) number of occurrence records, (c) gamma diversity, and (d) estimated species diversity. The dashed lines are two-point moving averages.

## 4.4. Discussion

The presented results of latitudinal diversity patterns of isopods are consistent with the reported bimodality of latitudinal gradients in most marine taxa (Chaudhary et al., 2016, 2017), as well as many examples from terrestrial and freshwater taxa (e.g., Cerezer et al., 2022; Gray & Rabeling, 2023; Orr et al., 2021). The overall LDG of the whole order Isopoda is symmetrically bimodal with similar species richness in both hemispheres (Fig. 4.1). However, for most of the subsets, the northern hemisphere shows a higher diversity peak than the southern hemisphere (see Figs. 4.6 - 4.9), as was found in most groups that were analysed by Chaudhary et al. (2016). It could be argued that this pattern arises from uneven sampling, as the majority of occurrence records are from northern hemisphere temperate latitudes. Nevertheless, even when accounted for sampling bias, estimated richness is still higher in the northern hemisphere in these cases. Even more compelling is the example of marine isopods, where higher species richness is observed in the southern hemisphere despite four times more records being available in the northern hemisphere (Table 4.1 & Fig. 4.2). Several studies have demonstrated that sampling bias has only a marginal effect on the overall shape of the LDG (Boltovskoy & Correa, 2017; Chaudhary et al., 2017; Rivadeneira & Poore, 2020), as well as that the omittance

of large numbers of unidentified species does not significantly affect large-scale diversity patterns (Pos et al., 2014; Rivadeneira et al., 2011).

Chaudhary et al. (2016) attributed the higher northern hemisphere richness of marine species to the greater availability of coastal shelf area since the majority of species are distributed in shallow waters. Interestingly, in the current analysis, marine isopods are an exception to the widely observed pattern of higher northern hemisphere richness. They show greater species richness in the southern hemisphere, both for observed gamma diversity and estimated diversity (see Fig. 4.2). In part, this might be attributed to the fact that isopods are also very diverse in the deep sea (Brandt et al., 2016; Kussakin, 1973), of which the southern hemisphere provides an extensive area, as well as to the higher diversity of Antarctic waters compared to the Arctic Ocean (Clarke & Crame, 1997). Thermal isolation of the Southern Ocean by a deep-water current system in the Cenozoic may have been crucial to the radiation of Antarctic isopod species and led to the immense extant biodiversity observed in the region (Brandt et al., 1999). When examined within different depth categories, deep-sea isopods and shallow-water species exhibit a higher diversity peak in the southern hemisphere (Figs. 4.3 & 4.5).

The southern hemisphere peak in marine diversity coincides with the location of some very species-rich biogeographic regions like Australia, New Zealand, and South Africa (see Chapter 5). Australia is a well-known diversity hotspot for marine isopods, which harbours a high percentage of yet undescribed species (Poore et al., 1994, 2015). Also, Kaiser et al. (2020) found asellote diversity in New Zealand waters to be average to high compared to other regions in both hemispheres. Levels of endemism for marine isopods are higher than for most other taxa. For example, Kensley (2001) recorded 226 endemic species (68%) for the South African region. Besides these mid-latitude regions, the Southern Ocean is another diversity hotspot for isopods, inhabited by a distinct fauna with many species new to science (Brandt, Brix, et al., 2007). Marine isopods are not the only group with higher southern hemisphere diversity. Similar richness patterns were observed in, e.g., amphipods (Arfianti & Costello, 2020; but see the contrasting results of Rivadeneira & Poore, 2020), polychaetes (Pamungkas et al., 2021), hard corals and fish (Chaudhary et al., 2016), and benthic deep-sea foraminifera (S. J. Culver & Buzas, 2000).

Latitudinal diversity gradients of marine crustaceans have been found to vary according to the lifestyle of different groups, i.e. whether a taxon possesses a planktonic larval phase. Taxa with pelagic larvae exhibit steeper LDGs and higher species richness towards the tropics than taxa

without planktonic larvae (Rivadeneira & Poore, 2020). Similarly, examining diversity patterns in the northwestern Pacific Ocean, Knauber et al. (2023) observed a diversity peak for pelagic crustacean species at 30°N, while benthic species richness peaked at 45°N. These findings agree with the results of the current analysis that show an inverse LDG with peaks outside the tropics for marine isopods, which are benthic brooders. The LDG of marine isopods presented herein is almost identical to the one presented by Rivadeneira and Poore (2020), although their results are based on a smaller dataset, and occurrences had been binned in 10° latitudinal bands instead of 5° bands like in the current analysis. This shows again that the unavoidable biases within the analysed datasets (i.e., number of occurrences, taxonomic completeness) do not significantly affect the overall shape of a large-scale diversity gradient. The location of peaks within marine diversity gradients has been found to vary during cold and hot periods in Earth's history. Boag et al. (2021) determined that diversity peaks are located within areas with moderate temperatures of 15-25°C and assumed that the effects of ocean temperature on the aerobic scope of marine organisms are a primary driver behind the gradient. This would explain why there is lower species richness in equatorial regions. It is simply too hot for many species. With further climate warming, the dip in the LDG around the equator will likely become more pronounced (Chaudhary et al., 2021). Another factor that is possibly involved in the formation of a diversity trough around the equator is the increased interaction strength of predation in tropical latitudes, both in the ocean and on land (Ashton et al., 2022; Freestone et al., 2021; Roslin et al., 2017).

All parasitic isopods are aquatic, i.e. either marine or freshwater species. However, although both marine and freshwater groups have their diversity peaks outside the tropics at intermediate latitudes, the subset of parasitic isopods exhibits its highest diversity at low to intermediate latitudes (see Fig. 4.8), with a higher proportion of tropical species than their "parent" groups. As the geographical distribution of parasites presumably reflects their host species' distribution (Markham, 1986), this high tropical diversity is not surprising. The majority of hosts are either decapod crustaceans or bony and cartilaginous fish, both of which are very species-rich at low latitudes (Lin et al., 2021; Rivadeneira & Poore, 2020).

Since depth adds an important third dimension to the ocean, Clarke and Crame (1997) recommended considering patterns of diversity separately for shallow waters and the deep sea. Indeed, the gradients for shallow-water isopods and deep-sea species show different patterns (also observed by Rivadeneira & Poore, 2020). While the diversity of shallow-water species peaks at mid-latitudes, deep-sea diversity exhibits additional peaks at higher latitudes within

59

polar seas (see Figs. 4.3 & 4.5). The structure of the deep sea floor is not as homogeneous as often believed (e.g., Riehl et al., 2020), and species richness and composition can be highly variable between regions (Malyutina & Brandt, 2020). While Rex et al. (1993) could not observe significant latitudinal differences in deep-sea isopod diversity in the southern Atlantic Ocean due to the small number of samples over a restricted latitudinal range, they noted high species diversity in the Argentine Basin at temperate latitudes. Further, in the northwest Pacific, the highest deep-sea richness was found at intermediate latitudes of 42°-44°N, which was best explained by topography and temperature (Saeedi et al., 2020). Also, intensive sampling in the Southern Ocean revealed higher species richness in the deep sea than along the Antarctic shelf (Brandt et al., 2016). It is assumed that both ecological and evolutionary processes shape the diversity patterns of the deep sea benthos (Rex et al., 1997).

Terrestrial isopods exhibit their highest diversity in the northern hemisphere temperate latitudes where a lot of landmass area is available, but also most of the occurrences were recorded (Fig. 4.6). The peak in number of occurrences and species richness coincides with the location of well-studied regions in central Europe and the northern United States. Nevertheless, despite scarce records, the gradient also shows a smaller peak in the southern hemisphere. When sampling bias is accounted for, higher diversity than currently observed is expected in the tropics in both hemispheres. Earlier examinations of oniscidean global-scale distribution data hinted at a bimodal LDG that peaked at mid-latitudes, in which some of the species-rich families have their main distribution range (Sfenthourakis & Hornung, 2018). For terrestrial isopods, precipitation and mean annual temperature are important environmental variables structuring their distribution (Csonka et al., 2018; Kuznetsova & Gongalsky, 2012). Also, at finer spatial scales, environmental heterogeneity strongly influences patterns in species richness (Gentile et al., 2022). For instance, Hornung et al. (2008) observed a relatively uniform richness pattern with high compositional turnover in the Transdanubian region of western Hungary. However, species richness significantly decreased from natural, wet habitats to disturbed, dry habitats (Hornung et al., 2008).

The herein-analysed terrestrial dataset also includes subterranean species. D. C. Culver et al. (2006) found temperate areas in Europe and North America to be biodiversity hotspots for obligate cave-dwelling invertebrates. These areas are characterised by high surface productivity and cave density. A high richness of cave-dwelling species in the northern hemisphere mid-latitudes fits the observed patterns of isopods well. The subterranean subset contains not only terrestrial species but also groundwater-associated species (which are part of

the freshwater dataset). The resulting LDG of subterranean isopods (Fig. 4.9) is very similar in shape to the observed terrestrial and freshwater gradients (Figs. 4.6 & 4.7) with a high diversity peak in temperate latitudes of the northern hemisphere. However, after accounting for sampling bias in the data, the gradients of estimated species diversity differ considerably from each other (see graph d in Figs. 4.6, 4.7 & 4.9). Data for non-marine isopods are scarce in the southern hemisphere, especially for freshwater and subterranean species (see Table 4.1). The scientific literature has documented many more occurrences than have been made available in the biodiversity databases used in the current analysis. Those and future occurrence records need to be added to global databases to improve data access for large-scale studies and the valuable results that can be gained. With more data available, the LDGs will be refined. It will be interesting to see whether species richness in the tropics for terrestrial and freshwater isopods is indeed higher than currently known.

Latitudinal diversity gradients of freshwater species have been observed to be less steep than terrestrial or marine gradients (Hillebrand, 2004b, 2004a). Examining diversity gradients of earthworms in North America, Ikeda et al. (2020) found that freshwater diversity peaked at mid-latitudes, while terrestrial diversity peaked at lower latitudes. These patterns correspond with the estimated species diversity gradients of isopods, where terrestrial diversity peaks moved into the tropics, while freshwater diversity still peaked outside the tropics. Ikeda et al. (2020) also observed that many freshwater species had limited geographic ranges compared to wider-ranging terrestrial ones. However, north of 40° latitude, species had expanded their ranges into habitats that became available after glaciation periods (Ikeda et al., 2020). Physiological tolerance limits of species are an important driver of species richness. In Arctic freshwater macrofauna, diversity declined with increasing latitude as species were lost instead of being replaced by other species (Culp et al., 2019). The highest peak in observed and estimated freshwater diversity of isopods coincides with latitudes in which the most freshwater habitat is available, according to a global study on gradients within the freshwater biome, which revealed that river and lake densities are highest in northern hemisphere boreal latitudes (Dodds et al., 2019).

This study has shown that the LDG of isopods is bimodal, with diversity peaks outside the tropics. The gradient is markedly asymmetrical, viewed separately for the different subgroups analysed here. However, the gradient of the whole order is fairly symmetrical between hemispheres, as the higher northern hemisphere diversity of the terrestrial and freshwater subgroups is levelled by the high species richness of marine isopods in the southern

hemisphere. The gradients depicted here also clearly show the differences between deep-sea and shallow-water richness patterns. While the diversity of shallow-water species is highest at intermediate latitudes and declines towards the poles, the species richness of deep-sea isopods reveals additional peaks in the polar seas, where deep-sea diversity exceeds shallow-water diversity. Further, even though sampling bias does not have a marked effect on the overall shape of the diversity gradient, estimated species richness predicts a higher diversity within low latitudes than is currently observed. Nevertheless, the bimodality of the gradient with a dip in species richness in equatorial regions is upheld. However, this reveals that more sampling for aquatic and terrestrial isopods is needed in tropical regions. Those regions might hold a good part of the diversity of isopods that has been overlooked so far.

There is likely no single explanatory mechanism or process underlying the pattern of the latitudinal diversity gradient of species richness (Condamine et al., 2012; Cruz-Motta et al., 2020; Gaston, 2000), especially since causes are presumed to be highly taxon-specific (Cerezer et al., 2022; Chaudhary et al., 2017). However, temperature may be assumed to be an important driver that is closely connected to various other mechanisms, which might play a role in forming and maintaining gradients in species richness (Boag et al., 2021; Chaudhary et al., 2023). Gaining a better understanding of the drivers behind the gradients will require improved methods that integrate fossil data and molecular phylogenies (Jablonski et al., 2017). When determining areas for conserving biodiversity, longitudinal variance in species richness must also be considered, as it differs within latitudinal bands (Currie et al., 1999). Several studies have also shown that the shape of the LDG varies between ocean basins or New World, Old World, and Australasian landmasses (e.g., Boltovskoy & Correa, 2017; Orr et al., 2021; Rivadeneira & Poore, 2020).

# 5. Global bioregionalisation and endemicity of isopods

## 5.1. Introduction

In addition to the well-documented latitudinal variations in species richness, global biodiversity exhibits other geographical patterns that have captured the attention of scientists since the time of Darwin and Wallace. Earth's biodiversity is not uniformly spread across all continents and oceans. Rather, some regions stand out as biodiversity hotspots, teeming with a remarkable profusion of species, while diversity in other areas is comparatively scarce. Unique species assemblages cluster in specific geographic areas and can vary significantly from assemblages in neighbouring regions. Biogeographic regions, or bioregions, do not conform to human societies' political or socio-economical borders and boundaries. Instead, they are delineated based on environmental factors and species distributions. Bioregionalisation builds a framework that can act as a basis for informed decision-making in conservation planning, e.g., by highlighting areas of immense species richness and high endemicity (Dinerstein et al., 2017; Lourie & Vincent, 2004). Historically, such efforts have been focused on the terrestrial realm (e.g., Wallace, 1876). Attempts to divide the world's oceans into distinct biogeographic regions started to emerge much later, at first with little evidence of distinct boundaries (Briggs, 1974; Ekman, 1953). Today, detailed maps of biogeographic regions (often termed ecoregions, nested within biomes and realms) have been produced for the terrestrial environment (Olson et al., 2001), the freshwater realm (Abell et al., 2008), and the coastal and shelf areas of the world's oceans (Spalding et al., 2007) as well as for pelagic surface waters (Spalding et al., 2012). However, within the world's oceans, it has been recognised that a third dimension – depth – also plays an important role. Therefore, separate biogeographic frameworks for the mesopelagic zone (Sutton et al., 2017) and the deep sea (Watling et al., 2013) have been produced.

Many of the above-mentioned extensive biogeographic studies primarily focus on environmental criteria and topographic features, sometimes relegating species distributions to a secondary role. However, Costello et al. (2017) took a different approach in creating a comprehensive global map of coastal and offshore oceanic realms by analysing occurrence records of 65,000 marine species. Notably, a substantial portion of their identified realms closely corresponded to higher-level regions previously outlined by Spalding et al. (2007, 2012) and Watling et al. (2013). It is essential to acknowledge that each taxon has its own

evolutionary history and dispersal capabilities, resulting in distinct distribution patterns and diversity hotspots. Accordingly, several studies have concentrated on the biogeographic distribution of specific taxa, often comparing their results to the proposed bioregions of previously mentioned general biogeographic frameworks (Arfianti & Costello, 2020; Bribiesca-Contreras et al., 2019; Pamungkas et al., 2021; Victorero et al., 2023; Watling & Lapointe, 2022). While regional assessments of species richness of various taxonomic and ecological groups within the order Isopoda are abundant in the scientific literature, no comprehensive global analysis of the distribution of isopod species has yet been performed for aquatic or terrestrial isopods.

Kensley (2001), for instance, conducted a biogeographic study of Indian Ocean isopods based on a compiled list of approximately 1,000 species, most of which were shallow-water records. Given that isopods are predominantly benthic brooders with limited dispersal abilities due to the absence of a planktonic larval phase, he noted that wide-ranging species are scarce, and local endemism is expected to be high. Similarly, in a study examining the distribution ranges of deep-sea peracarids, including isopods, Brandt et al. (2012) concluded that only very few, if any, peracarid species are truly widespread. They suggested that many species assumed to be wide-ranging may comprise cryptic species complexes, as has been demonstrated in molecular studies of several isopod species (Held, 2003; Hurtado et al., 2016; Raupach et al., 2007). However, long-distance dispersal can be achieved by rafting (Gutow et al., 2006; Leese et al., 2010) or, in the case of parasitic species, by attachment to highly mobile hosts (Hadfield & Smit, 2020; Nicholson et al., 2020). Kensley (2001) classified approximately 84% of the studied isopod species as endemic to the Indian Ocean as a whole, with varying levels of endemism within sub-regions, ranging from 46% to 79%. In the species-rich Southern Ocean, 87% of collected isopod species are assumed to be endemic to the region (Brandt, Brix, et al., 2007; Brandt, De Broyer, et al., 2007). Similarly, Guzik et al. (2019) observed strong regional endemicity for groundwater-associated Haloniscus species in Australia. Within the terrestrial realm, rates of endemism are reported, for example, for Oniscidea in Greece at 69% (Sfenthourakis & Giokas, 1998) or for North America at 66.1% (Jass & Klausmeier, 2000). However, at finer spatial scales, endemism rates unsurprisingly tend to be lower. For instance, Sfenthourakis (1996) documented 20% of oniscidean species from the central Aegean islands as endemic, a similar proportion to other Mediterranean archipelagos and indicative of geologically recent isolation from the mainland. Likewise, the observed percentage of endemism in the Transdanubian region of western Hungary is 16% (Hornung et al., 2008).
Faunal influences from neighbouring regions highlight Transdanubia's role as a diverse biogeographical crossroads for terrestrial isopods. It will be interesting to see how marine biogeographic patterns and endemicity differ from their terrestrial counterparts in the global assessment of isopod occurrences herein.

An ongoing debate is whether dispersal or vicariance is the most crucial mechanism shaping modern biogeographic patterns. However, considering both mechanisms can best explain large-scale distribution patterns (Brusca, 1983b, 1984). Plate tectonics resulting in continental drift and the opening of new oceans play an essential role in driving deep biological separation of biota (Ficetola et al., 2017; Wägele et al., 1995; G. D. F. Wilson, 2008b). In addition, environmental variables such as temperature, salinity, and precipitation have been identified as equally important factors underlying modern biogeographic patterns (Belanger et al., 2012; Victorero et al., 2023). Apart from this, Wallerstein and Brusca (1982) proposed that biotic interactions such as predator-prey dynamics also shape species' distribution ranges, predominantly on local to regional scales. Topography is another determinant of extant biogeographical boundaries (Ficetola et al., 2017). Marine ridges and trenches, for example, may present a dispersal barrier, especially for non-swimming isopods (Bober et al., 2018; Johannsen et al., 2020). However, several studies have also shown that distributions of many isopod species cross certain well-known biogeographic barriers (e.g., Pearman et al., 2020; Schnurr et al., 2014).

Although there are many regional studies on the biogeography of various isopod taxa and ecological groups (e.g., Brusca, 1987; Castelló et al., 2020; Kensley, 2001; Sfenthourakis & Giokas, 1998; Wägele, 1990), no comprehensive global-scale analysis has yet been carried out. Copious occurrence records are available in the Ocean Biogeographic Information System (OBIS, https://obis.org) and the Global Biodiversity Information Facility (GBIF, https://www.gbif.org). This study makes use of those data and examines global-scale bioregionalisation within Isopoda. Based on differences in species composition, biogeographic regions, or bioregions, are delineated for the marine, freshwater, and terrestrial realms, and each region's endemicity is determined.

Chapter 5

#### 5.2. Methods

#### 5.2.1. Data source

The dataset of global occurrence records used here to analyse biogeographic regions is the same dataset compiled for Chapter 4. Occurrence records were obtained from OBIS and GBIF on 10<sup>th</sup> June 2022. For information on processing and cleaning of the data, see section 4.2.1. in Chapter 4. The cleaned dataset contains 388,881 occurrence records of 5,935 isopod species (Hartebrodt, 2023a).

#### 5.2.2. Data analysis

"Infomap Bioregions" (https://www.mapequation.org/bioregions/) is an interactive web application that applies network theory to identify taxon-specific biogeographic regions (bioregions) from species distribution data (Edler et al., 2017). First, the input data are binned into geographical grid cells, which creates a bipartite network between species and grid cells. Then, the Infomap algorithm clusters occupied grid cells with sufficient data points into bioregions (Edler et al., 2017, and references therein). The similarity of grid cells and clustering into bioregions is based on their species composition. Therefore, a bioregion - as for the purpose of this study – is defined as a geographic area that harbours a distinct community of isopod species, which differs from that in other regions. Here, for these basic bioregionalisations, which are a first step towards a more detailed understanding of global isopod biogeography, environmental variables are not taken into account for the structuring of bioregions. The application "Infomap Bioregions" also identifies the most common and the most indicative species with the highest relative abundance in each derived bioregion. In the output data, indicative species are listed with a score, which is defined as the ratio between the frequency of the species in the bioregion and its frequency in all regions (Edler et al., 2017). For example, an indicative score of 2 means that a species is twice as frequent in a specific bioregion than in the entire dataset. This information helps to identify endemic species within bioregions. Spatial resolution was set to 4° latitudinal-longitudinal grid cells to achieve the closest possible similarity to the 5° spatial resolution used in the analysis of the same dataset in the previous chapter (Chapter 4 – Latitudinal diversity gradients), and the clustering algorithm trials were set to 5 allowing several runs to find the best solution. Before analysis, the dataset of isopod occurrence records was split into three separate datasets according to habitat information. The resulting terrestrial dataset contains 187,694 occurrences, the

freshwater dataset has 40,777 occurrence records, and the marine dataset consists of 160,410. The different datasets were then uploaded separately to "Infomap Bioregions" to produce distinct maps of global bioregions. The maximum and minimum cell capacity were set to 100 and 50 for terrestrial isopods, respectively. Following initial analyses, the cluster cost was set to 1.0 as a higher cluster cost of 1.5 would have clustered all of North America and Europe into a single bioregion, likely owing to the inclusion of cosmopolitan and circumglobal isopod species like Armadillium vulgare (Latreille, 1804), Porcellio scaber Latreille, 1804, and Oniscus asellus Linnaeus, 1758. Since the freshwater dataset provided mostly low numbers of occurrence records per grid cell, maximum cell capacity was chosen at 50, minimum at 10, and a cluster cost of 1.5. Settings for marine isopod occurrences were 100 maximum cell capacity, 50 minimum cell capacity, and 1.5 cluster cost. Since depth adds to the complexity of the marine environment, another dataset was prepared with all marine occurrence records that had information on the depth of occurrence. This yielded a dataset containing 83,313 records, which was then further divided into three different depth categories: shallow (0 to 200 m), intermediate (>200 to 500 m), and deep (>500 m). Each depth dataset was also uploaded to and analysed with "Infomap Bioregions" with the following settings: 100 maximum cell capacity, 50 minimum cell capacity, and 1.5 cluster cost. The percentage of unique species for each resulting bioregion was also calculated to explore endemicity patterns.

#### 5.3. Results

#### 5.3.1. The marine realm

The marine dataset contains occurrence records for 4,499 species in 799 genera and 87 families. That covers approximately 73% of all marine species listed in the global list of isopod species (Hartebrodt, 2023b) compiled from WoRMS data in Chapter 3. The coverage for marine isopod families is close to 96%, and almost 88% of all marine genera are included here. The clustering algorithm of "Infomap Bioregions" yielded 33 distinct bioregions (Fig. 5.1) when the complete dataset of marine isopods was analysed. Some of these are extensive and represent realistic biogeographic realms as they have been delineated in previous biogeographic classifications, like Bioregion 3, which covers the entire Southern Ocean and a few adjacent areas. Bioregion 6 stretches along the entire west coast of North America in the North Pacific Ocean. However, the spatially most extensive bioregion is Bioregion 1, which encompasses the entire Arctic Ocean but also includes the Baltic Sea, the North Sea, the Mediterranean Sea, the Black Sea,

and several spots in the Atlantic Ocean. Other bioregions are based on only a single 4° grid cell, many of which are relatively isolated archipelagos like Hawaii (Bioregion 21), the Galapagos Islands (Bioregion 30), or New Caledonia (Bioregion 17). Other single-cell bioregions likely represent more extensive but under-sampled areas with unique species composition. For example, the Persian Gulf (Bioregion 28) is one such region. The Gulf of Aden and the Arabian Sea (Bioregion 24) are another example, as well as the Laccadive Sea and adjacent areas at the southern tip of India (Bioregion 18). Interestingly, the Strait of Gibraltar (Bioregion 31), the connection between the Atlantic Ocean and the Mediterranean Sea (of which both neighbouring cells are grouped in Bioregion 1), was classified as a distinct bioregion by the clustering algorithm. However, this might be an artefact of insufficient data, as the Strait of Gibraltar grid cell harbours precisely the minimum amount of occurrence records (50) to be included in the analysis and the top most indicative species, which were exclusively recorded in this region, are only represented by one or two occurrence records in the whole dataset (see Table 5.1). The most common species in Bioregion 31, with 32 occurrences, is Natatolana borealis (Liljeborg, 1851), of which most of its other occurrence records fall into Bioregion 1. The most species-rich bioregion is Bioregion 2 (656 recorded species; see Table 5.1), which encompasses most of the northwest Atlantic, the Gulf of Mexico, the Caribbean Sea and areas in the southwest Atlantic along the Brazilian coast. It is followed by Bioregion 4 (southern Australia), Bioregion 1 (Arctic Ocean and adjacent seas), Bioregion 3 (Southern Ocean and adjacent areas), and Bioregion 7 (northern Australasian region + one African grid cell). The Red Sea, which could have been expected to form its own bioregion due to its relative isolation, did not have a single grid cell with sufficient data to be included in the analysis. Endemicity ranged from 27% in Bioregion 15 (coasts of Uruguay and the Buenos Aires Province, Argentina) to 87% in Bioregion 22 (off the southwestern African coast). The Southern Ocean and adjacent areas (Bioregion 3) also had one of the highest endemism rates, with 80% (see Table 5.1). Like the Southern Ocean, Australia has previously been reported as a region of high endemism for marine isopods. In this analysis, the seas around Australia are divided into a southern bioregion (Bioregion 4), in which 71% of species are endemic, and a northern region (Bioregion 7) with 64% endemism. The most widespread marine species in the analysis was Idotea metallica Bosc, 1801, an obligate rafter with enhanced dispersal ability (Gutow et al., 2006), which has been recorded in 14 of the 33 bioregions (see Table 5.2). Many other widespread species are wood-boring or burrowing isopods that may disperse passively within dislodged plant material. Others are parasites or temporarily attached micropredators of highly mobile fish hosts.

**Table 5.1.** Bioregions of marine Isopoda. For each region, the most common species, i.e. the species with the most occurrence records within the region, is listed, as well as the five most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a 4° latitudinal-longitudinal grid cell.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species        | Top 5 most indicative species                                                                                          |
|-----------|-----------|-----------|---------|------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1         | 95,116    | 505       | 110     | 64         | Saduria entomon            | Rocinela danmoniesis, Jaera (Jaera)ischiosetosa,<br>Microcharon harrisi, Dendrotion setosum,<br>Eurydice dollfusi      |
| 2         | 18,956    | 656       | 42      | 67         | Edotia triloba             | Edotia acuta, Chiridotea arenicola, Harrieta<br>faxoni, Erichsonella isabelensis, Sphaeroma<br>papillae                |
| 3         | 5,070     | 502       | 40      | 80         | Glyptonotus antarcticus    | Neastacilla marionensis, Munna neglecta,<br>Pleurosignum magnum, Paranthura possessia,<br>Edotia tangaroa              |
| 4         | 10,303    | 570       | 15      | 71         | Bullowanthura<br>pambula   | Bullowanthura pambula, Natatolana corpulenta,<br>Amakusanthura olearia, Serolina acaste,<br>Ulakanthura lara           |
| 5         | 4,209     | 373       | 12      | 75         | Leptanthura laevigata      | Metacirolana arnaudi, Cirolana sulcata,<br>Austroarcturus africanus, Austroarcturus<br>quadriconus, Cirolana rugicauda |
| 6         | 6,859     | 250       | 20      | 62         | Pentidotea<br>wosnesenskii | Idarcturus allelomorphus, Colidotea rostrata,<br>Cortezura penascoensis, Synidotea media,<br>Ianiropsis epilittoralis  |
| 7         | 3,463     | 458       | 12      | 64         | Onychatrium forceps        | Apanthura restio, Onychatrium forceps,<br>Bathynomus immanis, Joeropsis goobita,<br>Cirolana capricornica              |
| 8         | 1,585     | 192       | 8       | 62         | Isocladus armatus          | Natatolana aotearoa, Limnoria reniculus,<br>Scutuloidea maculata, Bullowanthura crebrui,<br>Dynamenopsis varicolor     |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species         | Top 5 most indicative species                                                                                                 |
|-----------|-----------|-----------|---------|------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 9         | 1,685     | 151       | 8       | 68         | Cirolana harfordi           | Cyathura higoensis, Gnorimosphaeroma<br>naktongense, Synidotea hikigawaensis,<br>Leptosphaeroma gottschei, Koridotea hoonsooi |
| 10        | 637       | 120       | 3       | 33         | Chelator insignis           | Bathybadistes hoplitis, Prochelator litus,<br>Mirabilicoxa acuminata, Eugerda pannosa,<br>Momedossa profunda                  |
| 11        | 242       | 84        | 3       | 86         | Microcope ovata             | Eugerdella hadalis, Stylomesus malyutinae,<br>Mastigoniscus latus, Chaetarcturus pacificus,<br>Dendromunna okhotensis         |
| 12        | 364       | 96        | 3       | 51         | Expanathura<br>macronesia   | Apanthuroides calculosa, Apanthuroides<br>aldabrae, Amakusanthura cosmoledo, Joeropsis<br>dimorpha, Anthomuda quadrilineata   |
| 13        | 318       | 72        | 3       | 78         | Haploniscus bruuni          | Eurycope manifesta, Ilyarachna pervica,<br>Mastigoniscus concavus, Chaetarcturus<br>praecipius, Cyproniscus octospinosus      |
| 14        | 178       | 71        | 2       | 55         | Athelges<br>takanoshimensis | Aporobopyrus retrorsa, Minicopenaeon<br>intermedium, Renocila kohnoi, Renocila<br>yamazatoi, Pleurocryptella laevis           |
| 15        | 197       | 44        | 2       | 27         | Uromunna peterseni          | Uromunna peterseni, Leptoserolis sheppardae,<br>Munnogonium quequensis, Cassidias argentinea,<br>Macrochiridothea lilianae    |
| 16        | 137       | 52        | 2       | 58         | Accalathura<br>phuketensis  | Eophrixus brevicauda, Pendanthura siamensis,<br>Gnathia serrula, Cerceis bicarinata,<br>Schizobopyrina kossmanni              |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species     | Top 5 most indicative species                                                                                          |
|-----------|-----------|-----------|---------|------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|
| 17        | 119       | 50        | 1       | 62         | Chaetarcturus crosnieri | Leptanthura segonzaci, Pseudione clevai,<br>Pendanthura anophthalma, Eragia profunda,<br>Sedorolis simplex             |
| 18        | 75        | 52        | 1       | 42         | Mothocya renardi        | Pleurocope dasyura, Cymothoa parupenei,<br>Nerocila loveni, Rhiothra callipia, Cymodoce<br>bicarinata                  |
| 19        | 63        | 39        | 1       | 46         | Dolicholana enigma      | Bopyrione longicapitata, Eophrixus shojii,<br>Bopyrinella albida, Bopyrione toloensis,<br>Apophrixus constrictus       |
| 20        | 115       | 34        | 1       | 65         | Neonaesa rugosa         | Hansenium hanseni, Bourbonanthura<br>vaitapensis, Munna temae, Gnathostenetroides<br>polynesica, Liocoryphe algreti    |
| 21        | 256       | 38        | 1       | 45         | Neonaesa rugosa         | Mesanthura hieroglyphica, Paranthura<br>bellicauda, Creniola breviceps, Joeropsis<br>hawaiiensis, Colidotea edmondsoni |
| 22        | 76        | 31        | 1       | 87         | Acanthocope galatheae   | Nannoniscus antennaspinis, Regabellator abyssi,<br>Pseudomesus pitombo, Nannoniscus meteori,<br>Eurycope tumidicarpus  |
| 23        | 100       | 34        | 1       | 44         | Ianiropsis longipes     | Munna varians, Iais elongata, Vermectias<br>caudiculata, Ianiropsis longipes, Neojaera<br>hirsuta                      |
| 24        | 70        | 23        | 1       | 43         | Cassidias africana      | Oxinasphaera furcata, Baharilana lira,<br>Metacirolana chemola, Cirolana somalia,<br>Elaphognathia gladia              |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species     | Top 5 most indicative species                                                                                             |
|-----------|-----------|-----------|---------|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 25        | 50        | 24        | 1       | 58         | Cymothoa pulchrum       | Zeuxokoma luetzeni, Mastigoniscus<br>microcephalus, Gnathia camuripenis, Cterissa<br>sakaii, Munnopsis megacephalus       |
| 26        | 74        | 29        | 1       | 41         | Natatolana rossi        | Sporonana litoralis, Spiculonana petraea,<br>Paramunna snaresi, Cymodoce allegra, Limnoria<br>loricata                    |
| 27        | 51        | 23        | 1       | 70         | Apanthura stocki        | Pendanthura tinggiensis, Tinggianthura alba,<br>Mesanthura asiatica, Pendanthura tiomanensis,<br>Asymmetrione sallyae     |
| 28        | 50        | 20        | 1       | 65         | Cymodoce fuscina        | Cymodoce fuscina, Heterodina mccaini, Gnathia<br>luxata, Eurydice paxilli, Caenanthura enigmatica                         |
| 29        | 54        | 20        | 1       | 65         | Macrostylis bipunctatus | Stylomesus spinulosus, Ischnomesus paucispinis,<br>Ischnomesus magnificus, Ischnomesus bidens,<br>Haploniscus minutus     |
| 30        | 52        | 15        | 1       | 60         | Nerocila californica    | Aegiochus longicornis, Rocinela wetzeri,<br>Aegiochus francoisae, Antarcturus multispinis,<br>Aega acuminata              |
| 31        | 50        | 13        | 1       | 46         | Natatolana borealis     | Astacilla paucisaetosa, Astacilla cingulata,<br>Astacilla poorei, Astacilla bonnierii, Stenosoma<br>raquelae              |
| 32        | 66        | 10        | 1       | 50         | Haploniscus silus       | Haploniscus silus, Chauliodoniscus tasmanaeus,<br>Hydroniscus lobocephalus, Bathybadistes<br>andrewsi, Haploniscus saphos |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species | Top 5 most indicative species                                                                        |
|-----------|-----------|-----------|---------|------------|---------------------|------------------------------------------------------------------------------------------------------|
| 33        | 61        | 10        | 1       | 60         | Brucerolis brandtae | Haploniscus miccus, Prochelator tupuhi,<br>Notopais zealandica, Epikopais mystax, Rocinela<br>pakari |



**Figure 5.1.** Bioregions of marine Isopoda. The coloured blocks are all those grid cells that had sufficient data points to be included in the analysis. Blocks of the same colour were clustered together into a bioregion by the Infomap algorithm. The dashed lines are only meant to serve enhanced clarity and do not represent actual bioregion boundaries. For more information on each bioregion, see Table 5.1.

| Species                 | Number of<br>bioregions occupied | List of occupied bioregions                   |
|-------------------------|----------------------------------|-----------------------------------------------|
| Idotea metallica        | 14                               | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 23, 32 |
| Limnoria tripunctata    | 9                                | 1, 2, 4, 5, 6, 7, 9, 15, 21                   |
| Paracerceis sculpta     | 8                                | 2, 4, 6, 7, 9, 15, 19, 21                     |
| Sphaeroma serratum      | 8                                | 1, 2, 4, 5, 12, 15, 16, 18                    |
| Iais pubescens          | 8                                | 2, 3, 4, 5, 7, 8, 23, 26                      |
| Sphaeroma walkeri       | 8                                | 2, 4, 5, 6, 7, 19, 21, 27                     |
| Elthusa raynaudii       | 7                                | 4, 5, 7, 8, 9, 14, 23                         |
| Sphaeroma terebrans     | 7                                | 2, 4, 5, 7, 12, 14, 16                        |
| Paradella dianae        | 7                                | 2, 4, 6, 7, 10, 19, 21                        |
| Cirolana harfordi       | 7                                | 2, 4, 6, 8, 9, 19, 30                         |
| Nerocila orbignyi       | 7                                | 1, 2, 4, 5, 7, 8, 24                          |
| Lanocira gardineri      | 7                                | 5, 7, 12, 14, 19, 24, 28                      |
| Limnoria quadripunctata | 6                                | 1, 2, 4, 5, 6, 8                              |
| Cirolana parva          | 6                                | 2, 5, 6, 7, 18, 21                            |
| Limnoria indica         | 6                                | 1, 4, 7, 12, 16, 18                           |
| Paralimnoria andrewsi   | 6                                | 2, 7, 9, 12, 21, 25                           |

Table 5.2. List of marine isopod species that were recorded in more than five bioregions.

In the marine realm, depth adds another dimension and more complexity to the environment. The marine dataset was divided into three depth categories to examine how bioregionalisation within isopods changes with depth. Of the 4,177 species for which depth information was available,  $\sim 6\%$  are eurybathic and were sampled in all three depth categories (Fig. 5.2). A further 55 species are shared between the deep and shallow datasets but are absent from the intermediate one. The deep and intermediate datasets share 144 species not documented in shallow waters. 207 species are shared between the shallow and intermediate datasets but were not sampled deeper than 500 m.



**Figure 5.2.** Venn diagram of marine isopod species shared between the shallow (0 to 200 m), intermediate (>200 to 500 m) and deep (>500 m) datasets.

Most species were recorded from shallow waters, and ~71% of marine occurrence records fall in this depth category. For these, 14 bioregions could be identified (Fig. 5.3a). The most extensive bioregion still encompasses the Arctic Ocean, parts of the North Atlantic, the Baltic Sea, the North Sea, the Mediterranean Sea, and the Black Sea (here Bioregion 2). The Southern Ocean and adjacent areas (Bioregion 5) are still recognised as one extensive bioregion, too, as is the west coast of North america in the North Pacific Ocean (Bioregion 4). Most of the northwest Atlantic, the Gulf of Mexico, and the Caribbean Sea continue to group together (Bioregion 1). However, a grid cell along the Brazilian coast (Bioregion 14) is now recognised as a bioregion with a distinct species composition. The coastal waters around Australia are still divided into south (Bioregion 3) and north. However, for shallow-water species only, distinct species assemblages cluster in north-eastern (Bioregion 8) and north-western Australia (Bioregion 11). Endemicity in shallow-water regions ranges from 53% in Bioregion 12 (Hawaii) to 88% in Bioregions 5 (Southern Ocean) and 3 (southern Australia) (see Table C1).

The intermediate dataset contains approximately 17% of marine occurrence records and only 739 species, of which most are shared with the other two depth categories (Fig. 5.2). Only eight bioregions can be identified based on these data (Fig. 5.3b). Again, the most extensive bioregion is the Arctic Ocean, with adjacent areas in the northern North Atlantic. There are insufficient occurrence records for intermediate depths in the North, Baltic, Mediterranean, and Black Seas to test whether they would still group with more northern ocean regions. Both

bioregions on the west and east coast of North America are maintained. However, there is insufficient occurrence data from the Gulf of Mexico and the Caribbean Sea to see whether they persistently cluster with the rest of the northwest Atlantic. Southern Australian and New Zealand bioregions are sustained. The Southern Ocean clusters into three distinct bioregions with data from the intermediate dataset. Herein, species assemblages from the Weddell Sea margins differ from communities at the edge of the Ross Sea and assemblages from an adjacent area in the southern Indian Ocean. Endemism rates range from 50% in the northwest Atlantic to 100% in the Australian bioregion (see Table C2).

Approximately 12% of marine occurrence records are part of the deep dataset. Nevertheless, the deep-sea data show high species richness, with ~32% of species occurring deeper than 500 m and ~21% exclusively in this depth category (Fig. 5.2). From these data, 16 bioregions can be identified (Fig. 5.3c). Based on deep-sea isopod species, north-eastern Atlantic regions that group with the extensive Arctic Ocean bioregion in the shallow water and the complete marine datasets now form a distinct bioregion. The deep dataset also contains sufficient occurrence records within grid cells in the Gulf of Mexico and along the eastern North American coast to compare the regions, and the clustering algorithm of "Infomap Bioregions" groups them into two distinct biogeographic regions. Within the Southern Ocean, only two grid cells at the edge of the Weddell Sea contain enough data to be included in the analysis. Deep-sea isopods sampled around New Zealand cluster into three distinct bioregions, whereas New Zealand was a single bioregion for isopods at shallow and intermediate depths. The percentage of endemic deep-sea isopods ranges from 20% in the low-diversity bioregion off the North American west coast to 100% in the deep sea surrounding New Caledonia and a grid cell in the southern Indian Ocean. Furthermore, Australia and the Southern Ocean continue to stick out as high-endemism areas, with 90% and 87% endemicity, respectively (see Table C3).



**Figure 5.3.** Bioregionalisation within the different marine depth categories. (a) Shallow: 0 to 200 m, (b) intermediate: >200 to 500 m, and (c) deep: >500 m. The coloured blocks are all those grid cells that had sufficient data points to be included in the analysis. Blocks of the same colour were clustered together into a bioregion by the Infomap algorithm. The dashed lines are only meant to serve enhanced clarity and do not represent actual bioregion boundaries. For more information on each bioregion, see Table C1, C2 and C3, respectively.

Chapter 5

#### 5.3.2. The terrestrial realm

The cleaned dataset contains occurrence records for only about a third of all terrestrial isopod species (~27%). However, 79% of families and approximately 43% of all terrestrial genera are included. For the terrestrial realm, 28 bioregions were recognised (Fig. 5.4). The most extensive bioregion is Bioregion 1, which includes the majority of occurrences for cosmopolitan or circumglobal species like Armadillium vulgare (Latreille, 1804), Porcellio scaber Latreille, 1804, and Oniscus asellus Linnaeus, 1758. Bioregion 1 encompasses most of North America and mostly the northern parts of Europe and stray areas in South America and Korea. A. vulgare is the most common species in 15 of the 28 bioregions (see Table 5.3). Some bioregions in the current analysis can be characterised as well-defined e.g. Hawaii (Bioregion 24), the Azores archipelago (Bioregion 12), Sicily (Bioregion 23), Lord Howe Island (Bioregion 17), New Zealand (Bioregion 15), or Australia (Bioregion 7), which has only sufficient data for the south-eastern part, including Tasmania. Grid cells of other bioregions are sometimes spread over extensive, entirely unconnected areas like the stray cells of Bioregion 1 and 6. The terrestrial dataset has the lowest coverage regarding species numbers and consequently seems more strongly affected by sampling bias than the marine dataset. Most occurrence records are concentrated in Europe, especially in north-western Europe and a few areas in the United States. Species richness is also highest in Europe, with the highest species number recorded in Bioregion 2 (mostly south-eastern France), followed by Bioregion 1 (mainly Europe and North America), Bioregion 5 (north-eastern Iberian Peninsula), and Bioregion 3 (parts of eastern Europe). Figure 5.4 shows vast areas with insufficient occurrence records. On the African continent, only the area around Cape Town (Bioregion 21) had enough data to be included in the analysis, and Madagascar is entirely blank. Similarly, only a few grid cells were sufficiently sampled in South America. Most of Asia and all of Indonesia are completely blank on the map in Figure 5.4. In Australia, only grid cells in the southeastern part of the continent had enough data to be considered in this analysis. Endemism rates of terrestrial bioregions ranged from 12% in Bioregion 12 (the Azores archipelago) to 95% in Bioregion 22 (Socotra Island). High endemism on an island seems intrinsically logical in organisms with low dispersal abilities. However, no neighbouring grid cells have been analysed here to examine how distinct the isopod fauna of Socotra Island is to the Arabic mainland or the fauna of Somalia. Another island that forms its own bioregion is Lord Howe Island off eastern Australia (Bioregion 17). 79% of the 29 species recorded for the region in this dataset are endemic to the area (see Table 5.3). In this case, neighbouring grid cells of the nearest mainland had sufficient

data and clustered into a separate bioregion (Bioregion 7), which shows equally high endemicity (76%). Despite these high rates of endemism, terrestrial isopods tended to be more widespread than marine species. More than 100 terrestrial species were recorded in three or more bioregions. The two most widespread species, *Armadillidium vulgare* (Latreille, 1804) and *Porcellionides pruinosus* (Brandt, 1833), were both recorded in 25 of the 28 delineated bioregions (see Table 5.4). Several regional subspecies are described of the latter species.



**Figure 5.4.** Bioregions of terrestrial Isopoda. The coloured blocks are all those grid cells that had sufficient data points to be included in the analysis. Blocks of the same colour were clustered together into a bioregion by the Infomap algorithm. The dashed lines are only meant to serve enhanced clarity and do not represent actual bioregion boundaries. For more information on each bioregion, see Table 5.3.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species   | Top 5 most indicative species                                                                                                     |
|-----------|-----------|-----------|---------|------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1         | 141,288   | 127       | 89      | 15         | Oniscus asellus       | Ligidium elrodii, Metatrichoniscoides celticus,<br>Porcellio novus, Trichoniscus demivirgo,<br>Miktoniscus racovitzai             |
| 2         | 7,642     | 149       | 3       | 28         | Philoscia muscorum    | Oritoniscus virei, Caeroplastes porphyrivagus,<br>Armadillidium quinquepustulatum,<br>Buddelundiella zimmeri, Trichoniscus voltai |
| 3         | 3,671     | 102       | 5       | 30         | Armadillidium vulgare | Hyloniscus adonis, Haplophthalmus austriacus,<br>Armadillidium carniolense, Tachysoniscus<br>austriacus, Trichoniscus nivatus     |
| 4         | 1,230     | 61        | 4       | 34         | Armadillidium vulgare | Trichoniscoides machadoi, Proporcellio<br>mirabilis, Eluma tuberculata, Porcellionides<br>rufocinctus, Oniscus lusitanus          |
| 5         | 1,969     | 116       | 2       | 29         | Armadillidium vulgare | Oritoniscus trajani, Porcellio duboscqui,<br>Oritoniscus intermedius, Oritoniscus bonneti,<br>Trichoniscoides modestus            |
| 6         | 2,411     | 37        | 10      | 32         | Armadillidium vulgare | Trichorhina donaldsoni, Venezillo culebrae,<br>Portoricoscia richmondi, Ligidium floridanum,<br>Synuropus granulatus              |
| 7         | 1,986     | 51        | 8       | 76         | Armadillidium vulgare | Actaecia thomsoni, Cubaris hickmani, Styloniscus<br>hirsutus, Styloniscus maculosus, Styloniscus<br>nichollsi                     |
| 8         | 611       | 61        | 3       | 54         | Armadillidium vulgare | Armadillidium insulanum, Orthometopon<br>turcicum, Orthometopon phaleronense, Ligidium<br>werneri, Armadillidium aegaeum          |

**Table 5.3.** Bioregions of terrestrial Isopoda. For each region, the most common species is listed, as well as the five most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a 4° latitudinal-longitudinal grid cell.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species          | Top 5 most indicative species                                                                                                           |
|-----------|-----------|-----------|---------|------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 9         | 643       | 93        | 2       | 28         | Armadillidium vulgare        | Armadillidium furcatum, Armadillidium tirolense,<br>Armadillidium ponalense, Armadillidium<br>marmorivagum, Lepidoniscus pruinosus      |
| 10        | 9,365     | 35        | 8       | 26         | Armadillidium vulgare        | Ligidium lapetum, Ligidium latum, Venezillo<br>microphthalmus, Alloniscus mirabilis,<br>Armadilloniscus lindahli                        |
| 11        | 1,635     | 95        | 1       | 36         | Porcellio orarum             | Tiroloscia corsica, Cylisticus vandeli, Tiroloscia<br>macchiae, Oritoniscus ocellatus, Platyarthrus<br>corsicus                         |
| 12        | 6,014     | 33        | 2       | 12         | Eluma caelata                | Chaetophiloscia guernei, Porcellio laevissimus,<br>Armadillidium amicorum, Miktoniscus chavesi,<br>Cordioniscus stebbingi               |
| 13        | 265       | 62        | 1       | 34         | Armadillidium klugii         | Alpioniscus magnus, Armadillidium<br>scaberrimum, Armadillidium stagnoense,<br>Echinarmadillidium fruxgalii, Armadillidium<br>saxivagum |
| 14        | 115       | 22        | 2       | 23         | Armadillo officinalis        | Trachelipus kervillei, Schizidium reinoehli,<br>Cylisticus rotabilis, Tauronethes lebedinskyi,<br>Trachelipus lutshnikii                |
| 15        | 1,081     | 17        | 4       | 53         | Porcellio scaber             | Spherillo rufomarginatus, Cubaris ambitiosa,<br>Tylos neozelanicus, Cubaris tarangensis,<br>Styloniscus commensalis                     |
| 16        | 360       | 30        | 3       | 60         | Ligia (Megaligia)<br>exotica | Ligidium koreanum, Lucasioides nishimurai,<br>Lucasioides ashiuensis, Mongoloniscus<br>maculatus, Venezillo longispinus                 |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species          | Top 5 most indicative species                                                                                                               |
|-----------|-----------|-----------|---------|------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | 186       | 29        | 1       | 79         | Cubaris crenata              | Cubaris crenata, Australiodillo anomalus,<br>Stigmops howensis, Cubaris hirsuta,<br>Australiodillo armus                                    |
| 18        | 305       | 28        | 2       | 46         | Armadillidium vulgare        | Alboscia jotajota, Benthana schmalfussi,<br>Benthana carijos, Calycuoniscus compar,<br>Neotroponiscus daguerrii                             |
| 19        | 119       | 24        | 1       | 63         | Tylos niveus                 | Trichorhina bermudezae, Littorophiloscia<br>amphindica, Agnara madagascariensis,<br>Armadilloniscus caraibicus, Ischioscia<br>unicartagenae |
| 20        | 2,078     | 18        | 3       | 17         | Armadillidium vulgare        | Brackenridgia cavernarum, Brackenridgia<br>sphinxensis, Brackenridgia reddelli, Venezillo<br>arizonicus, Platyarthrus aiasensis             |
| 21        | 118       | 27        | 1       | 63         | Armadillidium vulgare        | Gerufa hirticornis, Marioniscus spatulifrons,<br>Venezillo furcatus, Venezillo rufescens, Venezillo<br>pumilus                              |
| 22        | 80        | 22        | 1       | 95         | Socotroniscus<br>sacciformis | Socotroniscus sacciformis, Ligia dioscorides,<br>Uluguroscia pohli, Pseudoagnara wraniki,<br>Uluguroscia obscura                            |
| 23        | 68        | 26        | 1       | 31         | Armadillo officinalis        | Armadillidium decorum, Porcellio albicornis,<br>Armadillidium calabricum, Armadillidium<br>siculorum, Platyarthrus briani                   |
| 24        | 141       | 19        | 1       | 42         | Porcellio laevis             | Ligia rolliensis, Burmoniscus mauritiensis, Ligia<br>mauinuiensis, Ligia pele, Australophiloscia<br>societatis                              |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species   | Top 5 most indicative species                                                                                                    |
|-----------|-----------|-----------|---------|------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 25        | 130       | 18        | 1       | 33         | Armadillidium vulgare | Mongoloniscus vannamei, Venezillo hasegawai,<br>Leptophiloscia kiiensis, Burmoniscus dasystylus,<br>Littorophiloscia nipponensis |
| 26        | 61        | 9         | 1       | 22         | Armadillidium vulgare | Mexiconiscus laevis, Cylindroniscus vallesensis,<br>Brackenridgia bridgesi, Cubaris murina,<br>Porcellio laevis                  |
| 27        | 93        | 7         | 1       | 29         | Armadillidium vulgare | Oregoniscus nearcticus, Amerigoniscus<br>malheurensis, Porcellionides floria,<br>Armadillidium vulgare, Porcellio scaber         |
| 28        | 223       | 6         | 1       | 33         | Armadillidium vulgare | Scleropactes concinnus, Circoniscus ornatus,<br>Porcellio laevis, Cubaris murina, Armadillidium<br>vulgare                       |

| Species                     | Number of<br>bioregions occupied | List of occupied bioregions                                                                  |
|-----------------------------|----------------------------------|----------------------------------------------------------------------------------------------|
| Armadillidium vulgare       | 25                               | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,<br>15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28 |
| Porcellionides pruinosus    | 25                               | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,<br>15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26 |
| Porcellio laevis            | 23                               | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,<br>16, 17, 18, 20, 21, 23, 24, 26, 28         |
| Porcellio scaber            | 22                               | 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16,<br>18, 20, 21, 24, 25, 26, 27, 28            |
| Armadillidium nasatum       | 15                               | 1, 2, 3, 5, 6, 9, 10, 11, 13, 14, 16, 18, 20,<br>25, 27                                      |
| Porcellio dilatatus         | 14                               | 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 18, 20, 23,<br>25                                           |
| Agabiformius lentus         | 14                               | 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 20, 23, 24                                               |
| Ligia (Megaligia) exotica   | 12                               | 1, 6, 7, 10, 12, 16, 18, 20, 21, 24, 25, 26                                                  |
| Porcellionides sexfasciatus | 12                               | 1, 2, 4, 5, 7, 8, 9, 11, 12, 15, 18, 21                                                      |
| Oniscus asellus             | 11                               | 1, 2, 3, 4, 5, 8, 9, 10, 12, 20, 27                                                          |
| Haplophthalmus danicus      | 11                               | 1, 2, 3, 4, 5, 10, 11, 12, 15, 16, 25                                                        |
| Armadilloniscus ellipticus  | 11                               | 1, 2, 3, 6, 8, 11, 12, 13, 14, 16, 25                                                        |
| Ligia italica               | 11                               | 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 23                                                         |
| Halophiloscia couchii       | 10                               | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14                                                             |
| Platyarthrus schoblii       | 10                               | 1, 2, 3, 4, 5, 8, 11, 12, 14, 22                                                             |
| Armadillo officinalis       | 10                               | 1, 2, 3, 4, 5, 8, 11, 13, 14, 23                                                             |
| Porcellio lamellatus        | 9                                | 1, 2, 3, 4, 5, 11, 12, 13, 14                                                                |
| Philoscia muscorum          | 9                                | 1, 2, 3, 5, 8, 9, 10, 11, 13                                                                 |
| Platyarthrus hoffmannseggii | 9                                | 1, 2, 3, 4, 5, 9, 11, 13, 14                                                                 |
| Armadillidium granulatum    | 9                                | 1, 2, 4, 5, 8, 9, 11, 13, 23                                                                 |
| Cylisticus convexus         | 8                                | 1, 2, 3, 5, 6, 9, 10, 18                                                                     |
| Trichoniscus pusillus       | 8                                | 1, 2, 3, 4, 5, 9, 10, 12                                                                     |
| Chaetophiloscia elongata    | 8                                | 1, 2, 3, 5, 8, 9, 11, 13                                                                     |
| Trichoniscus pygmaeus       | 8                                | 1, 2, 3, 4, 5, 9, 11, 12                                                                     |
| Chaetophiloscia cellaria    | 8                                | 1, 2, 3, 5, 8, 9, 11, 14                                                                     |
| Armadillidium arcangelii    | 8                                | 1, 2, 4, 5, 8, 9, 11, 13                                                                     |
| Cubaris murina              | 7                                | 1, 6, 18, 20, 24, 26, 28                                                                     |

 Table 5.4. List of terrestrial isopod species that were recorded in more than five bioregions.

| Species                      | Number of<br>bioregions occupied | List of occupied bioregions |
|------------------------------|----------------------------------|-----------------------------|
| Ligia oceanica               | 7                                | 1, 2, 3, 4, 5, 10, 21       |
| Chaetophiloscia sicula       | 7                                | 1, 2, 3, 5, 9, 11, 13       |
| Androniscus dentiger         | 7                                | 1, 2, 3, 4, 5, 9, 12        |
| Eluma caelata                | 7                                | 1, 2, 4, 7, 10, 12, 15      |
| Armadillidium depressum      | 7                                | 1, 2, 5, 9, 11, 13, 23      |
| Philoscia affinis            | 7                                | 1, 2, 3, 5, 9, 11, 13       |
| Trichoniscus provisorius     | 7                                | 1, 2, 3, 5, 9, 11, 12       |
| Leptotrichus panzerii        | 7                                | 2, 4, 6, 9, 11, 12, 23      |
| Armadillidium assimile       | 7                                | 2, 4, 5, 9, 11, 12, 23      |
| Porcellio obsoletus          | 7                                | 3, 8, 9, 11, 13, 14, 23     |
| Trachelipus rathkii          | 6                                | 1, 2, 3, 6, 9, 13           |
| Hyloniscus riparius          | 6                                | 1, 2, 3, 9, 10, 14          |
| Tylos europaeus              | 6                                | 1, 2, 4, 5, 11, 12          |
| Acaeroplastes melanurus      | 6                                | 1, 2, 4, 5, 11, 12          |
| Stenophiloscia glarearum     | 6                                | 1, 2, 8, 11, 13, 23         |
| Stenoniscus pleonalis        | 6                                | 1, 2, 3, 8, 9, 11           |
| Platyarthrus aiasensis       | 6                                | 1, 2, 5, 10, 11, 20         |
| Porcellionides myrmecophilus | 6                                | 2, 8, 9, 11, 13, 23         |

### 5.3.3. Freshwater biomes

A bit more than half (~56%) of the world's freshwater isopods are included in the analysed dataset. Coverage for families and genera is higher, with approximately 82% and 70%, respectively. The clustering algorithm yielded 23 bioregions based on the species compositions of freshwater isopods (Fig. 5.5). It recognised two extensive bioregions in North America (Bioregion 1) and Europe (Bioregion 2), respectively. All other bioregions are of a small spatial extent, many of which consist only of a single grid cell. North and Central America, southern Europe, and Australia all have relatively sufficient data coverage and are divided into several

distinct bioregions, often in close proximity to each other (see Fig. 5.5). Similar to the terrestrial dataset, the freshwater one shows significant data gaps of occurrence records for freshwater Isopoda on the African continent, Madagascar, Indonesia, and almost all of Asia and South America. The central to western United States also lack data, as do all regions north of the US. The most species-rich bioregion with 91 recorded freshwater isopods is Bioregion 1 in North America, which is mainly defined by *Caecidotea* species (see Table 5.5). Regarding species richness, it is followed by Bioregion 4 (Tasmania), Bioregion 3 (north-eastern Iberian Peninsula), and Bioregion 2 in Europe. Although Bioregion 21 in central southern Australia contains 455 records (much more than Bioregions 3 and 4), only a single species is recorded there, Phreatomerus latipes (Chilton, 1922). Endemicity ranges from 62% in Bioregion 2 to 100% in Bioregions 11 (New Zealand), 15 (western Australia), 17 (northern tip of Sumatra), 21 (central southern Australia), 22 (in eastern Australia), and 23 (Yucatan Peninsula). Freshwater species had the most restricted biogeographic distributions, with only 19 species recorded in two or more bioregions (Table 5.6). The most widespread species in the analysis was Proasellus coxalis (Dollfus, 1892) (6 occupied bioregions), followed by Asellus (Asellus) aquaticus (Linnaeus, 1758) (5 bioregions). Of both, several regional subspecies are recognised.



**Figure 5.5.** Bioregions of freshwater Isopoda. The coloured blocks are all those grid cells that had sufficient data points to be included in the analysis. Blocks of the same colour were clustered together into a bioregion by the Infomap algorithm. The dashed lines are only meant to serve enhanced clarity and do not represent actual bioregion boundaries. For more information on each bioregion, see Table 5.5.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species            | Top 5 most indicative species                                                                                                       |
|-----------|-----------|-----------|---------|------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1         | 1,930     | 91        | 25      | 93         | Caecidotea communis            | Caecidotea kenki, Lirceus fontinalis, Caecidotea<br>recurvata, Caecidotea richardsonae, Caecidotea<br>bicrenata                     |
| 2         | 36,983    | 26        | 39      | 62         | Asellus (Asellus)<br>aquaticus | Proasellus hermallensis, Proasellus valdensis,<br>Proasellus synaselloides, Gallasellus heilyi,<br>Proasellus franciscoloi          |
| 3         | 150       | 29        | 2       | 72         | Stenasellus virei              | Proasellus lescherae, Stenasellus buili,<br>Proasellus cantabricus, Proasellus aquaecalidae,<br>Proasellus ebrensis                 |
| 4         | 112       | 30        | 1       | 93         | Onchotelson<br>brevicaudatus   | Onchotelson brevicaudatus, Mesacanthotelson<br>setosus, Mesacanthotelson tasmaniae,<br>Colubotelson chiltoni, Uramphisopus pearsoni |
| 5         | 26        | 15        | 2       | 80         | Proasellus coxalis             | Proasellus escolai, Proasellus beticus, Proasellus<br>granadensis, Proasellus comasi, Proasellus<br>lagari                          |
| 6         | 58        | 13        | 2       | 77         | Cirolanides texensis           | Caecidotea bilineata, Lirceolus pilus, Lirceolus<br>bisetus, Lirceolus cocytus, Cirolanides texensis                                |
| 7         | 81        | 15        | 1       | 67         | Asellus (Asellus)<br>aquaticus | Proasellus intermedius, Proasellus istrianus,<br>Proasellus deminutus, Proasellus parvulus,<br>Proasellus slovenicus                |
| 8         | 70        | 10        | 3       | 80         | Proasellus<br>anophtalmus      | Proasellus remyi, Proasellus gjorgjevici,<br>Monolistra (Monolistra) monstruosa, Proasellus<br>anophtalmus, Proasellus karamani     |

**Table 5.5.** Bioregions of freshwater Isopoda. For each region, the most common species is listed, as well as the five most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a 4° latitudinal-longitudinal grid cell.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species               | Top 5 most indicative species                                                                                                                  |
|-----------|-----------|-----------|---------|------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 9         | 40        | 8         | 3       | 75         | Tachaea caridophaga               | Phreatoicoides gracilis, Crenoicus shephardi,<br>Colubotelson searlei, Heterias pusilla, Tachaea<br>caridophaga                                |
| 10        | 29        | 11        | 1       | 91         | Speocirolana pelaezi              | Mexilana saluposi, Speocirolana pubens,<br>Caecidotea chicoensis, Speocirolana prima,<br>Speocirolana xilitla                                  |
| 11        | 37        | 9         | 2       | 100        | Austridotea lacustris             | Austridotea lacustris, Notamphisopus benhami,<br>Notamphisopus littoralis, Austridotea benhami,<br>Notamphisopus dunedinensis                  |
| 12        | 119       | 7         | 5       | 71         | Asellus (Asellus)<br>hilgendorfii | Caecianiropsis psammophila, Calasellus<br>californicus, Caecidotea tomalensis, Asellus<br>(Asellus) hilgendorfii, Gnorimosphaeroma<br>insulare |
| 13        | 42        | 6         | 2       | 83         | Crenoicus buntiae                 | Crenoicus buntiae, Metaphreatoicus lacustris,<br>Metaphreatoicus australis, Crenoicus harrisoni,<br>Ptyosphaera alata                          |
| 14        | 14        | 6         | 1       | 83         | Thermosphaeroma<br>macrura        | Thermosphaeroma macrura, Thermosphaeroma<br>smithi, Lirceolus nidulus, Thermosphaeroma<br>mendozai, Thermosphaeroma milleri                    |
| 15        | 27        | 6         | 1       | 100        | Pygolabis humphreysi              | Kagalana tonde, Pygolabis humphreysi,<br>Pygolabis paraburdoo, Pygolabis eberhardi,<br>Pygolabis weeliwolli                                    |
| 16        | 17        | 7         | 1       | 71         | Synasellus bragaianus             | Proasellus stocki, Proasellus oviedensis,<br>Bragasellus escolai, Bragasellus oscari,<br>Synasellus bragaianus                                 |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species           | Top 5 most indicative species                                                                                                  |
|-----------|-----------|-----------|---------|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 17        | 16        | 6         | 1       | 100        | Probopyrus abhoyai            | Probopyrus brachysoma, Probopyrus<br>bengalensis, Probopyrus alcocki, Probopyrus<br>gangeticus, Probopyrus abhoyai             |
| 18        | 17        | 6         | 1       | 83         | Sphaerolana<br>interstitialis | Mexistenasellus nulemex, Speocirolana<br>thermydronis, Sphaerolana affinis, Sphaerolana<br>interstitialis, Sphaerolana karenae |
| 19        | 13        | 5         | 1       | 80         | Proasellus beroni             | Proasellus acutianus, Proasellus faesulanus,<br>Proasellus beroni, Proasellus ruffoi, Proasellus<br>coxalis                    |
| 20        | 10        | 4         | 1       | 75         | Calabozoa pellucida           | Calabozoa pellucida, Afrocerberus letabai,<br>Protocerberus schminkei, Probopyrus floridensis                                  |
| 21        | 455       | 1         | 2       | 100        | Phreatomerus latipes          | Phreatomerus latipes                                                                                                           |
| 22        | 16        | 2         | 1       | 100        | Ponderella bundoona           | Ponderella ecomanufactia, Ponderella bundoona                                                                                  |
| 23        | 21        | 2         | 1       | 100        | Creaseriella anops            | Yucatalana robustispina, Creaseriella anops                                                                                    |

| Species                     | Number of<br>bioregions occupied | List of occupied bioregions |  |
|-----------------------------|----------------------------------|-----------------------------|--|
| Proasellus coxalis          | 6                                | 2, 3, 5, 7, 8, 19           |  |
| Asellus (Asellus) aquaticus | 5                                | 1, 2, 3, 7, 8               |  |
| Stenasellus virei           | 4                                | 2, 3, 5, 16                 |  |
| Ptyosphaera alata           | 3                                | 4, 9, 13                    |  |
| Caecidotea communis         | 3                                | 1, 2, 12                    |  |
| Proasellus meridianus       | 3                                | 2, 3, 16                    |  |
| Proasellus cavaticus        | 3                                | 2, 3, 7                     |  |
| Heterias pusilla            | 2                                | 4, 9                        |  |
| Probopyrus bithynis         | 2                                | 1, 10                       |  |
| Thermosphaeroma subequalum  | 2                                | 6, 14                       |  |
| Mexistenasellus coahuila    | 2                                | 6, 18                       |  |
| Caecidotea intermedia       | 2                                | 1, 6                        |  |
| Probopyrus floridensis      | 2                                | 1, 20                       |  |
| Caecidotea racovitzai       | 2                                | 1, 12                       |  |
| Proasellus margalefi        | 2                                | 3, 5                        |  |
| Proasellus walteri          | 2                                | 2, 3                        |  |
| Proasellus boui             | 2                                | 2, 3                        |  |
| Proasellus strouhali        | 2                                | 2, 7                        |  |
| Proasellus slavus           | 2                                | 2, 7                        |  |

Table 5.6. List of freshwater isopod species that were recorded in more than one bioregion.

### 5.4. Discussion

### 5.4.1. The marine realm

The clustering algorithm discriminated 33 distinct marine bioregions for isopods, a few of which are spatially extensive, but most are quite limited in extent. A similar analysis of the distribution of 65,000 marine animal and plant species (including both benthic and pelagic species) was performed by Costello et al. (2017). Their multi-taxa approach revealed 30 marine

biogeographic realms with distinct species compositions. Given the benthic lifestyle of isopods without a pelagic larval phase and their subsequent low dispersal ability, it is no surprise that the current analysis found many small, much more "localised" bioregions that are nested within the broader realms delineated by Costello et al. (2017). Nevertheless, there are some similarities between the two bioregionalisations. Both found an extensive Antarctic bioregion, a bioregion that spans the southern tip of the African continent and which is distinct from the seas around Madagascar, a bioregion along the western North American coastline, and one that stretches from the Gulf of Mexico into the Caribbean Sea and along the eastern North American coastline. Both approaches also divided the waters around Australia into a northern and a southern bioregion. However, the most extensive bioregion proposed by the current analysis (Bioregion 1, see Fig. 5.1) encompasses several of Costello et al.'s (2017) high and mid-latitude northern hemisphere realms. Bioregion 1 spans the entire Arctic Ocean, which they divided into three separate regions. It also includes the Baltic Sea, the North Sea, the northern North Atlantic Ocean, the Mediterranean Sea, and the Black Sea, all of which Costello et al. (2017) delineated as distinct biogeographic regions. When the clustering algorithm of "Infomap Bioregions" is set to put weight on abundance in order to highlight patterns of abundant isopod species, the structuring of European seas resembles that of Costello et al. (2017) a bit more closely. In that case, the Arctic Ocean is distinct from adjacent seas. The North Sea and the Mediterranean Sea still cluster together, but are now distinct from both the Baltic and the Black Sea, which form two separate bioregions. For most of the other delineated marine bioregions putting weight on abundance does not lead to significant changes. However, Bioregion 2 is divided into two separate regions. A northern region that encompasses the eastern North American coastline, the Gulf of Mexico, and the Caribbean Sea, and a southern region in which the grid cells along the South American coast cluster together. Lowering the cluster cost of the algorithm to e.g., 1.0 (to get a higher number of clusters) does not significantly change the extent of most delineated bioregions, but rather highlights sampling bias within the dataset by singling out grid cells in which more rare species had been sampled than in adjacent grid cells. Therefore, it does not improve the bioregionalisation or closer depict reality.

There are certainly regional variations in species compositions within some of the more extensive bioregions for isopods (e.g., Castelló et al., 2020; Zimina et al., 2019). However, for the algorithm to pick up localised sub-regions, one would have to perform a regional analysis of a subset of the data at a finer scale (e.g., 1° grid cell size or smaller). In such a case, Bioregion 6, for example, which stretches along the entire North American Westcoast, would be

subdivided into four sub-regions. However, such differences were not detected in the current global analysis, which was performed at a coarse resolution of 4° grid cells to balance out spatial differences in data density. Additionally, in the case of the immensely extensive Bioregion 1, common, wide-ranging species, may have led to some extent of homogenisation within species compositions of its various grid cells. Within marine isopods, there are several wide-ranging species, especially ones associated with rafting in or on detached vegetation as a means of dispersal. This includes wood-boring species and herbivorous isopods that live on macroalgae. One such species, Idotea metallica Bosc, 1801, is even a cosmopolitan species adapted to a rafting lifestyle (Brusca, 1984; Gutow et al., 2006) and was recorded in 14 of the 33 proposed bioregions. Another idoteid, Idotea balthica (Pallas, 1772), is a common intertidal grazer on both sides of the Atlantic Ocean in Europe and North America with still ongoing trans-Atlantic colonisation besides having historically isolated populations (Wares, 2001). Borges et al. (2014) reported the distribution of a wood-boring limnoriid species from Arctic waters into temperate regions and other limnoriids ranging from the temperate Atlantic into the Mediterranean. In fact, many Mediterranean species have an Atlantic origin with distribution ranges spanning both seas (Bakalem et al., 2020; Cartes & Figueroa, 2020). On the other hand, many Arctic regions undergo an "Atlantification" with temperate species shifting or expanding their distribution ranges northwards with a warming climate (Borges et al., 2014; Zimina et al., 2019). Also, for some isopod species, potential biogeographic barriers like the Greenland-Scotland Ridge do not restrict the faunal exchange between the Arctic and North Atlantic Oceans (Schnurr et al., 2014). All these examples taken together can explain the enormous extent of Bioregion 1 and how all these seas might be connected.

Another analysis of biogeographic patterns of shallow-water benthic organisms found that modern bioregions are very similar to ones from the late Cenozoic reconstructed from fossil data and, therefore, have been relatively stable for the past 10 million years (Kocsis et al., 2018). Based on their data, Kocsis et al. (2018) proposed an extensive Arctic bioregion similar to the one proposed for isopods, which also stretched southwards into temperate latitudes. However, they also delineated a separate European bioregion that included the Baltic, North, Black, and Mediterranean Seas, as well as the northeastern Atlantic Ocean. Similar to what the analysis of marine isopod occurrences proposes, they delineated an Antarctic bioregion that encompasses the coastlines of southern South America. In accordance with this, Brandt et al. (2016) mentioned that the isopod composition of the Southern Ocean shows most biogeographic links to the fauna of the South Atlantic. According to Kocsis et al. (2018), deep

ocean basins and the joint structure of landmass distribution primarily defined the boundaries of benthic coastal bioregions. However, the best secondary predictor of modern bioregion distributions was seawater temperature. After testing the robustness of their biogeographical partitioning, they concluded that meaningful bioregions can be outlined even in relatively poor sampling conditions and without environmental information (Kocsis et al., 2018).

Recently, many analyses of global marine biogeographical patterns within specific taxa have been performed, for example, for coastal cephalopods (Rosa et al., 2019), benthic amphipods (Arfianti & Costello, 2020), mangrove crabs (Sharifian et al., 2020), polychaete worms (Pamungkas et al., 2021), and brittle stars (Victorero et al., 2023). Even though there are apparent taxon-specific differences in the extent and location of bioregion boundaries, there are overlapping similarities. Where appropriate for the taxon, all the abovementioned studies found circumglobal Arctic and Antarctic bioregions, as in the current analysis of marine isopods. Other similarities include distinct New Zealand and Australian biota (Arfianti & Costello, 2020; Pamungkas et al., 2021; Victorero et al., 2023), the division of Australia into a northern and a southern bioregion (Rosa et al., 2019; Sharifian et al., 2020; Victorero et al., 2023), and a bioregion encompassing the tropical to temperate western Atlantic Ocean (Arfianti & Costello, 2020; Rosa et al., 2019; Sharifian et al., 2020; Victorero et al., 2023). While some of the single-taxa studies grouped all or most of the European seas into a combined bioregion with parts of the northern North Atlantic Ocean, all of them delineated that bioregion as distinct from an Arctic bioregion, contrary to what was found for isopods.

While some of the single-cell bioregions delineated herein likely represent biogeographic provinces (i.e. remote archipelagos, etc.) with distinct species communities that will still be identified as such in future analyses when more data will be available, other grid cells, which show up as a separate bioregion in this analysis, might integrate into more extensive bioregions once more occurrence records become available. Some grid cell clusters likely represent specific sampling events rather than actual distinct species communities. In the case of marine Bioregion 10, for example, most of the occurrence records are part of two deep sea sampling series from the Smithsonian Institution's National Museum of Natural History and Senckenberg's Census of Abyssal Marine Life. Therefore, this cell cluster includes mostly deep sea species, which is why the current analysis classifies it as different from adjacent grid cells, whose species communities are complemented by shallow-water species. The same seems to be the case for Bioregion 29, which includes mostly occurrence records of deep sea species that were collected during two sampling series from the Senckenberg Institution.

Many studies that have examined species composition over a broad depth range reported significant changes in species assemblages along the depth gradient (Brandt, De Broyer, et al., 2007; Brandt et al., 2016; Schnurr et al., 2014; Zimina et al., 2019). Depth adds complexity to the marine environment, and species richness tends to decrease with depth. However, several studies of isopods reported a peak in species richness in the deep sea, especially for asellote isopods (e.g., Brandt et al., 2016; Saeedi et al., 2022; G. D. F. Wilson, 1998). In the current analysis, the marine dataset was, in addition to being analysed as a whole, divided into three depth categories to examine if and how depth affects bioregionalisation. Many isopod species are eurybathic, which is reflected in the analysed dataset as there is a lot of overlap between depth categories (see Fig. 5.2). Only very few species were recorded exclusively at intermediate depths of 200 - 500 m. Generally, only a small proportion of isopod species were recorded at intermediate depths, and only a few grid cells had sufficient records to be included in the analysis. The resulting bioregions are consistent with what was found for the complete dataset, with an Arctic bioregion, distinct species assemblages for the Atlantic and Pacific coasts of North America, and distinct Australian and New Zealand bioregions. However, the Antarctic bioregion is split into three species clusters (see Fig. 5.3b). They are all far apart; two consist only of a single grid cell. It is likely that these clusters highlight local environmental conditions that influence species composition or that simply the scarcity of available records within the diversity databases or the employed sampling methods (e.g., epibenthic sled vs. box corer) are responsible for the observed pattern. Only further sampling can show whether these clusters extend to a broader range and would merit the division of the Antarctic bioregion into subregions. In the shallow-water dataset, which is richer in data points, the same grid cells group into a single Antarctic bioregion. Most studies that examined species composition within the Southern Ocean were carried out in the Weddell Sea and adjacent Atlantic sector, and none compared their findings to other Southern Ocean regions (Brandt, Brix, et al., 2007; Brandt, De Broyer, et al., 2007; Brandt et al., 2016; Di Franco et al., 2020). Nevertheless, published literature usually treats the Southern Ocean as a single, relatively isolated region. Its biogeographic isolation is promoted by the Antarctic Circumpolar Current (Barker et al., 2007; Crame, 1999), which is assumed to aid in the passive dispersal (via rafting) of species across biogeographic barriers within the Antarctic bioregion (Leese et al., 2010).

Most occurrence records are from coastal, shallow waters and produce a similar bioregionalisation overall to the one resulting from the complete dataset. The deep-sea dataset, however, splits two of the extensive northern hemisphere bioregions into separate clusters and

shows a heterogeneous species composition in the seas surrounding New Zealand (see Fig. 5.3c). This contradicts the long-held belief that the deep sea is a very homogeneous environment with only few but widespread species. Isopods are among the taxa that show high species richness in the deep sea, with Asellota as the dominant suborder (Hessler et al., 1979; Kussakin, 1973). Hessler and Sanders (1967) observed that their diversity is much higher than previously assumed. Recently, widely available abyssal rock patches were revealed, significantly increasing the knowledge about habitat heterogeneity in the deep sea (Riehl et al., 2020). In a study examining the distribution ranges of deep-sea peracarids, including isopods, Brandt et al. (2012) concluded that only very few, if any, peracarid species are truly widespread. They suggested that many species assumed to be wide-ranging may comprise cryptic species complexes, as has been demonstrated in molecular studies of several isopod species (Held, 2003; Hurtado et al., 2016; Raupach et al., 2007).

#### 5.4.2. The terrestrial realm

Within terrestrial isopods, much more wide-ranging species (both in number and range size) were found than in aquatic isopods. Several habitat generalists are cosmopolitan or circumglobal, having spread over all continents or at least the northern hemisphere, often through anthropogenic dispersal vectors. Cosmopolitan species like *Armadillidium vulgare* (Latreille, 1804) and *Porcellionides pruinosus* (Brandt, 1833) have been reported to have high tolerance limits to, e.g., habitat disturbance and desiccation. They thrive not only in pristine and moist natural environments but also in heavily degraded, dry or urban environments (Csonka et al., 2018; Hornung et al., 2008; Vilisics et al., 2007). In many regions, high numbers of non-native terrestrial isopod species are reported (e.g., Hornung et al., 2008). Therefore, it is not surprising that one very extensive bioregion (Bioregion 1, Fig. 5.4) was detected by the analysis covering big parts of North America and Europe and a few stray grid cells, which contain highly populated areas. Operating at low spatial resolution for the global-scale analysis, the clustering algorithm probably did not pick up differences in species assemblages at finer scales that the broad distributions of cosmopolitan species might have overshadowed.

The most detailed biogeographic framework of the terrestrial realm in the scientific literature to date was done by Olson et al. (2001). They produced a global map of 867 distinct ecoregions nested within 14 biomes and eight biogeographic realms. Olson et al.'s (2001) bioregionalisation is far too detailed to be comparable with the herein-produced global

bioregionalisation of terrestrial isopods. Besides, the characterisation of ecoregions in Olsen et al. (2001) relied mainly on landforms and vegetation type, which seem of low importance when looking at global patterns of terrestrial isopod diversity. Only a few island ecoregions were delineated similarly by both approaches. These are the Azores archipelago (Bioregion 12, see Fig. 5.4), Socotra Island (Bioregion 22), and Lord Howe Island (Bioregion 17). The islands of Corsica and Sardinia (Bioregion 11) and Sicily (Bioregion 23) were placed into the same ecoregion by Olson et al. (2001); however, they harbour distinct isopod communities. The other isopod bioregions encompass all two or more ecoregions, i.e. different forest or grassland types.

Ficetola et al. (2017) examined the global drivers of terrestrial bioregionalisation. They concluded that the interplay of multiple drivers has shaped the distribution of biogeographic boundaries. Tectonic movements have led to deeply divergent biogeographical realms, while sharp changes in climate and dispersal barriers like mountain ranges determine biogeographical boundaries within those realms. The distribution of isopod species on local scales reflects a species' tolerance limits and the availability of suitable hiding places, i.e. environmental heterogeneity (Csonka et al., 2018; Sfenthourakis & Hornung, 2018). For example, desiccation resistance in terrestrial isopods is associated with morphological traits like cuticle thickness. A thicker cuticle minimises water loss and enables an individual to survive in drier conditions than individuals from species with thinner cuticles can withstand (Csonka et al., 2018). For example, Csonka et al. (2018) found that the globally occurring habitat generalist Armadillidium vulgare has a relatively thick cuticle that offers effective protection. Temperature is another factor that is an explanatory variable for isopod distributions on land. Within the area of the former USSR, species diversity decreased northwards, with the northernmost occurrence records in the southern taiga (Kuznetsova & Gongalsky, 2012). That study concluded that the mean annual temperature was the limiting factor. No isopods were found north of the isocline of 120 days a year with a temperature of more than 10°C (Kuznetsova & Gongalsky, 2012).

Occurrence records for only approximately 27% of globally described terrestrial isopod species have been available for this analysis. This means that the underlying dataset for the produced bioregionalisation is highly incomplete. The clearest structuring of bioregions was produced for southern Europe (see Fig. 5.4). That is also where the highest species richness per grid cell was found. Another reliable result is the distinct bioregions of Australia and New Zealand. The somewhat chaotic structuring of North and Central America with several disjunct bioregions will improve when more data become available. Looking at Figure 5.4, there are clearly still

96

enormous geographical gaps in our knowledge of terrestrial isopod diversity and distribution. Except for the Cape Town region, Africa is entirely blank, so are Madagascar, the Arabian Peninsula, Indonesia, and most of Asia. Most regions in South and Central America lack sufficient occurrence records, as does most of the Australian continent. Many of the blank areas on the map have many species described and occurrences recorded in the scientific literature. However, those data were not uploaded to the biodiversity databases, which built the basis of the current analysis. Integration of these "missing" data will highly improve large-scale analyses like the one presented here. Also, integrating phylogenetic data where possible will provide valuable insights into historical regional relationships (Holt et al., 2013).

#### 5.4.3. Freshwater biomes

Early ancestors of extant isopods had an incursion into freshwater environments in the late Devonian, more than 360 mya (Robin et al., 2021). Fossils of phreatoicidean isopods provide evidence that this group of freshwater Isopoda was widespread on Gondwana by the Jurassic period, and vicariant events during the fragmentation of the supercontinent can explain the suborder's modern distribution patterns (G. D. F. Wilson, 2008b; G. D. F. Wilson & Edgecombe, 2003). Similarly, continental drift is the most probable explanation for the geographic distribution of freshwater microcerberids on both sides of the Atlantic Ocean, placing their origin in the Cretaceous period prior to the formation of the Atlantic (Wägele et al., 1995). Many freshwater isopods are stygobionts, living in caves, various groundwater ecosystems, or the interstitial. Aquatic hypogean environments were colonised multiple times by members of nearly all suborders (Wägele, 1990). Stygobiontic cirolanids, for example, are considered to be derived from ancestors with a widespread Tethyan distribution that were left stranded in newly developing subterranean habitats by marine transgressions and regressions (Holsinger et al., 1994). Considering the evidence gathered in the studies mentioned above, vicariance is the most crucial factor that has structured global diversity patterns of freshwater Isopoda, with marine dispersal and subsequent incursion of freshwater habitats ruled unlikely in most cases.

This analysis delineated 23 bioregions based on occurrence records of freshwater Isopoda on a global scale. A comprehensive study by Abell et al. (2008) produced a map of 426 freshwater ecoregions derived mainly from freshwater fish data and restricted to surface waters. Data on freshwater isopods are scarce in most parts of the world, which makes this group poorly suited

to a global analysis at present. Nevertheless, several of the bioregions found here are similar to ecoregions proposed by Abell et al. (2008). For example, the division of the Iberian Peninsula shows great similarities. The current analysis divided it into three bioregions (see Fig. 5.5). Bioregion 5 covers the south of the peninsula and is equivalent to the Southern Iberia ecoregion (number 413 in Abell et al., 2008) of the freshwater ecoregions of the world (FEOWs). This study lacks the fine-scale resolution of the FEOWs, so Bioregions 16 and 3 are comparable to the Western Iberia ecoregion (no. 412) and the Eastern Iberia ecoregion (no. 414), respectively; however, both also incorporate a part of the Cantabric Coast – Languedoc ecoregion (no. 403) that stretches along the Bay of Biscay coast and covers the south of France. Bioregion 19 in Europe is equivalent to the Italian Peninsula & Islands ecoregion (no. 416), although it lacks records for most of the Italian mainland and Sicily. Abell et al. (2008) proposed a rather extensive ecoregion for central and western Europe (no. 404), which was also found in the current analysis. Here, however, adjacent areas in northern Europe, as well as Greece and a grid cell in Ukraine, are also integrated into Bioregion 2 (Fig. 5.5). The most common species recorded for this bioregion was Asellus (Asellus) aquaticus (Linnaeus, 1758), which is the most widespread freshwater isopod in Europe. Several regional subspecies have been described, including one with many cave-adapted populations in karst areas. Other asellids (Proasellus spp.) were recently found to increase their distribution ranges from central Europe into northern European countries, probably aided by ship traffic and recreational fishermen (Kemp et al., 2020). Other bioregions (7 & 8) delineated in this study within Europe correspond well to the Upper Danube (no. 417) and Lower Danube (no. 418) (including Dalmatia (no. 419)) ecoregions of Abell et al.'s (2008) FEOWs. The second-most spatially extensive bioregion in the current study (Bioregion 1 in north America, Fig. 5.5) combines a multitude of FEOWs. It might also reflect increased connectivity of freshwater systems through human activities, as in Europe. With the current data, a few smaller bioregions in northern and central America could also be delimited. For example, Bioregion 23 (the northern part of the Yucatán Peninsula), which here is defined by two stygobiontic species collected from caves in the region, has also been proposed as a separate ecoregion (no. 175) in the FEOWs. It is characterised by extensive karst areas with plenty of grottos and cenotes. In the southern hemisphere, only the Australasian region had sufficient data points to be included in the analysis. New Zealand and its Subantarctic islands form a distinct bioregion in both the FEOWs (no. 811) and the current analysis (Bioregion 11). Australia is divided into several bioregions, some corresponding nicely to ecoregions delineated in the FEOWs, while others stretch over two or three ecoregions.

It is evident from the presented data that there are substantial geographical sampling gaps of freshwater isopods in South America, Africa, Asia and Indonesia. Moreover, most of the proposed bioregions in this analysis include less than a hundred occurrence records. More sampling of freshwater habitats is needed to get a better understanding of local, regional and global distributions of freshwater isopods to guide conservation efforts. Many freshwater species have very restricted distribution ranges. Therefore, studies on regional scales might be more informative than global studies, especially in data-scarce regions. Local habitat features and environmental heterogeneity play an important role in structuring species' distributions (Adlem & Timms, 2000; Cortés-Guzmán & Alcocer, 2022). In southwestern Virginian caves and springs, subterranean asellid species richness is high. Due to niche partitioning, it is not uncommon to find two or three asellid species co-occurring at the same site (Lewis et al., 2021). On the other hand, in the Western Carpathians, species richness of individual karst springs was found to be low (Cíbik et al., 2022). However, regional gamma diversity was high, resulting from high taxonomic turnover between springs. A study on benthic freshwater macroinvertebrates in tropical Mexican lakes also highlighted the importance of regional-scale conservation efforts. Each lake contained a unique species community; therefore, diversity was spread across the entire region instead of being concentrated in specific hotspots (Cortés-Guzmán & Alcocer, 2022). A genetic study of groundwater-associated Haloniscus species in Australia's central arid zone revealed high regional endemicity of 26 putative species, each restricted to a small geographical range (Guzik et al., 2019). High endemicity rates are also reported in this study, and wide-ranging freshwater species are rare. Only 19 species have been recorded in two or more of the delineated bioregions. Regional freshwater isopod faunas' uniqueness makes the need to close knowledge gaps more pressing.

## 6. General Discussion

#### 6.1. Summary of the main findings

This thesis explored the global diversity and biogeography of the peracarid crustacean order Isopoda. It did not restrict itself to either aquatic or terrestrial environments but included information on isopods from all environments to analyse the worldwide biodiversity of the whole order.

After a detailed introduction to the natural history of isopods and an overview of what is known about their diversity and biogeography (Chapter 2), a data-driven approach focused on the current status of isopod taxonomy, examining species description rates and the number of people involved in the scientific inventory of isopod species (Chapter 3). Taking advantage of the wealth of taxonomic information stored in the World Register of Marine Species (WoRMS) database, a global list of accepted species names and their authorities has been compiled. This list includes 10,687 extant isopod species in 1,557 genera, 141 families, and 12 suborders. More than half of all named species are marine (6,151), while a considerable number thrive in the terrestrial environment (3,840), and the rest live in freshwater habitats (696). Over the past two and a half centuries, a cohort of 755 first authors has described these isopod species. The number of scientists involved in isopod taxonomy has increased over time, especially since the 1950s. This indicates that increasing effort is put into completing the global isopod inventory and contradicts, at least concerning the number of people involved, the notion that taxonomy is in crisis (Bacher, 2012; Gaston & May, 1992; Hopkins & Freckleton, 2002). Despite this significant effort, the description rate has slowed in recent decades. Given the current pace of the description rate, a statistical model estimates that approximately 660 more isopod species will be described by the end of this century, bringing the total number of named isopod species up to about 11,350. These data highlight the considerable progress that has already been made in the scientific description of the world's isopod species and provide a hopeful outlook for completing a global isopod inventory as an achievable task.

The second data-driven approach utilised the plentiful geo-referenced occurrence records, which are available through biodiversity databases like the Ocean Biodiversity Information System (OBIS) and the Global Biodiversity Information Facility (GBIF). In the first step, these data were used to examine the latitudinal diversity gradient in species richness (Chapter 4). The gradient was determined for the order as a whole and several environmental and ecological subgroups. The results confirmed the claim that bimodality with a dip in species richness within
equatorial regions is the most commonly observed pattern of latitudinal diversity (Cerezer et al., 2022; Chaudhary et al., 2016, 2017), in contrast to the long-lasting paradigm that the latitudinal diversity gradient in species richness is generally unimodal with increasing diversity from the poles towards the tropics (Stehli et al., 1969). Within almost all subgroups, except marine isopods (where it was higher in the southern hemisphere), higher species richness was found in the northern hemisphere, leading to asymmetric latitudinal diversity gradients. Although considerable sampling bias towards the extra-tropical northern hemisphere could be detected in the data when accounted for, it did not markedly affect the overall shape of the latitudinal pattern in species richness (also concluded by Boltovskoy & Correa, 2017; Chaudhary et al., 2017; Rivadeneira & Poore, 2020). This was especially evident within marine isopods, where higher species richness was found in the southern hemisphere despite four times more occurrence records in the northern hemisphere. The southern hemisphere peak in marine diversity coincided with the location of some very species-rich biogeographic regions like Australia, New Zealand, and South Africa (which were determined in Chapter 5).

In a second step, the dataset of occurrence records compiled in Chapter 4 was used to identify distinct biogeographic regions within the marine, terrestrial, and freshwater realms (Chapter 5). Cluster analysis identified 33 distinct bioregions for marine isopods, in which endemicity ranged from 27% to 87%. The most widespread species, *Idotea metallica* Bosc, 1801, recorded in 14 of the 33 bioregions, uses rafts of floating vegetation as a dispersal mechanism (Gutow et al., 2006). Within the terrestrial realm, 28 bioregions were recognised. Compared with marine isopods, more of the terrestrial species tended to be widespread. A few terrestrial species are cosmopolitan, occurring in most of the delineated bioregions. Terrestrial endemism rates ranged from 12% to 95%. Within the 23 delineated bioregions in the freshwater realm, regional endemicity ranged from 62% to 100%. This analysis also illustrated the geographical gaps in isopods' distribution data. Vast areas of South America, Africa, Asia, Indonesia, and parts of Australia lack occurrence records of isopod species, as does most of the deep sea floor. Closing these gaps (along with taxonomical gaps) will help refine the outcomes of biogeographical analyses and increase the value of resulting maps as base maps to inform conservation efforts.

## 6.2. Limitations

The analyses performed in this thesis face the apparent limitations of the available data in the utilised databases. The global species list compiled and analysed in Chapter 3 cannot claim to be complete. Only data made available through WoRMS were used, i.e., only species names

entered into the database and verified by a taxonomic editor. In many cases, newly described species are entered into the database with considerable delay, some species have been overlooked, and validating species names and accompanying information takes time. Therefore, there are likely unrecognised synonyms in the dataset and species missing from the list. However, this is not expected to significantly affect the observed rate of description or the other variables examined. Predictions on future species numbers will change, though, once a more complete dataset can be analysed. Already discovered but yet unnamed species will be added to the list in time, as will newly discovered species from future sampling events.

Utilising data from public databases is always accompanied by some pitfalls. For instance, since the temporal range of the observations is very broad both in OBIS and GBIF, and citizen scientists can upload data, too, there is always the risk of misidentifications. To minimise the impact of low-quality data, downloaded datasets should be thoroughly cleaned before analysis, as has been done here. However, even after extensive quality checks, the current dataset of georeferenced occurrence records is taxonomically and spatially incomplete. Some of the missing data have been previously reported in the scientific literature but have yet to be uploaded to the databases. Given the global and broad taxonomic scope of the current analysis, it was not feasible to fill in gaps by extracting additional occurrence records from the scientific literature. However, for local or limited regional scale and narrow taxonomic scale studies, it would be highly recommended to increase coverage by searching for and adding additional records from the literature.

The bioregionalisations produced in this thesis are a hypothesis, which needs to be tested further and needs to be refined. The delineated bioregions are based only on differences in species compositions of isopods. Furthermore, the resolution used in this analysis is very coarse. In reality, biogeographic regions are not formed by only a single taxon but by a community of various animal and plant species (as well as fungi, protozoans, bacteria, etc.). Additionally, the extent of biogeographic regions and their boundaries underly a complex interplay of environmental factors. Environmental drivers, such as temperature, salinity, productivity, precipitation, etc., and dispersal barriers like ocean trenches or mountain ranges play a pivotal role in defining biogeographic boundaries. More research needs to be conducted to empirically relate those environmental drivers to the observed biogeographic patterns of species distributions within isopods. Nevertheless, the global patterns observed in here match other proposed global bioregionalisations, whether they are based on taxon-specific occurrence records or include a multitude of animal and plant species occurrences, and regardless of whether the results were correlated with environmental variables or not. Several studies agree

Chapter 6

that even with incomplete datasets and without the inclusion of environmental drivers one can produce meaningful global bioregionalisations. Bioregions resulting from a global analysis with a coarse resolution should better be viewed as biogeographic realms that can be subdivided into smaller biogeographic provinces, which better reflect regional differences. Conducting the global analysis in here on a finer scale is not recommendable as the spatial coverage of the data is highly variable and resulting regions might more strongly reflect sampling bias in the data. If a research question focuses on regional or local differences within one of the delineated bioregions, it is recommended to re-analyse a regional subset of the data with a finer resolution, so smaller provinces can be detected.

## 6.3. Future directions

This thesis integrated taxonomic and biogeographic knowledge of freshwater, terrestrial, and marine isopods to form a basic understanding of the global diversity and distribution of the order Isopoda. In the process, it also revealed gaps in our knowledge. Despite the ongoing efforts of a considerable workforce describing newly discovered isopod species, a substantial task remains in the scientific documentation of the world's isopods. However, even though the world's biodiversity faces numerous threats, the scientific community is believed to stand a good chance of naming most species before they go extinct (Costello, May, et al., 2013). Only once a species is adequately described and documented will it be included in threat assessments and conservation plans. The achievement of a comprehensive global species inventory entails the thorough examination and description of isopod species previously discovered during sampling events in species-rich locations, presumed to be new to science. Possible species complexes need to be identified and resolved, requiring integrating a morphological approach with molecular methods. Further fieldwork must be conducted in inadequately sampled regions to uncover and add previously unknown diversity to the species list. This is crucial for addressing not only taxonomic gaps but also gaps in isopods' distribution data. Chapter 5 underscores these geographic gaps across diverse environments, emphasising the need for focused research efforts in these regions. Finally, all collected information should be added to digital data repositories to facilitate widespread access to global datasets among scientists.

## References

- Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., ... Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. *BioScience*, 58(5), 403–414. https://doi.org/10.1641/B580507
- Achouri, M. S., Hamaied, S., & Charfi-Cheikhrouha, F. (2008). The diversity of terrestrial Isopoda in the Berkoukech area, Kroumirie, Tunisia. *Crustaceana*, 81(8), 917–929. https://doi.org/10.1163/156854008X354948
- Adlard, R. D., & Lester, R. J. G. (1995). The life cycle and biology of *Anilocra pomacentri* (Isopoda: Cymothoidae), an ectoparasitic isopod of the coral reef fish, *Chromis nitida* (Perciformes: Pomacentridae). *Australian Journal of Zoology*, 43(3), 271–281. https://doi.org/10.1071/ZO9950271
- Adlem, L. T., & Timms, B. V. (2000). Biogeography of the freshwater Peracarida (Crustacea) from Barrington Tops, NSW. *Proceedings of the Linnean Society of New South Wales*, 122, 131–141.
- Agnarsson, I., & Kuntner, M. (2007). Taxonomy in a changing world: Seeking solutions for a science in crisis. *Systematic Biology*, *56*(3), 531–539. https://doi.org/10.1080/10635150701424546
- Ahadi, N., Sharifi, Z., Hossaini, S. M. T., Rostami, A., & Renella, G. (2020). Remediation of heavy metals and enhancement of fertilizing potential of a sewage sludge by the synergistic interaction of woodlice and earthworms. *Journal of Hazardous Materials*, 385, Article 121573. https://doi.org/10.1016/j.jhazmat.2019.121573
- Ahyong, S. T., Boyko, C. B., Bailly, N., Bernot, J., Bieler, R., Brandão, S. N., Daly, M., De Grave, S., Gofas, S., Hernandez, F., Hughes, L., Neubauer, T. A., Paulay, G., Boydens, B., Decock, W., Dekeyzer, S., Vandepitte, L., Vanhoorne, B., Adlard, R., ... Zullini, A. (2022). *World Register of Marine Species*. Available from https://www.marinespecies.org at VLIZ. Accessed 2022-08-24. https://doi.org/10.14284/170
- Ahyong, S. T., Boyko, C. B., Bailly, N., Bernot, J., Bieler, R., Brandão, S. N., Daly, M., De Grave, S., Gofas, S., Hernandez, F., Hughes, L. E., Neubauer, T. A., Paulay, G., Boydens, B., Decock, W., Dekeyzer, S., Vandepitte, L., Vanhoorne, B., Adlard, R. D., ... Zullini, A. (2023). *World Register of Marine Species*. Available from https://www.marinespecies.org at VLIZ. Accessed 2023-03-29. https://doi.org/10.14284/170
- Ali, N. G., El-Sayed Ali, T., Kamel, M. F., Saleh, R., Sherif, A. H., & Aboyadak, I. M. (2022). Eradication of *Livoneca redmanii* infestation in cultured *Argyrosomus regius*. *Aquaculture*, 558, Article 738373. https://doi.org/10.1016/j.aquaculture.2022.738373
- Allen, A. P., & Gillooly, J. F. (2006). Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. *Ecology Letters*, 9(8), 947–954. https://doi.org/10.1111/j.1461-0248.2006.00946.x

- Aneesh, P. T., & Kappalli, S. (2020). Protandrous hermaphroditic reproductive system in the adult phases of *Mothocya renardi* (Bleeker, 1857) (Cymothoidae: Isopoda: Crustacea) -Light and electron microscopy study. *Zoological Studies*, 59, Article 61. https://doi.org/10.6620/ZS.2020.59-61
- Aneesh, P. T., Kottarathil, H. A., & Kumar, A. B. (2022). Simultaneous double parasitism by the parasitic cymothoids (Crustacea: Isopoda) of two genera on a single host fish *Tenualosa toli* from India. *Nauplius*, 30, Article e2022013. https://doi.org/10.1590/2358-2936e2022013
- Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R. N., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R., Bruce, N. L., Cairns, S., Chan, T. Y., ... Costello, M. J. (2012). The magnitude of global marine species diversity. *Current Biology*, 22(23), 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036
- Arfianti, T., & Costello, M. J. (2020). Global biogeography of marine amphipod crustaceans: Latitude, regionalization, and beta diversity. *Marine Ecology Progress Series*, 638, 83– 94. https://doi.org/10.3354/meps13272
- Arfianti, T., Wilson, S. P., & Costello, M. J. (2018). Progress in the discovery of amphipod crustaceans. *PeerJ*, *6*, Article e5187. https://doi.org/10.7717/peerj.5187
- Artim, J. M., Hook, A., Grippo, R. S., & Sikkel, P. C. (2017). Predation on parasitic gnathiid isopods on coral reefs: A comparison of Caribbean cleaning gobies with non-cleaning microcarnivores. *Coral Reefs*, 36, 1213–1223. https://doi.org/10.1007/s00338-017-1613-6
- Ashton, G. V., Freestone, A. L., Duffy, J. E., Torchin, M. E., Sewall, B. J., Tracy, B., Albano, M., Altieri, A. H., Altvater, L., Bastida-Zavala, R., Bortolus, A., Brante, A., Bravo, V., Brown, N., Buschmann, A. H., Buskey, E., Barrera, R. C., Cheng, B., Collin, R., ... Ruiz, G. M. (2022). Predator control of marine communities increases with temperature across 115 degrees of latitude. *Science*, *376*(6598), 1215–1219. https://doi.org/10.1126/science.abc4916
- Athanassopoulou, F., Pappas, I. S., & Bitchava, K. (2009). An overview of the treatments for parasitic disease in Mediterranean aquaculture. In C. Rogers & B. Basurco (Eds.), *The use of veterinary drugs and vaccines in Mediterranean aquaculture* (pp. 65–83). CIHEAM, Zaragoza.
- Ax, P. (2000). Pancarida Peracarida. In *Multicellular Animals*. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10396-8\_50
- Ayari, A., Ghemari, C., & Nasri-Ammar, K. (2021). Reproductive adaption as a survival strategy to life in an arid environment: The terrestrial crustacean *Hemilepistus reaumurii* as a model. *Zoologischer Anzeiger*, 294, 10–19. https://doi.org/10.1016/j.jcz.2021.07.003
- Bacher, S. (2012). Still not enough taxonomists: Reply to Joppa et al. *Trends in Ecology & Evolution*, 27(2), 65–66. https://doi.org/10.1016/j.tree.2011.11.003
- Bakalem, A., Hassam, N., Oulmi, Y., Martinez, M., & Dauvin, J.-C. (2020). Diversity and geographical distribution of soft-bottom macrobenthos in the bay of Bou Ismail (Algeria,

Mediterranean Sea). *Regional Studies in Marine Science*, *33*, Article 100938. https://doi.org/10.1016/j.rsma.2019.100938

- Bánki, O., Roskov, Y., Vandepitte, L., DeWalt, R. E., Remsen, D., Schalk, P., Orrell, T., Keping, M., Miller, J., Aalbu, R., Adlard, R. D., Adriaenssens, E., Aedo, C., Aescht, E., Akkari, N., Alonso-Zarazaga, M. A., Alvarez, B., Alvarez, F., Anderson, G., ... von Konrat, M. (2021). Catalogue of Life Checklist (Annual Checklist 2021). *Catalogue of Life*. https://doi.org/10.48580/d4sb
- Barham, E. G., & Pickwell, G. V. (1969). The giant isopod, *Anuropus*: A scyphozoan symbiont. *Deep Sea Research and Oceanographic Abstracts*, *16*, 525–529.
- Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., & Scher, H. D. (2007). Onset and role of the Antarctic Circumpolar Current. *Deep Sea Research Part II: Topical Studies in Oceanography*, 54(21–22), 2388–2398. https://doi.org/10.1016/j.dsr2.2007.07.028
- Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A., & Scotland, R. W. (2007). Predicting unknown species numbers using discovery curves. *Proceedings of the Royal Society B: Biological Sciences*, 274(1618), 1651–1658. https://doi.org/10.1098/rspb.2007.0464
- Beck, J. T. (1980). The effects of an isopod castrator, *Probopyrus pandalicola*, on the sex characters of one of its caridean shrimp hosts, *Palaemonetes paludosus*. *The Biological Bulletin*, *158*(1), 1–15.
- Belanger, C. L., Jablonski, D., Roy, K., Berke, S. K., Krug, A. Z., & Valentine, J. W. (2012). Global environmental predictors of benthic marine biogeographic structure. *Proceedings* of the National Academy of Sciences, 109(35), 14046–14051. https://doi.org/10.1073/pnas.1212381109
- Boag, T. H., Gearty, W., & Stockey, R. G. (2021). Metabolic tradeoffs control biodiversity gradients through geological time. *Current Biology*, 31(13), 1–8. https://doi.org/10.1016/j.cub.2021.04.021
- Bober, S., Brix, S., Riehl, T., Schwentner, M., & Brandt, A. (2018). Does the Mid-Atlantic Ridge affect the distribution of abyssal benthic crustaceans across the Atlantic Ocean? *Deep Sea Research Part II: Topical Studies in Oceanography*, 148, 91–104. https://doi.org/10.1016/j.dsr2.2018.02.007
- Boltovskoy, D., & Correa, N. (2017). Planktonic equatorial diversity troughs: Fact or artifact? Latitudinal diversity gradients in Radiolaria. *Ecology*, *98*(1), 112–124. https://doi.org/10.1002/ecy.1623
- Boos, H., Scalco, A. C. S., & Araujo, P. B. (2021). Biological and ecological traits of *Bathynomus giganteus* and *Bathynomus miyarei* (Crustacea: Isopoda): Contribution to the conservation of deep-sea in southern Brazil. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 31(8), 2084–2094. https://doi.org/10.1002/aqc.3583
- Borges, L. M. S., Merckelbach, L. M., & Cragg, S. M. (2014). Biogeography of wood-boring crustaceans (Isopoda: Limnoriidae) established in European coastal waters. *PloS ONE*, 9(10), Article e109593. https://doi.org/10.1371/journal.pone.0109593

- Bortolini Rosales, J. L., Mejía Estrada, J. A., del Pilar Alonso Reyes, M., Romero-Rodríguez, J., & Baeza, J. A. (2021). Reproductive biology of the bopyrid isopod *Robinione overstreeti*, a branchial parasite of the ghost shrimp *Callichirus islagrande* (Decapoda: Callichiridae) in the Gulf of Mexico. *Marine Biology Research*, 17(3), 247–259. https://doi.org/10.1080/17451000.2021.1928221
- Botosaneanu, L. (2001). Morphological rudimentation and novelties in stygobitic Cirolanidae (Isopoda, Cymothoidea). *Vie et Milieu*, *51*(1–2), 37–54.
- Bouchet, P. (2006). The magnitude of marine biodiversity. In C. M. Duarte (Ed.), *The* exploration of marine biodiversity: scientific and technological challenges (pp. 31–62). Fundación BBVA, Bilbao, Spain. http://www.vliz.be/imisdocs/publications/ocrd/114391.pdf
- Bouchon, D., Rigaud, T., & Juchault, P. (1998). Evidence for widespread Wolbachia infection in isopod crustaceans: Molecular identification and host feminization. Proceedings of the Royal Society B: Biological Sciences, 265(1401), 1081–1090. https://doi.org/10.1098/rspb.1998.0402
- Boxshall, G., & Self, D. (2011). UK Taxonomy & Systematics Review 2010.
- Boyko, C. B., & Williams, J. D. (2023). Nomenclatural and taxonomic changes in parasitic isopods (Isopoda: Epicaridea), including two new families and note on the questionable association between monogeneans and bopyrids. *Zootaxa*, *5258*(3), 251–269. https://doi.org/10.11646/zootaxa.5258.3.1
- Boyko, C. B., & Wolff, C. (2014). Isopoda and Tanaidacea. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), *Atlas of Crustacean Larvae* (pp. 210–215). Johns Hopkins University Press.
- Brad, T., Iepure, S., & Sarbu, S. M. (2021). The chemoautotrophically based Movile Cave groundwater ecosystem, a hotspot of subterranean biodiversity. *Diversity*, 13, Article 128. https://doi.org/10.3390/d13030128
- Brandt, A., Błażewicz-Paszkowycz, M., Bamber, R. N., Mühlenhardt-Siegel, U., Malyutina, M. V., Kaiser, S., de Broyer, C., & Havermans, C. (2012). Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)? *Polish Polar Research*, 33(2), 139–162. https://doi.org/10.2478/v10183-012-0012-5
- Brandt, A., Brix, S., Brökeland, W., Choudhury, M., Kaiser, S., & Malyutina, M. V. (2007). Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean — Results from the ANDEEP I–III expeditions. *Deep Sea Research Part II: Topical Studies in Oceanography*, 54(16–17), 1760–1775. https://doi.org/10.1016/J.DSR2.2007.07.015
- Brandt, A., Crame, J. A., Polz, H., & Thomson, M. R. A. (1999). Late Jurassic tethyan ancestry of recent southern high-latitude marine isopods (Crustacea, Malacostraca). *Palaeontology*, *42*(4), 663–675. https://doi.org/10.1111/1475-4983.00090
- Brandt, A., De Broyer, C., De Mesel, I., Ellingsen, K. E., Gooday, A. J., Hilbig, B., Linse, K., Thomson, M. R. A., & Tyler, P. A. (2007). The biodiversity of the deep Southern Ocean benthos. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 362(1477), 39–66. https://doi.org/10.1098/rstb.2006.1952

- Brandt, A., Linse, K., Ellingsen, K. E., & Somerfield, P. J. (2016). Depth-related gradients in community structure and relatedness of bivalves and isopods in the Southern Ocean. *Progress in Oceanography*, 144, 25–38. https://doi.org/10.1016/j.pocean.2016.03.003
- Brandt, A., & Poore, G. C. B. (2003). Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. *Invertebrate Systematics*, *17*, 893–923. https://doi.org/10.1071/IS02032
- Brayard, A., Escarguel, G., & Bucher, H. (2005). Latitudinal gradient of taxonomic richness: Combined outcome of temperature and geographic mid-domains effects? *Journal of Zoological Systematics and Evolutionary Research*, 43(3), 178–188. https://doi.org/10.1111/j.1439-0469.2005.00311.x
- Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F., & O'Hara, T. D. (2019). Global biogeographic structuring of tropical shallow-water brittle stars. *Journal of Biogeography*, 46(7), 1287–1299. https://doi.org/10.1111/jbi.13620
- Briggs, J. C. (1974). Marine zoogeography. McGraw-Hill Book Company.
- Brökeland, W., Guðmundsson, G., & Svavarsson, J. (2010). Diet of four species of deep-sea isopods (Crustacea: Malacostraca: Peracarida) in the South Atlantic and the Southern Ocean. *Marine Biology*, *157*, 177–187. https://doi.org/10.1007/s00227-009-1308-9
- Broly, P., Deville, P., & Maillet, S. (2013). The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). *Evolutionary Ecology*, 27, 461–476. https://doi.org/10.1007/s10682-012-9625-8
- Brook, H. J., Rawlings, T. A., & Davies, R. W. (1994). Protogynous sex change in the intertidal isopod *Gnorimoshpaeroma oregonense* (Crustacea: Isopoda). *The Biological Bulletin*, 187(1), 99–111. https://doi.org/10.2307/1542169
- Browne, J. G., Pitt, K. A., & Norman, M. D. (2017). Temporal patterns of association between the jellyfish *Catostylus mosaicus* and a sphaeromatid isopod and parasitic anemone. *Marine and Freshwater Research*, 68(9), 1771–1777. https://doi.org/10.1071/MF16076
- Bruce, N. L. (1986). Cirolanidae (Crustacea: Isopoda) of Australia. *Records of the Australian Museum, Supplement 6.*
- Brusca, R. C. (1983a). A monograph on the isopod family Aegidae in the tropical eastern Pacific. I. The genus *Aega. Allan Hancock Monographs in Marine Biology*, *12*, 1–39.
- Brusca, R. C. (1983b). Two new idoteid isopods from Baja California and the Gulf of California (Mexico) and an analysis of the evolutionary history the genus *Colidotea* (Crustacea: Isopoda: Idoteidae). *Transactions of the San Diego Society of Natural History*, 20(4), 69–79.
- Brusca, R. C. (1984). Phylogeny, evolution and biogeography of the marine isopod subfamily Idoteinae (Crustacea: Isopoda: Idoteidae). *Transactions of the San Diego Society of Natural History*, 20(7), 99–134.
- Brusca, R. C. (1987). Biogeographic relationships of Galapagos marine isopod crustaceans. *Bulletin of Marine Science*, *41*(2), 268–281.

- Brusca, R. C., & Gilligan, M. R. (1983). Tongue replacement in a marine fish (*Lutjanus guttatus*) by a parasitic isopod (Crustacea: Isopoda). *Copeia*, *3*, 813–816.
- Brusca, R. C., & Wallerstein, B. R. (1979). Zoogeographic patterns of idoteid isopods in the northeast Pacific, with a review of shallow water zoogeography of the area. *Bulletin of the Biological Society of Washington*, *3*, 67–105.
- Brusca, R. C., & Wilson, G. D. F. (1991). A phylogenetic analysis of the Isopoda with some classificatory recommendations. *Memoirs of the Queensland Museum*, *31*, 143–204.
- Burbanck, M. P., & Burbanck, W. D. (1974). Sex reversal of female *Cyathura polita* (Stimpson, 1855) (Isopoda, Anthuridae). *Crustaceana*, 26(1), 110–112.
- Burbanck, W. D. (1962). An ecological study of the distribution of the isopod *Cyathura polita* (Stimpson) from brackish waters of Cape Cod, Massachusetts. *The American Midland Naturalist*, 67(2), 449–476.
- Campos-Filho, I. S., Monticelli Cardoso, G., & Aguiar, J. O. (2018). New species and first record of *Alloniscus* Dana, 1854 (Isopoda: Oniscidae: Alloniscidae) from Brazil. *Nauplius*, 26, Article e2018014. https://doi.org/10.1590/2358-2936e2018014
- Carpenter, J. H. (2021). Forty-year natural history study of *Bahalana geracei* Carpenter, 1981, an anchaline cave-dwelling isopod (Crustacea, Isopoda, Cirolanidae) from San Salvador Island, Bahamas: Reproduction, growth, longevity, and population structure. *Subterranean Biology*, *37*, 105–156. https://doi.org/10.3897/subtbiol.37.60653
- Cartes, J. E., & Figueroa, D. F. (2020). Deep sea isopods from the western Mediterranean: Distribution and habitat. *Progress in Oceanography*, *188*, Article 102415. https://doi.org/10.1016/j.pocean.2020.102415
- Castelló, J., Bitar, G., & Zibrowius, H. (2020). Isopoda (Crustacea) from the Levantine Sea with comments on the biogeography of Mediterranean isopods. *Mediterranean Marine Science*, *21*(2), 308–339. https://doi.org/10.12681/mms.20329
- Cerezer, F. O., Machac, A., Rangel, T. F., & Dambros, C. S. (2022). Exceptions to the rule: Relative roles of time, diversification rates and regional energy in shaping the inverse latitudinal diversity gradient. *Global Ecology and Biogeography*, 31(9), 1794–1809. https://doi.org/10.1111/geb.13559
- Cericola, M. J., & Williams, J. D. (2015). Prevalence, reproduction and morphology of the parasitic isopod *Athelges takanoshimensis* Ishii, 1914 (Isopoda: Bopyridae) from Hong Kong hermit crabs. *Marine Biology Research*, 11(3), 236–252. https://doi.org/10.1080/17451000.2014.928415
- Ceriello, H., Lopes, C. S. S., Reimer, J. D., Bakken, T., Fukuda, M. V., Cunha, C. M., & Stampar, S. N. (2020). Knock knock, who's there?: Marine invertebrates in tubes of Ceriantharia (Cnidaria: Anthozoa). *Biodiversity Data Journal*, 8, Article e47019. https://doi.org/10.3897/BDJ.8.e47019
- Chapman, J. W., Dumbauld, B. R., Itani, G., & Markham, J. C. (2012). An introduced Asian parasite threatens northeastern Pacific estuarine ecosystems. *Biological Invasions*, 14, 1221–1236. https://doi.org/10.1007/s10530-011-0151-3

- Chaudhary, C., Richardson, A. J., Schoeman, D. S., & Costello, M. J. (2021). Global warming is causing a more pronounced dip in marine species richness around the equator. *Proceedings of the National Academy of Sciences*, 118(15), Article e2015094118. https://doi.org/10.1073/pnas.2015094118
- Chaudhary, C., Saeedi, H., & Costello, M. J. (2016). Bimodality of latitudinal gradients in marine species richness. *Trends in Ecology & Evolution*, 31(9), 670–676. https://doi.org/10.1016/j.tree.2016.06.001
- Chaudhary, C., Saeedi, H., & Costello, M. J. (2017). Marine species richness is bimodal with latitude: A reply to Fernandez and Marques. *Trends in Ecology & Evolution*, *32*(4), 234–237. https://doi.org/10.1016/j.tree.2017.02.007
- Chong, Y. T., Hatai, K., & Ransangan, J. (2015). Life cycle of *Caecognathia coralliophila* (Crustacea, Isopoda, Gnathiidae) in hatchery reared tiger grouper, *Epinephelus* fuscogutattus. Bulletin of the European Association of Fish Pathologists, 35(5), 177–184.
- Christenhusz, M. J. M., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. *Phytotaxa*, 261(3), 201–217. https://doi.org/10.11646/phytotaxa.261.3.1
- Churchfield, S. (1982). Food availability and the diet of the Common shrew, *Sorex araneus*, in Britain. *Journal of Animal Ecology*, *51*, 15–28.
- Cíbik, J., Beracko, P., Bulánková, E., Čiamporová Zaťovičová, Z., Gregušová, K., Kodada, J., Krno, I., Mišíková Elexová, E., Navara, T., Rogánska, A., & Derka, T. (2022). Are springs hotspots of benthic invertebrate diversity? Biodiversity and conservation priority of rheocrene springs in the karst landscape. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 32(5), 843–858. https://doi.org/10.1002/aqc.3802
- Clarke, A., & Crame, J. A. (1997). Diversity, latitude and time: Patterns in the shallow sea. In R. F. G. Ormond, J. D. Gage, & M. V. Angel (Eds.), *Marine Biodiversity - Patterns and Processes* (pp. 122–147). Cambridge University Press. https://doi.org/10.1017/CBO9780511752360.007
- Cohen, B. F., & Poore, G. C. B. (1994). Phylogeny and biogeography of the Gnathiidae (Crustacea: Isopoda) with descriptions of new genera and species, most from southeastern Australia. *Memoirs of the Museum of Victoria*, 54(2), 271–397. https://doi.org/10.24199/j.mmv.1994.54.13
- Čolak, S., Kolega, M., Mejdandžić, D., Župan, I., Šarić, T., Piplović, E., & Mustać, B. (2018). Prevalence and effects of the cymothoid isopod (*Ceratothoa oestroides*, Risso 1816) on cultured meagre (*Argyrosomus regius*, Asso 1801) in the eastern Adriatic Sea. *Aquaculture Research*, 49, 1001–1007. https://doi.org/10.1111/are.13547
- Coleman, C. O. (2015). Taxonomy in times of the taxonomic impediment Examples from the community of experts on amphipod crustaceans. *Journal of Crustacean Biology*, *35*(6), 729–740. https://doi.org/10.1163/1937240X-00002381
- Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y., & Kergoat, G. J. (2012). What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. *Ecology Letters*, 15(3), 267–277. https://doi.org/10.1111/j.1461-0248.2011.01737.x

- Corral, J. M., Henmi, Y., Shiozaki, Y., & Itani, G. (2019). Parasitic effects of the bopyrid *Megacepon goetici* (Crustacea: Isopoda) on the varunid crab *Gaetice depressus*. *Diseases of Aquatic Organisms*, 135(1), 71–75. https://doi.org/10.3354/dao03380
- Cortés-Guzmán, D., & Alcocer, J. (2022). Turnover drives high benthic macroinvertebrates' beta diversity in a tropical karstic lake district. *Diversity*, *14*(4), Article 259. https://doi.org/10.3390/d14040259
- Costello, M. J. (2015). Biodiversity: The known, unknown, and rates of extinction. *Current Biology*, 25(9), PR368-R371. https://doi.org/10.1016/J.CUB.2015.03.051
- Costello, M. J. (2016). Parasite rates of discovery, global species richness and host specificity. *Integrative and Comparative Biology*, 56(4), 588–599. https://doi.org/10.1093/icb/icw084
- Costello, M. J., Corkrey, R., Bates, A. E., Burrows, M. T., Chaudhary, C., Edgar, G. E., Stuart-Smith, R. D., Yasuhara, M., & Wei, C.-L. (2023). The universal evolutionary and ecological significance of 20 °C. *Frontiers of Biogeography*, 15(4), Article e61673. https://doi.org/10.21425/F5FBG61673
- Costello, M. J., Emblow, C. S., & Picton, B. E. (1996). Long term trends in the discovery of marine species new to science which occur in Britain and Ireland. *Journal of the Marine Biological Association of the United Kingdom*, 76(1), 255–257. https://doi.org/10.1017/S0025315400029234
- Costello, M. J., Houlding, B., & Wilson, S. P. (2014). As in other taxa, relatively fewer beetles are being described by an increasing number of authors: Response to Löbl and Leschen. *Systematic Entomology*, *39*(3), 395–399. https://doi.org/10.1111/syen.12068
- Costello, M. J., Lane, M., Wilson, S. P., & Houlding, B. (2015). Factors influencing when species are first named and estimating global species richness. *Global Ecology and Conservation*, 4, 243–254. https://doi.org/10.1016/j.gecco.2015.07.001
- Costello, M. J., May, R. M., & Stork, N. E. (2013). Can we name Earth's species before they go extinct? *Science*, *339*, 413–416. https://doi.org/10.112/science.1230318
- Costello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., & Chaudhary, C. (2017). Marine biogeographic realms and species endemicity. *Nature Communications*, 8, Article 1057. https://doi.org/10.1038/s41467-017-01121-2
- Costello, M. J., Vanhoorne, B., & Appeltans, W. (2015). Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures. *Conservation Biology*, *29*(4), 1094–1099. https://doi.org/10.1111/cobi.12496
- Costello, M. J., Wilson, S. P., & Houlding, B. (2012). Predicting total global species richness using rates of species description and estimates of taxonomic effort. *Systematic Biology*, 61(5), 871–883. https://doi.org/10.1093/sysbio/syr080
- Costello, M. J., Wilson, S. P., & Houlding, B. (2013). More taxonomists describing significantly fewer species per unit effort may indicate that most species have been discovered. *Systematic Biology*, 62(4), 616–624. https://doi.org/10.1093/sysbio/syt024
- Crame, J. A. (1999). An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. *Scientia Marina*, 63, 1–14.

- Crame, J. A. (2000). Evolution of taxonomic diversity gradients in the marine realm: Evidence from the composition of recent bivalve faunas. *Paleobiology*, *26*(2), 188–214.
- Crame, J. A. (2020). Early Cenozoic evolution of the latitudinal diversity gradient. *Earth-Science Reviews*, 202, Article 103090. https://doi.org/10.1016/j.earscirev.2020.103090
- Crame, J. A. (2023). Late Cenozoic evolution of the latitudinal diversity gradient. *Journal of Biogeography*, *50*(7), 1213–1220. https://doi.org/10.1111/jbi.14620
- Cruz-Motta, J. J., Miloslavich, P., Guerra-Castro, E., Hernández-Agreda, A., Herrera, C., Barros, F., Navarrete, S. A., Sepúlveda, R. D., Glasby, T. M., Bigatti, G., Cardenas-Calle, M., Carneiro, P. B. M., Carranza, A., Flores, A. A. V., Gil-Kodaka, P., Gobin, J., Gutiérrez, J. L., Klein, E., Krull, M., ... Romero, L. (2020). Latitudinal patterns of species diversity on South American rocky shores: Local processes lead to contrasting trends in regional and local species diversity. *Journal of Biogeography*, 47(9), 1966– 1979. https://doi.org/10.1111/jbi.13869
- Csonka, D., Halasy, K., Buczkó, K., & Hornung, E. (2018). Morphological traits desiccation resistance habitat characteristics: A possible key for distribution in woodlice (Isopoda, Oniscidea). *ZooKeys*, *801*, 481–499. https://doi.org/10.3897/zookeys.801.23088
- Culp, J. M., Lento, J., Curry, R. A., Luiker, E., & Halliwell, D. (2019). Arctic biodiversity of stream macroinvertebrates declines in response to latitudinal change in the abiotic template. *Freshwater Science*, 38(3), 465–479. https://doi.org/10.1086/704887
- Culver, D. C., Deharveng, L., Bedos, A., Lewis, J. J., Madden, M., Reddell, J. R., Sket, B., Trontelj, P., & White, D. (2006). The mid-latitude biodiversity ridge in terrestrial cave fauna. *Ecography*, 29(1), 120–128. https://doi.org/10.1111/j.2005.0906-7590.04435.x
- Culver, S. J., & Buzas, M. A. (2000). Global latitudinal species diversity gradient in deep-sea benthic foraminifera. *Deep Sea Research Part I: Oceanographic Research Papers*, 47(2), 259–275. https://doi.org/10.1016/S0967-0637(99)00055-2
- Currie, D. J., Francis, A. P., & Kerr, J. T. (1999). Some general propositions about the study of spatial patterns of species richness. *Écoscience*, 6(3), 392–399. https://doi.org/10.1080/11956860.1999.11682541
- Dantas, A., & Fonseca, C. R. (2023). Global biogeographical patterns of ants and their abiotic determinants. *Perspectives in Ecology and Conservation*, 21(3), 237–246. https://doi.org/10.1016/j.pecon.2023.07.003
- Davidson, T. M. (2012). Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic. *Marine Pollution Bulletin*, 64, 1821–1828. https://doi.org/10.1016/j.marpolbul.2012.06.005
- De Smedt, P., & Henrard, A. (2022). Observations of *Trachyzelotes pedestris* (C.L. Koch, 1837) hunting for terrestrial isopods in Belgium. *Journal of the Belgian Arachnological Society*, *37*(1), 41–43.
- Del Carmen Espinosa-Pérez, M., & Hendrickx, M. E. (2006). A comparative analysis of biodiversity and distribution of shallow-water marine isopods (Crustacea: Isopoda) from polar and temperate waters in the East Pacific. *Belgian Journal of Zoology*, 136(2), 219– 247.

- Delaney, P. M. (1989). Phylogeny and biogeography of the marine isopod family Corallanidae (Crustacea, Isopoda, Flabellifera). *Contributions in Science*, 409, 1–75.
- Delaney, P. M., & Brusca, R. C. (1985). Two new species of *Tridentella* Richardson, 1905 (Isopoda: Flabellifera: Tridentellidae) from California, with a rediagnosis and comments on the family, and a key to the genera of Tridentellidae and Corallanidae. *Journal of Crustacean Biology*, 5(4), 728–742.
- Deng, J., Li, K., Chen, C., Wu, S., & Huang, X. (2016). Discovery pattern and species number of scale insects (Hemiptera: Coccoidea). *PeerJ*, 4, Article e2526. https://doi.org/10.7717/peerj.2526
- DeWalt, R. E., & Ower, G. D. (2019). Ecosystem services, global diversity, and rate of stonefly species descriptions (Insecta: Plecoptera). *Insects*, 10, 1–13. https://doi.org/10.3390/insects10040099
- Di Franco, D., Linse, K., Griffiths, H. J., Haas, C., Saeedi, H., & Brandt, A. (2020). Abundance and distributional patterns of benthic peracarid crustaceans from the Atlantic Sector of the Southern Ocean and Weddell Sea. *Frontiers in Marine Science*, 7, Article 554663. https://doi.org/10.3389/fmars.2020.554663
- Dias, N., Sprung, M., & Hassall, M. (2005). The abundance and life histories of terrestrial isopods in a salt marsh of the Ria Formosa lagoon system, southern Portugal. *Marine Biology*, *147*, 1343–1352. https://doi.org/10.1007/s00227-005-0033-2
- Dimitriou, A. C., Taiti, S., & Sfenthourakis, S. (2019). Genetic evidence against monophyly of Oniscidea implies a need to revise scenarios for the origin of terrestrial isopods. *Scientific Reports*, *9*, Article 18508. https://doi.org/10.1038/s41598-019-55071-4
- Dinerstein, E., Olson, D. M., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E. D.,
  Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones,
  B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., ... Saleem, M. (2017). An
  ecoregion-based approach to protecting half the terrestrial realm. *BioScience*, 67(6), 534–545. https://doi.org/10.1093/biosci/bix014
- Dodds, W. K., Bruckerhoff, L., Batzer, D., Schechner, A., Pennock, C., Renner, E., Tromboni, F., Bigham, K., & Grieger, S. (2019). The freshwater biome gradient framework:
  Predicting macroscale properties based on latitude, altitude, and precipitation. *Ecosphere*, 10(7), Article e02786. https://doi.org/10.1002/ecs2.2786
- Dodge-Wan, D., & Nagarajan, R. (2020). Boring of intertidal sandstones by isopod Sphaeroma triste in NW Borneo (Sarawak, Malaysia). Journal of Coastal Research, 36(2), 238–248. https://doi.org/10.2112/JCOASTRES-D-19-00066.1
- Doti, B. L., Chiesa, I. L., & Roccatagliata, D. (2020). Biodiversity of Isopoda and Cumacea (Peracarida, Crustacea) from the Marine Protected Area Namuncurá-Burdwood Bank, South-West Atlantic. *Polar Biology*, *43*(10), 1519–1534. https://doi.org/10.1007/s00300-020-02725-z
- Dreyer, H., & Wägele, J. W. (2001). Parasites of crustaceans (Isopoda: Bopyridae) evolved from fish parasites: Molecular and morphological evidence. *Zoology*, *103*, 157–178.

- Dreyer, H., & Wägele, J. W. (2002). The Scutocoxifera tax. Nov. and the information content of nuclear ssu rDNA sequences for reconstruction of isopod phylogeny (Peracarida: Isopoda). *Journal of Crustacean Biology*, *22*(2), 217–234.
- Durand, S., Braquart-Varnier, C., & Beltran-Bech, S. (2020). Promiscuity and sex ratio in the terrestrial isopod *Armadillidium vulgare* and consequences on genetic diversity. *Behavioural Processes*, 171, Article 104030. https://doi.org/10.1016/j.beproc.2019.104030
- Edler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. (2017). Infomap Bioregions: Interactive mapping of biogeographical regions from species distributions. *Systematic Biology*, 66(2), 197–204. https://doi.org/10.1093/sysbio/syw087
- Ejdung, G., & Elmgren, R. (2001). Predation by the benthic isopod *Saduria entomon* on two Baltic Sea deposit-feeders, the amphipod *Monoporeia affinis* and the bivalve *Macoma balthica. Journal of Experimental Marine Biology and Ecology*, 266, 165–179.
- Ekman, S. (1953). Zoogeography of the sea. Sidgwick and Jackson Limited.
- Ellis, P., & Williams, W. D. (1970). The biology of *Haloniscus searlei* Chilton, an oniscoid isopod living in Australian salt lakes. *Australian Journal of Marine and Freshwater Research*, *21*, 51–69.
- Ellis, R. J. (1971). Notes on the biology of the isopod *Asellus tomalensis* Harford in an intermittent pond. *Transactions of the American Microscopical Society*, 90(1), 51–61. https://doi.org/10.2307/3224897
- Ellison, A. M., & Farnsworth, E. J. (1990). The ecology of Belizean mangrove-root fouling communities. I. Epibenthic fauna are barriers to isopod attack of red mangrove roots. *Journal of Experimental Marine Biology and Ecology*, *142*, 91–104.
- Elsner, N. O., Golovan, O. A., Malyutina, M. V., & Brandt, A. (2013). Alone in the dark: Distribution, population structure and reproductive mode of the dominant isopod *Eurycope spinifrons* Gurjanova, 1933 (Isopoda: Asellota: Munnopsidae) from bathyal and abyssal depths of the Sea of Japan. *Deep Sea Research Part II: Topical Studies in Oceanography*, 86–87, 103–110. https://doi.org/10.1016/j.dsr2.2012.07.043
- Ercoli, F., Lefebvre, F., Delangle, M., Godé, N., Caillon, M., Raimond, R., & Souty-Grosset, C. (2019). Differing trophic niches of three French stygobionts and their implications for conservation of endemic stygofauna. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 29(12), 2193–2203. https://doi.org/10.1002/aqc.3227
- Eschmeyer, W. N., Fricke, R., Fong, J. D., & Polack, D. A. (2010). Marine fish diversity: History of knowledge and discovery (Pisces). *Zootaxa*, 2525(1), 19–50. https://www.mapress.com/j/zt/article/viewFile/zootaxa.2525.1.2/17829
- Essl, F., Rabitsch, W., Dullinger, S., Moser, D., & Milasowszky, N. (2013). How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. *Global Ecology and Biogeography*, 22(1), 29–39. https://doi.org/10.1111/J.1466-8238.2012.00787.X

- Etter, W. (2014). A well-preserved isopod from the Middle Jurrassic of southern Germany and implications for the isopod fossil record. *Palaeontology*, *57*(5), 931–949. https://doi.org/10.1111/pala.12095
- Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P., & Saupe, E. E. (2023). Origination of the modern-style diversity gradient 15 million years ago. *Nature*, 614(7949), 708–712. https://doi.org/10.1038/s41586-023-05712-6
- Fernandez, M. O., & Marques, A. C. (2017). Diversity of diversities: A response to Chaudhary, Saeedi, and Costello. *Trends in Ecology & Evolution*, 32(4), 232–234. https://doi.org/10.1016/j.tree.2016.10.013
- Ficetola, G. F., Mazel, F., & Thuiller, W. (2017). Global determinants of zoogeographical boundaries. *Nature Ecology & Evolution*, 1, Article 0089. https://doi.org/10.1038/s41559-017-0089
- Fischer, L., Covatti Ale, M., Deli Antoni, M., Díaz de Astarloa, J. M., & Delpiani, G. (2022).
  Feeding ecology of the longtail southern cod, *Patagonotothen ramsayi* (Regan, 1913) (Notothenioidei) in the Marine Proteced Area Namuncurá-Burdwood Bank, Argentina. *Polar Biology*, 45, 1483–1494. https://doi.org/10.1007/s00300-022-03082-9
- Fisher, M. A., Vinson, J. E., Gittleman, J. L., & Drake, J. M. (2018). The description and number of undiscovered mammal species. *Ecology and Evolution*, 8(7), 3628–3635. https://doi.org/10.1002/ece3.3724
- Fogelman, R. M., Kuris, A. M., & Grutter, A. S. (2009). Parasitic castration of a vertebrate: Effect of the cymothoid isopod, *Anilocra apogonae*, on the five-lined cardinalfish, *Cheilodipterus quinquelineatus. International Journal for Parasitology*, 39(5), 577–583. https://doi.org/10.1016/j.ijpara.2008.10.013
- Fontaine, B., Perrard, A., & Bouchet, P. (2012). 21 years of shelf life between discovery and description of new species. *Current Biology*, 22(22), R943–R944. https://doi.org/10.1016/j.cub.2012.10.029
- Freestone, A. L., Torchin, M. E., Jurgens, L. J., Bonfim, M., López, D. P., Repetto, M. F., Schlöder, C., Sewall, B. J., & Ruiz, G. M. (2021). Stronger predation intensity and impact on prey communities in the tropics. *Ecology*, 102(8), Article e03428. https://doi.org/10.1002/ecy.3428
- Frutos, I., & Sorbe, J. C. (2010). Politolana sanchezi sp. Nov. (Crustacea: Isopoda: Cirolanidae), a new benthic bioturbating scavenger from bathyal soft-bottoms of the southern Bay of Biscay (northeastern Atlantic Ocean). Zootaxa, 2640, 20–34. https://doi.org/10.11646/zootaxa.2640.1.2
- Fuller, N., Ford, A. T., Lerebours, A., Gudkov, D. I., Nagorskaya, L. L., & Smith, J. T. (2019). Chronic radiation exposure at Chernobyl shows no effect on genetic diversity in the freshwater crustacean, *Asellus aquaticus* thirty years on. *Ecology and Evolution*, 9(18), 10135–10144. https://doi.org/10.1002/ece3.5478
- Fuller, N., Ford, A. T., Nagorskaya, L. L., Gudkov, D. I., & Smith, J. T. (2018). Reproduction in the freshwater crustacean *Asellus aquaticus* along a gradient of radionuclide contamination at Chernobyl. *Science of the Total Environment*, 628–629, 11–17. https://doi.org/10.1016/j.scitotenv.2018.01.309

- Fuller, N., Smith, J. T., Nagorskaya, L. L., Gudkov, D. I., & Ford, A. T. (2017). Does Chernobyl-derived radiation impact the developmental stability of *Asellus aquaticus* 30 years on? *Science of the Total Environment*, 576, 242–250. https://doi.org/10.1016/j.scitotenv.2016.10.097
- Gaillard, C., Hantzpergue, P., Vannier, J., Margerard, A.-L., & Mazin, J.-M. (2005). Isopod trackways from the Crayssac Lagerstätte, Upper Jurassic, France. *Palaeontology*, 48(5), 947–962.
- Garcia, L. (2020). Description of *Mica iberica* sp. Nov. and *Porcellio cibioi* sp. Nov., two new terrestrial isopods previously confused with *Porcellio ingenuus* Budde-Lund, 1885 (Isopoda: Oniscidea: Porcellionidae). *Bolletí de La Societat d'Història Natural de Les Balears*, 63, 159–173.

https://www.raco.cat/index.php/BolletiSHNBalears/article/download/385135/478236

- García-Padrón, L. Y. (2021). Diet of a community of frogs in an agroecosystem in western Cuba. *Caribbean Herpetology*, *76*, 1–8. https://doi.org/10.31611/ch.76
- Garzón-Ferreira, J. (1990). An isopod, *Rocinela signata* (Crustacea: Isopoda: Aegidae), that attacks humans. *Bulletin of Marine Science*, 46(3), 813–815.
- Gaston, K. J. (2000). Global patterns in biodiversity. *Nature*, 405, 220–227. https://doi.org/10.1038/35012228
- Gaston, K. J., & May, R. M. (1992). Taxonomy of taxonomists. *Nature*, *356*(6367), 281–282. https://doi.org/10.1038/356281a0
- GBIF. (2022). *GBIF Occurrence Download*. Retrieved from www.gbif.org. Accessed 2022-06-10. https://doi.org/10.15468/dl.zqvdpd
- Gentile, G., & Argano, R. (2005). Island biogeography of the Mediterranean Sea: The speciesarea relationship for terrestrial isopods. *Journal of Biogeography*, *32*(10), 1715–1726. https://doi.org/10.1111/j.1365-2699.2005.01329.x
- Gentile, G., Argano, R., & Taiti, S. (2022). Evaluating the correlation between area, environmental heterogeneity, and species richness using terrestrial isopods (Oniscidea) from the Pontine Islands (West Mediterranean). *Organisms Diversity & Evolution*, 22(1), 275–284. https://doi.org/10.1007/s13127-021-00523-x
- Girling, M. A. (1979). Calcium carbonate-replaced arthropods from archaeological deposits. *Journal of Archaeological Science*, *6*, 309–320.
- Glazier, D. S., & Kleynhans, E. (2015). Arboreal herbivory by a semi-terrestrial South African isopod crustacean, *Tylos capensis* Krauss (Isopoda: Tylidae), on the bietou bush, *Chrysanthemoides monilifera* (L.) Norlindh. *African Invertebrates*, 56(3), 729–738. https://doi.org/10.5733/afin.056.0315
- Glynn, P. W. (1968). Ecological studies on the associations of chitons in Puerto Rico, with special reference to shpaeromid isopods. *Bulletin of Marine Science*, *18*(3), 572–626.
- Godfray, H. C. J. (2002). Challenges for taxonomy. *Nature*, *417*, 17–19. https://doi.org/10.1038/417017a

- Gopalakrishnan, A., Raja, K., Trilles, J. P., Rajkumar, M., Rahman, M. M., & Saravanakumar, A. (2017). Bopyrid isopods parasitizing on the cultured fresh water prawn, *Macrobrachium malcolmsonii* in South India. *Journal of Parasitic Diseases*, 41(1), 93–96. https://doi.org/10.1007/s12639-016-0756-7
- Grassle, J. F., & Maciolek, N. J. (1992). Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. *American Naturalist*, 139(2), 313– 341. https://doi.org/10.1086/285329
- Gray, K. W., & Rabeling, C. (2023). Global biogeography of ant social parasites: Exploring patterns and mechanisms of an inverse latitudinal diversity gradient. *Journal of Biogeography*, 50(2), 316–329. https://doi.org/10.1111/jbi.14528
- Grieneisen, M. L., Zhan, Y., Potter, D., & Zhang, M. (2014). Biodiversity, taxonomic infrastructure, international collaboration, and new species discovery. *BioScience*, 64(4), 322–332. https://doi.org/10.1093/biosci/biu035
- Grutter, A. S. (1997). Spatiotemporal variation and feeding selectivity in the diet of the cleaner fish *Labroides dimidiatus*. *Copeia*, *2*, 346–355.
- Gutow, L., Strahl, J., Wiencke, C., Franke, H.-D., & Saborowski, R. (2006). Behavioural and metabolic adaptations of marine isopods to the rafting life style. *Marine Biology*, 149(4), 821–828. https://doi.org/10.1007/s00227-006-0257-9
- Guzik, M. T., Stringer, D. N., Murphy, N. P., Cooper, S. J. B., Taiti, S., King, R. A., Humphreys, W. F., & Austin, A. D. (2019). Molecular phylogenetic analysis of Australian arid-zone oniscidean isopods (Crustacea: *Haloniscus*) reveals strong regional endemicity and new putative species. *Invertebrate Systematics*, 33(3), 556–574. https://doi.org/10.1071/IS18070
- Hadfield, K. A., & Smit, N. J. (2020). Review of the global distribution and hosts of the economically important fish parasitic isopod genus *Ceratothoa* (Isopoda: Cymothoidae), including the description of *Ceratothoa springbok* n. sp. From South Africa. *International Journal for Parasitology*, 50(10–11), 899–919. https://doi.org/10.1016/j.ijpara.2020.07.001
- Harrison, K. (1984). The morphology of the sphaeromatid brood pouch (Crustacea: Isopoda: Sphaeromatidae). *Zoological Journal of the Linnean Society*, *82*, 363–407.
- Hartebrodt, L. (2019). *World list of isopod species and their authorities.xlsx*. The University of Auckland, Auckland, New Zealand. https://doi.org/10.17608/k6.auckland.9927278.v3
- Hartebrodt, L. (2020). The biology, ecology, and societal importance of marine isopods. In *Encyclopedia of the World's Biomes* (Vols. 4–5). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-9.11682-3
- Hartebrodt, L. (2023a). *Global occurrences of Isopoda.xlsx*. The University of Auckland, Auckland, New Zealand. https://doi.org/10.17608/k6.auckland.24452059.v1
- Hartebrodt, L. (2023b). *World list of isopod species and their authorities\_updated\_2023.xlsx*. The University of Auckland, Auckland, New Zealand. https://doi.org/10.17608/k6.auckland.23258675.v1

- Hayashi, C., Tanaka, K., & Hirose, E. (2020). Larvae of female *Caecognathia* sp. (Isopoda: Gnathiidae) are attracted to male adults and prolong their larval phase in the absence of males. *Journal of Crustacean Biology*, 40(2), 156–161. https://doi.org/10.1093/jcbiol/ruz094
- Held, C. (2000). Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. *Molecular Phylogenetics and Evolution*, 15(2), 165–178. https://doi.org/10.1006/mpev.1999.0739
- Held, C. (2003). Molecular evidence for cryptic speciation within the widespread Antarctic crustacean *Ceratoserolis trilobitoides* (Crustacea, Isopoda). In *Antarctic Biology in a Global Context*. Backhuys Publishers. https://epic.awi.de/id/eprint/14270/
- Hendrick, G. C., Nicholson, M. D., Pagan, J. A., Artim, J. M., Dolan, M. C., & Sikkel, P. C. (2023). Blood meal identification reveals extremely broad host range and host-bias in a temporary ectoparasite of coral reef fishes. *Oecologia*, 203, 349–360. https://doi.org/10.1007/s00442-023-05468-w
- Hernáez, P., Fenberg, P. B., & Rivadeneira, M. M. (2021). Departing from an ideal: An asymmetric, bimodal and non-equatorial latitudinal gradient of marine diversity in Western Atlantic burrowing shrimps (Decapoda: Axiidea and Gebiidea). *Journal of Biogeography*, 48(3), 650–661. https://doi.org/10.1111/jbi.14030
- Hessler, R. R. (1993). Swimming morphology in *Eurycope cornuta* (Isopoda: Asellota). *Journal of Crustacean Biology*, 13(4), 667–674. https://doi.org/10.1163/193724093X00237
- Hessler, R. R., & Sanders, H. L. (1967). Faunal diversity in the deep-sea. Deep Sea Research and Oceanographic Abstracts, 14, 65–78. https://doi.org/10.1016/0011-7471(67)90029-0
- Hessler, R. R., & Strömberg, J.-O. (1989). Behavior of janiroidean isopods (Asellota), with special reference to deep-sea genera. *Sarsia*, 74, 145–159. https://doi.org/10.1080/00364827.1989.10413424
- Hessler, R. R., Wilson, G. D. F., & Thistle, D. (1979). The deep-sea isopods: A biogeographic and phylogenetic overview. *Sarsia*, 64(1–2), 67–75. https://doi.org/10.1080/00364827.1979.10411365
- Higgs, N. D. (2016). Taxonomy in trouble? An ocean science perspective. *Ocean Challenge*, *21*(2), 10–11.
- Higgs, N. D., & Attrill, M. J. (2015). Biases in biodiversity: Wide-ranging species are discovered first in the deep sea. *Frontiers in Marine Science*, 2, Article 61. https://doi.org/10.3389/fmars.2015.00061
- Hillebrand, H. (2004a). On the generality of the latitudinal diversity gradient. *The American Naturalist*, *163*(2), 192–211. https://doi.org/10.1086/381004
- Hillebrand, H. (2004b). Strength, slope and variability of marine latitudinal gradients. *Marine Ecology Progress Series*, 273, 251–267. https://doi.org/10.3354/meps273251
- Holsinger, J. R., Hubbard, D. A., & Bowman, T. E. (1994). Biogeographic and ecological implications of newly discovered populations of the stygobiont isopod crustacean

Antrolana lira Bowman (Cirolanidae). Journal of Natural History, 28(5), 1047–1058. https://doi.org/10.1080/00222939400770551

- Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J., & Rahbek, C. (2013). An update of Wallace's zoogeographic regions of the world. *Science*, *339*(6115), 74–78. https://doi.org/10.1126/science.1228282
- Hopkins, G. W., & Freckleton, R. P. (2002). Declines in the numbers of amateur and professional taxonomists: Implications for conservation. *Animal Conservation*, 5(3), 245–249. https://doi.org/10.1017/S1367943002002299
- Hornung, E. (2011). Evolutionary adaptation of oniscidean isopods to terrestrial life: Structure, physiology and behavior. *Terrestrial Arthropod Reviews*, 4(2), 95–130. https://doi.org/10.1163/187498311X576262
- Hornung, E., Vilisics, F., & Sólymos, P. (2008). Low alpha- and high beta-diversity in terrestrial isopod assemblages in the Transdanubian region of Hungary. In M. Zimmer, F. Charfi-Cheikhrouha, & S. Taiti (Eds.), *Proceedings of the International Symposium on Terrestrial Isopod Biology - ISTIB-07* (pp. 1–11).
- Horváthová, T., & Bauchinger, U. (2019). Biofilm improves isopod growth independent of the dietary cellulose content. *Physiological and Biochemical Zoology*, 92(6), 531–543. https://doi.org/10.1086/705441
- Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and EXTrapolation for species diversity (R package version 3.0.0). http://chao.stat.nthu.edu.tw/wordpress/software-download/
- Hughes, L. E., Bruce, N. L., & Osborn, K. J. (2020). Aegiochus gracilipes (Hansen, 1895) a senior synonym of Aegiochus tara Bruce, 2009 (Crustacea: Isopoda: Aegidae). Zootaxa, 4803(2), 388–392. https://doi.org/10.11646/ZOOTAXA.4803.2.10
- Hurtado, L. A., Mateos, M., Mattos, G., Liu, S., Haye, P. A., & Paiva, P. C. (2016). Multiple transisthmian divergences, extensive cryptic diversity, occasional long-distance dispersal, and biogeographic patterns in a marine coastal isopod with an amphi-American distribution. *Ecology and Evolution*, 6(21), 7794–7808. https://doi.org/10.1002/ECE3.2397
- Ikeda, H., Callaham Jr., M. A., Shefferson, R. P., Wenk, E. S., & Fragoso, C. (2020). A comparison of latitudinal species diversity patterns between riverine and terrestrial earthworms from the North American temperate zone. *Journal of Biogeography*, 47(6), 1373–1382. https://doi.org/10.1111/jbi.13826
- Jablonski, D., Huang, S., Roy, K., & Valentine, J. W. (2017). Shaping the latitudinal diversity gradient: New perspectives from a synthesis of paleobiology and biogeography. *The American Naturalist*, *189*(1), 1–12. https://doi.org/10.1086/689739
- Jacobson, P., Bergström, U., & Eklöf, J. (2019). Size-dependent diet composition and feeding of Eurasian perch (*Perca fluviatilis*) and northern pike (*Esox lucius*) in the Baltic Sea. *Boreal Environment Research*, 24, 137–153.

- Janssen, A., Stuckas, H., Vink, A., & Martinez Arbizu, P. (2019). Biogeography and population structure of predominant macrofaunal taxa (Annelida and Isopoda) in abyssal polymetallic nodule fields: Implications for conservation and management. *Marine Biodiversity*, 49(6), 2641–2658. https://doi.org/10.1007/s12526-019-00997-1
- Jass, J., & Klausmeier, B. (2000). Endemics and immigrants: North American terrestrial isopods (Isopoda, Oniscidea) north of Mexico. *Crustaceana*, 73(7), 771–799. https://doi.org/10.1163/156854000504804
- Jennings, R. M., Golovan, O. A., & Brix, S. (2020). Integrative species delimitation of desmosomatid and nannoniscid isopods from the Kuril-Kamchatka trench, with description of a hadal species. *Progress in Oceanography*, 182, Article 102236. https://doi.org/10.1016/J.POCEAN.2019.102236
- Johannsen, N., Lins, L., Riehl, T., & Brandt, A. (2020). Changes in species composition of Haploniscidae (Crustacea: Isopoda) across potential barriers to dispersal in the Northwest Pacific. *Progress in Oceanography*, 180, Article 102233. https://doi.org/10.1016/j.pocean.2019.102233
- Johnson, W. S. (1976). Biology and population dynamics of the intertidal isopod *Cirolana harfordi*. *Marine Biology*, *36*, 343–350.
- Joppa, L. N., Roberts, D. L., & Pimm, S. L. (2011a). How many species of flowering plants are there? *Proceedings of the Royal Society B: Biological Sciences*, 278(1705), 554–559. https://doi.org/10.1098/rspb.2010.1004
- Joppa, L. N., Roberts, D. L., & Pimm, S. L. (2011b). The population ecology and social behaviour of taxonomists. *Trends in Ecology & Evolution*, 26(11), 551–553. https://doi.org/10.1016/j.tree.2011.07.010
- Jormalainen, V., Merilaita, S., & Härdling, R. (2000). Dynamics of intersexual conflict over precopulatory mate guarding in two populations of the isopod *Idotea baltica*. *Animal Behaviour*, 60(1), 85–93. https://doi.org/10.1006/anbe.2000.1429
- Jormalainen, V., & Shuster, S. M. (1997). Microhabitat segregation and cannibalism in an endangered freshwater isopod, *Thermosphaeroma thermophilum*. *Oecologia*, 111, 271–279.
- Kaiser, S., Lins, L., Malyutina, M. V., Mills, S., & Lörz, A.-N. (2020). Diversity and composition of benthic asellote Isopoda from two different New Zealand continental margin habitats - implications of habitat heterogeneity, productivity and depth. *Deep Sea Research Part I: Oceanographic Research Papers*, 165, Article 103368. https://doi.org/10.1016/j.dsr.2020.103368
- Kakizaki, T., Saito, T., Ohtaka, A., & Nagasawa, K. (2003). Effects of *Acanthocephalus* sp. (Acanthocephala: Echinorhynchidae) on the body size and reproduction of isopods (*Asellus hilgendorfi*). *Limnology*, *4*, 43–46. https://doi.org/10.1007/s10201-002-0090-x
- Kakui, K., Fukuchi, J., & Ohta, M. (2023). *Diexanthema hakuhomaruae* sp. Nov. (Copepoda: Siphonostomatoida: Nicothoidae) from the hadal zone in the northwestern Pacific, with an 18S molecular phylogeny. *Acta Parasitologica*, 68, 413–419. https://doi.org/10.1007/s11686-023-00676-z

- Kakui, K., Fukuchi, J., & Shimada, D. (2021). First report of marine horsehair worms (Nematomorpha: *Nectonema*) parasitic in isopod crustaceans. *Parasitology Research*, *120*, 2357–2362. https://doi.org/10.1007/s00436-021-07213-9
- Kamenev, G. M., Fadeev, V. I., Selin, N. I., Tarasov, V. G., & Malakhov, V. V. (1993).
  Composition and distribution of macro- and meiobenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. *New Zealand Journal of Marine and Freshwater Research*, 27(4), 407–418.
  https://doi.org/10.1080/00288330.1993.9516582
- Kato, N., Chen, C., Watanabe, H. K., Yamamoto, M., & Shimomura, M. (2022). The first bopyrid isopod from hydrothermal vents: *Pleurocryptella shinkai* sp. Nov. (Isopoda: Epicaridea) parasitizing *Shinkaia crosnieri* (Decapoda: Anomura). *Zoological Science*, 39(3), 293–306. https://doi.org/10.2108/ZS210117
- Kavanat Beerahassan, R., Dileep, N., & Pillai, D. (2021). Changes in the proximate and elemental composition of *Alitropus typus* (Crustacea: Flabellifera: Aegidae) exposed to lethal dose of bacterial consortium. *Journal of Parasitic Diseases*, 45, 859–868. https://doi.org/10.1007/s12639-021-01374-1
- Kemp, J. L., Ballot, A., Nilssen, J. P., Spikkeland, I., & Eriksen, T. E. (2020). Distribution, identification and range expansion of the common Asellidae in Northern Europe, featuring the first record of *Proasellus meridianus* in the Nordic countries. *Fauna Norvegica*, 40, 93–108. https://doi.org/10.5324/fn.v40i0.3353
- Kensley, B. (1984). The role of isopod crustaceans in the reef crest community at Carrie Bow Cay, Belize. *Marine Ecology*, 5(1), 29–44. https://doi.org/10.1111/j.1439-0485.1984.tb00305.x
- Kensley, B. (2001). Biogeography of the marine Isopoda of the Indian Ocean, with a checklist of species and records. In B. Kensley & R. C. Brusca (Eds.), *Isopod Systematics and Evolution. Crustacean Issues, 13* (pp. 205–264). Balkema: Rotterdam.
- Ketmaier, V., Joyce, D. A., Horton, T., & Mariani, S. (2008). A molecular phylogenetic framework for the evolution of parasitic strategies in cymothoid isopods (Crustacea). *Journal of Zoological Systematics and Evolutionary Research*, 46(1), 19–23. https://doi.org/10.1111/j.1439-0469.2007.00423.x
- Kim, M.-J., Kim, H.-W., Lee, S.-R., Kim, N.-Y., Lee, Y.-J., Joo, H.-T., Kwak, S.-N., & Lee, S.-H. (2022). Feeding strategy of the wild Korean seahorse (*Hippocampus haema*). *Journal of Marine Science and Engineering*, 10, Article 357. https://doi.org/10.3390/jmse10030357
- Kitaura, J., & Nunomura, N. (2019). Life history of an intertidal boring isopod, Sphaeroma sieboldii Dollfus, 1889. Crustacean Research, 48, 39–49. https://doi.org/10.18353/crustacea.48.0\_39
- Klapow, L. A. (1970). Ovoviviparity in the genus *Excirolana* (Crustacea: Isopoda). *Journal of Zoology*, *162*(3), 359–369. https://doi.org/10.1111/j.1469-7998.1970.tb01271.x
- Klompmaker, A. A., Artal, P., van Bakel, B. W. M., Fraaije, R. H. B., & Jagt, J. W. M. (2014). Parasites in the fossil record: A Cretaceous fauna with isopod-infested decapod

crustaceans, infestation patterns through time, and a new ichnotaxon. *PloS ONE*, *9*(3), Article e92551. https://doi.org/10.1371/journal.pone.0092551

- Knauber, H., Kohlenbach, K., Brandt, A., & Saeedi, H. (2023). Crustaceans of the Northwest Pacific Ocean: Species richness and distribution patterns. *Journal of Sea Research*, *191*, Article 102332. https://doi.org/10.1016/j.seares.2022.102332
- Kniesz, K., Brandt, A., & Riehl, T. (2018). Peritrich epibionts on the hadal isopod species *Macrostylis marionae* n. sp. From the Puerto Rico Trench used as indicator for sexspecific behaviour. *Deep Sea Research Part II: Topical Studies in Oceanography*, 148, 105–129. https://doi.org/10.1016/j.dsr2.2017.10.007
- Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The stability of coastal benthic biogeography over the last 10 million years. *Global Ecology and Biogeography*, 27(9), 1106–1120. https://doi.org/10.1111/geb.12771
- Krug, A. Z., Jablonski, D., & Valentine, J. W. (2007). Contrarian clade confirms the ubiquity of spatial origination patterns in the production of latitudinal diversity gradients. *Proceedings of the National Academy of Sciences*, 104(46), 18129–18134. https://doi.org/10.1073/pnas.0709202104
- Kucska, B., Ngoc, Q. N., Havasi, M., Staszny, Á., Ivánovics, B., Vranovics, K., Griffitts, J. D., Urbányi, B., & Müller, T. (2022). Asellus aquaticus removal of unfertilized fish eggs and possible use in aquaculture as a biological control organism. Research Square. https://doi.org/10.21203/rs.3.rs-1818617/v1
- Kussakin, O. G. (1973). Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. *Marine Biology*, *23*(1), 19–34. https://doi.org/10.1007/BF00394108
- Kuznetsova, D. M., & Gongalsky, K. B. (2012). Cartographic analysis of woodlice fauna of the former USSR. *ZooKeys*, 176, 1–11. https://doi.org/10.3897/zookeys.176.2372
- Larsen, B. B., Miller, E. C., Rhodes, M. K., & Wiens, J. J. (2017). Inordinate fondness multiplied and redistributed: The number of species on Earth and the new pie of life. *The Quarterly Review of Biology*, 92(3), 229–265. https://doi.org/10.1086/693564
- Lavaut, E., Guillemin, M.-L., Colin, S., Faure, A., Coudret, J., Destombe, C., & Valero, M. (2022). Pollinators of the sea: A discovery of animal-mediated fertilization in seaweed. *Science*, 377(6605), 528–530. https://doi.org/10.1126/science.abo6661
- Lawrence, M. J., & Keast, M. A. (1990). A guide to the identification of benthic Isopoda from the southern Beaufort Sea. *Canadian Manuscrpit Report of Fisheries and Aquatic Sciences 2048*, 76 p.
- Lee, W. L. (1966). Color change and the ecology of the marine isopod *Idothea (Pentidothea)* montereyensis Maloney, 1933. Ecology, 47(6), 930–941. https://doi.org/10.2307/1935640
- Lee, W. L., & Gilchrist, B. M. (1972). Pigmentation, color change and the ecology of the marine isopod *Idotea resecata* (Stimpson). *Journal of Experimental Marine Biology and Ecology*, *10*, 1–27. https://doi.org/10.1016/0022-0981(72)90089-5

- Leese, F., Agrawal, S., & Held, C. (2010). Long-distance island hopping without dispersal stages: Transportation across major zoogeographic barriers in a Southern Ocean isopod. *Naturwissenschaften*, *97*(6), 583–594. https://doi.org/10.1007/s00114-010-0674-y
- Leonardsson, K. (1991). Effects of cannibalism and alternative prey on population dynamics of *Saduria entomon* (Isopoda). *Ecology*, 72(4), 1273–1285.
- Lewis, S. L., Lewis, J. J., & Orndorff, W. (2021). *Caecidotea burkensis*, new species, a unique subterranean isopod from Burke's Garden, with a synthesis of the biogeography and evolution of southwestern Virginia asellids. *Journal of Cave and Karst Studies*, 83(2), 78–87. https://doi.org/10.4311/2020LSC0126
- Lin, H. -Y., Corkrey, R., Kaschner, K., Garilao, C., & Costello, M. J. (2021). Latitudinal diversity gradients for five taxonomic levels of marine fish in depth zones. *Ecological Research*, 36(2), 266–280. https://doi.org/10.1111/1440-1703.12193
- Lindquist, N., Barber, P. H., & Weisz, J. B. (2005). Episymbiotic microbes as food and defence for marine isopods: Unique symbioses in a hostile environment. *Proceedings of the Royal Society B: Biological Sciences*, 272, 1209–1216. https://doi.org/10.1098/rspb.2005.3082
- Lins, L. S. F., Ho, S. Y. W., & Lo, N. (2017). An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda). *Organisms Diversity & Evolution*, 17, 813–820. https://doi.org/10.1007/s13127-017-0346-2
- Lins, L. S. F., Ho, S. Y. W., Wilson, G. D. F., & Lo, N. (2012). Evidence for Permo-Triassic colonization of the deep sea by isopods. *Biology Letters*, 8(6), 979–982. https://doi.org/10.1098/rsbl.2012.0774
- Linse, K., Jackson, J. A., Malyutina, M. V., & Brandt, A. (2014). Shallow-water northern hemisphere *Jaera* (Crustacea, Isopoda, Janiridae) found on whale bones in the Southern Ocean deep sea: Ecology and description of *Jaera tyleri* sp. Nov. *PloS ONE*, 9(3), Article e93018. https://doi.org/10.1371/journal.pone.0093018
- Linsenmair, K. E. (1984). Comparative studies on the social behaviour of the desert isopod *Hemilepistus reaumuri* and of a *Porcellio* species. *Zoological Symposium*, 53, 423–453.
- Liu, J., Slik, F., Zheng, S., & Lindenmayer, D. B. (2022). Undescribed species have higher extinction risk than known species. *Conservation Letters*, 15(3), Article e12876. https://doi.org/10.1111/CONL.12876
- Lo Valvo, M., & Pieri, D. (2021). Nesting of the Spotless Starling, *Sturnus unicolor*, on the island of Favignana (Aegadian Islands, Sicily). *Rivista Italiana Di Ornitologia Research in Ornithology*, *91*(1), 59–60. https://doi.org/10.4081/rio.2021.521
- López-Orozco, C. M., Carpio-Díaz, Y. M., Borja-Arrieta, R., Navas-S., G. R., Campos-Filho, I. S., Taiti, S., Mateos, M., Olazaran, A., Caballero, I. C., Jotty, K., Gómez-Estrada, H., & Hurtado, L. A. (2022). A glimpse into a remarkable unknown diversity of oniscideans along the Caribbean coasts revealed on a tiny island. *European Journal of Taxonomy*, 793(1), 1–50. https://doi.org/10.5852/EJT.2022.793.1643

- Lourie, S. A., & Vincent, A. C. J. (2004). Using biogeography to help set priorities in marine conservation. *Conservation Biology*, *18*(4), 1004–1020. https://doi.org/10.1111/j.1523-1739.2004.00137.x
- Lovejoy, T. E., Brouillet, L., Doolittle, W. F., Gonzalez, A., Green, D. M., Hall, P., Hebert, P., Herrmann, T. M., Hyde, D., Lee, J., Maddison, W. P., Otto, S. P., Sperling, F. A. H., & Thompson, R. P. (2010). Canadian taxonomy: Exploring biodiversity, creating opportunity. In *Report of the Expert Panel on Biodiversity Science: Vol. November*.
- Lowry, J. K., & Myers, A. A. (2017). A phylogeny and classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). *Zootaxa*, 4265(1), 001–089. https://doi.org/10.11646/ZOOTAXA.4265.1.1
- Lu, J., Taiti, S., Li, S., Lu, Y., Zhuo, D., Wang, X., & Bai, M. (2023). First fossil of Tylidae (Isopoda: Oniscidea) in Kachin amber, Myanmar, with a list of all Oniscidea fossil records. *Fossils*, 1, 15–33. https://doi.org/10.3390/fossils1010003
- Lupetti, P., Montesanto, G., Ciolfi, S., Marri, L., Gentile, M., Paccagnini, E., & Lombardo, B. M. (2013). Iridovirus infection in terrestrial isopods from Sicily (Italy). *Tissue and Cell*, 45(5), 321–327. https://doi.org/10.1016/j.tice.2013.05.001
- Malek-Hosseini, M. J., Jugovic, J., Fatemi, Y., Kuntner, M., Kostanjšek, R., Douady, C. J., & Malard, F. (2022). A new obligate groundwater species of *Asellus* (Isopoda, Asellidae) from Iran. *Subterranean Biology*, 42, 97–124. https://doi.org/10.3897/SUBTBIOL.42.79447
- Malyutina, M. V., & Brandt, A. (2020). Munnopsidae (Crustacea, Isopoda, Asellota) from the Kuril–Kamchatka Trench with a regional and inter-ocean comparison of their biogeographic and richness patterns. *Progress in Oceanography*, 183, Article 102289. https://doi.org/10.1016/j.pocean.2020.102289
- Malyutina, M. V., Frutos, I., & Brandt, A. (2018). Diversity and distribution of the deep-sea Atlantic Acanthocope (Crustacea, Isopoda, Munnopsidae), with description of two new species. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 130–150. https://doi.org/10.1016/j.dsr2.2017.11.003
- Malyutina, M. V., & Golovan, O. A. (2022). The first record of Asellota (Isopoda) from hydrothermal vent biotopes of the submarine Piip Volcano, Bering Sea, with descriptions of two new species of Munnopsidae. *Deep Sea Research Part II: Topical Studies in Oceanography*, 202, Article 105137. https://doi.org/10.1016/j.dsr2.2022.105137
- Manes, S., Costello, M. J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K., Jenkins, R., Khan, T. M., Kiessling, W., Krause, C., Maharaj, S. S., Midgley, G. F., Price, J., Talukdar, G., & Vale, M. M. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. *Biological Conservation*, 257, Article 109070. https://doi.org/10.1016/J.BIOCON.2021.109070
- Markham, J. C. (1986). Evolution and zoogeography of the Isopoda Bopyridae, parasites of Crustacea Decapoda. In R. H. Gore & K. L. Heck (Eds.), *Crustacean Biogeography. Crustacean Issues*, 4 (pp. 143–164). Balkema: Rotterdam.
- Martin, J. W. (2014). Introduction to the Peracarida. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), *Atlas of Crustacean Larvae* (p. 194). Johns Hopkins University Press.

- Martin, J. W., & Davis, G. E. (2001). An updated classification of the recent Crustacea. *Natural History Museum of Los Angeles County, Science Series*, 39, 1–124.
- McClain, C. R., Nunnally, C., Dixon, R., Rouse, G. W., & Benfield, M. (2019). Alligators in the abyss: The first experimental reptilian food fall in the deep ocean. *PloS ONE*, 14(12), Article e0225345. https://doi.org/10.1371/journal.pone.0225345
- Menegotto, A., & Rangel, T. F. (2018). Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. *Nature Communications*, *9*, Article 4713. https://doi.org/10.1038/s41467-018-07217-7
- Menzies, R. J., & Glynn, P. W. (1968). The common marine isopod Crustacea of Puerto Rico -A handbook for marine biologists. *Studies on the Fauna of Curaçao and Other Caribbean Islands*, 27(1), 1–133.
- Menzies, R. J., & Kruczynski, W. L. (1983). Isopod Crustacea (exclusive of Epicaridea). *Memoirs of the Hourglass Cruises, VI*(Part I), 1–126.
- Messelink, G. J., & Bloemhard, C. M. J. (2007). Woodlice (Isopoda) and millipedes (Diplopoda): Control of rare greenhouse pests. *Proceedings of the Netherlands Entomological Society Meeting*, *18*, 43–49.
- Mészárosné Póss, A., Südiné Fehér, A., Tóthné Bogdányi, F., & Tóth, F. (2022). The spread of the soil-borne pathogen *Fusarium solani* in stored potato can be controlled by terrestrial woodlice (Isopoda: Oniscidea). *Agriculture*, 12, Article 45. https://doi.org/10.3390/agriculture12010045
- Mezhov, B. V. (1993). Three new species of *Macrostylis* G. O. Sars, 1864 (Crustacea Isopoda Asellota, Macrostylidae) from the Indian Ocean. *Arthropoda Selecta*, 2(3), 3–9.
- Montesanto, G., Musarra Pizzo, G., Caruso, D., & Lombardo, B. M. (2012). The postmarsupial development of *Porcellio siculoccidentalis*, with some data on reproductive biology (Crustacea, Isopoda, Oniscidea). *ZooKeys*, 176, 87–101. https://doi.org/10.3897/zookeys.176.2369
- Monticelli Cardoso, G., Bastos-Pereira, R., & Lopes Ferreira, R. (2022). A new species of *Chaimowiczia* from the karstic Serra do Ramalho plateau, Brazil (Oniscidea, Synocheta, Styloniscidae). *Subterranean Biology*, 42, 139–149. https://doi.org/10.3897/SUBTBIOL.42.80274
- Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? *PloS Biology*, *9*(8), Article e1001127. https://doi.org/10.1371/journal.pbio.1001127
- Muggeo, V. M. R. (2008). Segmented: An R package to fit regression models with broken-line relationships. *R News*, 8(1), 20–25. http://cran.r-project.org/doc/Rnews/
- Nagler, C., Hyžný, M., & Haug, J. T. (2017). 168 million years old "marine lice" and the evolution of parasitism within isopods. *BMC Evolutionary Biology*, 17, Article 76. https://doi.org/10.1186/s12862-017-0915-1
- Nakamachi, T., & Asakura, A. (2020). Reproductive aggregations of *Dynoides dentisinus* (Crustacea: Peracarida), an intertidal isopod with remarkable sexual dimorphism. *The Biological Bulletin*, 239, 40–50. https://doi.org/10.1086/710080

- Newman, B. K., Wooldridge, T. H., & Cockcroft, A. C. (2007). Aspects of the biology and ecology of the estuarine circlanid isopod, *Circlana fluviatilis*. *African Zoology*, *42*(1), 12–22. https://doi.org/10.1080/15627020.2007.11407372
- Nicholson, M. D., Hendrick, G. C., Packard, A. J., Strobel, D. L., Vondriska, C., & Sikkel, P. C. (2020). Vertical limits of host infestation by gnathiid isopods (Isopoda: Gnathiidae) parasitic on Caribbean coral reef fishes. *Journal of Crustacean Biology*, 40(6), 866–871. https://doi.org/10.1093/jcbiol/ruaa067
- Oanh, L. T. K., & Boyko, C. B. (2020). *Cancrion khanhensis* sp. Nov. (Crustacea: Isopoda: Entoniscidae) infesting *Monomia haanii* (Stimpson, 1858) (Crustacea: Brachyura: Portunidae) from Nha Trang Bay, Khanh Hoa, Vietnam, with remarks on larval stages of entoniscids and description of a new family, genus and two new species of hyperparasites infesting entoniscids. *Zootaxa*, 4894(3), 366–386. https://doi.org/10.11646/zootaxa.4894.3.4
- OBIS. (2022). [Distribution records of Isopoda (Latreille, 1817)] [Dataset]. Retrieved from *Ocean Biogeographic Information System*. Intergovernmental Oceanographic Commission of UNESCO. www.iobis.org. Accessed 2022-06-10.
- O'Callaghan, I., Harrison, S., Fitzpatrick, D., & Sullivan, T. (2019). The freshwater isopod *Asellus aquaticus* as a model biomonitor of environmental pollution: A review. *Chemosphere*, 235, 498–509. https://doi.org/10.1016/j.chemosphere.2019.06.217
- O'Hara, T. D., Williams, A., Ahyong, S. T., Alderslade, P., Alvestad, T., Bray, D., Burghardt, I., Budaeva, N., Criscione, F., Crowther, A. L., Ekins, M., Eléaume, M., Farrelly, C. A., Finn, J. K., Georgieva, M. N., Graham, A., Gomon, M., Gowlett-Holmes, K., Gunton, L. M., ... Bax, N. J. (2020). The lower bathyal and abyssal seafloor fauna of eastern Australia. *Marine Biodiversity Records*, *13*, Article 11. https://doi.org/10.1186/s41200-020-00194-1
- Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. *BioScience*, *51*(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
- Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2021). Global patterns and drivers of bee distribution. *Current Biology*, 31(3), 451–458. https://doi.org/10.1016/j.cub.2020.10.053
- Pagès-Escolà, M., Bock, P., Gordon, D. P., Wilson, S. P., Linares, C., Hereu, B., & Costello, M. J. (2020). Progress in the discovery of extant and fossil bryozoans. *Marine Ecology Progress Series*, 635, 71–79. https://doi.org/10.3354/MEPS13201
- Pamungkas, J., Glasby, C. J., & Costello, M. J. (2021). Biogeography of polychaete worms (Annelida) of the world. *Marine Ecology Progress Series*, 657, 147–159. https://doi.org/10.3354/meps13531

- Pamungkas, J., Glasby, C. J., Read, G. B., Wilson, S. P., & Costello, M. J. (2019). Progress and perspectives in the discovery of polychaete worms (Annelida) of the world. *Helgoland Marine Research*, 73, Article 4. https://doi.org/10.1186/s10152-019-0524-z
- Pante, E., Schoelinck, C., & Puillandre, N. (2015). From integrative taxonomy to species description: One step beyond. *Systematic Biology*, 64(1), 152–160. https://doi.org/10.1093/SYSBIO/SYU083
- Paris, O. H. (1963). The ecology of *Armadillidium vulgare* (Isopoda: Oniscoidea) in California grassland: Food, enemies, and weather. *Ecological Monographs*, *33*(1), 1–22.
- Parmentier, T., Vanderheyden, A., Dekoninck, W., & Wenseleers, T. (2017). Body size in the ant-associated isopod *Platyarthrus hoffmannseggii* is host-dependent. *Biological Journal of the Linnean Society*, *121*(2), 305–311. https://doi.org/10.1093/biolinnean/blw052
- Pascual, S., Vega, M. A., Rocha, F. J., & Guerra, A. (2002). First report of an endoparasitic epicaridean isopod infecting cephalopods. *Journal of Wildlife Diseases*, 38(2), 473–477. https://doi.org/10.7589/0090-3558-38.2.473
- Paula, J. R., Sun, D., Pissarra, V., Narvaez, P., Rosa, R., Grutter, A. S., & Sikkel, P. C. (2021). The role of corals on the abundance of a fish ectoparasite in the Great Barrier Reef. *Coral Reefs*, 40, 535–542. https://doi.org/10.1007/s00338-021-02051-8
- Pearman, W. S., Wells, S. J., Silander, O. K., Freed, N. E., & Dale, J. (2020). Concordant geographic and genetic structure revealed by genotyping-by-sequencing in a New Zealand marine isopod. *Ecology and Evolution*, 10(24), 13624–13639. https://doi.org/10.1002/ece3.6802
- Poinar Jr., G. O. (1981). *Thaumamermis cosgrovei* n. gen., n. sp. (Mermithidae: Nematoda) parasitizing terrestrial isopods (Isopoda: Oniscoidea). *Systematic Parasitology*, 2, 261– 266.
- Poore, G. C. B. (2005). Peracarida: Monophyly, relationships and evolutionary success. *Nauplius*, *13*(1), 1–27.
- Poore, G. C. B., Avery, L., Błażewicz-Paszkowycz, M., Browne, J. G., Bruce, N. L., Gerken, S., Glasby, C. J., Greaves, E., McCallum, A. W., Staples, D., Syme, A., Taylor, J., Walker-Smith, G., Warne, M., Watson, C., Williams, A., Wilson, R. S., & Woolley, S. (2015). Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. *Marine Biodiversity*, 45(2), 271–286. https://doi.org/10.1007/S12526-014-0255-Y/FIGURES/5
- Poore, G. C. B., & Bruce, N. L. (2012). Global diversity of marine isopods (except Asellota and crustacean symbionts). *PloS ONE*, 7(8), Article e43529. https://doi.org/10.1371/journal.pone.0043529
- Poore, G. C. B., Just, J., & Cohen, B. F. (1994). Composition and diversity of Crustacea Isopoda of the southeastern Australian continental slope. *Deep Sea Research Part I: Oceanographic Research Papers*, 41(4), 677–693. https://doi.org/10.1016/0967-0637(94)90049-3
- Poore, G. C. B., & Wilson, G. D. F. (1993). Marine species richness. *Nature*, *361*, 597–598. https://doi.org/10.1038/361597a0

- Pos, E., Guevara Andino, J. E., Sabatier, D., Molino, J. -F., Pitman, N., Mogollón, H., Neill, D., Cerón, C., Rivas, G., Di Fiore, A., Thomas, R., Tirado, M., Young, K. R., Wang, O., Sierra, R., García-Villacorta, R., Zagt, R., Palacios, W., Aulestia, M., & ter Steege, H. (2014). Are all species necessary to reveal ecologically important patterns? *Ecology and Evolution*, 4(24), 4626–4636. https://doi.org/10.1002/ece3.1246
- Poulin, R., & Pérez-Ponce de León, G. (2017). Global analysis reveals that cryptic diversity is linked with habitat but not mode of life. *Journal of Evolutionary Biology*, *30*(3), 641–649. https://doi.org/10.1111/JEB.13034
- Powell, C. V. L., & Halcrow, K. (1982). The surface microstructure of marine and terrestrial Isopoda (Crustacea, Peracarida). *Zoomorphology*, *101*, 151–164.
- R Core Team. (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. https://www.r-project.org/
- Rajkumar, M., Kumaraguru Vasagam, K. P., Perumal, P., & Trilles, J. P. (2005). First record of *Cymothoa indica* (Crustacea, Isopoda, Cymothoidae) infecting the cultured catfish *Mystus gulio* in India. *Diseases of Aquatic Organisms*, 65, 269–272.
- Raupach, M. J., Malyutina, M. V., Brandt, A., & Wägele, J. W. (2007). Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod *Betamorpha fusiformis* (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1820–1830. https://doi.org/10.1016/J.DSR2.2007.07.009
- Raupach, M. J., Mayer, C., Malyutina, M. V., & Wägele, J. W. (2009). Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. *Proceedings of the Royal Society B: Biological Sciences*, 276, 799–808. https://doi.org/10.1098/rspb.2008.1063
- Rayes, C. A., Beattie, J., & Duggan, I. C. (2015). Boring through history: An environmental history of the extent, impact and management of marine woodborers in a global and local context, 500 BCE to 1930s CE. *Environment and History*, 21, 477–512. https://doi.org/10.3197/096734015X14414683716163
- Recuero, E., & Rodríguez-Flores, P. C. (2019). On the geographic distribution of the uncommon Iberian endemic *Armadillidium mateui* Vandel, 1953 (Crustacea, Isopoda, Armadillidiidae). *Graellsia*, 75(2), Article e096. https://doi.org/10.3989/graellsia.2019.v75.239
- Reed, M. L., Hoback, W. W., & Long, J. M. (2018). Winter and spring diet of the Orangebelly Darter, *Etheostoma radiosum*, among tributaries of the Lower Mountain Fork River. *The Southwestern Naturalist*, 63(2), 146–148. https://doi.org/10.1894/0038-4909-63-2-146
- Rehm, A., & Humm, H. J. (1973). *Sphaeroma terebrans*: A threat to the mangroves of southwestern Florida. *Science*, *182*, 173–174.
- Rex, M. A., Etter, R. J., & Stuart, C. T. (1997). Large-scale patterns of species diversity in the deep-sea benthos. In R. F. G. Ormond, J. D. Gage, & M. V. Angel (Eds.), *Marine Biodiversity - Patterns and Processes* (pp. 94–116). Cambridge University Press, United Kingdom. https://doi.org/10.1017/cbo9780511752360.006

- Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., & Wilson, G. D. F. (1993). Global-scale latitudinal patterns of species diversity in the deep-sea benthos. *Nature*, 365, 636–639. https://doi.org/10.1038/365636a0
- Richter, S., & Scholtz, G. (2001). Phylogenetic analysis of the Malacostraca (Crustacea). *Journal of Zoological Systematics and Evolutionary Research*, *39*, 113–136. https://doi.org/10.1046/j.1439-0469.2001.00164.x
- Riehl, T., Wölfl, A.-C., Augustin, N., Devey, C. W., & Brandt, A. (2020). Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. *Proceedings of the National Academy of Sciences*, 117(27), 15450–15459. https://doi.org/10.1073/pnas.1920706117
- Riseman, S. F., & Brusca, R. C. (2002). Taxonomy, phylogeny and biogeography of *Politolana* Bruce, 1981 (Crustacea: Isopoda: Cirolanidae). *Zoological Journal of the Linnean Society*, 134(1), 57–140. https://doi.org/10.1046/j.1096-3642.2002.00002.x
- Rivadeneira, M. M., & Poore, G. C. B. (2020). Latitudinal gradient of diversity of marine crustaceans: Towards a synthesis. In G. C. B. Poore & M. Thiel (Eds.), *Evolution and Biogeography: Volume 8* (pp. 389–412). Oxford University Press. https://doi.org/10.1093/oso/9780190637842.003.0015
- Rivadeneira, M. M., Thiel, M., González, E. R., & Haye, P. A. (2011). An inverse latitudinal gradient of diversity of peracarid crustaceans along the Pacific Coast of South America: out of the deep south. *Global Ecology and Biogeography*, 20(3), 437–448. https://doi.org/10.1111/j.1466-8238.2010.00610.x
- Robin, N., Gueriau, P., Luque, J., Jarvis, D., Daley, A. C., & Vonk, R. (2021). The oldest peracarid crustacean reveals a Late Devonian freshwater colonization by isopod relatives. *Biology Letters*, 17, Article 20210226. https://doi.org/10.1098/rsbl.2021.0226
- Rosa, R., Pissarra, V., Borges, F. O., Xavier, J., Gleadall, I. G., Golikov, A., Bello, G., Morais, L., Lishchenko, F., Roura, Á., Judkins, H., Ibáñez, C. M., Piatkowski, U., Vecchione, M., & Villanueva, R. (2019). Global patterns of species richness in coastal cephalopods. *Frontiers in Marine Science*, *6*, Article 469. https://doi.org/10.3389/fmars.2019.00469
- Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., Barrio, I. C., Basset, Y., Boesing, A. L., Bonebrake, T. C., Cameron, E. K., Dáttilo, W., Donoso, D. A., Drozd, P., Gray, C. L., Hik, D. S., Hill, S. J., Hopkins, T., Huang, S., ... Slade, E. M. (2017). Higher predation risk for insect prey at low latitudes and elevations. *Science*, *356*(6339), 742–744. https://doi.org/10.1126/science.aaj1631
- Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. *Oikos*, *130*(3), 321–338. https://doi.org/10.1111/oik.07202
- Rundio, D. E., & Lindley, S. T. (2021). Importance of non-native isopods and other terrestrial prey resources to steelhead/rainbow trout *Oncorhynchus mykiss* in coastal streams in Big Sur, California. *Ecology of Freshwater Fish*, 30(4), 419–432. https://doi.org/10.1111/eff.12594
- Rusconi, J. M., Eliceche, D., Salas, A., Balcazar, D., Ibañez Shimabukuro, M., & Achinelly, M. F. (2023). *Agamermis* sp. (Nematoda: Mermithidae) parasitizing *Armadillidium*

*vulgare* (Crustacea: Isopoda) in Argentina. *Journal of Helminthology*, 97, Article e24. https://doi.org/10.1017/S0022149X23000068

- Saeedi, H., Brandt, A., & Jacobsen, N. L. (2022). Biodiversity and distribution of Isopoda and Polychaeta along the Northwestern Pacific Ocean and the Arctic Ocean. *Biodiversity Informatics*, 17, 10–26. https://doi.org/10.17161/bi.v17i.15581
- Saeedi, H., Simões, M., & Brandt, A. (2020). Biodiversity and distribution patterns of deepsea fauna along the temperate NW Pacific. *Progress in Oceanography*, 183, Article 102296. https://doi.org/10.1016/j.pocean.2020.102296
- Salemaa, H. (1986). Breeding biology and microhabitat utilization of the intertidal isopod *Idotea granulosa* Rathke, in the Irish Sea. *Estuarine, Coastal and Shelf Science, 22*, 335–355.
- Sangster, G., & Luksenburg, J. A. (2015). Declining rates of species described per taxonomist: Slowdown of progress or a side-effect of improved quality in taxonomy? *Systematic Biology*, 64(1), 144–151. https://doi.org/10.1093/sysbio/syu069
- Sanil, N. K., Vikas, P. A., Ratheesh, T. B., George, K. C., & Vijayan, K. K. (2009). Mortalities caused by the crustacean isopod, *Cirolana fluviatilis*, in tropical, cage-cultured Asian seabass, *Lates calcarifer*: A case study from the southwest coast of India. *Aquaculture Research*, 40(14), 1626–1633. https://doi.org/10.1111/j.1365-2109.2009.02263.x
- Saravanakumar, A., Balasubramanian, T., Raja, K., & Trilles, J. P. (2012). A massive infestation of sea snakes by cymothoid isopods. *Parasitology Research*, *110*, 2529–2531. https://doi.org/10.1007/s00436-011-2795-4
- Saska, P. (2008). Granivory in terrestrial isopods. *Ecological Entomology*, *33*, 742–747. https://doi.org/10.1111/j.1365-2311.2008.01026.x
- Schädel, M., Hörnig, M. K., Hyžný, M., & Haug, J. T. (2021). Mass occurrence of small isopodan crustaceans in 100-million-year-old amber: An extrodinary view on behaviour of extinct organisms. *PalZ*, 95, 429–445. https://doi.org/10.1007/s12542-021-00564-9
- Scheffers, B. R., Joppa, L. N., Pimm, S. L., & Laurance, W. F. (2012). What we know and don't know about Earth's missing biodiversity. *Trends in Ecology & Evolution*, 27(9), 501–510. https://doi.org/10.1016/j.tree.2012.05.008
- Schlick-Steiner, B. C., Seifert, B., Stauffer, C., Christian, E., Crozier, R. H., & Steiner, F. M. (2007). Without morphology, cryptic species stay in taxonomic crypsis following discovery. *Trends in Ecology & Evolution*, 22(8), 391–392. https://doi.org/10.1016/J.TREE.2007.05.004
- Schmidt, C., & Wägele, J. W. (2001). Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Acta Zoologica, 82(4), 315–330. https://doi.org/10.1046/j.1463-6395.2001.00092.x
- Schnurr, S., Brandt, A., Brix, S., Fiorentino, D., Malyutina, M. V., & Svavarsson, J. (2014). Composition and distribution of selected munnopsid genera (Crustacea, Isopoda, Asellota) in Icelandic waters. *Deep Sea Research Part I: Oceanographic Research Papers*, 84, 142–155. https://doi.org/10.1016/j.dsr.2013.11.004

- Schnurr, S., Osborn, K. J., Malyutina, M. V., Jennings, R. M., Brix, S., Driskell, A., Svavarsson, J., & Martinez Arbizu, P. (2018). Hidden diversity in two species complexes of munnopsid isopods (Crustacea) at the transition between the northernmost North Atlantic and the Nordic Seas. *Marine Biodiversity*, 48(2), 813–843. https://doi.org/10.1007/S12526-018-0877-6
- Schram, F. R. (1970). Isopod from the Pennsylvanian of Illinois. *Science*, *169*(3948), 854–855. https://doi.org/10.1126/science.169.3948.854
- Selden, P. A., Wilson, G. D. F., Simonetto, L., & Dalla Vecchia, F. M. (2016). First fossil asellote (Isopoda: Asellota), from the Upper Triassic (Norian) of the Carnic Prealps (Friuli, northeastern Italy). *Journal of Crustacean Biology*, 36(1), 68–86. https://doi.org/10.1163/1937240X-00002387
- Sfenthourakis, S. (1996). A biogeographical analysis of terrestrial isopods (Isopoda, Oniscidea) from the central Aegean islands (Greece). *Journal of Biogeography*, 23(5), 687–698. https://doi.org/10.1111/j.1365-2699.1996.tb00029.x
- Sfenthourakis, S., & Giokas, S. (1998). A biogeographical analysis of Greek oniscidean endemism. *Israel Journal of Zoology*, 44(3–4), 273–282.
- Sfenthourakis, S., & Hornung, E. (2018). Isopod distribution and climate change. *ZooKeys*, 801, 25–61. https://doi.org/10.3897/zookeys.801.23533
- Sharifian, S., Kamrani, E., & Saeedi, H. (2020). Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. *Journal of Thermal Biology*, 92, Article 102692. https://doi.org/10.1016/j.jtherbio.2020.102692
- Shuster, S. M. (1981). Sexual selection in the socorro isopod, *Thermosphaeroma thermophilum* (Cole) (Crustacea: Peracarida). *Animal Behaviour*, 29(3), 698–707. https://doi.org/10.1016/S0003-3472(81)80004-8
- Shuster, S. M. (1987). Alternative reproductive behaviors: Three discrete male morphs in *Paracerceis sculpta*, an intertidal isopod from the northern Gulf of California. *Journal of Crustacean Biology*, 7(2), 318–327.
- Si, A., Bellwood, O., & Alexander, C. G. (2002). Evidence for filter-feeding by the woodboring isopod, *Sphaeroma terebrans* (Crustacea: Peracarida). *Journal of Zoology*, 256(4), 463–471. https://doi.org/10.1017/S095283690200050X
- Smit, N. J., Bruce, N. L., & Hadfield, K. A. (2014). Global diversity of fish parasitic isopod crustaceans of the family Cymothoidae. *International Journal for Parasitology: Parasites and Wildlife*, 3, 188–197. https://doi.org/10.1016/j.ijppaw.2014.03.004
- Songvorawit, N., Quicke, D. L. J., & Butcher, B. A. (2021). Taxonomic progress and diversity of ichneumonoid wasps (Hymenoptera: Ichneumonoidea) in Southeast Asia. *Tropical Natural History*, 21(1), 78–93. https://li01.tcithaijo.org/index.php/tnh/article/view/248068
- Soto, J. M. R., & Mincarone, M. M. (2001). Distribution and morphology of the giant isopods *Bathynomus giganteus* and *Bathynomus miyarei* (Flabellifera, Cirolanidae) off southern Brazil. *Mare Magnum*, 1(2), 141–145.

- Spalding, M. D., Agostini, V. N., Rice, J., & Grant, S. M. (2012). Pelagic provinces of the world: A biogeographic classification of the world's surface pelagic waters. *Ocean & Coastal Management*, 60, 19–30. https://doi.org/10.1016/j.ocecoaman.2011.12.016
- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., & Robertson, J. (2007). Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. *BioScience*, 57(7), 573–583. https://doi.org/10.1641/B570707
- Stehli, F. G., Douglas, R. G., & Newell, N. D. (1969). Generation and maintenance of gradients in taxonomic diversity. *Science*, 164(3882), 947–949. https://doi.org/10.1126/science.164.3882.947
- Stepien, C. A., & Brusca, R. C. (1985). Nocturnal attacks on nearshore fishes in southern California by crustacean zooplankton. *Marine Ecology Progress Series*, 25, 91–105.
- Stinnesbeck, E. S., Wägele, J. W., Herder, F., Rust, J., & Stinnesbeck, W. (2022). A fishparasitic isopod (Cymothoidae) on the pachyrhizodont *Goulmimichthys roberti* from the lower Turonian (Upper Cretaceous) Vallecillo plattenkalk, NE Mexico. *Cretaceous Research*, 129, Article 105019. https://doi.org/10.1016/j.cretres.2021.105019
- Stransky, B., Svavarsson, J., Poore, G. C. B., & Kihara, T. C. (2020). Revision of *Pleuroprion* zur Strassen, 1903 (Holidoteidae) and re-evaluation of *Spectrarcturus* Schultz, 1981 (Arcturidae) (Crustacea, Isopoda, Valvifera). *Zootaxa*, 4894(1), 001–052. https://doi.org/10.11646/ZOOTAXA.4894.1.1
- Sutton, T. T., Clark, M. R., Dunn, D. C., Halpin, P. N., Rogers, A. D., Guinotte, J., Bograd, S. J., Angel, M. V., Perez, J. A. A., Wishner, K., Haedrich, R. L., Lindsay, D. J., Drazen, J. C., Vereshchaka, A., Piatkowski, U., Morato, T., Błachowiak-Samołyk, K., Robison, B. H., Gjerde, K. M., ... Heino, M. (2017). A global biogeographic classification of the mesopelagic zone. *Deep Sea Research Part I: Oceanographic Research Papers*, *126*, 85–102. https://doi.org/10.1016/j.dsr.2017.05.006
- Svane, I., & Barnett, J. (2008). The occurrence of benthic scavengers and their consumption at tuna farms off Port Lincoln, South Australia. *Journal of Experimental Marine Biology* and Ecology, 363, 110–117. https://doi.org/10.1016/j.jembe.2008.06.028
- Svavarsson, J. (2006). New species of Gnathiidae (Crustacea, Isopoda, Cymothoida) from seamounts off northern New Zealand. *Zootaxa*, *1173*, 39–56.
- Tait, J. (1917). V.—Experiments and observations on Crustacea: Part II. Moulting of Isopods. Proceedings of the Royal Society of Edinburgh, 37, 59–68. https://doi.org/10.1017/S0370164600023506
- Taiti, S., & Monticelli Cardoso, G. (2020). New species and records of *Exalloniscus* Stebbing, 1911 from southern Asia (Malacostraca, Isopoda, Oniscidea). *Tropical Zoology*, 33(4), 125–158. https://doi.org/10.4081/TZ.2020.83
- Talley, T. S., Crooks, J. A., & Levin, L. A. (2001). Habitat utilization and alteration by the invasive burrowing isopod, *Sphaeroma quoyanum*, in California salt marshes. *Marine Biology*, 138, 561–573.

- Tanaka, K. (2007). Life history of gnathiid isopods current knowledge and future directions. *Plankton & Benthos Research*, *2*(1), 1–11.
- Tanaka, K., & Nishi, E. (2011). Male dimorphism in the harem-forming gnathiid isopod *Elaphognathia discolor* (Crustacea: Isopoda). *Zoological Science*, 28, 587–592. https://doi.org/10.2108/zsj.28.587
- Tancoigne, E., & Dubois, A. (2013). Taxonomy: No decline, but inertia. *Cladistics*, 29, 567–570. https://doi.org/10.1111/cla.12019
- Taxonomy Decadal Plan Working Group. (2018). Discovering biodiversity: A decadal plan for taxonomy and biosystematics in Australia and New Zealand 2018–2027.
- Thiel, M. (1999). Reproductive biology of a wood-boring isopod, *Sphaeroma terebrans*, with extended parental care. *Marine Biology*, *135*, 321–333. https://doi.org/10.1007/s002270050630
- Thiel, M. (2002). Reproductive biology of a small isopod symbiont living on a large isopod host: From the maternal marsupium to the protective grip of guarding males. *Marine Biology*, 141(1), 175–183. https://doi.org/10.1007/s00227-002-0801-1
- Thiel, M. (2003). Reproductive biology of *Limnoria chilensis*: Another boring peracarid species with extended parental care. *Journal of Natural History*, *37*(14), 1713–1726. https://doi.org/10.1080/00222930210125416
- Thomas, P. W., & Thomas, H. W. (2022). Mycorrhizal fungi and invertebrates: Impacts on *Tuber melanosporum* ascospore dispersal and lifecycle by isopod mycophagy. *Food Webs*, 33, Article e00260. https://doi.org/10.1016/j.fooweb.2022.e00260
- Tiemensma, M., Bruce, N. L., & Willan, R. C. (2017). Post-mortem human cadaver scavenging by marine crustaceans (Isopoda: Cirolanidae) in tropical waters. *Forensic Science, Medicine and Pathology*, 13, 515–517. https://doi.org/10.1007/s12024-017-9926-x
- Toft, S., & Macías-Hernández, N. (2021). Prey acceptance and metabolic specialisations in some Canarian Dysdera spiders. *Journal of Insect Physiology*, 131, Article 104227. https://doi.org/10.1016/j.jinsphys.2021.104227
- Triantis, K. A., Sfenthourakis, S., & Mylonas, M. (2008). Biodiversity patterns of terrestrial isopods from two island groups in the Aegean Sea (Greece): Species—area relationship, small island effect, and nestedness. *Écoscience*, 15(2), 169–181. https://doi.org/10.2980/15-2-3065
- Tsai, M.-L., Li, J.-J., & Dai, C.-F. (1999). Why selection favors protandrous sex change for the parasitic isopod, *Ichthyoxenus fushanensis* (Isopoda: Cymothoidae). *Evolutionary Ecology*, 13, 327–338.
- Van As, L. L. (2019). Hypersymbionts and hyperparasites of parasitic Crustacea. In N. J. Smit & K. A. Hadfield (Eds.), *Parasitic Crustacea. Zoological Monographs, Vol. 3* (pp. 343–385). Springer, Cham. https://doi.org/10.1007/978-3-030-17385-2\_8
- Van Der Spuy, L., Erasmus, J. H., Nachev, M., Schaeffner, B. C., Sures, B., Wepener, V., & Smit, N. J. (2023). The use of fish parasitic isopods as element accumulation indicators

in marine pollution monitoring. *Marine Pollution Bulletin*, *194*, Article 115385. https://doi.org/10.1016/j.marpolbul.2023.115385

- Victorero, L., Samadi, S., O'Hara, T. D., Mouchet, M., Delavenne, J., Leprieur, F., & Leroy, B. (2023). Global benthic biogeographical regions and macroecological drivers for ophiuroids. *Ecography*, 2023(9), Article e06627. https://doi.org/10.1111/ecog.06627
- Vilisics, F., Sólymos, P., & Hornung, E. (2007). A preliminary study on habitat features and associated terrestrial isopod species. In K. Tajovský, J. Schlaghamerský, & V. Pižl (Eds.), *Contributions to Soil Zoology in Central Europe II* (pp. 195–199). České Budějovice.
- Wägele, J. W. (1990). Aspects of the evolution and biogeography of stygobiontic Isopoda (Crustacea: Peracarida). *Bijdragen tot de Dierkunde*, 60(3/4), 145–150.
- Wägele, J. W., Voelz, N. J., & McArthur, J. V. (1995). Older than the Atlantic Ocean: Discovery of a fresh-water *Microcerberus* (Isopoda) in North America and erection of *Coxicerberus*, new genus. *Journal of Crustacean Biology*, 15(4), 733–745. https://doi.org/10.1163/193724095X00136
- Wallace, A. R. (1876). *The geographical distribution of animals: With a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface: In two volumes.* Macmillan and Co.
- Wallerstein, B. R., & Brusca, R. C. (1982). Fish predation: A preliminary study of its role in the zoogeography and evolution of shallow water idoteid isopods (Crustacea: Isopoda: Idoteidae). *Journal of Biogeography*, 9(2), 135–150. https://doi.org/10.2307/2844698
- Warburg, M. R. (1993). The integument and moult. In *Evolutionary biology of land isopods* (p. 161). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21889-1\_2
- Wares, J. P. (2001). Intraspecific variation and geographic isolation in *Idotea balthica* (Isopoda: Valvifera). *Journal of Crustacean Biology*, 21(4), 1007–1013. https://doi.org/10.1163/20021975-99990193
- Watling, L., Guinotte, J., Clark, M. R., & Smith, C. R. (2013). A proposed biogeography of the deep ocean floor. *Progress in Oceanography*, 111, 91–112. https://doi.org/10.1016/j.pocean.2012.11.003
- Watling, L., & Lapointe, A. (2022). Global biogeography of the lower bathyal (700–3000 m) as determined from the distributions of cnidarian anthozoans. *Deep Sea Research Part I: Oceanographic Research Papers*, 181, Article 103703. https://doi.org/10.1016/j.dsr.2022.103703
- Wheeler, Q. D. (2014). Are reports of the death of taxonomy an exaggeration? *New Phytologist*, *201*(2), 370–371. https://doi.org/10.1111/NPH.12612
- Wieser, W. (1978). Consumer strategies of terrestrial gastropods and isopods. *Oecologia*, *36*, 191–201.
- Williams, J. D., & Boyko, C. B. (2012). The global diversity of parasitic isopods associated with crustacean hosts (Isopoda: Bopyroidea and Cryptoniscoidea). *PloS ONE*, 7(4), Article e35350. https://doi.org/10.1371/journal.pone.0035350

- Williams, J. D., Boyko, C. B., & Marin, I. N. (2020). A new species and depth record of bopyrid (Crustacea, Isopoda) from a squat lobster in the Kuril-Kamchatka Trench. *European Journal of Taxonomy*, 724, 122–133. https://doi.org/10.5852/EJT.2020.724.1165
- Williams, J. D., Escalante, M., & Shanks, A. L. (2022). Identification and observations of parasitic isopod larvae (Isopoda: Epicaridea) from the northeastern Pacific: pelagic distribution and association with copepod intermediate hosts. *Journal of Crustacean Biology*, 42, 1–14. https://doi.org/10.1093/jcbiol/ruac045
- Wills, M. A. (1998). A phylogeny of recent and fossil Crustacea derived from morphological characters. In R. A. Fortey & R. H. Thomas (Eds.), *Arthropod Relationships, Systematics Association Special Volume Series 55* (pp. 189–209). Chapman & Hall, London, UK.
- Wilson, G. D. F. (1991). Functional morphology and evolution of isopod genitalia. In R. T. Bauer & J. W. Martin (Eds.), *Crustacean sexual biology* (p. 355). Columbia University Press, New York.
- Wilson, G. D. F. (1998). Historical influences on deep-sea isopod diversity in the Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 45(1–3), 279–301. https://doi.org/10.1016/S0967-0645(97)00046-5
- Wilson, G. D. F. (2008a). Global diversity of isopod crustaceans (Crustacea; Isopoda) in freshwater. In *Freshwater Animal Diversity Assessment* (pp. 231–240). Springer. https://doi.org/10.1007/978-1-4020-8259-7\_26
- Wilson, G. D. F. (2008b). Gondwanan groundwater: Subterranean connections of Australian phreatoicidean isopods (Crustacea) to India and New Zealand. *Invertebrate Systematics*, 22(2), 301–310. https://doi.org/10.1071/IS07030
- Wilson, G. D. F. (2009). The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). *Arthropod Systematics & Phylogeny*, 67(2), 159–198.
- Wilson, G. D. F., & Edgecombe, G. D. (2003). The Triassic isopod *Protamphisopus* wianamattensis (Chilton) and comparison with extant taxa (Crustacea, Phreatoicidea). Journal of Paleontology, 77(3), 454–470. https://doi.org/10.1017/s0022336000044176
- Wilson, G. D. F., & Morel, N. (2022). Isopod crustacean fossils from the Cenomanian stratotype: Five new species in suborders Cymothoida, Asellota and Valvifera. *Annales de Paléontologie*, 108(1), Article 102538. https://doi.org/10.1016/j.annpal.2022.102538
- Wilson, S. P., & Costello, M. J. (2005). Predicting future discoveries of European marine species by using a non-homogeneous renewal process. *Journal of the Royal Statistical Society: Series C*, 54(5), 897–918.
- WoRMS. (2018). *Isopoda*. Accessed on 2018-07-19 At: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1131
- WoRMS. (2023). *Isopoda*. Accessed on 2023-02-20 At: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1131
- Xu, L., Li, Y., Liu, Y., Mi, H., Jiang, X., Sun, Y., Zhao, H., Chen, D., & Wang, L. (2021). A comprehensive evaluation of the potential of semiterrestrial isopods, *Ligia exotica*, as a

new animal food. *Scientific Reports*, 11, Article 7213. https://doi.org/10.1038/s41598-021-86561-z

- Yesudas, A., Jayachandran, P. R., Parameswaran, U. V., Vidyalakshmi, D., & Priyaja, P. (2021). Report on the association of valviferan isopod *Synidotea variegata* Collinge 1917 and regular sea urchin *Stomopneustes variolaris* Lamarck, 1816 from rocky subtidal regions of Vizhinjam, southwest coast of India. *Symbiosis*, 84, 105–110. https://doi.org/10.1007/s13199-021-00759-3
- Yli-Renko, M., Pettay, J. E., Rothäusler, E., & Vesakoski, O. (2022). Lack of anti-predator recognition in a marine isopod under the threat of an invasive predatory crab. *Biological Invasions*, 24, 3189–3198. https://doi.org/10.1007/s10530-022-02839-x
- Yu, J., An, J., Li, Y., & Boyko, C. B. (2018). The first complete mitochondrial genome of a parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less conservative genome of isopods. *Systematic Parasitology*, 95, 465–478. https://doi.org/10.1007/s11230-018-9792-2
- Yue, Y., Zhang, Q., & Wang, J. (2019). Integrated gas chromatograph-mass spectrometry (GC/MS) and MS/MS-based molecular networking reveals the analgesic and antiinflammatory phenotypes of the sea slater *Ligia exotica*. *Marine Drugs*, 17, Article 395. https://doi.org/10.3390/md17070395
- Zaixso, H. E., Stoyanoff, P., & Gil, D. G. (2009). Detrimental effects of the isopod, *Edotia doellojuradoi*, on gill morphology and host condition of the mussel, *Mytilus edulis platensis*. *Marine Biology*, 156, 2369–2378. https://doi.org/10.1007/s00227-009-1265-3
- Zimina, O. L., Strelkova, N. A., & Lyubina, O. S. (2019). Species composition and peculiarities of the distribution of benthic Peracarida (Crustacea, Malacostraca) in the Barents Sea, based on surveys 2003–2008. *Biology Bulletin*, 46(8), 864–885. https://doi.org/10.1134/S1062359019080181
- Zimmer, M. (2001). Why do male terrestrial isopods (Isopoda: Oniscidea) not guard females? *Animal Behaviour*, 62(4), 815–821. https://doi.org/10.1006/anbe.2001.1845
- Zimmer, M. (2002). Nutrition in terrestrial isopods (Isopoda: Oniscidea): An evolutionaryecological approach. *Biological Reviews*, 77, 455–493. https://doi.org/10.1017/S1464793102005912
- Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svanteson, S., Wengtrom, N., Zizka, V., & Antonelli, A. (2019). *CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases*. Methods in Ecology and Evolution, 10(5):744-751. https://doi.org/0.1111/2041-210X.13152
# Appendices

### Appendix A – Chapter 3

**Table A1.** A list of the most prolific authors (who described each more than 100 isopod species – as first authors). Together they described 4,619 species, approximately 43% of the total.

|               | Species described |                    |       | Publication | Spacios/            |      |  |
|---------------|-------------------|--------------------|-------|-------------|---------------------|------|--|
| First author  | Total             | Multi-<br>authored | First | Last        | lifetime<br>(years) | year |  |
| Verhoeff      | 421               | 4                  | 1896  | 1967        | 72                  | 6    |  |
| Vandel        | 332               | 0                  | 1924  | 1981        | 58                  | 6    |  |
| Budde-Lund    | 332               | 0                  | 1880  | 1913        | 34                  | 10   |  |
| Bruce, N.L.   | 313               | 35                 | 1978  | 2022        | 45                  | 7    |  |
| Barnard, K.H. | 305               | 0                  | 1914  | 1965        | 52                  | 6    |  |
| Menzies       | 302               | 121                | 1950  | 1983        | 34                  | 9    |  |
| Kensley       | 289               | 102                | 1971  | 2009        | 39                  | 7    |  |
| Nunomura      | 260               | 21                 | 1973  | 2019        | 47                  | 6    |  |
| Richardson    | 250               | 0                  | 1897  | 1913        | 17                  | 15   |  |
| Taiti         | 235               | 229                | 1979  | 2020        | 42                  | 6    |  |
| Poore         | 211               | 129                | 1975  | 2013        | 39                  | 5    |  |
| Arcangeli     | 187               | 0                  | 1911  | 1960        | 50                  | 4    |  |
| Ferrara       | 178               | 156                | 1971  | 1996        | 26                  | 7    |  |
| Kussakin      | 165               | 64                 | 1955  | 2001        | 47                  | 4    |  |
| Dollfus, A.   | 142               | 1                  | 1884  | 1905        | 22                  | 6    |  |
| Birstein      | 137               | 4                  | 1932  | 1972        | 41                  | 3    |  |
| Schmalfuss    | 127               | 46                 | 1972  | 2016        | 45                  | 3    |  |
| Hansen        | 115               | 0                  | 1890  | 1916        | 27                  | 4    |  |
| Nierstrasz    | 112               | 90                 | 1915  | 1941        | 27                  | 4    |  |
| Müller, H.G.  | 105               | 3                  | 1988  | 1995        | 8                   | 13   |  |
| Schultz       | 101               | 5                  | 1963  | 1995        | 33                  | 3    |  |



Figure A1. The number of first authors per year (solid line) and the average number of species described per author per year (dotted line) for the various subgroups. (a) marine, (b) freshwater, (c) terrestrial, (d) parasitic and (e) subterranean. The lines are 5-year moving averages. Note that the scales vary.



Figure A2. Linear regressions of authors' publication lifetimes against the year of the first publication (start of their publication lifetime). (a) for all first authors, (b) one-time authors excluded, (c) for all first authors, excluding the ones, who started publishing after 2010, (d) one-time authors and first authors, who started publishing after 2010, excluded.



Figure A3. Linear regressions of publication lifetime against the average yearly number of species described by each author. (a) all first authors, (b) Vanhöffen, who described all 67 species in a single year, excluded.



Figure A4. The percentage of contributions (a) by one-time authors, who described only a single species and (b) for multi-authored descriptions over time.

**Table A2.** A selection of 21 studies (selected by chance) which found and reported undescribed isopod species. Some studies described a few of the collected unnamed species right away, so the numbers given in the table below are the number of species that were left undescribed. Note that those species were undescribed at the time of publication of the respective study. It has not been checked whether any of the reported species have been formally described since and might now already be part of our dataset of globally described isopod species.

| Study                                          | Location                                                   | # collected but undescribed<br>species |
|------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| Brandt et al., 2007                            | Southern Ocean, deep sea                                   | 585                                    |
| Poore et al., 1994                             | South-eastern Australian continental slope                 | 318                                    |
| Poore et al., 2015                             | Western and south-western<br>Australian continental margin | 118                                    |
| Wilson, 2008                                   | Gulf of Mexico, deep sea                                   | 60                                     |
| Jennings et al., 2020 (genetic study)          | Kuril-Kamchatka trench, deep sea                           | 34                                     |
| Guzik et al., 2019 (genetic study)             | Australia, terrestrial                                     | 26                                     |
| Golovan, 2018                                  | Kuril Basin, deep sea                                      | 19                                     |
| Kavanagh, 2009                                 | Ireland, deep sea                                          | 15                                     |
| Wetzer et al., 1997                            | Santa Maria Basin and Western<br>Santa Barbara Channel     | 14                                     |
| del Carmen Espinosa-Pérez &<br>Hendrickx, 2001 | Eastern Tropical Pacific                                   | 8                                      |
| Schnurr et al., 2018 (genetic study)           | Transition zone btw. North<br>Atlantic and Nordic Seas     | 7                                      |

 Table A2. Continued

| Study                               | Location                                 | # collected but undescribed<br>species |
|-------------------------------------|------------------------------------------|----------------------------------------|
| Bunkley-Williams et al., 2006       | Venezuela, marine                        | Potentially up to 4                    |
| Graening & Rogers, 2013             | California, terrestrial                  | Potentially up to 4                    |
| Bluhm et al., 2005                  | Canada Basin, deep sea                   | 3                                      |
| Boyko & Williams, 2004              | Bahamas, shallow marine<br>waters        | 2                                      |
| Merrin, 2006                        | Tasman Sea                               | 2                                      |
| Magrini et al., 2010                | Brazil, terrestrial                      | 1 or 2                                 |
| Held, 2003 (genetic study)          | Antarctic, shallow marine<br>waters      | 1                                      |
| Brockerhoff, 2004                   | New Zealand, intertidal                  | 1                                      |
| Xavier et al., 2012 (genetic study) | North-east Atlantic and<br>Mediterranean | 1                                      |
| Golovan & Malyutina, 2022           | Bering Sea, deep sea                     | 1                                      |

### **References listed in Table A2**

- Bluhm, B. A., MacDonald, I. R., Debenham, C., & Iken, K. (2005). Macro- and megabenthic communities in the high Arctic Canada Basin: Initial findings. *Polar Biology*, 28(3), 218–231.
- Boyko, C. B., & Williams, J. D. (2004). New records of marine isopods (Crustacea: Peracarida) from the Bahamas, with descriptions of two new species of epicarideans. *Bulletin of Marine Science*, *74*(2), 353–383.
- Brandt, A., Brix, S., Brökeland, W., Choudhury, M., Kaiser, S., & Malyutina, M. (2007).
  Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean Results from the ANDEEP I–III expeditions. *Deep Sea Research Part II: Topical Studies in Oceanography*, 54(16–17), 1760–1775. https://doi.org/10.1016/J.DSR2.2007.07.015
- Brockerhoff, A. M. (2004). Occurrence of the internal parasite Portunion sp. (Isopoda: Entoniscidae) and its effect on reproduction in intertidal crabs (Decapoda: Grapsidae) from New Zealand. *Journal of Parasitology*, *90*(6), 1338–1344.
- Bunkley-Williams, L., Williams, E. H., & Bashirullah, A. K. (2006). Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii). *Revista de Biología Tropical*, *54*, 175–188.

- del Carmen Espinosa-Pérez, M., & Hendrickx, M. E. (2001). Checklist of isopods (Crustacea: Peracarida: Isopoda) from the eastern tropical Pacific. *Belgian Journal of Zoology*, *131*(1), 43–56.
- Golovan, O. A. (2018). Desmosomatidae (Isopoda: Asellota) from the Kuril Basin of the Sea of Okhotsk: First data on diversity with the description of the dominant species
   Mirabilicoxa biramosa sp. nov. *Deep Sea Research Part II: Topical Studies in Oceanography*, 154, 292–307. https://doi.org/10.1016/J.DSR2.2018.01.008
- Golovan, O. A., & Malyutina, M. (2022). The first record of the family Paramunnidae (Isopoda: Asellota) from the bathyal of the Bering Sea with descriptions of two new species of Munnogonium. *Deep Sea Research Part II: Topical Studies in Oceanography*, 105095.
- Graening, G., & Rogers, D. C. (2013). Checklist of inland aquatic Isopoda (Crustacea: Malacostraca) of California. *California Fish and Game*, 99(4), 176–192.
- Guzik, M. T., Stringer, D. N., Murphy, N. P., Cooper, S. J. B., Taiti, S., King, R. A., Humphreys, W. F., & Austin, A. D. (2019). Molecular phylogenetic analysis of Australian arid-zone oniscidean isopods (Crustacea: Haloniscus) reveals strong regional endemicity and new putative species. *Invertebrate Systematics*, 33(3), 556–574. https://doi.org/10.1071/IS18070
- Held, C. (2003). Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In *Antarctic Biology in a Global Context*. Backhuys Publishers.
- Jennings, R. M., Golovan, O. A., & Brix, S. (2020). Integrative species delimitation of desmosomatid and nannoniscid isopods from the Kuril-Kamchatka trench, with description of a hadal species. *Progress in Oceanography*, 182, 102236. https://doi.org/10.1016/J.POCEAN.2019.102236
- Kavanagh, F. A. (2009). A catalogue of the Asellota (Crustacea: Isopoda) off the west coast of Ireland and Britain, from 100–5000 m. *Bulletin of the Irish Biogeographical Society*, *33*, 14–75.
- Magrini, M. J., Araujo, P. B., & Uehara-Prado, M. (2010). Crustacea, Isopoda, Oniscidea Latreille, 1802: New continent record and distribution extension in Brazil. *Check List*, 6(2), 217–219.
- Merrin, K. L. (2006). The first record of the crustacean isopod genus Pseudarachna Sars, 1897 (Isopoda: Asellota: Munnopsidae) from the Southern Hemisphere, with description of a new species from New Zealand. *Zootaxa*, 1370, 59–68. https://doi.org/10.11646/zootaxa.1370.1.5
- Poore, G. C. B., Avery, L., Błażewicz-Paszkowycz, M., Browne, J., Bruce, N. L., Gerken, S., Glasby, C. J., Greaves, E., McCallum, A. W., Staples, D., Syme, A., Taylor, J., Walker-Smith, G., Warne, M., Watson, C., Williams, A., Wilson, R. S., & Woolley, S. (2015). Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. *Marine Biodiversity*, 45(2), 271–286. https://doi.org/10.1007/S12526-014-0255-Y/FIGURES/5
- Poore, G. C. B., Just, J., & Cohen, B. F. (1994). Composition and diversity of Crustacea Isopoda of the southeastern Australian continental slope. *Deep Sea Research Part I: Oceanographic Research Papers*, 41(4), 677–693. https://doi.org/10.1016/0967-0637(94)90049-3

- Schnurr, S., Osborn, K. J., Malyutina, M., Jennings, R. M., Brix, S., Driskell, A., Svavarsson, J., & Martinez Arbizu, P. (2018). Hidden diversity in two species complexes of munnopsid isopods (Crustacea) at the transition between the northernmost North Atlantic and the Nordic Seas. *Marine Biodiversity*, 48(2), 813–843. https://doi.org/10.1007/S12526-018-0877-6
- Wetzer, R., Brusca, R. C., & Wilson, G. D. F. (1997). The Crustacea Part 2 The Isopoda, Cumacea and Tanaidacea. In J. A. Blake & P. H. Scott (Eds.), *Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel* (Vol. 11). Santa Barbara Museum of Natural History.
- Wilson, G. D. F. (2008). Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. *Deep Sea Research Part II: Topical Studies in Oceanography*, 55(24–26), 2634–2649.
- Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., & Branco, M. (2012).
   Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). *Zoologica Scripta*, 41(4), 386–399.

## Appendix B – Chapter 4

**Table B1.** List of datasets and associated digital object identifiers (DOI) used in this study. Data were downloaded from the Global Biodiversity Information Facility (GBIF) and the Ocean Biodiversity Information System (OBIS). The dataset names are listed as provided by the metadata from the GBIF and OBIS data downloads and are ranked by the number of records included in this study (for each source separately).

| Dataset name                                                                                                                                                                                                                     | DOI             | Source | # Records |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-----------|
| iNaturalist Research-grade Observations                                                                                                                                                                                          | 10.15468/ab3s5x | GBIF   | 63,931    |
| Isopoda (Interim dataset)                                                                                                                                                                                                        | 10.15468/kyu8ob | GBIF   | 51,724    |
| Dutch Foundation for Applied Water Research<br>(STOWA) - Limnodata Neerlandica                                                                                                                                                   | 10.15468/ennulm | GBIF   | 15,162    |
| NMNH Extant Specimen Records (USNM, US)                                                                                                                                                                                          | 10.15468/hnhrg3 | GBIF   | 10,431    |
| Environmental Monitoring database (MOD) DNV                                                                                                                                                                                      | 10.15468/q8qykg | GBIF   | 9,669     |
| Estonian Naturalists' Society                                                                                                                                                                                                    | 10.15468/bmk3ab | GBIF   | 7,878     |
| Artportalen (Swedish Species Observation System)                                                                                                                                                                                 | 10.15468/kllkyl | GBIF   | 7,724     |
| CardObs: Observations naturalistes issues de l'outil<br>de saisie et gestion CardObs mis en place par le<br>Service du Patrimoine Naturel (MNHN)/UMS                                                                             | 10.15468/8myaks | GBIF   | 7,678     |
| PatriNat (OFB - CNRS - MNHN) - Données<br>naturalistes de Franck NOEL                                                                                                                                                            | 10.15460/0      | CDIE   | ( 100     |
| Azorean Biodiversity Portal                                                                                                                                                                                                      | 10.15468/j01ceo | GBIF   | 6,108     |
| Inventory of the terrestrial isopods in Belgium (2011-2020)                                                                                                                                                                      | 10.15468/mw9c66 | GBIF   | 6,078     |
| The Danish Environmental Portal, species and<br>habitats-database "Danmarks Miljøportals<br>Naturdatabase"                                                                                                                       | 10.15468/ku2f82 | GBIF   | 4,673     |
| Collection Crustacea SMF                                                                                                                                                                                                         | 10.15468/mc7ysi | GBIF   | 4,229     |
| SOUTHERN OCEAN ISOPODA                                                                                                                                                                                                           | 10.15468/laitod | GBIF   | 3,413     |
| Limnodata                                                                                                                                                                                                                        | 10.15468/3bqngy | GBIF   | 2,953     |
| Museums Victoria provider for OZCAM                                                                                                                                                                                              | 10.15468/lp1ctu | GBIF   | 2,936     |
| Inventaire des Crustacés Isopodes terrestres de<br>France métropolitaine - Inventaire des Crustacés<br>Isopodes de France métropolitaine                                                                                         | 10.15468/xqesji | GBIF   | 2,776     |
| Verified marine records from Indicia-based surveys                                                                                                                                                                               | 10.15468/yfyeyg | GBIF   | 2,619     |
| Welsh Invertebrate Database (WID)                                                                                                                                                                                                | 10.15468/bv8fcj | GBIF   | 2,516     |
| CardObs: Observations naturalistes issues de l'outil<br>de saisie et gestion CardObs mis en place par le<br>Service du Patrimoine Naturel (MNHN)/UMS<br>PatriNat (OFB - CNRS - MNHN) - Données<br>naturalistes d'Emmanuel SECHET | 10.15468/v1y0bl | GBIF   | 2,504     |
| Marine Nature Conservation Review (MNCR) and<br>associated benthic marine data held and managed<br>by JNCC                                                                                                                       | 10.15468/kcx3ca | GBIF   | 2,372     |
| Biofokus                                                                                                                                                                                                                         | 10.15468/jxbhqx | GBIF   | 2,371     |
| National Benthic Inventory                                                                                                                                                                                                       | 10.15468/1dg6fe | GBIF   | 2,213     |

| Dataset name                                            | DOI                  | Source | # Records   |
|---------------------------------------------------------|----------------------|--------|-------------|
| Suffolk Biodiversity Information Service (SBIS)         | 10.15468/ab4vwo      | GBIF   | 2,103       |
| Dataset                                                 |                      | 0211   | _,100       |
| CardObs: Observations naturalistes issues de l'outil    |                      |        |             |
| de saisie et gestion CardObs mis en place par le        |                      | ~      | • • • • •   |
| Service du Patrimoine Naturel (MNHN)/UMS                | 10.15468/ba63zj      | GBIF   | 2,100       |
| PatriNat (OFB - CNRS - MNHN) - Données                  |                      |        |             |
| naturalistes de CERCOPE (Jean-Louis PRATZ)              |                      |        |             |
| Leicestershire and Rutland Environmental Records        | 10.15468/res3cx      | GBIF   | 2.007       |
| Centre records pre 2000                                 |                      |        | ,           |
| Australian Museum provider for OZCAM                    | 10.15468/e7susi      | GBIF   | 1,958       |
| International Barcode of Life project (iBOL)            | 10.15468/inygc6      | GBIF   | 1,912       |
| (Table A-2.1 to A-2.7) Abundance of macrobenthos        | 10.1594/pangaea.7349 | GBIF   | 1.824       |
| in surface sediments in the Arctic Ocean                | 52                   | 0211   | 1,021       |
| Observation.org, Nature data from around the            | 10.15468/5nilie      | GBIF   | 1.777       |
| World                                                   |                      | 0211   | -,,,,,      |
| naturgucker                                             | 10.15468/uc1apo      | GBIF   | 1,545       |
| Canadian Museum of Nature Crustacea Collection          | 10.15468/thiry8      | GBIF   | 1,514       |
| imr_mareano_rpsledge                                    | 10.15468/gecvl4      | GBIF   | 1,510       |
| Norwegian Biodiversity Information Centre -             | 10.15468/tm56sc      | GBIF   | 1,494       |
| Other datasets                                          | 10.15460/ 6.1        | CDIE   | 1.41.6      |
| National Trust Species Records                          | 10.15468/opc6g1      | GBIF   | 1,416       |
| FBIP:IZIKO-UC1:Historical Invertebrates (1930-<br>1980) | 10.15468/fk7bhk      | GBIF   | 1,372       |
| Norwegian Species Observation Service                   | 10.15468/zjbzel      | GBIF   | 1,342       |
| Ifremer BIOCEAN database (Deep Sea Benthic              |                      | CDIE   | 1 2 2 2     |
| Fauna)                                                  | 10.15468/yxphxa      | GBIF   | 1,292       |
| mabik_cr                                                | 10.15468/gmn4sd      | GBIF   | 1,231       |
| Natural England Marine Monitoring surveys               | 10.15468/ysikg5      | GBIF   | 1,145       |
| BRERC species records from all years at full            |                      |        |             |
| resolution excluding Notable Species within the         | 10.15468/h1ln5p      | GBIF   | 1,083       |
| last 10 years                                           |                      |        |             |
| Queensland Museum provider for OZCAM                    | 10.15468/lotsye      | GBIF   | 1,081       |
| Monitoring data from the federal state North            | 10 12149/1-6-01      | CDIE   | 1.057       |
| Rhine-Westphalia (Germany)                              | 10.15146/01091       | UDIF   | 1,037       |
| CLICNAT Base de données naturaliste picarde             | 10.15468/mm o dw 6   | CDIE   | 1.054       |
| gérée par Picardie Nature                               | 10.13408/pilloux0    | UDIF   | 1,034       |
| Marine benthic dataset (version 1) commissioned         | 10 15469/4 arrester  | CDIE   | 059         |
| by UKOOA                                                | 10.13408/iqmriv      | GBIF   | 938         |
| Biologiezentrum Linz                                    | 10.15468/ynjblx      | GBIF   | 935         |
| Données d'occurrences Espèces issues de                 | 10 15/69/ilrahlra    | CDIE   | ۰0 <i>7</i> |
| l'inventaire des ZNIEFF                                 | 10.13400/1KSNKC      | UDIF   | 89/         |
| Crustacea in surface sediments off Sylt collected       | 10.1594/pangaea.7456 | GRIF   | 861         |
| during HEINCKE cruise HE293                             | 82                   | ODII'  | 001         |

| Dataset name                                       | DOI                  | Source     | # Records  |
|----------------------------------------------------|----------------------|------------|------------|
| Bibliographie de la faune, la flore et la fonge de |                      |            |            |
| France métropolitaine et outre-mer - Bulletin du   | 10.15468/d6eace      | GBIF       | 837        |
| Muséum d'Histoire Naturelle [1895-]                |                      |            |            |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 924        |
| during HEINCKE cruise HE206                        | 71                   | GBIF       | 834        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 021        |
| during HEINCKE cruise HE275                        | 80                   | GBIF       | 831        |
| INSDC Sequences                                    | 10.15468/sbmztx      | GBIF       | 830        |
| Collection Crustacea - ZMB                         | 10.15468/fwghff      | GBIF       | 820        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 916        |
| during HEINCKE cruise HE272                        | 79                   | GBIF       | 816        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 916        |
| during HEINCKE cruise HE278                        | 81                   | GBIF       | 810        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 012        |
| during HEINCKE cruise HE241                        | 75                   | UDIF       | 815        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | 012        |
| during HEINCKE cruise HE255                        | 76                   | UDIF       | 815        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | CDIE       | <b>813</b> |
| during HEINCKE cruise HE258                        | 77                   | ODIF       | 015        |
| All taxa records for Leicestershire and Rutland    | 10.15468/i46are      | GBIF       | 789        |
| Crustacea in surface sediments off Sylt collected  | 10.1594/pangaea.7456 | GRIF       | 786        |
| during HEINCKE cruise HE262                        | 78                   | ODII       | 780        |
| DASSH Data Archive Centre - Statutory Surveys      | 10.15468/ytlexw      | GBIF       | 749        |
| (Table 2) Benthic isopod species of the Ross Sea,  |                      |            |            |
| their bathymetry and distribution in the Southern  | 10.15468/5va88s      | GBIF       | 728        |
| Ocean                                              |                      |            |            |
| Monitoring data from the federal state Hesse       | 10.13148/bfe87       | GBIF       | 728        |
| (Germany)                                          | 10.12110,0100,       | ODI        | ,20        |
| imr_mareano_grab                                   | 10.15468/dlaxsw      | GBIF       | 724        |
| Invertebrate Zoology Division, Yale Peabody        | 10.15468/01kr3w      | GBIF       | 715        |
| Museum                                             |                      | <u>ODI</u> | , 10       |
| Department of Agriculture Environment and Rural    |                      |            |            |
| Affairs (DAERA) Marine and Fisheries Division      | 10.15468/zqaqwm      | GBIF       | 704        |
| Marine Survey Data                                 |                      |            |            |
| Museum of Comparative Zoology, Harvard             | 10.15468/p5rupy      | GBIF       | 660        |
| University                                         | F                    |            |            |
| REBENT - Réseau national de surveillance des       | 10.15468/h74fvv      | GBIF       | 632        |
| biocénoses benthiques côtières                     |                      |            |            |
| Species data for Scottish waters held and managed  |                      | ~          |            |
| by Scottish Natural Heritage, derived from benthic | 10.15468/faxvgd      | GBIF       | 624        |
| surveys 1993 to 2018                               |                      | ~ = -      |            |
| NIWA Invertebrate Collection                       | 10.15468/6qgswo      | GBIF       | 620        |

| 617 |
|-----|
|     |
|     |
| 599 |
| 591 |
|     |
| 578 |
|     |
| 576 |
| 536 |
| 550 |
| 531 |
| 551 |
| 508 |
| 502 |
| 202 |
| 491 |
| 487 |
| ,   |
| 443 |
|     |
| 438 |
| 414 |
|     |
|     |
| 411 |
|     |
|     |
| 100 |
| 409 |
| 402 |
| 402 |
| 397 |
| 204 |
| 394 |
| 201 |
| 391 |
|     |
| 383 |
|     |
| 381 |
|     |

| Dataset name                                         | DOI                  | Source    | # Records |
|------------------------------------------------------|----------------------|-----------|-----------|
| The crustaceans collection (IU) of the Muséum        | 10 15468/agyyhd      | GBIF      | 375       |
| national d'Histoire naturelle (MNHN - Paris)         | 10.15400/481010      | ODII      | 515       |
| CAS Invertebrate Zoology (IZ)                        | 10.15468/tiac99      | GBIF      | 371       |
| NHMD Invertebrate Zoology Collection                 | 10.15468/nuz79n      | GBIF      | 368       |
| NINA Vanndata øvrige arter                           | 10.15468/s6zhid      | GBIF      | 358       |
| Argyll Biological Records Dataset                    | 10.15468/ejve6c      | GBIF      | 349       |
| SHARK - Regional monitoring, recipient control       |                      |           |           |
| and monitoring projects of zoobenthos in Sweden      | 10.15468/cesssx      | GBIF      | 343       |
| since 1972                                           |                      |           |           |
| UF Invertebrate Zoology                              | 10.15468/sm6q06      | GBIF      | 331       |
| Royal BC Museum - Invertebrates Collection           | 10.5886/zh7n1e       | GBIF      | 318       |
| Natural History Museum (London) Collection           | 10.5519/0002965      | GBIF      | 316       |
| Specimens                                            |                      | ~         |           |
| Merseyside BioBank (unverified)                      | 10.15468/10u2ld      | GBIF      | 313       |
| Tasmanian Museum and Art Gallery provider for        | 10.15468/ijp8p9      | GBIF      | 301       |
| OZCAM                                                | 51 1                 |           |           |
| Monitoring data from the federal state Bavaria       | 10.13148/bfe88       | GBIF      | 297       |
| (Germany)                                            |                      |           |           |
| Gloucestershire Historic Wildlife Sightings prior to | 10.15468/dgf5es      | GBIF      | 292       |
| Ist Jan 2000                                         |                      |           |           |
| Marine Offshore Seabed Survey data held by           | 10.15468/skvdld      | GBIF      | 282       |
| Déterminations et observations du Forum "Le          |                      |           |           |
| Monde des Insectes" (I MDI) - Données                |                      |           |           |
| nhotographiques validées de la galerie du forum      | 10.15468/2vjhg8      | GBIF      | 269       |
| "Le Monde des Insectes"                              |                      |           |           |
| Porcupine Marine Natural History Society Dataset     | 10.15468/pcmg9a      | GBIF      | 269       |
| NRW Regional Data: South East Wales Non-             | 10110 100/peing/q    | 0DH       | 209       |
| sensitive species                                    | 10.15468/g7xxs8      | GBIF      | 268       |
| Coleção de Crustacea do Museu Nacional (MNRJ -       |                      | ~ ~ ~ ~ ~ |           |
| CARCINO)                                             | 10.15468/zv0lvr      | GBIF      | 263       |
| Lund Museum of Zoology (MZLU)                        | 10.15468/mw39rb      | GBIF      | 260       |
| Monitoring data from the federal state Saxony-       | 10 121 40/1 6 04     | CDIE      | 255       |
| Anhalt (Germany)                                     | 10.13148/bie94       | GBIF      | 255       |
| Leicestershire and Rutland Environmental Records     | 10.15469/0.002.02.02 | CDIE      | 249       |
| Centre records 2010-2014                             | 10.13408/919283      | GBIF      | 248       |
| Manscape                                             | 10.13148/6hacwh      | GBIF      | 248       |
| Northern Ireland Environment Agency (NIEA)           | 10 15468/gefbab      | CDIE      | 244       |
| Collated Species Records                             | 10.13408/ge10q0      | ODII      | 244       |
| SIO Benthic Invertebrate Collection                  | 10.15468/4w9oc7      | GBIF      | 244       |
| Adenda a la colección de referencia de               |                      |           |           |
| invertebrados de la Estación Mazatlán, UNAM y        | 10 15468/wzmans      | GBIF      | 237       |
| análisis de la fauna de crustáceos isópodos del      | 10.15 100/ wZingns   |           | 231       |
| Pacífico mexicano, julio 1996-julio 1997             |                      |           |           |

| Dataset name                                         | DOI                 | Source | # Records |
|------------------------------------------------------|---------------------|--------|-----------|
| Estonian University of Life Sciences Institute of    |                     |        |           |
| Agricultural and Environmental Sciences              | 10.15468/qn6223     | GBIF   | 235       |
| Entomological Collection                             |                     |        |           |
| Monitoring data from the federal state Saxony        | $10.12149/hf_{2}02$ | CDIE   | 224       |
| (Germany)                                            | 10.13140/01093      | UDIF   | 234       |
| La Planète revisitée - Corse 2019-2022 - La          |                     |        |           |
| Planète Revisitée Corse 2020: prospections           | 10.15468/bwhm6a     | GBIF   | 232       |
| Agriate, Saint-Florent et Cap Corse                  |                     |        |           |
| DEMNA-DNE: Occurrences of benthic                    |                     |        |           |
| macroinvertebrates in running waters of Wallonia,    | 10.15468/nnzqm5     | GBIF   | 229       |
| Belgium                                              |                     |        |           |
| Programme CARTHAM: Inventaire biologique             | 10 15468/3isrct     | GBIF   | 226       |
| dans le cadre de Natura 2000 en Mer                  | 10.13400/515100     | ODII   | 220       |
| CardObs: Observations naturalistes issues de l'outil |                     |        |           |
| de saisie et gestion CardObs mis en place par le     |                     |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/r22czs     | GBIF   | 212       |
| PatriNat (OFB - CNRS - MNHN) - Données               |                     |        |           |
| naturalistes de DESMOTS Didier                       |                     |        |           |
| TWIC Biodiversity Field Trip Data (1995-present)     | 10.15468/ljc0ke     | GBIF   | 210       |
| Collections and observation data National Museum     | 10.15468/s2iu7d     | GBIF   | 208       |
| of Natural History Luxembourg                        |                     |        |           |
| SHARK - National zoobenthos monitoring in            | 10.15468/fggzdr     | GBIF   | 208       |
| Sweden since 1971                                    |                     |        |           |
| Northern Territory Museum and Art Gallery            | 10.15468/giro3a     | GBIF   | 207       |
| provider for OZCAM                                   | 10.154(0/:          | CDIE   | 206       |
| Collection Crustacea - SNSD                          | 10.15468/zjvt2g     | GBIF   | 206       |
| Gwaii Haanas Invertebrates (OBIS Canada)             | 10.15468/906jbj     | GBIF   | 205       |
| LERN Records                                         | 10.15468/esxc9a     | GBIF   | 201       |
| DASSH Data Archive Centre Academic Surveys           | 10.15468/cwqszy     | GBIF   | 199       |
| Monitoring data from the federal state Rhineland-    | 10.13148/bfe92      | GBIF   | 199       |
| Palatinate (Germany)                                 |                     |        |           |
| Museo Argentino de Ciencias Naturales                | 10.15460/ 626       | CDIE   | 100       |
| "Bernardino Rivadavia" (MACN). Invertebrates         | 10.15468/uuz636     | GBIF   | 196       |
| National Collection (MACNIn)                         |                     |        |           |
| NRW Regional Data: all taxa (excluding sensitive     | 10.15468/q3d1hl     | GBIF   | 196       |
| species), west wales                                 | 10.15469/a2fab4     | CDIE   | 101       |
| ZFMK Crustacea collection                            | 10.15468/\$31800    | GBIF   | 191       |
| ISIS Test Data                                       | 10.15468/epw9ym     | GBIF   | 189       |
| Alien macroinvertebrates in Flanders, Belgium        | 10.15468/xjtfoo     | GBIF   | 183       |
| Marine Intertidal Phase 1 Species Dataset from the   | 10 15160/1-fl-7-    | CDIE   | 170       |
| Countryside Council for Wales 1996-2005              | 10.13400/KII0/M     | UDIF   | 1/9       |
| Auckland Museum NZ Marine Collection                 | 10.15468/plyefd     | GBIF   | 174       |
| DFO Quebec Region MLI museum collection              | 10.15468/tvrkn7     | GBIF   | 164       |

| Dataset name                                          | DOI                  | Source | # Records |
|-------------------------------------------------------|----------------------|--------|-----------|
| Royal Belgian Institute of Natural Sciences           | 10.15468/vtppuv      | GRIF   | 163       |
| Crustacea collection                                  | 10.15408/xippux      | ODI    | 105       |
| Earth Guardians Weekly Feed                           | 10.15468/slqqt8      | GBIF   | 160       |
| CardObs: Observations naturalistes issues de l'outil  |                      |        |           |
| de saisie et gestion CardObs mis en place par le      |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/aylit9      | GBIF   | 157       |
| PatriNat (OFB - CNRS - MNHN) - Données                |                      |        |           |
| naturalistes de Monsieur LEFEBVRE François            |                      |        |           |
| Bob Merritt invertebrate records for VCs 72-75        | 10.15468/a35rnz      | GBIF   | 156       |
| Invertebrate records from sites that are mainly       | 10 15468/aaxymc      | GBIF   | 151       |
| across Scotland                                       | 10.13+00/ dax vinc   | ODIT   | 151       |
| NMNH Material Samples (USNM)                          | 10.15468/jb9tdf      | GBIF   | 149       |
| Alterra (NL) - Comparison of entomofauna in four      | 10.15468/mkoaah      | GRIF   | 148       |
| different habitats                                    | 10.15400/111K04411   | ODIT   | 140       |
| Natural History Museum Rotterdam - Specimens          | 10.15468/kwqaay      | GBIF   | 147       |
| Abundance of benthic infauna in surface sediments     | 10 1594/nangaea 7567 |        |           |
| from the North Sea sampled during two Michael         | 85                   | GBIF   | 144       |
| Sars cruises in 2000                                  | 00                   |        |           |
| The Environmental Sample Collection of the            |                      |        |           |
| Arthropoda Varia Section at the Zoologische           | 10.15468/biecak      | GBIF   | 144       |
| Staatssammlung München                                |                      |        |           |
| Lajitietokeskus/FinBIF - Notebook, general            | 10.15468/4956tp      | GBIF   | 141       |
| observations                                          | 10.12 100/ 15200     | ODI    | 111       |
| South Australian Museum Adelaide provider for         | 10.15468/wz4rrh      | GBIF   | 141       |
| OZCAM                                                 |                      | 0DII   |           |
| Queen Victoria Museum Art Gallery provider for        | 10.15468/tedfxn      | GBIF   | 137       |
| OZCAM                                                 |                      |        |           |
| Yorkshire Wildlife Trust - Non-sensitive records      | 10.15468/2razk5      | GBIF   | 136       |
| from all taxonomic groups                             |                      |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                      |        |           |
| de saisie et gestion CardObs mis en place par le      |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/izrly0      | GBIF   | 134       |
| PatriNat (OFB - CNRS - MNHN) - Données                |                      |        |           |
| naturalistes de Pierre FRAPA                          |                      |        |           |
| Biological data from the Soviet Antarctic             | 10.15468/vr2tlh      | GBIF   | 133       |
| Expedition (1955-1958)                                |                      |        |           |
| Arctic Ocean Diversity                                | 10.15468/xrzanm      | GBIF   | 131       |
| Observations of three Idotea species (I. balthica, I. |                      |        |           |
| chelipes and I. granulosa) in Northern Europe,        | 10.14284/7           | GBIF   | 130       |
| including the Baltic Sea - data derived from          |                      |        |           |
| museum collections                                    |                      |        |           |
| Visiolittoral: conservatoire du littoral -            | 10.15468/e8x2w5      | GBIF   | 129       |
| Visiolittoral: surveillance de sites du littoral      |                      |        |           |

| Dataset name                                         | DOI                  | Source | # Records |
|------------------------------------------------------|----------------------|--------|-----------|
| Abundance of benthic infauna in surface sediments    | 10 1504/2020 7567    |        |           |
| from the North Sea sampled during cruise             | 10.1594/pangaea./56/ | GBIF   | 128       |
| Cirolana00/5                                         | 82                   |        |           |
| Seasearch Marine Surveys in England                  | 10.15468/kywx6m      | GBIF   | 128       |
| Miscellaneous records held by BIS                    | 10.15468/mo7peo      | GBIF   | 126       |
| SER Species-based Surveys                            | 10.15468/q8qen3      | GBIF   | 126       |
| Tasmanian Natural Values Atlas                       | 10.15468/rtnb4m      | GBIF   | 125       |
| Monitoring data from the federal state               | $10.12149/hf_{0}00$  | CDIE   | 124       |
| Mecklenburg-Western Pomerania (Germany)              | 10.15146/01090       | UDIF   | 124       |
| Shropshire Ecological Data Network database          | 10.15468/5v5pvk      | GBIF   | 124       |
| Leicestershire and Rutland Environmental Records     | 10.15468/dues02      | CDIE   | 122       |
| Centre records 2015-2019                             | 10.15400/dues95      | UDIF   | 125       |
| Marine biological observation data from coastal      | 10.15469/nzngon      | CDIE   | 122       |
| and offshore surveys around New Zealand              | 10.13408/pzpgop      | UDIF   | 125       |
| n_niek_2021                                          | 10.15468/d7f5vk      | GBIF   | 122       |
| Abundance of megabenthic species in trawl catches    | 10 1504/202020 8157  |        |           |
| per station in addition to table 2 during            | 10.1394/pangaea.813/ | GBIF   | 120       |
| POLARSTERN cruise ARK-VIII/2 (EPOS)                  | 50                   |        |           |
| Natural Resources Wales Regional Data: Mid-          | 10 15468/whi6d7      | GRIF   | 120       |
| Wales                                                | 10.15408/ wiijou /   | ODII   | 120       |
| RBINS DaRWIN                                         | 10.15468/qxy4mc      | GBIF   | 119       |
| Commissioned surveys and staff surveys and           |                      |        |           |
| reports for Scottish Wildlife Trust reserves -       | 10.15468/a6snhl      | GBIF   | 117       |
| Verified data                                        |                      |        |           |
| Formación de una base de datos de la biodiversidad   | 10 15468/t9mitt      | GRIF   | 117       |
| de fauna marina y costera en el Golfo de California  | 10.15400/191111      | ODII   | 117       |
| Marine sites, habitats and species data collected    | 10 15468/nwlt7a      | GBIF   | 116       |
| during the BioMar survey of Ireland.                 | 10.15 100/11/01/14   | ODI    | 110       |
| Centre for Biodiversity Genomics - Canadian          | 10 15468/mbwnw9      | GBIF   | 113       |
| Specimens                                            | 10.12 100/110 010/   | ODI    |           |
| Collection Crustacea - ZIM Hamburg                   | 10.15468/zxrapv      | GBIF   | 113       |
| Dr Mary Gillham Archive Project                      | 10.15468/ajv47f      | GBIF   | 113       |
| Species recordings from the Danish National portal   | 10.15468/a3vv4u      | GBIF   | 112       |
| Arter.dk                                             | 10110 100/ 4099 14   | ODI    |           |
| UAM Invertebrate Collection (Arctos)                 | 10.15468/wrvy1y      | GBIF   | 112       |
| Bernice P. Bishop Museum                             | 10.15468/s6ctus      | GBIF   | 107       |
| Marine Invertebrata specimen database of Osaka       | 10 15468/zhubok      | GBIF   | 105       |
| Museum of Natutal History                            | 10112 100/ Zhuogh    | ODI    | 100       |
| CardObs: Observations naturalistes issues de l'outil |                      |        |           |
| de saisie et gestion CardObs mis en place par le     |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/fgzzs7      | GBIF   | 104       |
| PatriNat (OFB - CNRS - MNHN) - Données               |                      |        |           |
| naturalistes de Monsieur BECHEAU Félix               |                      |        |           |
| Biodiversity Research and Teaching Collections -     | 10.15468/dfrwoh      | GBIF   | 103       |
| TCWC Marine Invertebrates                            |                      |        | 105       |

| Dataset name                                          | DOI                   | Source | # Records |
|-------------------------------------------------------|-----------------------|--------|-----------|
| A glimpse into a remarkable unknown diversity of      |                       |        |           |
| oniscideans along the Caribbean coasts revealed on    | 10.15468/78vddj       | GBIF   | 102       |
| a tiny island                                         |                       |        |           |
| Ireland's BioBlitz                                    | 10.15468/aiiz3z       | GBIF   | 102       |
| Naturalis Biodiversity Center (NL) - Crustacea        | 10.15468/vjoltu       | GBIF   | 102       |
| Structures and Nutrition Requirements of              |                       |        |           |
| Macrozoobenthic Communities in the area of the        | 10.15468/rz66mz       | GBIF   | 99        |
| Lomonossov Ridge, 1995-1998                           |                       |        |           |
| Intertidal Biodiversity along the Portuguese coast    | 10.15468/mba5n2       | CDIE   | 00        |
| (2001-2002)                                           | 10.13408/110g5p5      | ODIF   | 90        |
| Abundance of benthic infauna in surface sediments     | 10 1504/papagaga 7567 |        |           |
| from the North Sea sampled during HEINCKE             | 10.1394/pangaea.7307  | GBIF   | 97        |
| cruise HE133                                          | 00                    |        |           |
| Scottish river macro-invertebrate records from        | 10.15469/192tyb       | CDIE   | 07        |
| 2007 collected by SEPA                                | 10.13408/182100       | ODIF   | 97        |
| Bringing Reedbeds to Life Invertebrate Survey of      | 10.15468/010amh       | GRIF   | 0/        |
| three key reedbed sites in England in 2009, 2010      | 10.13400/919amm       | ODII   | 94        |
| Kent Wildlife Trust Shoresearch Intertidal Survey     | 10 15468/2000000      | CDIE   | 02        |
| 2004 onwards                                          | 10.13406/Zyxxue       | UDII   | 92        |
| Programme d'acquisition et de valorisation de         |                       |        |           |
| données naturalistes BioObs - Observations            | 10.15468/ldch7a       | GBIF   | 92        |
| naturalistes des Amis de BioObs.                      |                       |        |           |
| 1778-1998 Ivor Rees North Wales Marine Fauna          | 10.17031/35prlf       | GBIF   | 91        |
| Ad-hoc sightings shore and ship-based surveys         | 10.17051755pm         | ODII   | 71        |
| Invertebrados del Parque Nacional Arrecife Puerto     | 10 15468/gbg82g       | GBIF   | 86        |
| Morelos                                               | 10.15 100/ 505024     | ODI    | 00        |
| CEDaR Online Recording                                | 10.15468/ke4kw8       | GBIF   | 84        |
| Miscellaneous records held on the Cofnod database     | 10.15468/hcgqsi       | GBIF   | 84        |
| Riverfly Census - Aquatic invertebrate species        |                       |        |           |
| occurrence, for the calculation of pressure           | 10 15468/dz1avi       | GBIF   | 84        |
| biometric scores in English and Welsh rivers          | 10.15 100/02141       | ODII   | 01        |
| covering the period 2015 - 2018                       |                       |        |           |
| CLICNAT- Base de données naturaliste picarde -        | 10 15468/jjazaz       | GBIF   | 82        |
| Données de terrain du CPIE des Pays de l'Aisne        | 10.15 100/JJuzuz      |        | 02        |
| Merseyside BioBank Active Naturalists                 | 10 15468/smzvaf       | GBIF   | 81        |
| (unverified)                                          | 10.15 100/5112/91     |        | 01        |
| Species lists for benthic communities of              |                       |        |           |
| Norwegian fjords from environmental surveys           | 10.15468/nycpad       | GBIF   | 80        |
| (data used in Sen et al. Estuarine, Coastal and Shelf | 10.12 100/11/00/44    | ODI    | 00        |
| Science 2022)                                         |                       |        |           |
| Waarnemingen.be - Non-native animal occurrences       |                       |        |           |
| in Flanders and the Brussels Capital Region,          | 10.15468/k2aiak       | GBIF   | 80        |
| Belgium                                               |                       |        |           |

| Dataset name                                          | DOI                  | Source | # Records |
|-------------------------------------------------------|----------------------|--------|-----------|
| Bibliographie de la faune, la flore et la fonge de    |                      |        |           |
| France métropolitaine et outre-mer - Bulletin         | 10.15468/riwjrl      | GBIF   | 79        |
| mensuel de la société linnéenne de Lyon [1932-]       |                      |        |           |
| FBIP:IZIKO-UCT:Historical Survey (1930-1980)          | 10.15468/zmnk0m      | GBIF   | 79        |
| Réserves Naturelles de France (RNF) - RNF -           | 10.15469/2           | CDIE   | 70        |
| Données de l'association Vivarmor Nature              | 10.15468/aqixrm      | GBIF   | /9        |
| University of Amsterdam (NL) – Benthos                | 10.15469/2000        | CDIE   | 70        |
| monitoring of the North Sea research database         | 10.13468/smncop      | GBIF   | /8        |
| BIOMAERL.Maerl Biodiversity.Functional                | 10.25607/01          | CDIE   | 76        |
| Structure And Antropogenic Impacts (1996-1998).       | 10.23607/2p0Vw1      | GBIF   | /0        |
| Rotherham Biological Records Centre - Non-            | 10.15469/d2tufo      | CDIE   | 76        |
| sensitive Records from all taxonomic groups           | 10.13408/031010      | GBIF   | /0        |
| niek_2022                                             | 10.15468/9axxge      | GBIF   | 75        |
| New species and records of terrestrial Isopoda        | 10.3897/zookeys.31.1 | CDIE   | 74        |
| (Crustacea, Oniscidea) from Socotra Island, Yemen     | 40                   | GBIF   | /4        |
| Natural history museum data on Canadian Arctic        | 10 5996/.101         | CDIE   | 72        |
| marine benthos                                        | 10.5886/nb9hje       | GBIF   | /3        |
| Données naturalistes de ROMET Nicolas                 | 10.15468/qtt1ke      | GBIF   | 72        |
| SILENE-FAUNE-PACA -                                   | 10.154(0/2.550-      | CDIE   | 72        |
| Parc_National_de_Port_Cros_2017_12_18                 | 10.15468/oatraz      | GBIF   | 12        |
| Ulster Museum Marine Surveys                          | 10.15468/bj5xdk      | GBIF   | 71        |
| River macroinvertebrate data for 2005 and 2006        | 10.15468/knxcqi      | GBIF   | 70        |
| Computarización de material complementario en la      | *                    |        |           |
| Colección Regional de Invertebrados del Pacífico      | 10 154(9/-15:1 1     | CDIE   | (0        |
| mexicano, Instituto de Ciencias del Mar y             | 10.15468/y15jnd      | GBIF   | 69        |
| Limnología, Unidad Académica Mazatlán, UNAM           |                      |        |           |
| Données Faune Base SIRFF - FNE Centre-Val de          |                      |        |           |
| Loire - Système d'Information Régional sur la         | 10 15469/2 -1        | CDIE   | (0        |
| Faune et la Flore - FNE Centre-Val de Loire -         | 10.15468/pobntk      | GBIF   | 69        |
| Données 2016                                          |                      |        |           |
| Leicestershire and Rutland Environmental Records      | 10.15469/22-f        | CDIE   | 66        |
| Centre records 2000-2009                              | 10.13408/cs2zzi      | GBIF   | 00        |
| Natural History Collections of the Faculty of         | 10.15469/54h = h =   | CDIE   | 66        |
| Biology AMU                                           | 10.15468/54ngbz      | GBIF   | 66        |
| Zoobenthos data from the Southern Beaufort Sea,       | 10.15469/11.         | CDIE   |           |
| 1971-1975                                             | 10.15468/nrviij      | GBIF   | 66        |
| Irish Lagoon Surveys 2016 - 2017                      | 10.15468/2y63zg      | GBIF   | 65        |
| Hypogean macro-Crustacea records                      | 10.15468/jzjzcr      | GBIF   | 64        |
| Invertebrates (except insects), Outer Hebrides        | 10.15468/hpavud      | GBIF   | 63        |
| Terrestrial isopods of the genus Porcellio Latreille, |                      |        |           |
| 1804 (Isopoda; Oniscidea) in Iran, with a             | 10.11646/zootaxa.431 | GBIF   | 63        |
| description of a new species                          | 1.1.9                |        |           |
| Agri-Food and Biosciences Institute Marine            | 10 15469/12          | CDIE   | <u></u>   |
| Surveys                                               | 10.13468/a2mwmv      | GRIL   | 61        |
| IndOBIS, Indian Ocean Node of OBIS                    | 10.15468/tbedgi      | GBIF   | 61        |

| Dataset name                                        | DOI                   | Source | # Records |
|-----------------------------------------------------|-----------------------|--------|-----------|
| The Arthropoda Varia Collection at the              | 10.15468/hrzzrc       | GBIF   | 60        |
| Zoologische Staatssammlung München                  |                       |        |           |
| The First Comprehensive Description of the          | 10.15460/1 0.1        | CDIE   | (0)       |
| Biodiversity and Biogeography of Antarctic and      | 10.15468/doy1ZK       | GBIF   | 60        |
| Sub-Antarctic Intertidal Communities                |                       |        |           |
| microcuenca de Chabihau, Yucatán                    | 10.15468/jnkwlg       | GBIF   | 58        |
| 1915-2016 Department for Environment Food &         |                       |        |           |
| Rural Affairs (Defra), Marine Strategy Framework    | 10.17021/f0ufo2       | CDIE   | 56        |
| Directive (MSFD) Collation of invasive non-         | 10.1/051/10/105       | UDIF   | 50        |
| indigenous species                                  |                       |        |           |
| Abundance of benthic infauna in surface sediments   | 10.1504/mangaaa 7576  |        |           |
| from the North Sea sampled during cruise            | 10.1394/paligaea.7570 | GBIF   | 56        |
| DeHolland1986                                       |                       |        |           |
| Invertebrates (Type Specimens) of the Swedish       | 10 15468/updawy       | CDIE   | 56        |
| Museum of Natural History                           | 10.13408/uaugyw       | UDIF   | 50        |
| Limnic freshwater benthic invertebrates             |                       |        |           |
| biogeographical mapping/inventory NTNU              | 10.15468/k1pumk       | GBIF   | 55        |
| University Museum                                   |                       |        |           |
| NaGISA Project                                      | 10.15468/3gdwj2       | GBIF   | 55        |
| AAD Benthic Sampling Database                       | 10.15468/j075qn       | GBIF   | 54        |
| Inventaire des invertébrés marins benthiques et des |                       |        |           |
| algues de la Guadeloupe: expédition Karubenthos     | 10 15468/zy gyup      | CDIE   | 54        |
| 2012 - Expédition Karubenthos 2012: inventaire      | 10.15406/2xgvvp       | ODI    | 54        |
| des Mollusques et des Crustacés de la Guadeloupe    |                       |        |           |
| Marine Nature Conservation Review (MNCR) and        |                       |        |           |
| associated benthic marine data held and managed     | 10.15468/2vttzr       | GBIF   | 53        |
| by English Nature                                   |                       |        |           |
| Système d'évaluation de l'état des Eaux (SEEE) -    |                       |        |           |
| Données hydrobiologiques sur l'état des eaux de     | 10.15468/apez2y       | GRIF   | 53        |
| surface - Système d'évaluation de l'état des Eaux   | 10.15400/q1022y       | ODI    | 55        |
| (SEEE) - Invertébrés                                |                       |        |           |
| ATBI Parc national du Mercantour/Parco naturale     |                       |        |           |
| Alpi Marittime - Jeux de données provenant de       | 10.15468/jtlspu       | GBIF   | 52        |
| l'ATBI Mercantour                                   |                       |        |           |
| CNCR/Colección Nacional de Crustaceos               | 10.15468/b3huws       | GBIF   | 51        |
| Données du CEN Picardie concernant la Faune, la     |                       |        |           |
| Flore et la Fonge - Données faune, flore et fonge   | 10.15468/eogcjy       | GBIF   | 51        |
| du Conservatoire des espaces naturels de Picardie   |                       |        |           |
| (Table 2a and b) Median abundances of               | 10.1594/pangaea.7347  | GRIF   | 48        |
| macrobenthos in surface sediments                   | 74                    |        | +0        |
| Biodiversidad de macroinvertebrados bénticos de     |                       |        |           |
| la región marina Tijuana-Ensenada Baja California,  | 10.15468/qb1kdr       | GBIF   | 48        |
| México                                              |                       |        |           |

| Dataset name                                         | DOI                  | Source | # Records |
|------------------------------------------------------|----------------------|--------|-----------|
| ATBI Parc national du Mercantour/Parco naturale      |                      |        |           |
| Alpi Marittime - EXPLOR'NATURE 2018,                 | 10.15468/s1cjxq      | GBIF   | 47        |
| inventaire biologique de la commune de Sospel        |                      |        |           |
| BioFresh Pond Data                                   | 10.13148/bf76        | GBIF   | 47        |
| Marine Species Records from Skomer Marine            |                      |        |           |
| Conservation Zone (MCZ) Marine Monitoring            | 10.15468/207iog      | GBIF   | 47        |
| Programme                                            |                      |        |           |
| SER Site-based Surveys                               | 10.15468/h2yko0      | GBIF   | 47        |
| Stackpole National Nature Reserve Species            |                      |        |           |
| Inventory and Ad-hoc Sightings from Across           | 10.15468/k6hvb8      | GBIF   | 47        |
| Pembrokeshire                                        |                      |        |           |
| Manx Wildlife Trust - Records                        | 10.15468/4hydf5      | GBIF   | 46        |
| Alterra (NL) - Entomofauna inventory in peat         | 10.15468/jbom6z      | CDIE   | 45        |
| swamps                                               | 10.13408/1001102     | ODI    | 45        |
| National Trust for Scotland Species Records          | 10.15468/a5y1cz      | GBIF   | 45        |
| Yorkshire Naturalists Union Marine and Coastal       | 10 15468/aiweyy      | GRIF   | 45        |
| Section Records                                      | 10.15400/ajwexx      | ODI    | 43        |
| A checklist of the marine Anthuroidea (Crustacea:    |                      |        |           |
| Isopoda: Cymothoida) from the reefs of Peninsular    | 10.3897/bdj.8.e54748 | GBIF   | 44        |
| Malaysia, with some new distributional data          |                      |        |           |
| Biodiversity4all Research-Grade Observations         | 10.15468/njmmp7      | GBIF   | 44        |
| ATBI Parc national du Mercantour/Parco naturale      |                      |        |           |
| Alpi Marittime - EXPLOR'NATURE 2017,                 | 10 15468/ru5aks      | GBIF   | 43        |
| inventaire biologique de la commune de               | 10.15 100/1050KS     | ODI    | 5         |
| Barcelonnette                                        |                      |        |           |
| Bob Merritt dataset of Nottinghamshire               | 10.15468/1pcd8f      | GBIF   | 43        |
| invertebrates                                        | 10.12 100/ 1000      | ODI    | 15        |
| Système d'Information sur la Nature et les           |                      |        |           |
| Paysages d'Ile de France - Données du naturaliste    | 10 15468/7eccel      | GBIF   | 43        |
| DEHALLEUX Axel provenant de la base de               |                      | ODI    | 10        |
| donnée du SINP Ile-de-France CETTIA                  |                      |        |           |
| Patrick Roper's Notebooks                            | 10.15468/ntnedq      | GBIF   | 41        |
| Système d'Information sur la Nature et les           |                      |        |           |
| Paysages d'Ile de France - Données du naturaliste    | 10.15468/7do6za      | GBIF   | 41        |
| Tillier Pierre provenant de la base de donnée du     |                      |        |           |
| SINP Ile-de-France CETTIA                            |                      |        |           |
| Diversidad bentónica de la laguna Celestún,          | 10.15468/o0mvtw      | GBIF   | 39        |
| Yucatán                                              | 10010 100, 0011 j 0  | 0.511  |           |
| Galathea II, Danish Deep Sea Expedition 1950-52      | 10.15468/ouseij      | GBIF   | 39        |
| Isle of Man Historical Wildlife Records pre-1990     | 10.15468/n7ybfm      | GBIF   | 39        |
| Mesopelagic Crustaceans of the North Western         | 10.15468/3mer8v      | GBIF   | 39        |
| Portuguese Coast between 1998 and 2000               |                      |        |           |
| Isle of Man historical wildlife records 1990 to 1994 | 10.15468/aru16v      | GBIF   | 38        |
| NCSM Non-molluscan Invertebrates Collection          | 10.36102/dwc.8       | GBIF   | 38        |

| Dataset name                                         | DOI                  | Source | # Records |
|------------------------------------------------------|----------------------|--------|-----------|
| The Rock Pool Project database - intertidal species  |                      |        |           |
| records from rocky shore habitats - from February    | 10.15468/bqpd1n      | GBIF   | 38        |
| 2019                                                 |                      |        |           |
| Invertebrate surveys of various ponds in Scotland    | 10.15469/266225      | CDIE   | 27        |
| between 2010 and 2015                                | 10.13468/coocp3      | GBIF   | 57        |
| Effect of short-term meteorological disturbance on   |                      |        |           |
| submergem aquatic vegetation and associated          | 10.15468/v2dd3g      | GBIF   | 36        |
| fauna                                                |                      |        |           |
| La Planète revisitée - Corse 2019-2022 - La          |                      |        |           |
| Planète Revisitée Corse 2021: prospections Côte      | 10.15468/g5astt      | GBIF   | 36        |
| orientale et Cap Corse                               |                      |        |           |
| Weddell Sea macrozoobenthos EASIZ I                  | 10.15468/0ozw5m      | GBIF   | 36        |
| CardObs: Observations naturalistes issues de l'outil |                      |        |           |
| de saisie et gestion CardObs mis en place par le     |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/kqswg4      | GBIF   | 35        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                      |        |           |
| naturalistes de Monsieur DAMOISEAU Sébastien         |                      |        |           |
| RHS monitoring of native and naturalised plants      | 10 15469/mileast     | CDIE   | 25        |
| and animals at its gardens and surrounding areas     | 10.15468/mjksei      | GBIF   |           |
| CardObs: Observations naturalistes issues de l'outil |                      |        |           |
| de saisie et gestion CardObs mis en place par le     |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             |                      |        |           |
| PatriNat (OFB - CNRS - MNHN) - Contribution          | 10.15468/24bs45      | GBIF   | 34        |
| de la Ligue Insulaire Spéléogique de Corse à         |                      |        |           |
| l'inventaire des arthropodes cavernicoles de Corse,  |                      |        |           |
| dans le cadre de l'appel à projets INPN 2019         |                      |        |           |
| Field Museum of Natural History (Zoology)            | 10.154(0)(5          | CDIE   | 24        |
| Invertebrate Collection                              | 10.15468/6q5vuc      | GBIF   | 34        |
| Invertebrates Collection of the Swedish Museum of    | 10.154(9/1-1-(1      | CDIE   | 24        |
| Natural History                                      | 10.15468/eyda61      | GBIF   | 34        |
| Monitoring data from the federal state Berlin        | 10 12140/1 6 00      | CDIE   | 24        |
| (Germany)                                            | 10.13148/01089       | GBIF   | 34        |
| Bay of Fundy Species List                            | 10.15468/nztqk6      | GBIF   | 33        |
| Macro benthos in surface sediments sampled           | 10.1594/pangaea.7181 | CDIE   | 22        |
| during POLARSTERN cruise ANT-XXIII/8                 | 06                   | GBIF   | 55        |
| New species and new records of terrestrial isopods   |                      |        |           |
| (Crustacea, Isopoda, Oniscidea) of the families      | 10 5952/-:+ 2020 606 | CDIE   | 22        |
| Philosciidae and Scleropactidae from Brazilian       | 10.5852/ejt.2020.606 | GBIF   |           |
| caves                                                |                      |        |           |
| Radnorshire Wildlife Trust records held by BIS       | 10.15468/hxqokw      | GBIF   | 33        |
| Sbp-BioBlitz2017_60years-BiodiversityData            | 10.15468/jgnjsa      | GBIF   | 33        |
| Seasearch Marine Surveys in Scotland                 | 10.15468/0hyjxi      | GBIF   | 33        |
| The Deepwater Program: Northern Gulf of Mexico       |                      |        |           |
| Continental Slope Habitat and Benthic Ecology -      | 10.15468/qjow1m      | GBIF   | 33        |
| DgoMB: Trawls                                        | ~                    |        |           |

| Dataset name                                         | DOI                      | Source | # Records |
|------------------------------------------------------|--------------------------|--------|-----------|
| Ibaraki Nature Museum, Arthropoda collection         | 10.15468/auw14q          | GBIF   | 32        |
| SILENE-FAUNE-PACA -                                  | 10 15/68/2 and ma        | CDIE   | 22        |
| Parc_National_du_Mercantour_2017_12_18               | 10.13408/2000            | ODII   | 32        |
| Données LPO Réserves Naturelles Nationales -         |                          |        |           |
| Données des réserves naturelles nationales co-       | 10 15468/zni2ni          | CDIE   | 21        |
| gérées par la Ligue pour la protection des oiseaux   | 10.13408/2pi2iii         | ODIF   | 51        |
| (LPO) et l'Office français de la biodiversité (OFB)  |                          |        |           |
| SILENE-FAUNE-PACA -                                  | 10 15468/tilran          | CDIE   | 21        |
| Amis_des_Marais_du_Vigueirat_2017_12_18              | 10.15408/g01sp           | ODIF   | 51        |
| Banco de Datos de la Biodiversidad de la             | 10 15469/h Arrady        | CDIE   | 20        |
| Comunitat Valenciana                                 | 10.13468/64yqay          | GBIF   | 30        |
| CardObs: Observations naturalistes issues de l'outil |                          |        |           |
| de saisie et gestion CardObs mis en place par le     |                          |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/hswza8          | GBIF   | 30        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                          |        |           |
| naturalistes de Xavier JAPIOT                        |                          |        |           |
| Stoke-on-Trent Environmental Survey results          | 10.15469/9 cm th 6       | CDIE   | 20        |
| (1982-1984)                                          | 10.15408/881900          | ODIF   | 50        |
| A review of the genus Parapenaeon Richardson,        | 10 1000/00222022 20      |        |           |
| 1904 (Crustacea: Isopoda: Bopyridae: Orbioninae),    | 10.1080/00222955.20      | GBIF   | 29        |
| with description of three new species from China     | 13.1023227               |        |           |
| NRW Regional Data: North Wales                       | 10.15468/krljpu          | GBIF   | 29        |
| Review of the species of the Cirolana 'parva -       | 10 116/6/zootovo /21     |        |           |
| group' (Cirolanidae: Isopoda: Crustacea) in          | 10.11040/200taxa.451     | GBIF   | 29        |
| Indonesian and Singaporean waters                    | /.3.1                    |        |           |
| TestWat - Macroinvertebrates and macrophytes of      | 10 15468/yzpouu          | CDIE   | 20        |
| freshwater bodies in Flanders, Belgium               | 10.15406/xzpcvv          | ODII   | 29        |
| USGS Nonindigenous Aquatic Species database          | 10.15468/ijccz9          | GBIF   | 29        |
| MBON POLE TO POLE: SANDY BEACH                       | 10.15468/a71aufb         | CDIE   | 20        |
| BIODIVERSITY OF YUCATAN COAST                        | 10.13408/g/Kwill         | ODIF   | 20        |
| NatureMapr                                           | 10.15468/uye32x          | GBIF   | 28        |
| Benthic invertebrate surveys conducted between       |                          |        |           |
| 2009-2011 as part of the Sydney Tar Ponds            | 10.15468/mzmzvn          | GBIF   | 27        |
| Cleanup and Coke Ovens Remediation Project.          |                          |        |           |
| Computarización de la Colección Nacional de          |                          |        |           |
| Crustáceos del Instituto de Biología, UNAM y         | 10.15468/9wpc6o          | GBIF   | 27        |
| elaboración de su catálogo                           |                          |        |           |
| SEFSC CAGES Alabama Fish Length Data with            | 10 15468/vs1k7e          | GRIF   | 27        |
| CPUE                                                 | 10.15400/VSIK/C          | ODII   | 27        |
| Survey and monitoring records for Scottish           |                          |        |           |
| Wildlife Trust reserves from reserve convenors and   | 10.15468/yyd4b9          | GBIF   | 27        |
| Trust volunteers - Verified data                     |                          |        |           |
| Colección de Artropodos del Museo de Historia        | 10.15472/esteut          | GRIF   | 26        |
| Natural Marina de Colombia - Makuriwa                | 10.1 <i>54/2/</i> Calcul | ODII   | 20        |

| Six new species of Anthuridae (Peracarida:<br>Isopoda) from the southern Mexican Pacific10.5852/ejt.2021.760.<br>1441GBIF26Ocean Genome Legacy Collection10.15468/jzgqtcGBIF25Collection Crustacea ZMG10.15468/numv9tGBIF24Explore Your Shore10.15468/numv9tGBIF24FIBP: Offshore Benthic Macrofauna Data10.15468/naspicGBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther<br>Herwig cruise WH22010.15468/shaspicGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáccos)10.15468/shfivsGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/shfivsGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/shfivsGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/naioaoGBIF21Mustosignum-Munogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southerm<br>Literature10.15468/focdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif 201710.15468/fozdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Neutairé célair de<br>Natureparif 201710.15468/fozdm6kGBIF21Natureparif 201710.15468/fozdm6kGBIF21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dataset name                                       | DOI                   | Source | # Records |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|--------|-----------|
| Isopoda) from the southern Mexican Pacific1441OBIT20Ocean Genome Legacy Collection10.15468/jzgqtcGBIF25Riparia10.15468/jzgqtcGBIF25Collection Crustacea ZMG10.15468/nonyofGBIF24Explore Your Shore10.14284/563GBIF24FBIP: Offshore Benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.15468/asapieGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/bfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/sptgorGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/sptgorGBIF22Biodiversitätsdatenbank Salzburg10.15468/apf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/paioaoGBIF21MDFRC macrinivertebrate survey10.15468/paioaoGBIF21MDFRC macrinivertebrate survey10.15468/hondoGBIF21Systêm d'Information sur la Nature et les<br>Paysages d'lle de France - Étude biodiversité<br>toitures végétalisées d'lle-de-France réalisée par<br>Natureparif/ARB10.15468/fsyaynmGBIF21Système d'Information sur la Nature et les<br>Paysages d'lle de France - Inventaire éclair de<br>Natureparif/ARB10.15468/fsyaynmGBIF21Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkonisse, Termeuzen and Vilssingen) on 27 and<br>28 September 197810.14284/231GBIF19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Six new species of Anthuridae (Peracarida:         | 10.5852/ejt.2021.760. | CDIE   | 26        |
| Ocean Genome Legacy Collection10.15468/jzgqtcGBIF25Riparia10.15468/wunv9tGBIF25Collection Crustacea ZMG10.15468/usnv9tGBIF24Explore Your Shore10.14284/563GBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.15468/asaspieGBIF23Herwig cruise WH22010.15468/zbfnoaGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáccos)10.15468/sbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/spggorGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spfsorGBIF22Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21Invertebrate Collection of BIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/paioaoGBIF21MDFRC macroinvertebrate survey10.15468/paioaoGBIF21Nustrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Paysages d'lle de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/fszvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'lle de France - Inventaire éclair de<br>Natureparif/201710.15468/l5zvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF1919Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Termezen and Vlissingen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Isopoda) from the southern Mexican Pacific         | 1441                  | GBIF   | 26        |
| Riparia10.15468/wunv9tGBIF25Collection Crustacea ZMG10.15468/1p3n36GBIF24Explore Your Shore10.14284/563GBIF24FBIP: Offshore Benthic Macrofauna Data10.15468/asapieGBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther<br>Herwig cruise WH22010.15468/zbfnoaGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/s8fiysGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spzgorGBIF22Biodiversitätsdatenbank Salzburg10.15468/nfmdpbGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/nfmdpbGBIF21MDFRC macroinvertebrate survey10.15468/nfmdpbGBIF21MDFRC macroinvertebrate survey10.15468/naioaoGBIF21MDFRC macroinvertebrate survey10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/l5zxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/l5zxvhGBIF21ALA species sightings and OzAtlas10.15468/l5zxvhGBIF21Macrobenthos of the Western Scheldt (Ossen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ocean Genome Legacy Collection                     | 10.15468/jzgqtc       | GBIF   | 25        |
| Collection Crustacea ZMG10.15468/1p3n36GBIF24Explore Your Shore10.14284/563GBIF24FBIP: Offshore Benthic Macrofauna Data10.15468/aaspieGBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.1594/pangaea.7567<br>83GBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáccos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/sbfnoaGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spgorGBIF22Biodiversitätsdatenbank Salzburg10.15468/apf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Mortebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/paioaoGBIF21MDFRC macroinvertebrate survey10.15468/apiaoaoGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/catm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif/ARB10.15468/fizxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/fizxvhGBIF21ALA species sightings and OzAtlas10.15468/fizxvhGBIF1019Macrobe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Riparia                                            | 10.15468/wunv9t       | GBIF   | 25        |
| Explore Your Shore10.14284/563GBIF24FBIP: Offshore Benthic Macrofauna Data10.15468/aaspieGBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.1594/pangaea.7567<br>83GBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/s8fiysGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/sptS5GBIF21Biodiversitätsdatenbank Salzburg10.15468/n7mdpbGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/fiszxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/fiszxvhGBIF21ALA species sightings and OzAtlas10.15468/fiszxvhGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Collection Crustacea ZMG                           | 10.15468/1p3n36       | GBIF   | 24        |
| FBIP: Offshore Benthic Macrofauna Data10.15468/aaspieGBIF24Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.1594/pangaea.7567<br>83GBIF23Herwig cruise WH22010.15468/zbfnoaGBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/spzgorGBIF22Crustáceos estomatópodos, anfípodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spf855GBIF22Biodiversitätsdatenbank Salzburg10.15468/apf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/paioaoGBIF21South American Antarctic Marine Biodiversitý<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/fsjayxmnGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/jayxmnGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF1919Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14262/201GDIF19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Explore Your Shore                                 | 10.14284/563          | GBIF   | 24        |
| Abundance of benthic infauna in surface sediments<br>from the North Sea sampled during Walther10.1594/pangaea.7567<br>83GBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/sbfiysGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/sbfiysGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spfis5GBIF22Biodiversitätsdatenbank Salzburg10.15468/n7mdpbGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/paioaoGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/fszvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Île de France - Inventaire éclair de<br>Natureparif 201710.15468/jayxnnGBIF21ALA species sightings and OzAtlas10.15468/jayxnnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.14264/colCDUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FBIP: Offshore Benthic Macrofauna Data             | 10.15468/aaspie       | GBIF   | 24        |
| from the North Sea sampled during Walther<br>Herwig cruise WH22010.1394/pangaca.7567<br>83GBIF23Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/spzgorGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/spzgorGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spzgorGBIF22Biodiversitätsdatenbank Salzburg10.15468/n7mdpbGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/szwhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/jay andGBIF19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Abundance of benthic infauna in surface sediments  | 10 1504/2000 7567     |        |           |
| Herwig cruise WH2206.3Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/s8fiysGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/spzgorGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/spt55GBIF22Biodiversitätsdatenbank Salzburg10.15468/nmdpbGBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/nmdpbGBIF21MDFRC macroinvertebrate survey10.15468/paioaoGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/fozdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/fozxnhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/jayxnnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/jayxmnGBIF19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from the North Sea sampled during Walther          | 10.1394/pangaea./30/  | GBIF   | 23        |
| Invertebrados y aves playeras de la Laguna Madre<br>de Tamaulipas, México (Crustáceos)10.15468/zbfnoaGBIF23Invertebrate data from Selected Grazing Marshes10.15468/88fiysGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/88fiysGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/tbpto6GBIF22Biodiversitátsdatenbank Salzburg10.15468/apf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/l5zxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/l5zxvhGBIF21AL species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Temeuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/apuGBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Herwig cruise WH220                                | 83                    |        |           |
| de Tamaulipas, México (Crustáceos)10.15468/201104OBIF23Invertebrate data from Selected Grazing Marshes10.15468/88fiysGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/88fiysGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/tbpto6GBIF22Biodiversitätsdatenbank Salzburg10.15468/apf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kznpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif 201710.15468/f5zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/apuCDUF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Invertebrados y aves playeras de la Laguna Madre   | 10.15468/zhfnon       | CDIE   | 23        |
| Invertebrate data from Selected Grazing Marshes10.15468/88fiysGBIF23AM: Freshwater Invertebrates (1900-2005)10.15468/spzgorGBIF22Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/tbpto6GBIF22Biodiversitätsdatenbank Salzburg10.15468/tbpto6GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacca Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/l5zxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/l5zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/ipayGBIF19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | de Tamaulipas, México (Crustáceos)                 | 10.13408/20110a       | ODII   | 23        |
| AM: Freshwater Invertebrates (1900-2005)10.15468/spzgorGBIF22Crustáceos estomatópodos, anfípodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/tbpto6GBIF22Biodiversitätsdatenbank Salzburg10.15468/3pf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/l5zxvhGBIF21Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/152/01GDIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Invertebrate data from Selected Grazing Marshes    | 10.15468/88fiys       | GBIF   | 23        |
| Crustáceos estomatópodos, anfipodos, isópodos y<br>decápodos del litoral de Quintana Roo10.15468/tbpto6GBIF22Biodiversitätsdatenbank Salzburg10.15468/3pf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/15zxvhGBIF21Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.14260/01CDIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AM: Freshwater Invertebrates (1900-2005)           | 10.15468/spzgor       | GBIF   | 22        |
| decápodos del litoral de Quintana Roo10.15468/00100OBIF22Biodiversitätsdatenbank Salzburg10.15468/3pf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/l5zxvhGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/l5zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/1521CDIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Crustáceos estomatópodos, anfípodos, isópodos y    | 10 15468/thata6       | CDIE   | 22        |
| Biodiversitätsdatenbank Salzburg10.15468/3pf855GBIF21Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuq<br>10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.14268/clauCDUR10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | decápodos del litoral de Quintana Roo              | 10.13408/100100       | ODIF   | 22        |
| Invertebrate Collection of IBIOMAR (CCT<br>CONICET-CENPAT) (CNP-INV)10.15468/n7mdpbGBIF21MDFRC macroinvertebrate survey10.15468/n7mdpbGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.15468/201 GBIF10Nonindigenous Aquatic Species (NAS) Database10.15468/201 GBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Biodiversitätsdatenbank Salzburg                   | 10.15468/3pf855       | GBIF   | 21        |
| CONICET-CENPAT) (CNP-INV)10.15468/nindp0GBIF21MDFRC macroinvertebrate survey10.15468/paioaoGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.15468/auGBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/auGBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Invertebrate Collection of IBIOMAR (CCT            | 10.15468/n7mdnb       | CDIE   | 21        |
| MDFRC macroinvertebrate survey10.15468/paioaoGBIF21Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/l5zxvhGBIF21Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/locuCDUR10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONICET-CENPAT) (CNP-INV)                          | 10.13408/11/110.00    | ODII   | 21        |
| Redescriptions and new species in the '<br>Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/15ZVMGDIF1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDFRC macroinvertebrate survey                     | 10.15468/paioao       | GBIF   | 21        |
| Austrosignum-Munnogonium' complex sensu Just<br>& Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)10.11646/zootaxa.495<br>2.3.1GBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/152/01CDIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Redescriptions and new species in the '            |                       |        |           |
| & Wilson (2007), mainly from the Southern<br>Hemisphere (Crustacea Isopoda: Paramunnidae)2.3.1ODIT21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.15468/201GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/201GBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Austrosignum-Munnogonium' complex sensu Just       | 10.11646/zootaxa.495  | GBIF   | 21        |
| Hemisphere (Crustacea Isopoda: Paramunnidae)10.15468/kxnpuqGBIF21South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Île de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Île de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.15468/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/24 QLODEE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | & Wilson (2007), mainly from the Southern          | 2.3.1                 | ODII   | 21        |
| South American Antarctic Marine Biodiversity<br>Literature10.15468/kxnpuqGBIF21Système d'Information sur la Nature et les<br>Paysages d'Île de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Île de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/152/01CDUE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hemisphere (Crustacea Isopoda: Paramunnidae)       |                       |        |           |
| LiteratureFor Fost And paqODADTSystème d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/152/01CDUE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | South American Antarctic Marine Biodiversity       | 10.15468/kxnpua       | GBIF   | 21        |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Étude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468/15468                                                                                                                                                                                           | Literature                                         | Torre roor minpaq     |        | 21        |
| Paysages d'Ile de France - Etude biodiversité<br>toitures végétalisées d'Île-de-France réalisée par<br>Natureparif/ARB10.15468/6zdm6kGBIF21Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/152/01CDU10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Système d'Information sur la Nature et les         |                       |        |           |
| toitures végétalisées d'Ile-de-France réalisée par<br>Natureparif/ARBImage: Constraint of the second s | Paysages d'Ile de France - Etude biodiversité      | 10.15468/6zdm6k       | GBIF   | 21        |
| Natureparif/ARBImage: Système d'Information sur la Nature et lesSystème d'Information sur la Nature et les10.15468/15zxvhPaysages d'Ile de France - Inventaire éclair de10.15468/15zxvhNatureparif 2017Image: Système d'Information sur la Nature et lesALA species sightings and OzAtlas10.15468/jayxmnMacrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231Nonindigenous Aquatic Species (NAS) Database10.15468/152/101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | toitures végétalisées d'Ile-de-France réalisée par |                       |        |           |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 201710.15468/15zxvhGBIF21ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/15zxvh10.15468/15zxvh10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Natureparit/ARB                                    |                       |        |           |
| Paysages d'Ile de France - Inventaire éclair de10.15468/15zxvhGBIF21Natureparif 201710.15468/15zxvhGBIF19ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/15zxvhGBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Système d'Information sur la Nature et les         | 10.15460/15 1         | CDIE   | 21        |
| Natureparif 2017GBIFALA species sightings and OzAtlas10.15468/jayxmnGBIFMacrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIFNonindigenous Aquatic Species (NAS) Database10.15468/jayxmnGBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Paysages d'Ile de France - Inventaire eclair de    | 10.15468/15zxvh       | GBIF   | 21        |
| ALA species sightings and OzAtlas10.15468/jayxmnGBIF19Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15468/jayxmnGBIF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Natureparit 2017                                   | 10.15460/             | CDIE   | 10        |
| Macrobenthos of the Western Scheldt (Ossenisse,<br>Valkenisse, Terneuzen and Vlissingen) on 27 and<br>28 September 197810.14284/231GBIF19Nonindigenous Aquatic Species (NAS) Database10.15460/101CDU10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALA species sightings and OzAtlas                  | 10.15468/jayxmn       | GBIF   | 19        |
| Valkenisse, Terneuzen and Vlissingen) on 27 and     10.14284/231     GBIF     19       28 September 1978     10.154(0)/01     CDU     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Macrobenthos of the Western Scheldt (Ossenisse,    | 10 14294/221          | CDIE   | 10        |
| 28 September 1978     Image: September 1978       Nonindigenous Aquatic Species (NAS) Database     Image: September 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | valkenisse, Terneuzen and Vilssingen) on 27 and    | 10.14284/231          | GBIF   | 19        |
| Nonindigenous Aquatic Species (NAS) Database   10.154(0) 01   ODE   10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28 September 1978                                  |                       |        |           |
| Neg freehouster Speedmann [10.15468/e9lcrw   GBIF   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nonindigenous Aquatic Species (NAS) Database       | 10.15468/e9lcrw       | GBIF   | 19        |
| WTSWW Date: All Taya (West Weles) 10.15469/seed/dc2 CDIE 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WTSWW Date: All Tays (West Walso)                  | 10.15469/apple1/2     | CDIE   | 10        |
| W ISW W Data: All Taxa (west wates) 10.15468/gaakk2 GBIF 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WISW W Data: All Taxa (west wates)                 | 10.15468/gaakk2       | CDIE   | 19        |
| Iste of Ivian instoficat within records 1995 to 1999 10.15468/102tge GBIF 18<br>Maritimas Summer Bassarah Vassal Sumiava 10.15469/02v7ac CDE 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anitimas Summer Besserch Vessel Surveys            | 10.15408/1021ge       | CDIE   | 18        |
| Ivianumes Summer Research vesser Surveys     10.15408/95X/ec     GBIF     18       New methid isoned emutescone (Cumotheide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | New mothid isoned amatersary (Crustheilt)          | 10.13400/93X/60       | UDIF   | 18        |
| from Heron Island and Wistari Reef, southern 10.11646/zootaxa.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from Heron Island and Wisteri Deef, southern       | 10.11646/zootaxa.460  | GPIE   | 10        |
| Great Barrier Reef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Great Barrier Reef                                 | 9.1.2                 | ODII   | 10        |

| Dataset name                                                                                                                                                           | DOI                           | Source | # Records |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-----------|
| NIEK_NES                                                                                                                                                               | 10.15468/u9dkvz               | GBIF   | 18        |
| SeamountsOnline                                                                                                                                                        | 10.15468/2juyaz               | GBIF   | 18        |
| Galiano Island BC Canada Marine Zoology 1893–<br>2021                                                                                                                  | 10.15468/gv9cy5               | GBIF   | 17        |
| GEO-Hauptveranstaltung (Duisburg)                                                                                                                                      | 10.15468/mhmojc               | GBIF   | 17        |
| Macro- and megafauna from the North Aegean Sea from 1997-1998                                                                                                          | 10.15468/8jbgwk               | GBIF   | 17        |
| On the composition of the benthic fauna of the western Fram Strait                                                                                                     | 10.15468/lbi9s0               | GBIF   | 17        |
| Registro de macrofauna bentónicas submareales de<br>fondos blandos, variables físico-químicos en la<br>zona sur – Registro 5                                           | 10.15468/3ng7tv               | GBIF   | 17        |
| Sizing Ocean Giants                                                                                                                                                    | 10.15468/mfxiws               | GBIF   | 17        |
| Taxonomy of Alpioniscus (Illyrionethes): A.<br>magnus and three new species from the Dinaric<br>Karst (Isopoda: Oniscidea: Trichoniscidae)                             | 10.11646/zootaxa.465<br>7.3.4 | GBIF   | 17        |
| ZooplanktonBeaufortSeaNOGAP1                                                                                                                                           | 10.15468/lhtmpo               | GBIF   | 17        |
| Inventario faunístico de dos regiones terrestres<br>prioritarias de la península de Baja California: San<br>Telmo-San Quintín y Planicies de Magdalena<br>(Ejemplares) | 10.15468/mn8cr9               | GBIF   | 16        |
| IPOE_Benthos_Steffens                                                                                                                                                  | 10.15468/mttec8               | GBIF   | 16        |
| Projet éolien en mer de Dieppe Le Tréport - Etat<br>initial benthique et sédimentaire                                                                                  | 10.15468/aatgex               | GBIF   | 16        |
| Réserves Naturelles de France (RNF) - RNF -<br>Données de la Fédération des Réserves Catalanes                                                                         | 10.15468/ufryrd               | GBIF   | 16        |
| Swiss Occurrence Records of Non-Native Species<br>of Various Faunal Groups                                                                                             | 10.15468/z3vjjw               | GBIF   | 16        |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Inventaire éclair de<br>Natureparif 2016                                                      | 10.15468/yitdzl               | GBIF   | 16        |
| Woodmeadow Invertebrate Survey 2018                                                                                                                                    | 10.15468/f4n4wf               | GBIF   | 16        |
| Data from Defra Family Organisations supplied to<br>Staffordshire Ecological Record                                                                                    | 10.15468/giebpp               | GBIF   | 15        |
| iRecord Surveys                                                                                                                                                        | 10.15468/i7x5ca               | GBIF   | 15        |
| Alterra (NL) - Entomofauna inventory in dead<br>wood                                                                                                                   | 10.15468/2pz1c0               | GBIF   | 14        |
| Manx Biological Recording Partnership<br>VERIFIED Isle of Man records between<br>14/02/2017 and 05/09/2019                                                             | 10.15468/dudjqq               | GBIF   | 14        |
| Marine invertabrate(ARTHROPODA) specimen<br>database of Osaka Museum of Natural History                                                                                | 10.15468/npb02o               | GBIF   | 14        |
| NE Scotland other invertebrate records 1800-2010                                                                                                                       | 10.15468/ifjfxz               | GBIF   | 14        |

| Dataset name                                         | DOI                           | Source | # Records |
|------------------------------------------------------|-------------------------------|--------|-----------|
| New genera and species of the marine isopod          | 10.2907/===1-==== 19.0        |        |           |
| family Serolidae (Crustacea, Sphaeromatidea) from    | 10.389//zookeys.18.9          | GBIF   | 14        |
| the southwestern Pacific                             | 0                             |        |           |
| Benthic communities and environmental                |                               |        |           |
| parameters in Amvrakikos Wetlands: Mazoma,           | 10.154(9/4ff.6.)              | CDIE   | 12        |
| Tsopeli, Tsoukalio, Rodia and Logarou lagoons        | 10.15468/dff16y               | GBIF   | 13        |
| (September 2010 – July 2011)                         |                               |        |           |
| CardObs: Observations naturalistes issues de l'outil |                               |        |           |
| de saisie et gestion CardObs mis en place par le     |                               |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/bsbtam               | GBIF   | 13        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                               |        |           |
| naturalistes de Benoit MARTHA                        |                               |        |           |
| CardObs: Observations naturalistes issues de l'outil |                               |        |           |
| de saisie et gestion CardObs mis en place par le     |                               |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/ojaotz               | GBIF   | 13        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                               |        |           |
| naturalistes de Brendan ALLIGAND                     |                               |        |           |
| DASSH Data Archive Centre expert sightings           | 10.154(0// 2                  | CDIE   | 12        |
| records                                              | 10.15468/tggq3w               | GBIF   | 13        |
| GEO-Hauptveranstaltung in "Wildtierland"             | 10.15468/ebnnbs               | GBIF   | 13        |
| Macro-invertebrates of the Desna river basin         | 10.15468/cwjh3n               | GBIF   | 13        |
| Manx Biological Recording Partnership                |                               |        |           |
| UNVERIFIED Isle of Man records between               | 10.15468/6stnx8               | GBIF   | 13        |
| 14/02/2017 and 05/09/2019                            |                               |        |           |
| Museu de Ciències Naturals de Barcelona: MCNB-       | 10 15/69/2000                 | CDIE   | 12        |
| Art                                                  | 10.15408/pewzzr               | UDIF   | 15        |
| Observations naturalistes indépendantes d'origine    |                               |        |           |
| privée partagées sur la base de données Kollect      | 10 15468/svintia              | CDIE   | 12        |
| Nouvelle-Aquitaine - Observations faunistiques de    | 10.13408/Sviiiig4             | UDIF   | 13        |
| Jean-Christophe BARTOLUCCI                           |                               |        |           |
| Peracarida of Bernardo O'Higgins National Park (S    | $10.15468/m^{2}$ mbu          | CDIE   | 12        |
| Chile)                                               | 10.13408/11132pou             | UDIF   | 15        |
| Registros faunísticos de invertebrados marinos en    | 10 15468/tixe/i               | CDIE   | 12        |
| el SE del Golfo de California                        | 10.15408/19/841               | ODII   | 15        |
| Système d'Information sur la Nature et les           |                               |        |           |
| Paysages d'Ile de France - Données de la structure   |                               |        |           |
| ANVL (Association des Naturalistes de la Vallée      | 10.15468/muyshy               | CDIE   | 12        |
| du Loing et du Massif de Fontainebleau) provenant    | 10.13400/10vxiiy              | ODIT   | 15        |
| de la base de donnée du SINP Île-de-France           |                               |        |           |
| CETTIA                                               |                               |        |           |
| Two new species and new records of terrestrial       | 10 116/6/zootova 156          |        |           |
| isopods (Crustacea, Isopoda, Oniscidea) from         | 10.11040/2001axa.430<br>A 2 6 | GBIF   | 13        |
| Brazilian caves                                      | 4.2.0                         |        |           |
| Woodmeadow Invertebrate Survey 2019                  | 10.15468/tnp8ek               | GBIF   | 13        |
| Zooplankton NOGAP32b 1986                            | 10.15468/z7cj59               | GBIF   | 13        |

| Dataset name                                         | DOI                           | Source | # Records |
|------------------------------------------------------|-------------------------------|--------|-----------|
| Atlantic Reference Centre Museum of Canadian         | 10.15468/wsxvo6               | GBIF   | 12        |
| Atlantic Organisms - Invertebrates and Fishes Data   |                               |        |           |
| Bibliographie de la faune, la flore et la fonge de   |                               |        |           |
| France metropolitaine et outre-mer -                 | 10.15468/cthncb               | GBIF   | 12        |
| Bibliographique de la faune, la flore et la fonge de |                               |        |           |
| France metropolitaine et outre-mer                   |                               |        |           |
| CardObs: Observations naturalistes issues de l'outil |                               |        |           |
| de saisie et gestion CardObs mis en place par le     | 10.154(0/ 6 21                | CDIE   | 10        |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/view3b               | GBIF   | 12        |
| PatriNat (OFB - CNRS - MNHN) - Donnees               |                               |        |           |
| naturalistes de DUSOULIER François                   | 10.15460/: :                  | CDIE   | 10        |
| Entomological collections, UIB                       | 10.15468/irppio               | GBIF   | 12        |
| FBIP: SeaKeys_SANBI: Marine images                   | 10.15468/xu84gq               | GBIF   | 12        |
| 1Spot_2013                                           |                               |        |           |
| Macrobenthos and Meiobenthos Tuktoyaktuk             | 10.15468/9wnx7f               | GBIF   | 12        |
| Harbor and Mason Bay 1985-1988 NOGAP                 |                               |        |           |
| Marine fauna survey of the Vestfold Hills and        | 10.15468/jauvuu               | GBIF   | 12        |
| Rauer Island, 1981-82                                |                               | CDIE   | 10        |
| PlutoF platform reference-based occurrences          | 10.15468/e15jve               | GBIF   | 12        |
| SeaWatch-B: citizens monitoring the Belgian          | 10.14284/401                  | GBIF   | 12        |
| North Sea from the beach (2014-2018)                 |                               |        |           |
| SNH Invertebrate Site Condition Monitoring 2015-     |                               | CDIE   | 10        |
| 16: Culbin Sands, Culbin Forest and Findhorn Bay     | 10.15468/bg111t               | GBIF   | 12        |
| SSSI                                                 |                               |        |           |
| Biological survey of the intertidal chalk reefs      |                               | CDIE   |           |
| between Folkestone Warren and Kingsdown, Kent        | 10.15468/opmkmp               | GBIF   | 11        |
| 2009-2011                                            |                               |        |           |
| Brecknock Wildlife Trust (Now WTSWW                  | 10.15468/hd7pvg               | GBIF   | 11        |
| Brecknockhire) records held by BIS                   | 1 1                           |        |           |
| CardObs: Observations naturalistes issues de l'outil |                               |        |           |
| de saisie et gestion CardObs mis en place par le     |                               |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/rrps8r               | GBIF   | 11        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                               |        |           |
| naturalistes de Julien BIRARD [Inventaire Eclair     |                               |        |           |
| 18 juin]                                             |                               |        |           |
| Cirolanides wassenichae sp. nov., a freshwater,      |                               |        |           |
| subterranean Cirolanidae (Isopoda, Cymothoida)       | 10.11646/zootaxa.454<br>3.4.2 | GBIF   | 11        |
| with additional records of other species from        |                               | 0.211  |           |
| Texas, United States                                 |                               |        |           |
| Crustacea specimens of Ryukyu University             | 10.15468/vdwazo               | GBIF   | 11        |
| Museum (Fujukan)                                     | 10110 100/ 14/1420            |        |           |
| Crustacean collection of the National Museum of      | 10.15468/xdcsbl               | GBIF   | 11        |
| Nature and Science                                   | 10.12 100/ //00001            | CDII   | 11        |

| Dataset name                                         | DOI                                            | Source | # Records |
|------------------------------------------------------|------------------------------------------------|--------|-----------|
| DNA barcoding and morphological studies confirm      |                                                |        |           |
| the occurrence of three Atarbolana (Crustacea:       | 10.11646/zootaxa.420                           | CDIE   | 11        |
| Isopoda: Cirolanidae) species along the coastal      | 0.1.7                                          | UDIF   | 11        |
| zone of the Persian Gulf and Gulf of Oman            |                                                |        |           |
| Données Faune Base SIRFF - FNE Centre-Val de         |                                                |        |           |
| Loire - Système d'Information Régional sur la        | 10 15468/activit                               | CDIE   | 11        |
| Faune et la Flore - FNE Centre-Val de Loire -        | 10.13408/a0101                                 | UDIF   | 11        |
| Données saisies entre 01-01-2017 et 31-03-2018       |                                                |        |           |
| Gesamtartenliste Bremerhaven, Helgoland und Sylt     | 10.15468/85zmqv                                | GBIF   | 11        |
| Isle of Man wildlife records from 01/01/2000 to      | 10.154(9/                                      | CDIE   | 11        |
| 13/02/2017                                           | 10.15468/mopwow                                | GBIF   | 11        |
| Museum of Southwestern Biology, Division of          | 10 15469/240000                                | CDIE   | 11        |
| Arthropods                                           | 10.13468/Jtovgy                                | GBIF   | 11        |
| New species of subterranean and endogean             | 10.5252/                                       |        |           |
| terrestrial isopods (Crustacea, Oniscidea) from      | 10.5252/2005ystema2                            | GBIF   | 11        |
| Tuscany (central Italy)                              | 018v40a11                                      |        |           |
| Porcupine Marine Natural History Society Records     | 10.15468/c8jqsr                                | GBIF   | 11        |
| St Andrews BioBlitz 2015                             | 10.15468/xtrbvy                                | GBIF   | 11        |
| Staffordshire Wildlife Trust Nature Reserves         | 10 15 4 (9/-1, 1,                              | CDIE   | 11        |
| Inventory                                            | 10.13408/vndows                                | GBIF   | 11        |
| Système d'Information sur la Nature et les           |                                                |        |           |
| Paysages d'Ile de France - Données de la structure   | 10.15469/0.1 - 69                              | CDIE   | 11        |
| Ville de Paris provenant de la base de donnée du     | 10.13408/000018                                | GBIF   | 11        |
| SINP Île-de-France CETTIA                            |                                                |        |           |
| Three new species of the genus Ischnomesus           | 10.11646/ 400000000000000000000000000000000000 |        |           |
| (Isopoda: Asellota: Ischnomesidae) from Brazilian    | 10.11040/200laxa.451                           | GBIF   | 11        |
| deep sea                                             | 2.2.5                                          |        |           |
| CardObs: Observations naturalistes issues de l'outil |                                                |        |           |
| de saisie et gestion CardObs mis en place par le     |                                                |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/tr1xmq                                | GBIF   | 10        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                                                |        |           |
| naturalistes de Jean-Michel LEMAIRE                  |                                                |        |           |
| CardObs: Observations naturalistes issues de l'outil |                                                |        |           |
| de saisie et gestion CardObs mis en place par le     |                                                |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/ziwt1p                                | GBIF   | 10        |
| PatriNat (OFB - CNRS - MNHN) - Données               |                                                |        |           |
| naturalistes de Pierre NOEL (pnoel)                  |                                                |        |           |
| Collections of Bioclass, school #179, Moscow         | 10.15468/4f0bmt                                | GBIF   | 10        |
| Marine Benthic Fauna List, Island of Læsø,           | 10 15/168/ty0sma                               | GRIF   | 10        |
| Denmark                                              | 10.15400/tyosing                               | ODI    | 10        |
| Merseyside BioBank (verified)                        | 10.15468/ar0p6s                                | GBIF   | 10        |
| National indicator data for river condition in New   | 10 15468/remdre                                | GRIF   | 10        |
| Zealand                                              | 10.13400/1011010                               |        | 10        |
| SNH Invertebrate Site Condition Monitoring 2015-     | 10 15468/dv1u0r                                | GRIF   | 10        |
| 16: Methven Woods SSSI                               | 10.12700/0/1001                                | JDII   | 10        |

| Dataset name                                           | DOI                   | Source  | # Records |
|--------------------------------------------------------|-----------------------|---------|-----------|
| Terrestrial and limnic invertebrates systematic        | 10.15468/fsreab       | GBIF    | 10        |
| collection, NTNU University Museum                     | 10.15400/181040       | ODIT    | 10        |
| Urban Roots Malls Mire Invertebrate Records 2014       | 10.15468/kpl3zg       | GBIF    | 10        |
| ZooplanktonBeaufortSeaNOGAP2                           | 10.15468/jchc6q       | GBIF    | 10        |
| (Table 2a) Abundance of macrobenthos species in        | 10 1594/pangaea 7696  |         |           |
| samples from Cruise AMK54 stations in the              | 60                    | GBIF    | 9         |
| Novaya Zemlya Trough                                   |                       |         |           |
| Anymals+plants - Citizen Science Data                  | 10.15468/ee6ps6       | GBIF    | 9         |
| Artenvielfalt der Nordsee - Helgoland                  | 10.15468/omx28y       | GBIF    | 9         |
| Base BOMBINA du Parc Naturel régional Lorraine         | 10.15468/ird2ir       | GBIF    | 9         |
| - Données bibliographique de la base BOMBINA           | 10110 100/j1021       | 0.DII   | ,         |
| Bioblitz 2014 Kalvebod Fælled, Denmark                 | 10.15468/4entqy       | GBIF    | 9         |
| Carrière calcaire de Chateaupanne (Mauges-sur-         |                       |         |           |
| Loire) - modification des conditions d'exploitation    | 10.15468/a9f7rb       | GBIF    | 9         |
| - renouvellement de l'autorisation - inventaires       | 10112 100/ 401/10     | 0DII    | 2         |
| 2004-2014 pour étude d'impact carrière                 |                       |         |           |
| Consultancy Contract Surveys - Marine Species          | 10.15468/hs4wvn       | GBIF    | 9         |
| Records                                                |                       | 0211    |           |
| Continuous Plankton Recorder Dataset (SAHFOS)          | 10.15468/ygwilu       | GBIF    | 9         |
| Dorset SSSI Species Records 1952 - 2004 (Natural       | 10.15468/vcizts       | GBIF    | 9         |
| England)                                               | 10010 100, 10,200     |         | -         |
| INSDC Host Organism Sequences                          | 10.15468/e97kmy       | GBIF    | 9         |
| Macrobenthos monitoring in function of aggregate       |                       |         |           |
| extraction activities in the Belgian part of the North | 10.14284/199          | GBIF    | 9         |
| Sea                                                    |                       |         |           |
| Montgomeryshire Wildlife Trust records held by         | 10.15468/vozvfp       | GBIF    | 9         |
| BIS                                                    | 51                    |         | -         |
| Morphology and Taxonomy of Isopoda                     | 10.5852/ejt.2021.768. | ~ ~ ~ ~ |           |
| Anthuroidea (Crustacea) from Sulawesi with             | 1501                  | GBIF    | 9         |
| description of six new species                         |                       |         |           |
| Plan de gestion multi-sites à Chiroptères mené par     |                       |         |           |
| le CEN Aquitaine depuis 2008 - Observations            | 10.15468/egq9qc       | GBIF    | 9         |
| faunistiques fortuites réalisées par le CEN            |                       |         |           |
| Aquitaine                                              |                       |         |           |
| Projet de raccordement au réseau public de             |                       |         |           |
| transport d'électricité du parc éolien en mer de       | 10.154(0) 5           | CDIE    | 0         |
| Dieppe - Le Treport - Campagne Benthos Benne et        | 10.15468/m5rswu       | GBIF    | 9         |
| Drague 2015-2016 - Projet de raccordement du           |                       |         |           |
|                                                        |                       |         |           |
| Systeme d'Information sur la Nature et les             |                       |         |           |
| PENADD provement de la base de dennée du SIND          | 10.15468/izjsyw       | GBIF    | 9         |
| Île de Eronee CETTIA                                   |                       |         |           |

| Dataset name                                         | DOI                  | Source | # Records |
|------------------------------------------------------|----------------------|--------|-----------|
| Taxonomy of Paraplatyarthrus Javidkar and King       |                      |        |           |
| (Isopoda: Oniscidea: Paraplatyarthridae) with        | 10 116/6/zootava 121 |        |           |
| description of five new species from Western         | 10.11040/200laxa.424 | GBIF   | 9         |
| Australia, and comments on Australian Trichorhina    | 5.5.1                |        |           |
| Budde-Lunde, 1908 (Platyarthridae)                   |                      |        |           |
| Woodmeadow Invertebrate Survey 2015                  | 10.15468/zyqxsa      | GBIF   | 9         |
| A Review Of Bopyrids (Crustacea: Isopoda:            | 10.1206/amnb-921-    |        |           |
| Bopyridae) Parasitic On Caridean Shrimps             | 00-01 1              | GBIF   | 8         |
| (Crustacea: Decapoda: Caridea) From China            | 00-01.1              |        |           |
| Alterra (NL) - Entomofauna inventory in edges of     | 10.15468/bu8fea      | GBIF   | 8         |
| arable fields province of Groningen                  | 10.13 100/040104     | ODI    | 0         |
| Base de datos de la Sala de Colecciones Biológicas   | 10 15468/d3auf9      | GBIF   | 8         |
| de la Universidad Católica del Norte (SCBUCN)        | 10.12 100/ 454415    | ODI    | 0         |
| CardObs: Observations naturalistes issues de l'outil |                      |        |           |
| de saisie et gestion CardObs mis en place par le     |                      |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/th8va6      | GBIF   | 8         |
| PatriNat (OFB - CNRS - MNHN) - Données               |                      |        |           |
| naturalistes de Cyril EPICOCO                        |                      |        |           |
| Colecciones Zoológicas de la Universidad de León,    | 10.15468/yyax17      | GBIF   | 8         |
| Colección de Malacostráceos                          |                      |        |           |
| Crustáceos de la Colección de Referencia de          |                      |        |           |
| Biología Marina de la Universidad del Valle          | 10.15472/uofnlo      | GBIF   | 8         |
| (CERBMcr-UV)                                         |                      |        |           |
| Deep-sea megabenthos of the Eurasian Central         | 10.15468/u2vs8v      | GBIF   | 8         |
| Arctic based on image analysis.                      | 10.15460/51.1        | CDIE   |           |
| Lizard Island Research Station                       | 10.15468/5bsrkm      | GBIF   | 8         |
| MACROBENTHOS COMPOSITION FROM THE                    | 10.15460/            | CDIE   |           |
| RIO LAGARTOS HYPERHALINE COASTAL                     | 10.15468/yvggw4      | GBIF   | 8         |
| LAGOON SYSTEM, YUCATAN, MEXICO                       |                      |        |           |
| Macrobenthos monitoring at long-term monitoring      | 10 1 400 4/202       | CDIE   | 0         |
| stations in the Belgian part of the North Sea from   | 10.14284/202         | GBIF   | 8         |
| 2001 on                                              | 10 154(9/4           | CDIE   | 0         |
| Radgivende Biologer                                  | 10.15468/tqxvcg      | GBIF   | 8         |
| SNH Invertebrate Site Condition Monitoring 2015-     | 10.15468/sgiez0      | GBIF   | 8         |
| 10. Ruii SSI                                         |                      |        |           |
| Survey data of tidal flats on the Monitoring sites   | 10.15468/bywe7w      | GBIF   | 8         |
| Système d'Information sur la Natura et las           |                      |        |           |
| Systeme d'Ille de France Données du naturaliste      | 10.15468/ceht86 GB   |        |           |
| Panten Banoît provenant de la base de donnée du      |                      | GBIF   | 8         |
| SIND Île de France CETTIA                            |                      |        |           |
|                                                      | 10 17021/1620        | GPIE   | 0         |
| The UPK Survey                                       | 10.1/031/1629        | ORIL   | 8         |

| Dataset name                                        | DOI                   | Source | # Records |
|-----------------------------------------------------|-----------------------|--------|-----------|
| The first record of Gnathostenetroididea Kussakin,  |                       |        |           |
| 1967 from Australian waters with description of     | 10 11646/masteria 455 |        |           |
| four new species of Gnathostenetroides Amar,        | 10.11040/200taxa.455  | GBIF   | 8         |
| 1957 (Crustacea: Isopoda: Asellota) from the Great  | 4.2.1                 |        |           |
| Barrier Reef                                        |                       |        |           |
| Universidad de San Carlos de Guatemala -            | 10.15469/mm2cof       | CDIE   | 0         |
| Colección de Crustáceos                             | 10.15468/pm2gei       | GBIF   | 8         |
| Woodmeadow Invertebrate Survey 2016                 | 10.15468/1epq4f       | GBIF   | 8         |
| 2019_nsmk_ms_20200324                               | 10.15468/hnojw7       | GBIF   | 7         |
| Analysis of the macrobenthic community near         | 10 1 400 4/00 6       | CDIE   | 7         |
| Nieuwpoort (1970-1971)                              | 10.14284/206          | GBIF   | 1         |
| Benthic Epifauna Biomass and Abundance Data,        |                       |        |           |
| Arctic Marine Biodiversity Observing Network        | 10.15468/yg2y7v       | GBIF   | 7         |
| (AMBON) research cruise, August 2017                |                       |        |           |
| Colección del Departamento de Biología Animal       | 10.154(0/             | CDIE   | 7         |
| (Zoología) de la Universidad de La Laguna           | 10.15468/yevjxm       | GBIF   |           |
| COMARGIS: Information System on Continental         | 10.15460/0.1.1        | CDIE   | 7         |
| Margin Ecosystems                                   | 10.15468/0djslr       | GBIF   |           |
| Data on the biodiversity of macrophyte              |                       |        |           |
| communities and associated aquatic organisms in     | 10.15460/ 21.5        | ODIE   | 7         |
| lakes of the Vologda Region (North-Western          | 10.15468/yy3dx5       | GBIF   | 1         |
| Russia): algae and invertebrates                    |                       |        |           |
| Diveboard - Scuba diving citizen science            | 10.15460/             | CDIE   | 7         |
| observations                                        | 10.15468/tnjrgy       | GBIF   | 1         |
| HBRG Highland Seashore Project Dataset              | 10.15468/sau7qh       | GBIF   | 7         |
| iNaturalist records from Northern Ireland           | 10.15468/ctgb63       | GBIF   | 7         |
| Löydös Open Finnish Observation Database            | 10.15468/8fzv2j       | GBIF   | 7         |
| Macroinvertebrados bentónicos de playas de arena    |                       |        |           |
| (Monte Hermoso-Pehuen Có, Buenos Aires,             | 10.15468/sfn1ql       | GBIF   | 7         |
| Argentina)                                          |                       |        |           |
| Northern Ireland Environmental Recorders -          | 10.154(0) 05:1        | CDIE   | _         |
| Marine Species Records                              | 10.15468/y25jdr       | GBIF   | 1         |
| Saisie naturaliste opportuniste dans SICEN          |                       |        |           |
| Occitanie - Données opportunistes du CEN Midi-      | 10.15468/jqsgs8       | GBIF   | 7         |
| Pyrénées                                            | 510                   |        |           |
| Seasearch Marine Surveys in the Channel Islands     | 10.15468/0ppp4p       | GBIF   | 7         |
| Sheffield and Rotherham Wildlife Trust - Records    | 10.15468/x3wdpp       | GBIF   | 7         |
| Six new epigean species of Caecidotea (Isopoda:     | 11                    |        |           |
| Asellidae) distributed along the Trans-Mexican      | 10.11646/zootaxa.496  | GBIF   | 7         |
| Volcanic Belt in Central Mexico                     | 5.1.2                 | 0211   |           |
| Species list recorded by baited cameras at deep sea |                       |        |           |
| area in Japan                                       | 10.15468/vgfyzy       | GBIF   | 7         |
| St Andrews BioBlitz 2014                            | 10.15468/erweal       | GBIF   | 7         |
| Ty Canol National Nature Reserve (NNR) Species      |                       |        | ,         |
| Inventory                                           | 10.15468/shxquu       | GBIF   | 7         |

| Dataset name                                          | DOI                 | Source | # Records |
|-------------------------------------------------------|---------------------|--------|-----------|
| UAM Insect Collection (Arctos)                        | 10.15468/qs8slz     | GBIF   | 7         |
| A review of the genus Apocepon Nierstrasz &           |                     |        |           |
| Brender à Brandis (Isopoda: Epicaridea:               | 10.5281/zenodo.2646 |        |           |
| Bopyridae) parasitic on purse crabs (Decapoda:        | 350                 | GBIF   | 6         |
| Brachyura: Leucosiidae) from Chinese waters, with     | 559                 |        |           |
| description of a new species                          |                     |        |           |
| Artenvielfalt am Eich-Gimbsheimer Altrhein            | 10.15468/3hek17     | GBIF   | 6         |
| Artenvielfalt auf der Weide - GEO-                    | 10.15468/tzouw2     | CDIE   | 6         |
| Hauptveranstaltung in Crawinkel                       | 10.15400/tzeuw5     | ODII   | 0         |
| BRERC Notable Species records within the last 10      | 10.15468/ymtgoy     | CDIE   | 6         |
| years                                                 | 10.15408/viligox    | UDIF   | 0         |
| BUND - Dassower See (Lübeck/Dassow)                   | 10.15468/qvd4dz     | GBIF   | 6         |
| CardObs: Observations naturalistes issues de l'outil  |                     |        |           |
| de saisie et gestion CardObs mis en place par le      |                     |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/whsrzt     | GBIF   | 6         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                     |        |           |
| naturalistes de BLOND Cyrille                         |                     |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                     |        |           |
| de saisie et gestion CardObs mis en place par le      |                     |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/7vuca9     | GBIF   | 6         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                     |        |           |
| naturalistes de LEPAREUR Fanny                        |                     |        |           |
| Community Foundation for Ireland Records              | 10.15468/vpbxgk     | GBIF   | 6         |
| Dalbekschlucht                                        | 10.15468/kezgzc     | GBIF   | 6         |
| Estonian Museum of Natural History Department         | 10 15468/98exte     | GRIF   | 6         |
| of Zoology                                            | 10.15 100/ 900Ale   | ODI    | 0         |
| First record of the genus Agnara (Isopoda:            | 10 1080/00222933 20 |        |           |
| Oniscidea) from Iran with descriptions of two new     | 16 1193645          | GBIF   | 6         |
| species                                               | 10.1175045          |        |           |
| GEO-Hauptveranstaltung (Insel Vilm)                   | 10.15468/zgyujv     | GBIF   | 6         |
| Macrozoobenthos composition, abundance and            |                     |        |           |
| biomass in the Arctic Ocean along a transect          | 10.15468/iaaimu     | GBIF   | 6         |
| between Svalbard and the Makarov Basin 1991           |                     |        |           |
| Malacostracans Specimens of Akita Prefectural         | 10.15468/uftypp     | GRIF   | 6         |
| Museum                                                | 10.13400/ uttxpli   | ODII   | 0         |
| MoJ BioBlitz August 2018                              | 10.15468/gbyber     | GBIF   | 6         |
| Observations of three Idotea species (I. balthica, I. |                     |        |           |
| chelipes and I. granulosa) in Northern Europe,        | 10.14284/8          | GBIF   | 6         |
| including the Baltic Sea - field data                 |                     |        |           |
| SILENE-FAUNE-PACA -                                   | 10.15468/cychis     | GRIF   | 6         |
| Ville_de_Digne_les_Bains_2017_12_18                   | 10.15+00/094115     |        | 0         |
| SNH Invertebrate Site Condition Monitoring            | 10 15468/vue3os     | GRIF   | 6         |
| 2013/14: Black Wood of Rannoch SSSI                   | 10.15-00/100525     |        | 0         |
| Species found in the NOMS estate 2005 - Present       | 10.15468/wcx4is     | GBIF   | 6         |

| Dataset name                                                                                        | DOI                  | Source | # Records |
|-----------------------------------------------------------------------------------------------------|----------------------|--------|-----------|
| Subtidal macrobenthos monitoring in function of a foreshore suppletion at the Belgian coast, period | 10.14284/342         | GBIF   | 6         |
| 2013-2016                                                                                           |                      |        |           |
| Swiss Occurrence Records of Native Species of                                                       | 10 15468/si6a9x      | GBIE   | 6         |
| Various Faunal Groups                                                                               | 10.15400/5j047X      | ODIT   | 0         |
| Texas Tech University - Invertebrate Zoology                                                        | 10.15468/ga4bmd      | GBIF   | 6         |
| University of Tartu Natural History Museum and<br>Botanical Garden Zooloogical Collections          | 10.15468/6hfnux      | GBIF   | 6         |
| Base de données faune - DREAL Centre-Val de<br>Loire. Polygones                                     | 10.15468/iwm38f      | GBIF   | 5         |
| BD de la plateforme partagée pour la diffusion des                                                  |                      |        |           |
| données naturalistes de Haute-Normandie -<br>Inventaires faunistiques et floristiques de la ville   | 10.15468/3uduna      | GBIF   | 5         |
| du Havre                                                                                            |                      |        |           |
| Biodiversidad de crustáceos dulceacuícolas del                                                      |                      |        |           |
| centro de Nuevo León y noroeste de Tamaulipas                                                       | 10.15468/gsafre      | GBIF   | 5         |
| (R53, Río San Juan y Río Pesqueria)                                                                 |                      |        |           |
| data.mnhn.lu observation data                                                                       | 10.15468/n4k9j5      | GBIF   | 5         |
| Distribution of haploniscids (Isopoda, Asellota,                                                    |                      | GBIF   | 5         |
| Haploniscidae) in Icelandic waters, with                                                            | 10.11646/zootaxa.423 |        |           |
| description of Haploniscus astraphes n. sp. from                                                    | 1.3.1                |        |           |
| Landownnidea (Crustaeaet Jaare da) reviewed                                                         |                      |        |           |
| with a description of an intact specimen of                                                         | 10.11646/zootaxa.326 | GRIF   | 5         |
| Thylakogaster Wilson & Hessler 1974                                                                 | .1.1                 | ODI    | 5         |
| IBSA Surveys from Bennelongia Environmental                                                         |                      |        |           |
| Consultants                                                                                         | 10.15468/thwwv5      | GBIF   | 5         |
| Macrobenthos Chukchi Sea, 1986                                                                      | 10.15468/owfiui      | GBIF   | 5         |
| Nivå Bay species list, Zealand, Denmark                                                             | 10.15468/97nj93      | GBIF   | 5         |
| Observations faune et flore du Parc national des                                                    |                      | CDIE   | _         |
| Écrins                                                                                              | 10.15468/xckykf      | GBIF   | 5         |
| Ohio Wesleyan University Parasite Specimens                                                         | 10.15469/9           | CDIE   | 5         |
| (Arctos)                                                                                            | 10.15468/8njvkv      | GBIF   | 3         |
| PondNet data 2012-2014                                                                              | 10.15468/qv8ped      | GBIF   | 5         |
| Réserves Naturelles de France (RNF) - RNF - LPO                                                     | 10 15468/bzahe2      | GRIF   | 5         |
| Rhône-Alpes                                                                                         | 10.13408/02anc2      | ODI    | 5         |
| Seasearch Marine Surveys in Wales                                                                   | 10.15468/4us2hk      | GBIF   | 5         |
| SNH Invertebrate Site Condition Monitoring                                                          | 10 15468/9dk3dk      | GBIF   | 5         |
| 2013/14: Earlshall Muir SSSI                                                                        | 10.15 100/ Juke uk   | ODI    | 5         |
| SNH Invertebrate Site Condition Monitoring 2015-16: Morrich More SSSI                               | 10.15468/tofgk4      | GBIF   | 5         |
| St Andrews BioBlitz 2016                                                                            | 10.15468/146yiz      | GBIF   | 5         |

| Dataset name                                       | DOI                           | Source     | # Records |
|----------------------------------------------------|-------------------------------|------------|-----------|
| Système d'Information sur la Nature et les         |                               |            |           |
| Paysages d'Ile de France - Données de la structure | 10 15/68/pfak5i               | GRIF       | 5         |
| Naturessonne provenant de la base de donnée du     | 10.13400/pigk3j               | ODII       | 5         |
| SINP Île-de-France CETTIA                          |                               |            |           |
| Temporal data series of Benthic macrofauna         |                               |            |           |
| abundance and composition from the Patos Lagoon    | 10.15468/lsoc2v               | GBIF       | 5         |
| estuary                                            |                               |            |           |
| Three new species of Ischioscia Verhoeff, 1928     |                               |            |           |
| (Isopoda, Oniscidea, Philosciidae) from Serranía   | 10.5252/zoosystema2           | GBIF       | 5         |
| de Perijá, Andean Cordillera, Colombian            | 020v42a8                      | ODI        | 5         |
| Caribbean                                          |                               |            |           |
| Two new species of idoteid isopods (Crustacea,     | 10.11646/zootaxa.485          | GBIF       | 5         |
| Isopoda, Idoteidae) from Korea                     | 8.2.2                         | ODI        |           |
| Water Framework Directive AGE, Recorder-Lux        | 10 15468/mhcb8w               | GBIF       | 5         |
| database                                           | 10.12 100/11112000            | ODI        |           |
| Abundance of macrobenthos organisms in the         | 10.1594/pangaea.7550          | GBIF       | 4         |
| northern Wadden Sea in 2007                        | 36                            |            | •         |
| Abundance of macrobenthos organisms in the         | 10.1594/pangaea.7550          | GBIF       | 4         |
| northern Wadden Sea in 2008                        | 37                            | <u>ODI</u> |           |
| Abundance of macrobenthos organisms in the         | 10.1594/pangaea.7550          | GBIF       | 4         |
| northern Wadden Sea in 2009                        | 38                            |            |           |
| Abundance of macrobenthos organisms in the         | 10.1594/pangaea.7550          | GBIF       | 4         |
| northern Wadden Sea in 2010                        | 39                            |            |           |
| Alterra (NL) - Entomofauna inventory in cattle     | 10.15468/zp5oif               | GBIF       | 4         |
| grazed dune grassland                              | *                             |            |           |
| Alterra (NL) - Entomotauna inventory in Speulder   | 10.15468/bzy3j3               | GBIF       | 4         |
| Iorest                                             | 10.154(9/2) 1                 | CDIE       | 4         |
| Antarctic Marine Species Sequence Data             | 10.15468/q2xdwg               | GBIF       | 4         |
| Atlas of Life in the Coastal Wildowses             | 10.15468/01010F               | CDIE       | 4         |
| Atlas of Life in the Coastal wilderness            | 10.15408/FIXJKI               | GBIF       | 4         |
| Biological Reference Collections ICM-CSIC          | 10.154/0/qiqqax               | GBIF       | 4         |
| Biotope in Rheine - Aktion 350                     | 10.15468/gpphjn               | GBIF       | 4         |
| Cancrion khannensis sp. nov. (Crustacea: Isopoda:  |                               |            |           |
| Entoniscidae) infesting Monomia haanii             |                               |            |           |
| (Stimpson, 1858) (Crustacea: Brachyura:            | 10.11646/zootaxa.489<br>4.3.4 | CDIE       | 4         |
| Portunidae) from Nha Trang Bay, Khann Hoa,         |                               | GBIF       | 4         |
| vietnam, with remarks on larval stages of          |                               |            |           |
| entoniscids and description of a new family, genus |                               |            |           |
| and two new species of hyperparasites              |                               |            |           |
| Varified data                                      | 10.15468/zeay1d               | GBIF       | 4         |
| - vermeu uata                                      | 10.15/68/apash                | CPIE       | 1         |
| Crustacea Collection of Natural History Museum     | 10.13400/qaecsii              | UBIF       | 4         |
| and Institute, Chiba                               | 10.15468/jkxmar               | GBIF       | 4         |

| Dataset name                                         | DOI                 | Source | # Records |
|------------------------------------------------------|---------------------|--------|-----------|
| Crustacea specimens of Kuroshio Biological           | 10.15468/a12by0     | CDIE   | 4         |
| Research Foundation                                  | 10.13400/al20y0     | UDIF   | 4         |
| Description of four new species of the Cirolana '    |                     |        |           |
| parva group' (Crustacea: Isopoda: Cirolanidae)       | 10.1080/00222933.20 | CDIE   | 1         |
| from Thailand, with supporting molecular (COI)       | 16.1180718          | UDIF   | 4         |
| data                                                 |                     |        |           |
| Dipterists Forum: Field Week 2017 (Snowdonia)        | 10.15468/u77728     | GBIF   | 4         |
| Données d'observations des plongeurs de la           | 10.15468/yeau/ba    | CDIE   | 1         |
| FFESSM - Données DORIS de la FFESSM                  | 10.15408/vguv0q     | UDIF   | 4         |
| Données faune, flore et fonge du Conservatoire des   | 10.15469/afa2ua     | CDIE   | Λ         |
| espaces naturels du Nord Pas-de-Calais               | 10.13400/218576     | UDIF   | 4         |
| Further investigations of the effects of the Nella   | 10.4225/15/54adb63d | CDIE   | 1         |
| Dan oil spill 1988/94                                | e539d               | UDIF   | 4         |
| GEO-Hauptveranstaltung Bodden (Vilm)                 | 10.15468/ismecy     | GBIF   | 4         |
| Greenland macrobenthos 2006                          | 10.15468/u7ulpu     | GBIF   | 4         |
| Hatikka.fi observations                              | 10.15468/te1t61     | GBIF   | 4         |
| Inventaire de la Réserve naturelle de l'Etang noir - | 10 15469/2000       | CDIE   | 4         |
| Données de présence récoltées                        | 10.13408/uZXVII     | GBIF   | 4         |
| Inventaire entomologique standardisé des ZNIEFF      |                     |        |           |
| de Martinique - Observations diverses réalisées à    | 10 15469/2007       | CDIE   | 1         |
| l'occasion de l'inventaire entomologique des         | 10.13408/wa/eeu     | UDIF   | 4         |
| ZNIEFF de Martinique                                 |                     |        |           |
| Inventario computarizado de la colección de          | 10 15468/wahk6a     | CDIE   | 1         |
| parásitos de peces del noroeste de México            | 10.15406/ VEIIKOO   | UDIF   | 4         |
| Inventory and BioBlitz Records from rare             | 10 5886/hb6td0in    | GRIE   | 1         |
| Charitable Research Reserve                          | 10.5000/milotd/jii  | ODI    | т         |
| Kiesbagger (Mittelhausen)                            | 10.15468/kxby8i     | GBIF   | 4         |
| Klutensee                                            | 10.15468/bb4gdi     | GBIF   | 4         |
| Langes Tannen (Uetersen)                             | 10.15468/1beryy     | GBIF   | 4         |
| Liaison autoroutière concédée entre Machilly et      |                     |        |           |
| Thonon les Bains et suppression des passages à       |                     |        |           |
| niveau N° 65 et 66 à Perrignier Haute-Savoie -       | 10.15468/dbk2cb     | GBIF   | 4         |
| Crustacés - Inventaire non standardisé -             |                     |        |           |
| FRAPNA74 - 24HNAT                                    |                     |        |           |
| Local BioBlitz Challenge 2013                        | 10.15468/gcyq62     | GBIF   | 4         |
| Museu Paraense Emílio Goeldi - Carcinológica         | 10 15469/tm a a av  | CDIE   | 1         |
| Collection                                           | 10.13468/tmqcgv     | GBIF   | 4         |
| Naturschutzgebiet Bausenberg (Niederzissen)          | 10.15468/xjeiwv     | GBIF   | 4         |
| Nottinghamshire Wildlife Trust - Records             | 10.15468/p2vf4u     | GBIF   | 4         |
| Numérisation des données faune contenues dans        |                     |        |           |
| les Bulletins de la Société Linnéenne de Bordeaux    | 10 15469/06         | CDIE   | Л         |
| - Bulletin de la Société Linnéenne de Bordeaux,      | 10.13408/91anwu     | UBIL   | 4         |
| Tome 144 (N.S) n° 37 (3), 2009 - Données faune       |                     |        |           |

| Dataset name                                      | DOI                   | Source | # Records |
|---------------------------------------------------|-----------------------|--------|-----------|
| Numérisation des données faune contenues dans     |                       |        |           |
| les Bulletins de la Société Linnéenne de Bordeaux | 10.15469/9-21         | CDIE   | 1         |
| - Bulletin de la Société Linnéenne de Bordeaux,   | 10.13408/822nrc       | GBIF   | 4         |
| Tome 148 (N.S) n° 41 (3), 2013 - Données faune    |                       |        |           |
| Ontario BioBlitz Species Records                  | 10.5886/mc7h1q        | GBIF   | 4         |
| Plankton&BenthosResearch                          | 10.15468/f55mxn       | GBIF   | 4         |
| Port Phillip Bay Environmental Study Data 1992-   | 10 15469/4-lb =ff     | CDIE   | 4         |
| 1996 - infauna records                            | 10.15468/tabqff       | GBIF   | 4         |
| Programme CarNET B (Cartographie Nationale        |                       |        |           |
| des Enjeux Territorialisés de Biodiversité        | 10.15468/snvauq       | GBIF   | 4         |
| Remarquable) - Carnet B Lorraine                  |                       |        |           |
| RACCORDEMENT ELECTRIQUE DE LA                     |                       |        |           |
| FERME EOLIENNE FLOTTANTE DE GROIX                 |                       |        |           |
| ET BELLE-ILE - Création de la liaison sous-       | $10.15469/mch^{2}$    | CDIE   | 1         |
| marine et souterraine à 63 000 volts - Campagne   | 10.13408/uu1gb2       | GBIF   | 4         |
| benthos Benne2015-2017-Raccordement du parc       |                       |        |           |
| éolien Groix/Belle-île                            |                       |        |           |
| Réserves Naturelles de France (RNF) - RNF -       |                       |        |           |
| Données de l'Association GEREPI (GEstion de la    | 10.15468/vpufca       | GBIF   | 4         |
| REserve naturelle nationale du PInail)            |                       |        |           |
| SILENE-FAUNE-PACA -                               | 10.15469/21           | CDIE   | 4         |
| CEN_PACA_2017_12_18                               | 10.15468/3KmWVZ       | GBIF   | 4         |
| SNH Invertebrate Site Condition Monitoring 2015-  | 10 15469/involve      | CDIE   | 4         |
| 16: Den of Airlie SSSI                            | 10.13408/10refw       | GBIF   | 4         |
| Study of epibenthos and demersal fish in and      |                       |        |           |
| around the thiocarbamate discharge area of the    | 10.14284/204          | GBIF   | 4         |
| Belgian Continental Shelf (1977-1981)             |                       |        |           |
| Suivi et inventaire de la réserve naturelle de    |                       |        |           |
| Saucats - La Brède - Inventaire et suivi          | 10.15468/pee75t       | GBIF   | 4         |
| Entomologiques de 2012-2013                       |                       |        |           |
| Two new species and a new record of Metacirolana  | 10 116/6/zootava /37  |        |           |
| Kussakin, 1979 (Crustacea: Isopoda: Cirolanidae)  | 10.11040/200taxa.45/  | GBIF   | 4         |
| from Indonesia                                    | 0.5.4                 |        |           |
| UAM Insect Observations (Arctos)                  | 10.15468/8nv0mp       | GBIF   | 4         |
| (Table 2) Megafauna density 2002, 2004 and 2007   | 10.1504/mangaaa 8074  |        |           |
| in the deep-sea observatory AWI-HAUSGARTEN,       | 10.1394/paligaca.80/4 | GBIF   | 3         |
| Fram Strait                                       | 40                    |        |           |
| (Table 3a and b) Median biomass of macrobenthos   | 10.15468/dffamm       | CDIE   | 2         |
| in surface sediments                              | 10.13406/011511111    | ODIF   | 5         |
| Alterra (NL) - Entomofauna inventory in           | 10 15468/a1:2+a       | CDIE   | 2         |
| Amerongen forest                                  | 10.13408/411518       | UDIF   | 5         |
| Artenerfassung für Jedermann in der Grundschule   | 10 15/60/61 1         | CDIE   | · ·       |
| Kirchboitzen                                      | 10.13408/IIdSVX       | GRIL   | 3         |
| Artenvielfalt der Nordsee - Sylt                  | 10.15468/nvhjkx       | GBIF   | 3         |
| Artenvielfalt rund um die Dalbek-Schule           | 10.15468/sstxbs       | GBIF   | 3         |

| Dataset name                                         | DOI                         | Source | # Records |
|------------------------------------------------------|-----------------------------|--------|-----------|
| Auburn University Museum of Natural History          | 10.15468/kpb05k             | GBIF   | 3         |
| BioBlitz Barcelona 2010-14                           | 10.15470/ssy7h3             | GBIF   | 3         |
| Biodiversidad selecta de los humedales de Laguna     | 10.15460/41 0               | CDIE   |           |
| de Términos - Pantanos de Centla (Crustáceos)        | 10.15468/4hcqs2             | GBIF   | 3         |
| Biotope auf dem Gelände der Eggerstedt- Kaserne      | 10.15469/1.10m;2            | CDIE   | 2         |
| in der Nachbarschaft der Theodor-Heuss-Schule        | 10.13408/k10002             | UDIF   | 3         |
| Brucerolis gen. n., and Acutiserolis Brandt, 1988,   | 10.3897/zookeys 18.1        |        |           |
| deep-water southern genera of isopods (Crustacea,    | 29                          | GBIF   | 3         |
| Isopoda, Serolidae)                                  | 2)                          |        |           |
| CardObs: Observations naturalistes issues de l'outil |                             |        |           |
| de saisie et gestion CardObs mis en place par le     |                             |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS             | 10.15468/m88gaf             | GBIF   | 3         |
| PatriNat (OFB - CNRS - MNHN) - Données               |                             |        |           |
| naturalistes de MICHALKE Friedrich                   |                             |        |           |
| Coastal and Marine Species Database                  | 10.15468/oynwkx             | GBIF   | 3         |
| Collection Crustacea NHCY                            | 10.15468/7zrnia             | GBIF   | 3         |
| Crustacea Collection - Instituto Nacional de         | 10.15469/dihma              | CDIE   | 2         |
| Pesquisas da Amazônia (INPA)                         | 10.13468/dinynq             | GBIF   | 3         |
| Cylindroniscus platoi (Isopoda: Oniscidea:           | 10.11(4()                   |        |           |
| Styloniscidae), a new cave-dwelling species from     | 10.11040/200taxa.440        | GBIF   | 3         |
| Lagoa Santa Karst, Southeastern Brazil               | 1.3.0                       |        |           |
| Dalbek-Schlucht                                      | 10.15468/bztwdl             | GBIF   | 3         |
| Danisco-Wiese                                        | 10.15468/pkqdoq             | GBIF   | 3         |
| Données de l'association Indre Nature - Données      | 10.154(9/                   | CDIE   | 2         |
| faune Indre Nature 2016-2017                         | 10.13408/Vasool             | GBIF   | 3         |
| Données naturalistes du CEN Auvergne concernant      |                             |        |           |
| la Faune, la Flore et la Fonge - Données             | 10 15469/2006-1             | CDIE   | 2         |
| naturalistes faune du Conservatoire des espaces      | 10.13408/1g00Zd             | GBIF   | 3         |
| naturels Auvergne saisies avant le 18 février 2019.  |                             |        |           |
| Données ONF faune-flore-fonge                        | 10.15468/ykstli             | GBIF   | 3         |
| Dorset Sites of Nature Conservation Interest         | 10.15469/aua20u             | CDIE   | 2         |
| (SNCI) species records pre 2000                      | 10.13408/498290             | UDIF   | 5         |
| EDIT - ATBI in Mercantour/Alpi Marittime             | 10.15469/4=4hto             | CDIE   | 2         |
| (France/Italy)                                       | 10.13408/424110             | UDIF   | 5         |
| Fauna and flora of Sumskyi district in Sumy region   | 10 15/60/tm du Orr          | CDIE   | 2         |
| of Ukraine                                           | 10.13408/indu8x             | GBIF   | 3         |
| Freigelände Naturschutzscheune Reinheimer Teich      | 10 1 <b>5</b> 469/mm di a 1 | CDIE   | 2         |
| (Kreis Darmstadt-Dieburg)                            | 10.15468/uxdjq1             | GBIF   | 3         |
| GEO-Hauptveranstaltung im Nationalpark               | 10.154(0/h1                 | CDIE   | 2         |
| Bayerischer Wald                                     | 10.13408/DXXDMJ             | UBIF   | 3         |
| Gestion de sites - Données invertébrés sites CEN     | 10 15/60/0001-              | CDIE   | 2         |
| MP                                                   | 10.13408/8upqwk             | GRIL   | 3         |
| Gulf of Gdansk                                       | 10.14284/262                | GBIF   | 3         |

| Dataset name                                       | DOI                   | Source | # Records |
|----------------------------------------------------|-----------------------|--------|-----------|
| Homoplasy and morphological stasis revealed        |                       |        |           |
| through multilocus phylogeny of new                | $10.15469/m = 5m^{1}$ | CDIE   | 2         |
| myrmecophilous species in Armadillidiidae          | 10.15468/ugz5xb       | GBIF   | 3         |
| (Isopoda: Oniscidea)                               |                       |        |           |
| Illinois Natural History Survey Insect Collection  | 10.15468/eol0pe       | GBIF   | 3         |
| Inventaires menés dans le cadre du Groupe          |                       |        |           |
| Invertébrés de Midi-Pyrénées (GIMP) - Données      | 10.15468/5bqura       | GBIF   | 3         |
| invertébrés en Midi-Pyrénées                       |                       |        |           |
| kerkyra                                            | 10.15468/jdyl94       | GBIF   | 3         |
| La Planète revisitée - Corse 2019-2022 - La        |                       |        |           |
| Planète Revisitée Corse: observations lors des     | 10.15468/2ecziz       | GBIF   | 3         |
| phases de reconnaissance et d'installation         |                       |        |           |
| Langes Tannen                                      | 10.15468/ggcyus       | GBIF   | 3         |
| Lebensraum Walram                                  | 10.15468/ykmjru       | GBIF   | 3         |
| Lothian Wildlife Information Centre Secret Garden  | 10 15/60/1-9 aget     | CDIE   | 2         |
| Survey                                             | 10.13408/K8goci       | GBIF   | 3         |
| Macrobenthos and Phytoplankton monitoring in       |                       |        |           |
| the Belgian coastal zone in the context of the EU  | 10.15468/6rk9c3       | GBIF   | 3         |
| Water Framework Directive (WFD)                    |                       |        |           |
| Marine Invertebrate from Argentina, Uruguay and    | 10 15/69/watasha      | CDIE   | 2         |
| Chile                                              | 10.13408/XIIIWIIa     | UDIF   | 3         |
| Maritimes 4VSW Research Vessel Surveys             | 10.15468/gw9n44       | GBIF   | 3         |
| Naturpark Kottenforst-Ville 15.6.09                | 10.15468/m9jzql       | GBIF   | 3         |
| Naturpark Kottenforst-Ville 17.6.09                | 10.15468/y4sjuo       | GBIF   | 3         |
| Naturpark Kottenforst-Ville Sammelaktion 15        | 10 15/68/vt011t       | GRIF   | 3         |
| 19.6.                                              | 10.13400/2011         | ODII   | 5         |
| Naturschutzgebiet Bausenberg                       | 10.15468/md7w7n       | GBIF   | 3         |
| Northeast Area Monitoring and Assessment           | 10 15468/wyglei       | GRIF   | 3         |
| Program Near Shore Trawl Survey (NEAMAP)           | 10.15400/Vygici       | ODII   | 5         |
| NSW BioNet Atlas                                   | 10.15468/14jd9g       | GBIF   | 3         |
| Numérisation des données faune contenues dans      |                       |        |           |
| les Bulletins de la Société Linnéenne de Bordeaux  | 10 15468/7a25t7       | GBIF   | 3         |
| - Bulletin de la Société Linnéenne de Bordeaux,    | 10.15 100/ 192507     | ODI    | 5         |
| Tome 136 (N.S) n° 29 (1), 2001 - Données faune     |                       |        |           |
| Out on a limb: novel morphology and position on    |                       |        |           |
| appendages of two new genera and three new         | 10.5252/zoosystema2   | GBIF   | 3         |
| species of ectoparasitic isopods (Epicaridea:      | 021v43a4              | ODI    | 5         |
| Dajidae) infesting isopod and decapod hosts        |                       |        |           |
| Programme national de science participative sur la | 10.15468/xmv4ik       | GBIF   | 3         |
| Biodiversité Littorale (BioLit)                    | TOTE TOOMIN IN        |        | 5         |
| Réserves Naturelles de France (RNF) - RNF -        | 10.15468/cuj0gy       | GBIF   | 3         |
| Données du Conservatoire d'espaces naturel Centre  |                       | UDIF   |           |
| Dataset name                                        | DOI                   | Source | # Records |
|-----------------------------------------------------|-----------------------|--------|-----------|
| Revision of the genera Cyphonethes Verhoeff,        |                       |        |           |
| 1926 and Titanethes Schioedte, 1849 (Isopoda:       | 10.11646/zootaxa.445  | CDIE   | 2         |
| Oniscoidea: Trichoniscidae) with a description of a | 9.2.3                 | UDIF   | Э         |
| new genus and three new taxa                        |                       |        |           |
| RMT Trawl catch from the 1984/85 V5 SIBEX2          | 10 15160/aldina       | CDIE   | 2         |
| voyage                                              | 10.15468/qKiire       | GBIL   | 3         |
| Schulhof der Astrid-Lindgren-Schule (Elmshorn)      | 10.15468/ecoaxi       | GBIF   | 3         |
| Seasearch Marine Surveys in Ireland                 | 10.15468/pyugge       | GBIF   | 3         |
| Senckenberg - CeDAMar Resource                      | 10.15468/oc9tsb       | GBIF   | 3         |
| SILENE-FAUNE-PACA -                                 | 10.154(0/             | CDIE   | 2         |
| Tour_du_Valat_2017_12_18                            | 10.15468/nnw2xy       | GRIL   | 3         |
| SNH Invertebrate Site Condition Monitoring          | 10.15469/2 200        | CDIE   | 2         |
| 2013/14: Cadder Wilderness SSSI                     | 10.15468/ag88wc       | GRIL   | 3         |
| SNH Invertebrate Site Condition Monitoring          | 10.154(9/(09-         | CDIE   | 2         |
| 2013/14: Cairngorms SSSI                            | 10.15468/v69w8a       | GRIF   | 5         |
| Study on plankton at the port of Ostend in 1965     | 10.14284/72           | GBIF   | 3         |
| Système d'Information sur la Nature et les          |                       |        |           |
| Paysages d'Ile de France - Données de la structure  | 10.15460/             | CDIE   | 2         |
| AVEN du Grand Voyeux provenant de la base de        | 10.15468/gjjí/u       | GBIF   | 3         |
| donnée du SINP Île-de-France CETTIA                 |                       |        |           |
| Système d'Information sur la Nature et les          |                       |        |           |
| Paysages d'Ile de France - Données du naturaliste   |                       | CDIE   |           |
| ducourneau philippe provenant de la base de         | 10.15468/kqktar       | GBIF   | 3         |
| donnée du SINP Île-de-France CETTIA                 |                       |        |           |
| Système d'Information sur la Nature et les          |                       |        |           |
| Paysages d'Ile de France - Données naturalistes     | 10.15468/topfnj       | GBIF   | 3         |
| hors Île-de-France saisies dans Cettia-idf          |                       |        |           |
| Three new species of abdominal shrimp parasites     | 10.11(4()             |        |           |
| (Crustacea: Isopoda: Bopyridae Hemiarthrinae)       | 10.11646/zootaxa.484  | GBIF   | 3         |
| from the Indo-West Pacific                          | 5.2.7                 |        |           |
| Three new species of Tridentella Richardson, 1905   | 10.11(4()             |        |           |
| (Isopoda: Cymothoida: Tridentellidae) from New      | 10.11646/zootaxa.439  | GBIF   | 3         |
| Caledonia                                           | 9.1.0                 |        |           |
| Two new species of the marine isopod genus          |                       |        |           |
| Cirolana Leach, 1818 (Crustacea Isopoda:            | 10.11646/zootaxa.495  | CDIE   | 2         |
| Cirolanidae) from the coast of the western Gulf of  | 0.3.3                 | GRIL   | 3         |
| Thailand                                            |                       |        |           |
| Unser kleines Rasenstück/Dürer-Gymnasium            | 10.15460/             | CDIE   | 2         |
| Nürnberg                                            | 10.15468/onaexb       | GRIF   | 3         |
| Yorkshire Wildlife Trust Shoresearch                | 10.15468/1nw3ch       | GBIF   | 3         |
| Zukünftiges NSG Höftland/Bockholmwik                | 10.15468/licmym       | GBIF   | 3         |
| (Table 2) Species density and composition of an     |                       |        |           |
| inshore and offshore station in Kongsfjord,         | 10.1594/pangaea.80//4 | GBIF   | 2         |
| Svalbard                                            | 23                    |        |           |
| 20 Jahre Naturschutzgebiet Dreienberg               | 10.15468/eujkfo       | GBIF   | 2         |

| Dataset name                                                                                                                                                                                                    | DOI                                 | Source | # Records |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|-----------|
| 5. Tag der Artenvielfalt: Thema Stadtbiotope                                                                                                                                                                    | 10.15468/rws1pw                     | GBIF   | 2         |
| A new species of Aphantolana Moore & Brusca,<br>2003 (Crustacea: Isopoda Cirolanidae) from the<br>Andaman Islands, northern Indian Ocean                                                                        | 10.11646/zootaxa.486<br>0.4.4       | GBIF   | 2         |
| A new species of Benthana (Crustacea: Isopoda:<br>Philosciidae) from southern Brazil                                                                                                                            | 10.1590/s0101-<br>81752008000200019 | GBIF   | 2         |
| A new species of Pseudione Kossmann, 1881<br>(Isopoda, Cymothoida, Bopyridae) parasitizing the<br>lobster Nephropsis aculeata Smith, 1881<br>(Decapoda, Astacidea, Nephropidae) in the<br>Southwestern Atlantic | 10.11646/zootaxa.446<br>1.2.5       | GBIF   | 2         |
| Abundance of benthos infauna at station<br>GIK23011-2                                                                                                                                                           | 10.1594/pangaea.9869<br>2           | GBIF   | 2         |
| Abundance of benthos infauna at station<br>POS128/2_281                                                                                                                                                         | 10.1594/pangaea.9872<br>3           | GBIF   | 2         |
| Activité générale du bureau d'étude BIOTOPE<br>(1994 - 2013) - Données acquises dans le cadre de<br>l'activité du bureau d'étude BIOTOPE (1994 -<br>2013)                                                       | 10.15468/d3mzxf                     | GBIF   | 2         |
| Alter Nördlicher Friedhof (München)                                                                                                                                                                             | 10.15468/mwncvk                     | GBIF   | 2         |
| Análisis taxonómicos de macrofauna bentónica<br>para el Plan de Vigilancia Ambiental de las<br>instalaciones de prueba de la sección 3 de Navantia<br>Cartagena                                                 | 10.15470/cyai9c                     | GBIF   | 2         |
| Analysis of macrobenthos in the Southern Bight of<br>the North Sea (1971-1972)                                                                                                                                  | 10.14284/208                        | GBIF   | 2         |
| Arachnida and Myriapoda (Luomus)                                                                                                                                                                                | 10.15468/sjz32u                     | GBIF   | 2         |
| Arcturina serrulatus sp. nov. and a new record of<br>Limnoria rhombipunctata (Crustacea:<br>Malacostraca: Isopoda) from South Korea                                                                             | 10.11646/zootaxa.428<br>6.3.8       | GBIF   | 2         |
| Artenvielfalt der Nordsee - Bremerhaven (Dorum-<br>Neufeld)                                                                                                                                                     | 10.15468/1nx8rw                     | GBIF   | 2         |
| Artenvielfalt im Umfeld der Burgwegschule                                                                                                                                                                       | 10.15468/irih8t                     | GBIF   | 2         |
| Artenvielfalt Kreis Gießen                                                                                                                                                                                      | 10.15468/3dqrtw                     | GBIF   | 2         |
| Avon Baselining - Invertebrates                                                                                                                                                                                 | 10.15468/fejuuu                     | GBIF   | 2         |
| Bayerische Donau - Blindheim Donaubrücke                                                                                                                                                                        | 10.15468/xyxkih                     | GBIF   | 2         |
| BB-Biodiversität b                                                                                                                                                                                              | 10.15468/y5jdy2                     | GBIF   | 2         |
| Biological observations from the Discovery<br>Investigations 1925-1952                                                                                                                                          | 10.15468/qoqbu7                     | GBIF   | 2         |
| Biotope entdecken im Kockmecker Siepen<br>(Sauerland)                                                                                                                                                           | 10.15468/phafd6                     | GBIF   | 2         |
| BoBO - Botanic Garden and Botanical Museum<br>Berlin Observations                                                                                                                                               | 10.15468/91l2gz                     | GBIF   | 2         |
| Bodentiere rund um die Schule                                                                                                                                                                                   | 10.15468/8omfbl                     | GBIF   | 2         |

| Dataset name                                             | DOI                  | Source     | # Records |
|----------------------------------------------------------|----------------------|------------|-----------|
| British Antarctic (Terra Nova) Expedition, 1910-<br>1913 | 10.15468/0gsnmz      | GBIF       | 2         |
| Canadian Museum of Nature Parasite Collection            | 10 15468/khwhzh      | GBIF       | 2         |
| CardObs: Observations naturalistes issues de l'outil     | 10.12 100/ 810020    | ODI        |           |
| de saisje et gestion CardObs mis en place par le         |                      |            |           |
| Service du Patrimoine Naturel (MNHN)/UMS                 | 10.15468/4mv9db      | GBIF       | 2         |
| PatriNat (OFB - CNRS - MNHN) - Données                   | j/                   |            | _         |
| naturalistes de Monsieur JOURDE Rémi                     |                      |            |           |
| CardObs: Observations naturalistes issues de l'outil     |                      |            |           |
| de saisie et gestion CardObs mis en place par le         |                      |            |           |
| Service du Patrimoine Naturel (MNHN)/UMS                 | 10.15468/gnzy46      | GBIF       | 2         |
| PatriNat (OFB - CNRS - MNHN) - Données                   |                      |            |           |
| naturalistes de Monsieur Pratz Jean-Louis                |                      |            |           |
| CardObs: Observations naturalistes issues de l'outil     |                      |            |           |
| de saisie et gestion CardObs mis en place par le         |                      |            |           |
| Service du Patrimoine Naturel (MNHN)/UMS                 | 10.15468/fz9vti      | GBIF       | 2         |
| PatriNat (OFB - CNRS - MNHN) - Données                   |                      |            |           |
| naturalistes de Pierre DUFRENE                           |                      |            |           |
| CardObs: Observations naturalistes issues de l'outil     |                      |            |           |
| de saisie et gestion CardObs mis en place par le         |                      |            |           |
| Service du Patrimoine Naturel (MNHN)/UMS                 | 10.15468/nurqv6      | GBIF       | 2         |
| PatriNat (OFB - CNRS - MNHN) - Zicrona - Parcs           |                      |            |           |
| nationaux                                                |                      |            |           |
| Cirolana bambang, a distinctive new species of           | 10 11646/zootaxa 437 |            |           |
| Cirolana Leach, 1818 (Crustacea: Isopoda:                | 5 3 10               | GBIF       | 2         |
| Cirolanidae) from Bitung, Indonesia                      | 5.5.10               |            |           |
| CLICNAT- Base de données naturaliste picarde -           |                      |            |           |
| Données de terrains coproduites par ADEP et CPIE         | 10.15468/9c7nsw      | GBIF       | 2         |
| Pays de l'Aisne                                          |                      |            |           |
| Commissioned surveys and staff surveys and               |                      |            |           |
| reports for Scottish Wildlife Trust reserves -           | 10.15468/dfwjgc      | GBIF       | 2         |
| Unassessed data                                          |                      |            |           |
| Community analysis and feeding ecology of the            | 10.14284/146         | GBIF       | 2         |
| ichthyofauna in Gazi Bay sampled in August 1993          |                      | ~ <b>.</b> |           |
| Deponie Klausdorf                                        | 10.15468/ypv7ft      | GBIF       | 2         |
| Die Teiche im Britzer Garten                             | 10.15468/sjwh3n      | GBIF       | 2         |
| Données du Parc national des Pyrénées -                  |                      | ~ ~ ~ ~    |           |
| Observations occasionnelles Parc national des            | 10.15468/g3k5au      | GBIF       | 2         |
| Pyrénées                                                 |                      |            |           |
| Données Faune Base SIRFF - FNE Centre-Val de             |                      |            |           |
| Loire - Systeme d'Information Régional sur la            | 10.15468/8isgcf      | GBIF       | 2         |
| Faune et la Flore - FNE Centre-Val de Loire -            |                      |            |           |
| Donnees 2015                                             |                      |            |           |
| DUNNEES NATURALISTES ATBI                                | 10.15468/ps878a      | GBIF       | 2         |
| MERCANTOUR HORS PÉRIMÈTRE PARC                           | 10.15468/ps878a      | GBIF       | 2         |

| Dataset name                                                              | DOI                | Source | # Records |
|---------------------------------------------------------------------------|--------------------|--------|-----------|
| Données transmises au PNR Périgord-Limousin                               |                    |        |           |
| n'étant pas commanditées par le parc - Inventaire                         | 10.15468/237h7e    | GBIF   | 2         |
| Faune récolté lors du stage des Curieux de Nature                         |                    |        |           |
| Einen Tag lang Forscher sein - Die 5c der Erich-                          | 10.15468/y7yby7    | CDIE   | 2         |
| Kästner-Schule erforscht das Bachemer Wiesental                           | 10.13400/v/vIIXZ   | ODII   | 2         |
| Entdeckertour am Muldestausee                                             | 10.15468/1sziel    | GBIF   | 2         |
| Fauna inventories from the intertidal zone in                             | 10 15468/ktfmzh    | GBIF   | 2         |
| Wimereux, France                                                          | 10.13400/ ktmi2n   | ODII   |           |
| Feuchtbiotop Otto-Hahn-Gymnasium                                          | 10.15468/cw0rjr    | GBIF   | 2         |
| Feuchtbiotop, Wildtier- und Artenschutzstation                            | 10 15468/wkdxvr    | GBIF   | 2         |
| Sachsenhagen, Sielmanns Natur-Ranger                                      | 10.12 100/ 0.84/01 | ODII   | 2         |
| Fortalecimiento de las colecciones de ECOSUR.                             | 10.15468/evh3kd    | GBIF   | 2         |
| Primera fase (Zooplancton Chetumal)                                       |                    | 0.2.11 | _         |
| Frost Entomological Museum                                                | 10.15468/epw1ws    | GBIF   | 2         |
| Garten J. Scherrer (Lachen-Speyerdorf)                                    | 10.15468/lalzoo    | GBIF   | 2         |
| Gelände des Schulzentrums am Himmelsbarg                                  | 10.15468/z6fkc3    | GBIF   | 2         |
| GEO-Tag der Artenvielfalt auf dem Bausenberg                              | 10.15468/camiet    | GBIF   | 2         |
| mit den 4. Klassen der Brohltaler Grundschulen                            |                    | 0211   | _         |
| Gewässer des Wartbergparks Stuttgart (beim                                |                    |        |           |
| Naturlabor der Umweltakademie Baden-                                      | 10.15468/nta3gn    | GBIF   | 2         |
| Württemberg)                                                              |                    |        |           |
| Grünes Germersheim                                                        | 10.15468/dqxy5g    | GBIF   | 2         |
| Hainhoop - Tonkuhle - Bullenmoor (Arpke)                                  | 10.15468/wa8zj1    | GBIF   | 2         |
| Herrensee-Gebiet (Fischbachtal im Odenwald)                               | 10.15468/tay7dt    | GBIF   | 2         |
| Himmelmoor                                                                | 10.15468/wvbe61    | GBIF   | 2         |
| Hyperbenthos community in the salt marsh of                               | 10.14284/225       | GBIF   | 2         |
| Saettinghe in 1990 and 1991                                               | 10.15160/ 00       | CDIE   |           |
| Insektenvielfalt Ahe/Weichelsee                                           | 10.15468/vyg2fw    | GBIF   | 2         |
| Invertebrados Bentónicos de la II y III Expedición                        | 10.15472/jd4g0x    | GBIF   | 2         |
| Colombia a la Antartica (CCO)                                             | 10.154(0)/ 2       | CDIE   | 2         |
| Kinderbauernhof Pinke-Panke                                               | 10.15468/vsng2c    | GBIF   | 2         |
| Konigsdorfer Wald                                                         | 10.15468/efof1h    | GBIF   | 2         |
| KUO Crustacea collections (KUO)                                           | 10.15468/sq4vxv    | GBIF   | 2         |
| Landschaftsschutzgebiet Buchhorst 3                                       | 10.15468/vjdfov    | GBIF   | 2         |
| Landschaftsschutzgebiet Schmutterwald                                     | 10.15468/yxap8q    | GBIF   | 2         |
| Langenberger Forst am Ochsenweg/Niebull-Leck                              | 10.15468/9gh3xn    | GBIF   | 2         |
| Lebensraum Fluß/Zwickauer Mulde in Wolkenburg                             | 10.15468/wfe2yw    | GBIF   | 2         |
| LK II im Monchspark                                                       | 10.15468/a/aeqk    | GBIF   | 2         |
| Lüner Holz (Lüneburg)                                                     | 10.15468/ofocgz    | GBIF   | 2         |
| Macroinvertebrados bentónicos del muro de San<br>Carlos- Zulia- Venezuela | 10.15468/878pvc    | GBIF   | 2         |
| Nationalpark Jasmund                                                      | 10.15468/kaibbk    | GBIF   | 2         |
| Natur aus zweiter Hand am Muldestausee                                    | 10.15468/xre7uv    | GBIF   | 2         |
| Naturpark Kottenforst-Ville 16.6.09                                       | 10.15468/znhob4    | GBIF   | 2         |

| Dataset name                                         | DOI                   | Source | # Records |
|------------------------------------------------------|-----------------------|--------|-----------|
| New species of Gnathiidae (Crustacea, Isopoda,       | 10.5291/zero do 2645  |        |           |
| Cymothoida) from seamounts off northern New          | 10.5281/Zenodo.2045   | GBIF   | 2         |
| Zealand                                              | /42                   |        |           |
| New species of Xiphoniscus and new record of         | 10 11646/== store 425 |        |           |
| Androdeloscia escalonai (Isopoda, Scutocoxifera,     | 10.11040/200taxa.455  | GBIF   | 2         |
| Oniscidea, Philosciidae) from Brazilian Amazon       | 0.2.11                |        |           |
| NSG Berschau - Auengebiet (Neustadt/Wied)            | 10.15468/xzzggm       | GBIF   | 2         |
| Numérisation des données faune contenues dans        |                       |        |           |
| les Bulletins de la Société Linnéenne de Bordeaux    | 10 15469/22+++5+      | CDIE   | 2         |
| - Bulletin de la Société Linnéenne de Bordeaux,      | 10.13408/851051       | UDIF   | Z         |
| Tome 138 (N.S) n° 31 (4), 2003 - Données faune       |                       |        |           |
| Observaciones de Crustáceos de la Universidad del    | 10.15472/b3uyrl       | CDIE   | 2         |
| Valle (CERBMcr-UV)                                   | 10.13472/113uX11      | ODI    | 2         |
| Observations naturalistes indépendantes d'origine    |                       |        |           |
| privée partagées sur la base de données Kollect      | 10.15468/dwwo5a       | CDIE   | 2         |
| Nouvelle-Aquitaine - Observations faunistiques de    | 10.15408/duyess       | UDIF   | Z         |
| Olivier VANNUCCI                                     |                       |        |           |
| Park Schönfeld (Kassel)                              | 10.15468/bprupn       | GBIF   | 2         |
| Plan de gestion 2015 - 2022 du site de Castelmerle   |                       |        |           |
| (47) mené par le CEN Nouvelle-Aquitaine -            | 10.15469/t0 arfs      | CDIE   | 2         |
| Observations faunistiques (inventaire) réalisées par | 10.13408/190410       | UDIF   | 2         |
| le CEN Aquitaine                                     |                       |        |           |
| RACCORDEMENT ELECTRIQUE DE LA                        |                       |        |           |
| FERME EOLIENNE FLOTTANTE DE GROIX                    |                       |        |           |
| ET BELLE-ILE - Création de la liaison sous-          | 10 15468/bydub5       | GRIF   | 2         |
| marine et souterraine à 63 000 volts - Campagne      | 10.15400/liyduli5     | ODI    | Z         |
| benthos Rocheux2015-Raccordement du parc             |                       |        |           |
| éolien Groix/Belle-île                               |                       |        |           |
| Redescription of Ryukyua circularis (Pillai, 1954)   |                       |        |           |
| (Isopoda, Cymothoidae), parasite of the Bleeker      | 10.11646/zootaxa.452  | GBIF   | 2         |
| smoothbelly sardinella Amblygaster clupeoides        | 6.2.5                 | ODIT   | 2         |
| Bleeker, 1849 from India                             |                       |        |           |
| Redescription of the monotypic micro-predatory       |                       |        |           |
| isopod genera Alitropus H. Milne Edwards, 1840       |                       |        |           |
| and Barybrotes Schioedte & Meinert, 1879             | 10.15468/fmgmuz       | GBIF   | 2         |
| (Isopoda, Cymothoida), with a taxonomic key to       |                       |        |           |
| the Cymothooidea Leach, 1814 from India              |                       |        |           |
| Rohrmeistereiplateau und angrenzendes Gebiet         | 10.15468/pycurc       | GBIF   | 2         |
| Rückkehr der Biber in Rheinland-Pfalz - Biber in     | 10 15468/d0a6t1       | GBIF   | 2         |
| der Primmerbach                                      | 10.15 100/ d04001     | ODI    | 2         |
| Rund um den Eichwald, Schulhof Friedrich Fröbel      | 10 15468/w7nc8k       | GRIF   | 2         |
| Gymnasium - Bad Blankenburg                          | 10.15 100/ W/IICOX    |        | 2         |
| Schanzenanlage Bergham                               | 10.15468/ra8276       | GBIF   | 2         |
| Schatzinsel Norderney                                | 10.15468/sfzmol       | GBIF   | 2         |
| Schloß Türnich (Kerpen)                              | 10.15468/kagw2b       | GBIF   | 2         |

| Dataset name                                       | DOI                       | Source | # Records |
|----------------------------------------------------|---------------------------|--------|-----------|
| Schule Sulzbach (Oberegg)                          | 10.15468/2kj139           | GBIF   | 2         |
| Schulgarten Janusz-Korczak-Realschule              | 10.15468/mzoije           | GBIF   | 2         |
| Schulgarten Zinnowwald-Grundschule                 | 10.15468/i9i8nt           | GBIF   | 2         |
| Schulgelände Kranich-Gymnasium (Salzgitter)        | 10.15468/o5blyt           | GBIF   | 2         |
| Schulgelände SGD/Viersen                           | 10.15468/1bojag           | GBIF   | 2         |
| Schulhof ALindgren-Schule (Elmshorn)               | 10.15468/m4gzrl           | GBIF   | 2         |
| Schulhof der Astrid-Lindgren-Schule Elmshorn       | 10.15468/oojg7s           | GBIF   | 2         |
| Schulhof der Astrid-Lindgren-Schule und            | 10.154(9/ 20              | CDIE   | 2         |
| Umgebung (Elmshorn)                                | 10.15468/s13Wr9           | GBIF   | ۷         |
| Schulwald Sprendlingen                             | 10.15468/pgrmsy           | GBIF   | 2         |
| Schwanner Warte/Kinderhaus St. Elisabeth           | 10.1 <b>5</b> 469/:0ar0ar | CDIE   | 2         |
| Waldplatz                                          | 10.13408/198r9m           | GBIF   | ۷         |
| SNH Invertebrate Site Condition Monitoring         | 10 15468/amidat           | CDIE   | 2         |
| 2013/14: Ben Lomond SSSI                           | 10.13408/SfJ4pt           | UDIF   | 2         |
| Southern Maine Community College Gulf of           | 10.15468/w2aa0i           | CDIE   | 2         |
| Maine Invertebrate Data                            | 10.13408/v2eq9j           | UDIF   | 2         |
| Species boundaries and phylogeographic patterns    |                           |        |           |
| in new species of Nannoniscus (Janiroidea:         | 10.1093/zoolinnean/zl     | CDIE   | 2         |
| Nannoniscidae) from the equatorial Pacific nodule  | aa174                     | ODI    | 2         |
| province inferred from mtDNA and morphology        |                           |        |           |
| Stable isotope ratios of C and N in benthic        |                           |        |           |
| macrofauna from Mediterranean seagrass litter      | 10.14284/454              | GBIF   | 2         |
| accumulations from Calvi Bay in 2011-2012          |                           |        |           |
| Stadt Königs Wusterhausen                          | 10.15468/pwznow           | GBIF   | 2         |
| Stadtpark Herzberg (Elster)                        | 10.15468/bd6ih1           | GBIF   | 2         |
| Steinbruch Haas Stuttgart-Münster                  | 10.15468/mlwzh3           | GBIF   | 2         |
| Streuobstwiese RSG (Cham)                          | 10.15468/xouaoi           | GBIF   | 2         |
| Study of epibenthos and demersal fish in and       |                           |        |           |
| around the dredging areas of the Belgian           | 10.14284/192              | GBIF   | 2         |
| Continental Shelf (1977-1981)                      |                           |        |           |
| Study of the biotic environment in the Sluice Dock |                           |        |           |
| in relation to oyster farming between 1960 and     | 10.14284/135              | GBIF   | 2         |
| 1964                                               |                           |        |           |
| Sudeniederung (Amt Neuhaus)                        | 10.15468/0jv6c4           | GBIF   | 2         |
| Südpark (Bochum-Wattenscheid)                      | 10.15468/o78meq           | GBIF   | 2         |
| Sukzession Industriebrache                         | 10.15468/hj1piq           | GBIF   | 2         |
| Système d'Information sur la Nature et les         |                           |        |           |
| Paysages d'Ile de France - Données d'observateurs  | 10.15468/uurom6           | GBIF   | 2         |
| divers (observateurs transmettant un nombre de     |                           |        |           |
| données peu élevé) saisies dans Cettia-idi         |                           |        |           |
| Système d'Information sur la Nature et les         |                           |        |           |
| Paysages d'Ile de France - Données du naturaliste  | 10.15468/iuwwhy           | GBIF   | 2         |
| Maxime Zucca provenant de la base de donnée du     |                           |        |           |
| SINP Ile-de-France CETTIA                          |                           |        |           |

| Dataset name                                          | DOI                  | Source | # Records |
|-------------------------------------------------------|----------------------|--------|-----------|
| Système d'Information sur la Nature et les            |                      |        |           |
| Paysages d'Ile de France - Données du/de la           | 10 15469/afd44a      | CDIE   | 2         |
| naturaliste Vindras Laurent provenant de la base de   | 10.15408/01004a      | UDIF   | Z         |
| donnée du SINP Île-de-France CETTIA                   |                      |        |           |
| Système d'Information sur la Nature et les            |                      |        |           |
| Paysages d'Ile de France - Inventaire éclair de       | 10.15468/ongruz      | GBIF   | 2         |
| Natureparif - Année 2015                              |                      |        |           |
| The Ecology and Biogeography of Heard Island          | 10.26179/5b62a18cb3  | CDIE   | ſ         |
| Marine Benthos 1987/88                                | 94e                  | UDII   | 2         |
| The first record of the genus Desertoniscus           | 10 11646/zootava 434 |        |           |
| Verhoeff, 1930 (Isopoda, Oniscidea, Agnaridae)        | 7 3 10               | GBIF   | 2         |
| from Europe, with the description of a new species    | 7.5.10               |        |           |
| Two new species of Atlantoscia Ferrara & Taiti,       |                      |        |           |
| 1981 (Isopoda: Oniscidea: Philosciidae) from          | 10.11646/zootaxa.448 | GBIF   | 2         |
| southern Brazil described in the light of integrative | 2.3.7                | ODII   | 2         |
| taxonomy                                              |                      |        |           |
| Type material housed in the Carcinological            | 10.11646/zootaxa.430 | GBIF   | 2         |
| Collection of the Museo de La Plata, Argentina        | 3.1.5                | ODII   |           |
| Überschwemmungsgebiet der Wied                        | 10.15468/asoob4      | GBIF   | 2         |
| Umgebung der Gesamtschule Hamburg-                    | 10 15468/0f5kib      | GBIF   | 2         |
| Winterhude                                            | 10.13400/013Ki0      | ODII   | 2         |
| Umgebung des Spalatin Gymnasium Altenburg             | 10.15468/u6tjek      | GBIF   | 2         |
| Victorian Biodiversity Atlas                          | 10.15468/khlfs3      | GBIF   | 2         |
| Von Elf bis Elf" Der Botanische Garten Wuppertal      | 10.15468/ay8iie      | GBIF   | 2         |
| Wald und Wiese am Buchwald                            | 10.15468/szv8az      | GBIF   | 2         |
| Walldorf-Wiesloch: "Natur über den Gleisen"           | 10.15468/yl8grx      | GBIF   | 2         |
| Woodmeadow Invertebrate Survey 2014                   | 10.15468/iqu35i      | GBIF   | 2         |
| Woodmeadow Invertebrate Survey 2017                   | 10.15468/14uuhu      | GBIF   | 2         |
| Wulfsmuehle/Pinnau                                    | 10.15468/qyqlqw      | GBIF   | 2         |
| ZUEC-CRU - Coleção de Crustacea do Museu de           | 10 15468/ovmu86      | GBIF   | 2         |
| Zoologia da UNICAMP                                   | 10.15400/0711000     | ODII   |           |
| "Biodiversidad en el valle de Cuatro Ciénegas".       | 10.15468/rcpyx0      | GBIF   | 1         |
| (Peces)                                               | 10.10400/100/10      | ODII   | 1         |
| "Schule am Inselsee" Güstrow                          | 10.15468/krmiia      | GBIF   | 1         |
| "Schwarzes Teich" (Waldpark Radebeul)                 | 10.15468/9oyqky      | GBIF   | 1         |
| 2015_nsmk_smpl_ms                                     | 10.15468/szqjn2      | GBIF   | 1         |
| 4ème phase d'animation (2018 - 2020) du               |                      |        |           |
| Document d'objectifs du site Natura 2000              |                      |        |           |
| FR7200733 "Coteaux du Boudouyssou et plateau          | 10.15468/rbmv44      |        |           |
| de Lascrozes" et du site Natura 2000 FR7200732        |                      | GBIF   | 1         |
| "Coteaux de Thézac et de Montayral" menée par le      |                      |        |           |
| CEN Aquitaine - Observations faunistiques             |                      |        |           |
| (inventaire) réalisées par le CEN Aquitaine           |                      |        |           |
| 6. Tag der Artenvielfalt Hockenheim Thema: Wald       | 10.15468/d1rvon      | GBIF   | 1         |
| 1214.6.2009                                           | 10.12400/011900      | JDII   | 1         |

| Dataset name                                      | DOI                  | Source | # Records |
|---------------------------------------------------|----------------------|--------|-----------|
| A New Abdominally Parasitizing Bopyrid,           |                      |        |           |
| Anisarthrus okunoi sp. nov. (Crustacea: Isopoda), |                      |        |           |
| Infesting the Hinge-Beak Shrimp Rhynchocinetes    | 10.12782/sd.20.1.037 | GBIF   | 1         |
| uritai Kubo, 1942 (Crustacea: Decapoda:           |                      |        |           |
| Rhynchocinetidae)                                 |                      |        |           |
| A new amphibious troglobitic styloniscid from     | 10.11646/zootaxa.429 | CDIE   | 1         |
| Brazil (Isopoda, Oniscidea, Synocheta)            | 4.2.11               | UDIF   | 1         |
| A new species of Bragasellus (Isopoda, Asellidae) | 10 11646/            |        |           |
| from NW Spain, with a key to the known species    | 10.11040/200taxa.480 | GBIF   | 1         |
| of the genus                                      | 1.2.0                |        |           |
| A new species of Lucasioides Kwon (Isopoda:       | 10.5281/zenodo.2423  | CDIE   | 1         |
| Oniscidea: Agnaridae) from China                  | 79                   | UDIF   | 1         |
| A new species of Pseudione Kossmann, 1881         |                      |        |           |
| (Crustacea, Isopoda, Bopyridae) parasitizing the  | 10.11646/zootaxa.437 | CDIE   | 1         |
| squat lobster Munida microphthalma A. Milne-      | 7.3.7                | UDIF   | 1         |
| Edwards, 1880 in the Southwestern Atlantic        |                      |        |           |
| A new species of seagrass-boring Limnoria         | 10.11646/zootaxa.423 | CDIE   | 1         |
| (Limnoriidae, Isopoda, Crustacea) from Japan      | 2.2.8                | UDIF   | 1         |
| A new species of Syscenus Harger, 1880            | 10 2852/: 0067       |        |           |
| (Crustacea: Isopoda: Aegidae) from eastern        | 10.3833/J.0007-      | GBIF   | 1         |
| Australia, with a revised diagnosis of the genus  | 19/5.49.199/.1201    |        |           |
| A new stygobiotic Stenasellus Dollfus, 1897       | 10 116/6/zootava /68 |        |           |
| (Asellota: Stenasellidae) from Socotra Island,    | 10.11040/2001axa.400 | GBIF   | 1         |
| Yemen                                             | 5.4.5                |        |           |
| A third species of Aatolana Bruce, 1993           | 10.3853/j.0067-      | CDIE   | 1         |
| (Crustacea: Isopoda: Cirolanidae)                 | 1975.50.1998.1272    | UDIF   | 1         |
| Abundance of benthos infauna at station           | 10.1594/pangaea.9869 | CDIE   | 1         |
| GIK23006-3                                        | 1                    | UDII   | 1         |
| Abundance of benthos infauna at station           | 10.1594/pangaea.9869 | CDIE   | 1         |
| GIK23017-1                                        | 4                    | UDIF   | 1         |
| Abundance of benthos infauna at station           | 10.1594/pangaea.9870 | CDIE   | 1         |
| GIK23040-1                                        | 0                    | UDIF   | 1         |
| Abundance of benthos infauna at station           | 10.1594/pangaea.9872 | CDIE   | 1         |
| POS128/2_267                                      | 1                    | GBIF   | 1         |
| Abundance of benthos infauna at station           | 10.1594/pangaea.9872 | CDIE   | 1         |
| POS128/2_276                                      | 2                    | GBIF   | 1         |
| Alexandream filmedian information DG1240.1        | 10.1594/pangaea.9872 | CDIE   | 1         |
| Abundance of benthos infauna at station PS1240-1  | 8                    | GBIF   | 1         |
| AKG-Gelände (Bensheim)                            | 10.15468/7tiexg      | GBIF   | 1         |
| AKG-Gelände in Bensheim                           | 10.15468/jm2mld      | GBIF   | 1         |
| Aktion - Friedensburg Oberschule                  | 10.15468/rkx1za      | GBIF   | 1         |
| Alter Kreidebruch Saßnitz/Rügen                   | 10.15468/hnlv1w      | GBIF   | 1         |
| Alter Lagerplatz und Gartenteich                  | 10.154604 04         | CDIE   | -         |
| (Dortmund/Hörde)                                  | 10.15468/pr04pj      | GBIF   |           |
| Altholzparzelle Eilenriede Hannover               | 10.15468/w6gllt      | GBIF   | 1         |

| Dataset name                                         | DOI                 | Source | # Records |
|------------------------------------------------------|---------------------|--------|-----------|
| Análisis taxonómicos de macrofauna bentónica         |                     |        |           |
| para el Plan de Vigilancia Ambiental de Navantia     | 10.15470/5vopsk     | GBIF   | 1         |
| Cartagena                                            |                     |        |           |
| Animation du Document d'objectifs du site Natura     |                     |        |           |
| 2000 FR7200799 - Carrières de Castelculier (47)      |                     |        |           |
| menée par le CEN Nouvelle-Aquitaine -                | 10.15468/ybkf2x     | GBIF   | 1         |
| Observations faunistiques (inventaire) réalisées par |                     |        |           |
| le CEN Aquitaine                                     |                     |        |           |
| Animation du Document d'objectifs du site Natura     |                     |        |           |
| 2000 FR7200799 - Carrières de Castelculier (47)      |                     |        |           |
| menée par le CEN Nouvelle-Aquitaine -                | 10.15468/3mkm6m     | GBIF   | 1         |
| Observations faunistiques (inventaire) réalisées par |                     |        |           |
| le CEN Nouvelle-Aquitaine                            |                     |        |           |
| Artenvielfalt auf der Wiese                          | 10.15468/rf5hbw     | GBIF   | 1         |
| Artenvielfalt auf Zollverein                         | 10.15468/rdyn0n     | GBIF   | 1         |
| Artenvielfalt des "Grünen Klassenzimmers"            | 10.15468/7qnqm2     | GBIF   | 1         |
| Artenvielfalt im Beckerbruch (Dessau)                | 10.15468/i2dupd     | GBIF   | 1         |
| Artenvielfalt in der Kinderakademie im RFZ           | 10.15468/4n30hf     | GBIF   | 1         |
| Artenvielfalt in der Quälingsbachaue Gladbeck        | 10.15468/8xapir     | GBIF   | 1         |
| Artenvielfalt in der Stadt: Botanischer Garten       | 10 15/69/d2;2mv     | CDIE   | 1         |
| Wuppertal und Hardt                                  | 10.13408/d313px     | UDIF   | 1         |
| Assistance technique à la gestion écologique des     |                     |        |           |
| espaces naturels propriétés de ValOrizon sur la      |                     |        | 1         |
| commune de Damazan (47) menée par le CEN             | 10 15468/wkdb3;     | GRIF   |           |
| Aquitaine entre 2017 et 2023 - Observations          | 10.13400/ yKdli5j   | ODII   |           |
| faunistiques (inventaire) réalisées par le CEN       |                     |        |           |
| Aquitaine                                            |                     |        |           |
| Assistance technique à la gestion écologique des     |                     |        |           |
| espaces naturels propriétés de ValOrizon sur la      |                     |        |           |
| commune de Damazan (47) menée par le CEN             | 10 15468/nnavz7     | GBIF   | 1         |
| Aquitaine entre 2017 et 2023 - Observations          | 10.15 100/piluj2/   | ODI    | 1         |
| faunistiques (inventaire) réalisées par le CEN       |                     |        |           |
| Nouvelle-Aquitaine                                   |                     |        |           |
| Atlas écologique régional des papillons de jour et   |                     |        |           |
| zygènes (Lépidoptères) de Midi-Pyrénées -            | 10.15468/vw2sr2     | GBIF   | 1         |
| Données de l'Atlas écologique régional des           | 10110 100, 9 (12012 | 0211   | -         |
| papillons de jour et zygènes                         |                     |        |           |
| Australian River Assessment System                   | 10.15468/fwoc93     | GBIF   | 1         |
| Bach                                                 | 10.15468/dstwtf     | GBIF   | 1         |
| Bachabschnitt der Nette (Osnabrück)                  | 10.15468/hquolv     | GBIF   | 1         |
| Bäche im Mooswald (Vörstetten)                       | 10.15468/jz9xdg     | GBIF   | 1         |
| Baggerseen bei Krauchenwies                          | 10.15468/ltf0ce     | GBIF   | 1         |
| Balkon (Norderstedt)                                 | 10.15468/skvmrq     | GBIF   | 1         |
| Bannwald Burghauser Forst                            | 10.15468/rqowlx     | GBIF   | 1         |

| Dataset name                                                                                                                                                                                                                     | DOI                           | Source | # Records |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-----------|
| Base BOMBINA du Parc Naturel régional Lorraine                                                                                                                                                                                   | 10 15468/2;4;70               | GRIF   | 1         |
| - Modernisation des ZNIEFF du PnrL                                                                                                                                                                                               | 10.13408/2101/0               | UDII   | 1         |
| Base de datos de fauna batial, abisopelágica y                                                                                                                                                                                   | 10 15468/gyeijy               | GRIF   | 1         |
| abisal del Golfo de México                                                                                                                                                                                                       | 10.19400/gycjjx               | ODIT   | I         |
| Bayerische Donau - Riedlingen                                                                                                                                                                                                    | 10.15468/zucgkx               | GBIF   | 1         |
| Bayerische Donau - Tapfheim                                                                                                                                                                                                      | 10.15468/1zh13s               | GBIF   | 1         |
| Ben Lui NNR invertebrate records compiled from SNH files                                                                                                                                                                         | 10.15468/3sxbdc               | GBIF   | 1         |
| BenthosChukchiFN762 1976 Falk5                                                                                                                                                                                                   | 10.15468/pdbroz               | GBIF   | 1         |
| Besonderer Ort - besondere Natur: Die Mainzer<br>Zitadelle                                                                                                                                                                       | 10.15468/bybmve               | GBIF   | 1         |
| Binsenwiesen                                                                                                                                                                                                                     | 10.15468/qrp2lf               | GBIF   | 1         |
| Biodiv-Camp Sandmagerrasen in<br>Nürnberg/Langwasser                                                                                                                                                                             | 10.15468/ofndep               | GBIF   | 1         |
| Biodiversitätsdatenbank Nationalpark Hohe Tauern                                                                                                                                                                                 | 10.15468/k4qyyw               | GBIF   | 1         |
| Biodiverskripsi: Biodiversity Theses Database                                                                                                                                                                                    | 10.15468/cocfqh               | GBIF   | 1         |
| Biologische Station im Kreis Wesel                                                                                                                                                                                               | 10.15468/ykb5iv               | GBIF   | 1         |
| Biosphäre Bliesgau                                                                                                                                                                                                               | 10.15468/ycdxmi               | GBIF   | 1         |
| Biosphärenpark Wienerwald - Pfaffstätten                                                                                                                                                                                         | 10.15468/nvvtyn               | GBIF   | 1         |
| Biosphärenpark Wienerwald - Wiener                                                                                                                                                                                               | 10.15468/xnbfxv               | GBIF   | 1         |
| Biotop Binsenwiesen und Ernst-Reiter-Wiese<br>(Wehrheim/Taunus)                                                                                                                                                                  | 10.15468/fclugs               | GBIF   | 1         |
| Bonner Schülerinnen am Rodder Maar                                                                                                                                                                                               | 10.15468/0yzymr               | GBIF   | 1         |
| Botanischer Garten (Saarbrücken)                                                                                                                                                                                                 | 10.15468/tcgxfe               | GBIF   | 1         |
| Brander Wald (Stolberg)                                                                                                                                                                                                          | 10.15468/wzubu0               | GBIF   | 1         |
| Brenz (Heidenheim)                                                                                                                                                                                                               | 10.15468/nblzxn               | GBIF   | 1         |
| Bulau                                                                                                                                                                                                                            | 10.15468/imsv5z               | GBIF   | 1         |
| BUND Naturschutzzentrum St. Julian                                                                                                                                                                                               | 10.15468/fkiwn2               | GBIF   | 1         |
| Butterberg, Dardesheim                                                                                                                                                                                                           | 10.15468/uvap2i               | GBIF   | 1         |
| Caecidotea camaxtli (Isopoda: Asellidae) a new species from the Tlaxcala valley. Mexico                                                                                                                                          | 10.11646/zootaxa.462<br>4.3.6 | GBIF   | 1         |
| Canberra Nature Map                                                                                                                                                                                                              | 10.15468/uv6p4z               | GBIF   | 1         |
| Caracterización bionómica de zonas de dragado y de afección de obras en la Ría de Ferrol                                                                                                                                         | 10.15470/wlbvov               | GBIF   | 1         |
| CardObs: Observations naturalistes issues de l'outil<br>de saisie et gestion CardObs mis en place par le<br>Service du Patrimoine Naturel (MNHN)/UMS<br>PatriNat (OFB - CNRS - MNHN) - Données<br>naturalistes de ALONSO Florian | 10.15468/bk3kj1               | GBIF   | 1         |
| CardObs: Observations naturalistes issues de l'outil<br>de saisie et gestion CardObs mis en place par le<br>Service du Patrimoine Naturel (MNHN)/UMS<br>PatriNat (OFB - CNRS - MNHN) - Données<br>naturalistes de Maxime ESNAULT | 10.15468/dy3tjr               | GBIF   | 1         |

| Dataset name                                          | DOI               | Source | # Records |
|-------------------------------------------------------|-------------------|--------|-----------|
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10 15468/roynoa   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                | 10.15 100/1091104 | ODII   | 1         |
| naturalistes de NOËL Rémi                             |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/lld6x4   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                   |        |           |
| naturalistes de Pierre NOEL (M2MNHN)                  |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/c0lq9u   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                   |        |           |
| naturalistes de Pierre NOEL (Tatihou)                 |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/zm7huu   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                   |        |           |
| naturalistes de Ségolène FAUSTEN                      |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/wsyd2b   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                   |        |           |
| naturalistes de SWIFT Olivier                         |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      |                   |        |           |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/ypmslg   | GBIF   | 1         |
| PatriNat (OFB - CNRS - MNHN) - Données                |                   |        |           |
| naturalistes de Thibault RAMAGE                       |                   |        |           |
| CardObs: Observations naturalistes issues de l'outil  |                   |        |           |
| de saisie et gestion CardObs mis en place par le      | 10.154(0) 01      | CDIE   | 1         |
| Service du Patrimoine Naturel (MNHN)/UMS              | 10.15468/pxx2hv   | GBIF   | 1         |
| Patrinat (OFB - CNRS - MINHN) - Donnees               |                   |        |           |
| laturansies d'Oceane ROQUINARC H                      |                   |        |           |
| da gaicia et gestion CardObs mis en place per la      |                   |        |           |
| Service du Patrimoine Natural (MNHN)/UMS              |                   |        |           |
| DetriNet (OFD CNDS MNHN) Dennées                      | 10 15/68/awzzoh   | CDIE   | 1         |
| naturalistes du Comité dénartemental de l'Esconne     | 10.13+00/aw22011  |        | 1         |
| (CODEP91) de la Fédération Française d'Etudes et      |                   |        |           |
| de Sports Sous-Marins                                 |                   |        |           |
| Centralisation des données d'études sur le territoire |                   |        |           |
| de la Communauté de Communes de la Côte               | 10.15468/ttkfwr   | GBIF   | 1         |
| d'Albâtre                                             |                   | 2211   | 1         |

| Dataset name                                                                                                                                                                                                                                                 | DOI                           | Source | # Records |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-----------|
| Centre for Environmental Data and Recording                                                                                                                                                                                                                  | 10.15468/reat6p               | GBIF   | 1         |
| (CEDaR) Marine Species Data                                                                                                                                                                                                                                  | Torre roorreatop              | 0.DII  | -         |
| Churchyards for London                                                                                                                                                                                                                                       | 10.15468/iwpzxk               | GBIF   | 1         |
| Citacions biodiversitat Espais Naturals Protecció<br>Especial                                                                                                                                                                                                | 10.15470/m5ic1c               | GBIF   | 1         |
| Clare Biological Records Centre Dataset 2004-<br>2007                                                                                                                                                                                                        | 10.15468/fbb6kb               | GBIF   | 1         |
| CLICNAT- Base de données naturaliste picarde -<br>Données terrain de l'Association des<br>Entomologistes Picards                                                                                                                                             | 10.15468/y379s4               | GBIF   | 1         |
| CLICNAT- Base de données naturaliste picarde -<br>Inventaire de terrain sur les ZNIEFF                                                                                                                                                                       | 10.15468/bct7hq               | GBIF   | 1         |
| Colección de Crustáceos Decápodos y<br>Estomatópodos del Centro Oceanográfico de Cádiz<br>(CCDE-IEOCD)                                                                                                                                                       | 10.15468/anztjy               | GBIF   | 1         |
| Comparative study of the organismic assemblages<br>associated with the demosponge Sarcotragus<br>foetidus Schmidt, 1862 in the coasts of Cyprus and<br>Greece                                                                                                | 10.15468/tmvw8g               | GBIF   | 1         |
| Conchological Society of Great Britain & Ireland:<br>marine mollusc records                                                                                                                                                                                  | 10.15468/aurwcz               | GBIF   | 1         |
| Convention Fédération française de golf - MNHN 2016-2019                                                                                                                                                                                                     | 10.15468/zsxuss               | GBIF   | 1         |
| DASSH Data Archive Centre volunteer sightings records                                                                                                                                                                                                        | 10.15468/xwiw3h               | GBIF   | 1         |
| Description of new species of algal-boring<br>Limnoria (Crustacea, Isopoda, Limnoriidae) from<br>Japan and redescription of Limnoria segnoides<br>Menzies, 1957 and L. nagatai Nunomura, 2012                                                                | 10.11646/zootaxa.455<br>0.2.5 | GBIF   | 1         |
| Données d'occurrences issues des Formulaires<br>standards de données des sites Natura 2000 -<br>Données d'occurrence Espèces issues de la base<br>Natura 2000: espèces d'intérêt communautaire et<br>autres espèces remarquables renseignées dans les<br>FSD | 10.15468/g2ptuw               | GBIF   | 1         |
| Données Faune de l'Agence des Espaces Verts<br>(AEV) d'Ile de France                                                                                                                                                                                         | 10.15468/o3ukgd               | GBIF   | 1         |
| Données sur les Invertébrés aquatiques de la<br>Réserve Naturelle des Marais de Bruges -<br>Inventaire Entomologiques                                                                                                                                        | 10.15468/qysjd3               | GBIF   | 1         |
| Düne am Ulvenberg (Darmstadt)                                                                                                                                                                                                                                | 10.15468/c3bkkm               | GBIF   | 1         |
| Düpenauwiesen                                                                                                                                                                                                                                                | 10.15468/5nvyjt               | GBIF   | 1         |
| Early succession in benthic hard bottom<br>communities in Kongsfjorden, Svalbard -<br>abundance                                                                                                                                                              | 10.1594/pangaea.3511<br>52    | GBIF   | 1         |

| Dataset name                                      | DOI              | Source | # Records |
|---------------------------------------------------|------------------|--------|-----------|
| Ecological study of the plankton in the port of   | 10 1/28//10/     | CPIE   | 1         |
| Ostend in 1965                                    | 10.14204/194     | UDII   | 1         |
| Epibenthos and demersal fish monitoring in        |                  |        |           |
| function of dredge disposal monitoring in the     | 10.14284/198     | GBIF   | 1         |
| Belgian part of the North Sea                     |                  |        |           |
| Epifauna community at Waarde and Saeftinghe       | 10 14284/224     | GBIF   | 1         |
| (Westerschelde) in 1991                           | 10.14204/224     | ODII   | 1         |
| Erft in Selikum (Neuss)                           | 10.15468/ylvphz  | GBIF   | 1         |
| Erlengraben/Lipp-Tal (Östringen)                  | 10.15468/95qyg8  | GBIF   | 1         |
| Estudio de la comunidad zooplanctónica y          |                  |        |           |
| fitoplanctónica en los ecosistemas de arrecifes   | 10 15472/n70ri0  | GBIF   | 1         |
| coralinos mesofóticos del Parque Nacional Corales | 10.15 172/p701j0 | ODI    | 1         |
| de Profundidad                                    |                  |        |           |
| Estudio de la fauna edáfica en una selva baja     |                  |        |           |
| inundable de la Reserva de la biósfera de Sian    | 10.15468/t2wsln  | GBIF   | 1         |
| Ka'an Quintana Roo                                |                  |        |           |
| Evaluation of the effect of disposal of dredging  |                  |        |           |
| material on macrobenthos communities in the       | 10.14284/196     | GBIF   | 1         |
| Maas plain (1988)                                 |                  |        |           |
| Expedition "Schulgelände"                         | 10.15468/ewklow  | GBIF   | 1         |
| Faberpark (Nürnberg/Stein)                        | 10.15468/ciwsd1  | GBIF   | 1         |
| Fauna and flora inventories (terrestrial and      | 10.15468/dwlarm  | GBIF   | 1         |
| limnetic) from the South of Belgium               |                  |        | -         |
| FBIP: Actinopterygii and Elasmobranchii           | 10.15468/zvvx7d  | GBIF   | 1         |
| occurrence record throughout South Africa         |                  |        | _         |
| Feriendorf des Kreises Gedern (Ober-Seemen)       | 10.15468/iqhlfj  | GBIF   | 1         |
| Feriendorf Ober-Seemen                            | 10.15468/s7neas  | GBIF   | 1         |
| Feuchtwiese in Langes Tannen (LMS), Klasse 5c     | 10.15468/ytvuil  | GBIF   | 1         |
| Feuerlöschteich, Wald und Dünen in den Holmer     | 10.15468/vn9uhn  | GBIF   | 1         |
| Sandbergen                                        |                  |        | _         |
| FFH-Gebiet Ahrbachtal                             | 10.15468/joupjm  | GBIF   | 1         |
| FFH-Gebiet Klosterwasser/Burkau                   | 10.15468/vpfqb1  | GBIF   | 1         |
| Fife Nature Records Centre combined dataset       | 10.15468/abg6if  | GBIF   | 1         |
| 2018/19                                           |                  |        | _         |
| Fledermaus                                        | 10.15468/ltou6r  | GBIF   | 1         |
| Fluss - Vielfalt                                  | 10.15468/ucrjle  | GBIF   | 1         |
| Förderzentrum Schmölln                            | 10.15468/ezpgvd  | GBIF   | 1         |
| Freiburger Tag der Artenvielfalt                  | 10.15468/os5bjq  | GBIF   | 1         |
| Freiheitsring (Frechen)                           | 10.15468/mn7p0n  | GBIF   | 1         |
| Fuldaaue (Stadtgebiet Fulda)                      | 10.15468/veh6ha  | GBIF   | 1         |
| Fürstenberger Ralley Teil 3                       | 10.15468/yv2p5b  | GBIF   | 1         |
| Garten Hamburg Uhlenhorst                         | 10.15468/d60qys  | GBIF   | 1         |
| Gelände der Lahntalschule Biedenkopf und          | 10 15468/113cabf | GRIF   | 1         |
| Lahnauen                                          | 10.15700/455401  |        | 1         |
| GEO Hauptveranstaltung Tirol (Innsbruck)          | 10.15468/n3uph3  | GBIF   | 1         |

| Dataset name                                        | DOI              | Source    | # Records |
|-----------------------------------------------------|------------------|-----------|-----------|
| Geo-Tag der Artenvielfalt Süßen Hornwiesen-         | 10.15468/5invio  | CDIE      | 1         |
| Grundschule                                         | 10.13408/3/119/0 | UDIF      | 1         |
| Gewann Krampf (Heilbronn)                           | 10.15468/crg9hw  | GBIF      | 1         |
| Goethe-Hauptschule/Projekt I-10                     | 10.15468/xaikey  | GBIF      | 1         |
| Gronau - auf der Suche nach dem Neunauge            | 10.15468/70foai  | GBIF      | 1         |
| Grundschüler erkunden Schulumgebung                 | 10.15468/go2d9k  | GBIF      | 1         |
| Grundwasserlebensraum im Englischen Garten          | 10.154(9/        | CDIE      | 1         |
| (München)                                           | 10.15468/yso2gm  | GBIF      | 1         |
| Gunma Museum of Natural History, Crustacea          | 10.154(0/: 0 1   | CDIE      | 1         |
| Specimens                                           | 10.15468/1s8pqb  | GBIF      | 1         |
| Gurgltal (Tarrenz)                                  | 10.15468/tjcduh  | GBIF      | 1         |
| Gymnicher Mühle                                     | 10.15468/2r1rhj  | GBIF      | 1         |
| Haarbach Höfe                                       | 10.15468/pd4wxp  | GBIF      | 1         |
| Hache im Ellernbruch (Sudweyhe/Weyhe)               | 10.15468/qd8niy  | GBIF      | 1         |
| Hainbachtal in Oelsnitz/V.                          | 10.15468/o6svf3  | GBIF      | 1         |
| Hamberger Brücke/Würmtal (Pforzheim)                | 10.15468/wubqak  | GBIF      | 1         |
| Heider Bergsee (Brühl)                              | 10.15468/pochpz  | GBIF      | 1         |
| Hintere Halde                                       | 10.15468/kgbuzy  | GBIF      | 1         |
| Hüttenseepark (Meißendorf)                          | 10.15468/wxmbeu  | GBIF      | 1         |
| Im Bauerngarten                                     | 10.15468/favvae  | GBIF      | 1         |
| Informe "Control de Organismos" en la Ría de        |                  |           |           |
| Ferrol 2019                                         | 10.15470/m58paq  | GBIF      | 1         |
| Innenstadt Göttingen - Natur Zuhause                | 10.15468/m4edff  | GBIF      | 1         |
| Integrierte Gesamtschule Flensburg                  |                  | ~~~~      |           |
| Wiemoosgraben                                       | 10.15468/s7xzec  | GBIF      | 1         |
| Inventaire biodiversité du site Pierre Fabre        |                  | ~ ~ ~ ~ ~ |           |
| d'Aignan                                            | 10.15468/483gdr  | GBIF      | 1         |
| Inventaire de la Réserve Naturelle de l'étang de    | 10.1.5.4.00/6    | CDIE      |           |
| Cousseau - Inventaire Entomologiques                | 10.15468/6zsxe5  | GBIF      | 1         |
| Inventaire de la Réserve Naturelle des Dunes et     | 10.15460/4       | CDIE      |           |
| Marais d'Hourtin - Inventaire entomologique         | 10.15468/4geman  | GBIF      | 1         |
| Inventaire de la réserve naturelle géologique de    | 10.15460/5.0:    | CDIE      | 1         |
| Saucats - La Brède - Etude sur les protocoles I2M2  | 10.15468/7c8jvm  | GBIF      | 1         |
| Inventaires naturalistes du Service du Patrimoine   |                  |           |           |
| naturel/UMS PatriNat - Inventaire de la Forêt de la | 10.15468/sut6xp  | GBIF      | 1         |
| Commanderie, Fontainebleau                          | -                |           |           |
| Inventaires naturalistes du Service du Patrimoine   |                  |           |           |
| naturel/UMS PatriNat - Inventaire de l'îlot du      | 10.15468/us69wq  | GBIF      | 1         |
| Lédénez Vraz                                        |                  |           |           |
| Invertebrate Paleontology Division, Yale Peabody    | 10 15469/        | CDIE      | 1         |
| Museum                                              | 10.13408/nqneui  | GRIL      | 1         |
| Invertebrates compiled by W.Block                   | 10.15468/5kbwve  | GBIF      | 1         |

| Dataset name                                        | DOI                  | Source | # Records |
|-----------------------------------------------------|----------------------|--------|-----------|
| Jeu de données convention Saint-Gobain              |                      |        |           |
| Distribution Bâtiment France -SPN-MNHN -            | 10 15469/labbar      | CDIE   | 1         |
| Données Saint-Gobain Distribution Bâtiment          | 10.13408/1908        | UDIF   | 1         |
| France                                              |                      |        |           |
| Kabelskebach (Kabelsketal, Saalkreis)               | 10.15468/ldebcg      | GBIF   | 1         |
| Kaniswall/Gosener Wiesen an der Spree               | 10.15468/xim1hm      | GBIF   | 1         |
| Kaulsdorf                                           | 10.15468/gzxkhu      | GBIF   | 1         |
| Kenai National Wildlife Refuge, Alaska (KNWR)       | 10 15469/            | CDIE   | 1         |
| Insect specimens (Arctos)                           | 10.13408/XWI4XI      | UDIF   | 1         |
| Kiesgruben Wemb                                     | 10.15468/gdfc31      | GBIF   | 1         |
| Kinder- und Jugendferiendorf des Kreises Groß-      | 10 15/69/horring     | CDIE   | 1         |
| Gerau - Gedern/Ober-Seemen                          | 10.13408/02yrco      | UDIF   | 1         |
| Kindergarten                                        | 10.15468/kt0jmy      | GBIF   | 1         |
| Kindervilla Aussengelände/Hiltroper Park            | 10.15468/ro3ihb      | GBIF   | 1         |
| Kinderwald Hannover                                 | 10.15468/axqxjx      | GBIF   | 1         |
| Kita-Wäldchen Fuchsturmweg Jena                     | 10.15468/t5kqlo      | GBIF   | 1         |
| Klasse 3a                                           | 10.15468/khe2si      | GBIF   | 1         |
| Klassenfahrt Usedom/Wald und Küste in               | 10.15469/4           | CDIE   | 1         |
| Zinnowitz                                           | 10.15468/4zpveo      | GBIF   | 1         |
| Knechtweide (Kohlfurth)                             | 10.15468/s3qrze      | GBIF   | 1         |
| Kochertgraben II                                    | 10.15468/atgawc      | GBIF   | 1         |
| Kohlbach (Sulzfeld)                                 | 10.15468/y1slhp      | GBIF   | 1         |
| Königstetten                                        | 10.15468/vkomyx      | GBIF   | 1         |
| Kremmer Luch                                        | 10.15468/qme6rj      | GBIF   | 1         |
| Kühnauer See (Dessau)                               | 10.15468/buaolb      | GBIF   | 1         |
| Kurler Busch (Scharnhorst)                          | 10.15468/byhdai      | GBIF   | 1         |
| Küste Wismar-Wendorf bis Hoben                      | 10.15468/yptgzr      | GBIF   | 1         |
| LACM Rancho La Brea                                 | 10.15468/zdn495      | GBIF   | 1         |
| Landschaftspark St.Leonhard-Deisendorf              | 10.15468/etporu      | GBIF   | 1         |
| Landschaftsschutzgebiet Buchhorst 4                 | 10.15468/hlq8fu      | GBIF   | 1         |
| Laubenheimer Bodenheimer Ried - von                 | 10.154(0/ 0.1.       | CDIE   | 1         |
| Stromtalwiesen und Flutrasen                        | 10.15468/xnIqKi      | GBIF   | 1         |
| Laubwald Dreiländereck (Aachen/Vaals[NL])           | 10.15468/tyi8lf      | GBIF   | 1         |
| Lebensraum Stadt und Park                           | 10.15468/xink53      | GBIF   | 1         |
| Leipanthura casuarina, new genus and species of     |                      |        |           |
| anthurid isopod from Australian coral reefs without | 10.3897/zookeys.18.1 | CDIE   | 1         |
| a " five-petalled " tail (Isopoda, Cymothoida,      | 98                   | GBIF   | 1         |
| Anthuroidea)                                        |                      |        |           |
| Liether Park (LMS), 5a                              | 10.15468/m0bl0n      | GBIF   | 1         |
| Liether Park (LMS), 6c                              | 10.15468/ncwafn      | GBIF   | 1         |
| Liether Park 2 (LMS), Klasse 6c                     | 10.15468/dpjmis      | GBIF   | 1         |
| LifeWatch observatory data: reference collection of |                      |        |           |
| unique observations in the Belgian Part of the      | 10.14284/267         | GBIF   | 1         |
| North Sea                                           |                      |        |           |
| Lillachtal mit Kalktuffquelle bei Weißenohe         | 10.15468/vehehm      | GBIF   | 1         |

| Dataset name                                      | DOI               | Source | # Records |
|---------------------------------------------------|-------------------|--------|-----------|
| Lindau im Bodensee                                | 10.15468/vimum3   | GBIF   | 1         |
| Listhof und Umgebung                              | 10.15468/wfxej0   | GBIF   | 1         |
| Luch Niederlehme, Schüler der Klasse 7            | 10.15468/y6scjf   | GBIF   | 1         |
| Lustadter Wald                                    | 10.15468/vep1yx   | GBIF   | 1         |
| Macrobenthos monitoring at long-term monitoring   |                   |        |           |
| stations in the Belgian part of the North Sea     | 10.14284/201      | GBIF   | 1         |
| between 1979 and 1999                             |                   |        |           |
| Macrobenthos monitoring in function of dredge     |                   |        |           |
| disposal monitoring in the Belgian part of the    | 10.14284/200      | GBIF   | 1         |
| North Sea                                         |                   |        |           |
| Macrobenthos of the Western Scheldt estuary in    | 10 1/28//121      | CDIE   | 1         |
| September 1978                                    | 10.14204/151      | UDIF   | 1         |
| Macrobenthos: temporal patterns for stations 115b | 10 1/28//523      | CDIE   | 1         |
| and 330 in the Belgian Part of the North Sea      | 10.14204/323      | UDII   | 1         |
| Macrobentos de cuatro playas de alta energía      |                   |        |           |
| ubicadas en la Península de La Guajira, noroeste  | 10.15468/c73cdd   | GBIF   | 1         |
| del Golfo de Venezuela                            |                   |        |           |
| Macrozoobenthos, Joint Open Sea Surveys August    | 10.15468/pt6cyw   | GBIF   | 1         |
| 2017, EMBLAS-II                                   | 10.10400/ptoevw   | ODII   | 1         |
| Mangfalltal                                       | 10.15468/fdbcji   | GBIF   | 1         |
| Marine Data from The Wildlife Trusts (TWT) Dive   | 10 15468/aar7zv   | GBIF   | 1         |
| Team; 2014-2018                                   | 10.10 100/441/21  | ODII   | 1         |
| Marine Invertebrate Diversity Initiative (OBIS    | 10.15468/ir2dvh   | GBIF   | 1         |
| Canada)                                           | 10110 100/j124/11 |        | -         |
| Marine Non Native Species records from Natural    |                   |        |           |
| Resources Wales (NRW) Monitoring Research and     | 10.15468/jc9uj9   | GBIF   | 1         |
| Ad-hoc Sightings                                  |                   |        |           |
| Mit allen Sinnen durch den Wald/Schmücke (ev.     | 10.15468/a3kvgq   | GBIF   | 1         |
| Kıta Heldrungen)                                  |                   | ~~~~   |           |
| Mittelriede Höhe Gliesmarode-Braunschweig         | 10.15468/afyoe9   | GBIF   | 1         |
| Mühlenbach bei Buxtehude                          | 10.15468/0gbfbz   | GBIF   | 1         |
| NABU Naturschutzhof Netttetal (Sassenfeld) e.V.   | 10.15468/78wbnu   | GBIF   | 1         |
| Natur-Erlebnisgebiet der Naturschutz-Akademie     | 10.15468/1nwavh   | GBIF   | 1         |
| Hessen und Umgebung                               | 5                 |        |           |
| NatureShare                                       | 10.15468/4cqg2v   | GBIF   | 1         |
| Naturnachmittag 'Artenvielfalt an der Ecke'       | 10.15468/5niduz   | GBIF   | 1         |
| (Wäldchen an der Wegegabelung)                    |                   |        |           |
| Naturpark Drömling                                | 10.15468/9b8ujb   | GBIF   | 1         |
| Naturpark Kottenforst-Ville 18.6.09               | 10.15468/agfdpb   | GBIF   | 1         |
| Naturpark Kottenforst-Ville 19.6.09               | 10.15468/qozlib   | GBIF   | 1         |
| Naturschutzgebiet Börstig bei Hallstadt           | 10.15468/uptda2   | GBIF   | 1         |
| Naturschutzgebiet Lippeaue (Marl) - Pfadis in     | 10.15468/spzlfb   | GBIF   | 1         |
| Sickingmühle                                      | ice spine         |        | · ·       |

| Dataset name                                         | DOI                  | Source | # Records |
|------------------------------------------------------|----------------------|--------|-----------|
| New and little-known species of isopods              | 10 116/6/zootava 131 |        |           |
| (Crustacea, Isopoda) from the eastern                | 1 2 1                | GBIF   | 1         |
| Mediterranean                                        | 1.2.1                |        |           |
| New species of Sargassum-boring Limnoria Leach,      | 10.11646/zootaxa.497 | CDIE   | 1         |
| 1814 (Crustacea, Isopoda Limnoriidae) from Japan     | 0.1.4                | ODII   | I         |
| NHMD Entomology Collection                           | 10.15468/nnobcm      | GBIF   | 1         |
| Nottekanal, Klasse 7 - 10                            | 10.15468/dwwqx8      | GBIF   | 1         |
| NSG Dellwiger Wald, Dortmund                         | 10.15468/c5itv4      | GBIF   | 1         |
| NW-Innenhof Gesamtschule Herten 7.6.2001             | 10.15468/xq2ygh      | GBIF   | 1         |
| Ober-Olmer Wald                                      | 10.15468/6zsivw      | GBIF   | 1         |
| Ober-Olmer Wald 09                                   | 10.15468/zag8aq      | GBIF   | 1         |
| Observations naturalistes hors étude réalisées par   |                      |        |           |
| les organismes utilisant la base de données Kollect  | 10.15460/ 21.2       | CDIE   | 1         |
| Nouvelle-Aquitaine - Observations faunistiques       | 10.15468/qa3Kq2      | GBIF   | 1         |
| hors étude réalisées par le CEN Aquitaine            |                      |        |           |
| Observations naturalistes hors étude réalisées par   |                      |        |           |
| les organismes utilisant la base de données Kollect  |                      |        |           |
| Nouvelle-Aquitaine - Observations faunistiques       | 10.15468/fs23ut      | GBIF   | 1         |
| hors étude réalisées par le CEN Nouvelle-            |                      |        |           |
| Aquitaine                                            |                      |        |           |
| Occurrences de vecteurs de maladies recensées à      | 10.15469/            | CDIE   | 1         |
| l'Hôpital de Mènontin                                | 10.15468/wpq1g1      | GBIF   | 1         |
| Olympiapark (München)                                | 10.15468/hlrd2v      | GBIF   | 1         |
| Örtzemündung (Stedden)                               | 10.15468/rjrhsu      | GBIF   | 1         |
| Ostfriesland                                         | 10.15468/1uvbst      | GBIF   | 1         |
| Participation aux politiques publiques               |                      |        |           |
| départementales de l'environnement - Données         | 10.15468/agctst      | GBIF   | 1         |
| CEN M-P départements                                 |                      |        |           |
| Paul-Gerhardt-Schule Dassel                          | 10.15468/bza0nc      | GBIF   | 1         |
| Plan de gestion 2015 - 2019 du site du Coteau de     |                      |        |           |
| Casserouge (47) mené par le CEN Aquitaine -          | 10.15469/2.11-5      | CDIE   | 1         |
| Observations faunistiques (inventaire) réalisées par | 10.13408/2SnKX3      | GBIF   | 1         |
| le CEN Aquitaine                                     |                      |        |           |
| Plan de gestion 2016 - 2020 du site du domaine de    |                      |        |           |
| Rodié (47) mené par le CEN Nouvelle-Aquitaine -      | 10.15469/7 and $h$   | CDIE   | 1         |
| Observations faunistiques fortuites réalisées par le | 10.15408//qryn4      | UDIF   | 1         |
| CEN Aquitaine                                        |                      |        |           |
| Plan régional d'actions en faveur des odonates       |                      |        |           |
| (PRAO): 3ème phase (2017 - 2018) menée par le        |                      |        |           |
| CEN Aquitaine - Observations faunistiques            | 10.15468/ndeyf6      | GBIF   | 1         |
| fortuites réalisées par le CEN Aquitaine (Étude      |                      |        |           |
| Agrion de Mercure)                                   |                      |        |           |
| Plymouth sound dataset. Soft sediment                |                      |        |           |
| macrobenthos from the Plymouth Sound from            | 10.14284/297         | GBIF   | 1         |
| 1995                                                 |                      |        |           |

| Dataset name                                       | DOI                  | Source    | # Records |
|----------------------------------------------------|----------------------|-----------|-----------|
| Pottundkopp                                        | 10.15468/0tuomy      | GBIF      | 1         |
| Priest Pot species list, Cumbria, Britain          | 10.15468/lih6qc      | GBIF      | 1         |
| Programa Poseidon - Citizen Science Project        | 10 14294/470         | CDIE      | 1         |
| Results                                            | 10.14284/470         | UDIF      | 1         |
| Quellgebiet Flossach - Klassen 4 a und 4 b VS      | 10.15468/getpyg      | GRIF      | 1         |
| Tussenhausen                                       | 10.15400/getpvg      | ODII      | 1         |
| RACCORDEMENT ELECTRIQUE DE LA                      |                      |           |           |
| FERME EOLIENNE FLOTTANTE DE GROIX                  |                      |           |           |
| ET BELLE-ILE - Création de la liaison sous-        | 10.15468/txidnf      | GBIF      | 1         |
| marine et souterraine à 63 000 volts - Campagne    | 10.10 100, utjali    | 0.DII     | -         |
| benthos Intertidal 2017-Raccordement du parc       |                      |           |           |
| éolien Groix/Belle-île                             |                      |           |           |
| RACCORDEMENT ELECTRIQUE DE LA                      |                      |           |           |
| FERME EOLIENNE FLOTTANTE DE GROIX                  |                      |           |           |
| ET BELLE-ILE - Création de la liaison sous-        | 10.15468/vpabzi      | GBIF      | 1         |
| marine et souterraine à 63 000 volts - Campagne    | Jerre roor Jr J      |           | _         |
| benthos subtidal Drague2015-Raccordement du        |                      |           |           |
| parc éolien Groix/Belle-île                        |                      |           |           |
| Réalisation du dossier d'avant-projet pour         |                      |           |           |
| l'extension de la Réserve Naturelle Nationale des  | 10.15468/fcbaub      | GBIF      | 1         |
| Marais d'Yves (17) - Inventaires endofaune         | 10.12 100/100440     |           | 1         |
| benthique                                          |                      |           |           |
| Regionalpark(Hattersheim)                          | 10.15468/whyljk      | GBIF      | 1         |
| Reifrocknarzissenwiese Löcknitz                    | 10.15468/ofnwua      | GBIF      | 1         |
| Renaturierung Werse (Innenbereich Beckum)          | 10.15468/35acb1      | GBIF      | 1         |
| Reusaer Wald                                       | 10.15468/cvdzbg      | GBIF      | 1         |
| Revision of Pleuroprion zur Strassen, 1903         |                      |           |           |
| (Holidoteidae) and re-evaluation of Spectrarcturus | 10.11646/zootaxa.489 | GBIF      | 1         |
| Schultz, 1981 (Arcturidae) (Crustacea, Isopoda,    | 4.1.1                |           |           |
| Valvifera)                                         |                      |           |           |
| Rhopalione kali sp. nov., first known epicaridean  | 10.11646/zootaxa.459 |           |           |
| parasite on the Malaysian pinnotherid crab,        | 0.2.5                | GBIF      | 1         |
| Serenotheres besutensis (Serène, 1967)             |                      | ~ ~ · · · |           |
| Riedensee                                          | 10.15468/keh8mk      | GBIF      | 1         |
| Riedkanal Bötzingen                                | 10.15468/hqacia      | GBIF      | 1         |
| Riekdahler Wiesen                                  | 10.15468/bh4yyq      | GBIF      | 1         |
| Rössewiesen am Krumbholz                           | 10.15468/wc0v5b      | GBIF      | 1         |
| Roter Berg Werdau (Leubnitz)                       | 10.15468/ql4gzj      | GBIF      | 1         |
| Rotes Steigle (Panzerübungplatz Böblingen)         | 10.15468/8umtlw      | GBIF      | 1         |
| Rund um das LUGY                                   | 10.15468/7y7miq      | GBIF      | 1         |
| Rund um den Hainbergsee                            | 10.15468/ybncmd      | GBIF      | 1         |
| Rund ums Schulgelände                              | 10.15468/m7hcfz      | GBIF      | 1         |
| Rur                                                | 10.15468/wj19jr      | GBIF      | 1         |
| Sahrbachtal Kreis Ahrweiler                        | 10.15468/g5yljv      | GBIF      | 1         |

| Dataset name                                     | DOI                | Source | # Records |
|--------------------------------------------------|--------------------|--------|-----------|
| Saisie de données naturalistes d'observateurs    |                    |        |           |
| indépendants sur la plateforme de l'Observatoire | 10.15468/fwjyyu    | GBIF   | 1         |
| FAUNA - Données naturalistes de Annie JUGLAS     |                    |        |           |
| Saisie de données naturalistes d'observateurs    |                    |        |           |
| indépendants sur la plateforme de l'Observatoire | 10 15469/0770dr    | CDIE   | 1         |
| FAUNA - Données naturalistes de Patrice          | 10.13408/ez/gar    | UDIF   | 1         |
| ROBISSON                                         |                    |        |           |
| sarce_rockyshores                                | 10.15468/1rdkla    | GBIF   | 1         |
| Schriesheimer Steinbruch                         | 10.15468/vslar7    | GBIF   | 1         |
| schulgarten                                      | 10.15468/hjgkc0    | GBIF   | 1         |
| Schulgarten der Volksschule                      | 10.15468/jszlxx    | GBIF   | 1         |
| Schulgarten Huttenheim (Philippsburg/Baden)      | 10.15468/n4izks    | GBIF   | 1         |
| Schulgarten Zinnowwald-GS                        | 10.15468/nceu99    | GBIF   | 1         |
| Schulgarten-StGeorg-Gymnasium                    | 10.15468/snlxbk    | GBIF   | 1         |
| Schulgelände Ceciliengymnasium                   | 10.15468/f5ebe2    | GBIF   | 1         |
| Schulgelände des Schulzentrums am Himmelsbarg    | 10.15468/wcc5cm    | GBIF   | 1         |
| Schulgelände Dientzenhofer-Gymnasium             | 10.154(0/ 00       | CDIE   | 1         |
| (Bamberg)                                        | 10.15468/n8ra9q    | GBIF   | 1         |
| Schulgelände Gebrüder-Grimm-Schuleund            | 10.154(9/2000-00-1 | CDIE   | 1         |
| Umgebung (Lingen)                                | 10.15468/oymewb    | GBIF   | 1         |
| Schulgelände Grolland                            | 10.15468/gl3obj    | GBIF   | 1         |
| Schulgelände IGS-Frosch (Thaleischweiler-        | 10.15469/4h da aa  | CDIE   | 1         |
| Fröschen)                                        | 10.15468/thdaca    | GBIF   | 1         |
| Schulgelände Paul-Gerhardt-Schule-Dassel         | 10.15468/jqoapo    | GBIF   | 1         |
| Schulgelände Regelschule Gorndorf/Umgebung       | 10.15468/2020      | CDIE   | 1         |
| Jugend- und Stadtteilzentrum Gorndorf            | 10.13408/x00400    | UDIF   | 1         |
| Schulgelände Schule auf der Aue, Münster         | 10.15468/dft3sz    | GBIF   | 1         |
| Schulhof (Bad Waldsee)                           | 10.15468/ehvsnk    | GBIF   | 1         |
| Schulhof Bühlschule Giengen                      | 10.15468/eqx5od    | GBIF   | 1         |
| Schulhof und Anlagensee in Nellingen             | 10.15468/rsrpkj    | GBIF   | 1         |
| Schulhofuntersuchung Thomas-Mann-OS              | 10.15468/pyokcv    | GBIF   | 1         |
| Schulteich Heinrich-Mann-Schule                  | 10.15468/geh9u3    | GBIF   | 1         |
| Schulumgebung Grüterschule, Rheine               | 10.15468/wixcfp    | GBIF   | 1         |
| Schulwald Grundschule Brügge                     | 10.15468/6h3vcs    | GBIF   | 1         |
| Schulwald Marksuhl                               | 10.15468/whsh4e    | GBIF   | 1         |
| Selz (Ingelheim am Rhein)                        | 10.15468/vxrf7h    | GBIF   | 1         |
| Shellfish (MNHM-MS)                              | 10.15468/6vocgk    | GBIF   | 1         |
| SILENE-FAUNE-PACA -                              | 10.154(9/0,1       | CDIE   | 1         |
| Parc_National_des_Ecrins_2017_12_18              | 10.13408/00ju2b    | GBIF   | 1         |
| South Caribbean Diversity                        | 10.15468/xeray1    | GBIF   | 1         |
| Stadtpark Schmölln                               | 10.15468/pxinrx    | GBIF   | 1         |
| Stadtpark Sulzbach-Rosenberg                     | 10.15468/09rvrb    | GBIF   | 1         |
| Standing water cartography, Recorder-Lux         | 10 15469/6 9       | CDIE   | 1         |
| database                                         | 10.15468/Ia8neg    | GRIL   |           |
| Stausee (Oberdigisheim/Meßstetten)               | 10.15468/bt6ibb    | GBIF   | 1         |

| Dataset name                                                                                                                                                                                                           | DOI             | Source | # Records |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-----------|
| Steinbachtal (Würzburg)                                                                                                                                                                                                | 10.15468/yjxrvo | GBIF   | 1         |
| Steinbruch Pluwig                                                                                                                                                                                                      | 10.15468/11bddk | GBIF   | 1         |
| Sternwiese Mülheim-Broich                                                                                                                                                                                              | 10.15468/9bbtnf | GBIF   | 1         |
| Streuobstwiese                                                                                                                                                                                                         | 10.15468/jfn5os | GBIF   | 1         |
| Streuobstwiese Kattenhund (Schleswig)                                                                                                                                                                                  | 10.15468/qacgll | GBIF   | 1         |
| Streuobstwiese Kugelberg (Ulm)                                                                                                                                                                                         | 10.15468/ylhovj | GBIF   | 1         |
| Study of epibenthos and demersal fish of the<br>titanium dioxide discharge area in the Dutch<br>Continental Shelf (1976-1981)                                                                                          | 10.14284/241    | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données de la<br>naturaliste Chloé Chabert                                                                                                    | 10.15468/yf9vqs | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données de la structure<br>ANCA (les Amis Naturalistes des Coteaux<br>d'Avron) provenant de la base de donnée du SINP<br>Île-de-France CETTIA | 10.15468/ufcrtq | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données de la structure<br>Département 77 provenant de la base de donnée du<br>SINP Île-de-France CETTIA                                      | 10.15468/vezows | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données de la structure<br>Seine-et-Marne Environnement provenant de la<br>base de donnée du SINP Île-de-France CETTIA                        | 10.15468/nlto1y | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données de la structure<br>SFO - Société Française d'Odonatologie provenant<br>de la base de donnée du SINP Île-de-France<br>CETTIA           | 10.15468/agfbob | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données du naturaliste<br>Grégoire Loïs                                                                                                       | 10.15468/wzuyl3 | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données du naturaliste<br>JAPIOT Xavier provenant de la base de donnée du<br>SINP Île-de-France CETTIA                                        | 10.15468/u0lu0h | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données du naturaliste<br>Larregle Guillaume provenant de la base de donnée<br>du SINP Île-de-France CETTIA                                   | 10.15468/mlqyne | GBIF   | 1         |
| Système d'Information sur la Nature et les<br>Paysages d'Ile de France - Données du naturaliste<br>Thierry Roy provenant de la base de donnée du<br>SINP Île-de-France CETTIA                                          | 10.15468/1wyctb | GBIF   | 1         |

| Dataset name                                       | DOI                  | Source | # Records |
|----------------------------------------------------|----------------------|--------|-----------|
| Système d'Information sur la Nature et les         |                      |        |           |
| Paysages d'Ile de France - Données du Parc         | 10 15468/5uo110      | CDIE   | 1         |
| Naturel Régional du Vexin provenant de la base de  | 10.13408/300110      | UDIF   | 1         |
| donnée du SINP Île-de-France CETTIA                |                      |        |           |
| Système d'Information sur la Nature et les         |                      |        |           |
| Paysages d'Ile de France - Données du/de la        | 10.15468/nimdeu      | GBIF   | 1         |
| naturaliste D'HINZELIN MARCEL provenant de         | 10.15 100/ pjiilded  | ODI    | 1         |
| la base de donnée du SINP Île-de-France CETTIA     |                      |        |           |
| Système d'Information sur la Nature et les         |                      |        |           |
| Paysages d'Ile de France - Inventaire éclair de    | 10.15468/mqmy8i      | GBIF   | 1         |
| Natureparif 2014                                   |                      |        |           |
| Tag der Artenvielfalt am Bruckenwasen              | 10.15468/a7evqr      | GBIF   | 1         |
| Tag der Artenvielfalt im Taubental                 | 10.15468/ge5em2      | GBIF   | 1         |
| Tag der Artenvielfalt mit SchülerInnen des Europa- | 10.15468/bfate1      | GBIF   | 1         |
| Gymnasiums in Wörth am Rhein                       | 10110 100, 014001    | 0DII   | -         |
| Tauchaktion                                        | 10.15468/rmsvxw      | GBIF   | 1         |
| Tauchen und Meer                                   | 10.15468/ve7eov      | GBIF   | 1         |
| Tauchen und Meer 02                                | 10.15468/utfmvr      | GBIF   | 1         |
| Taxonomic revision of Brasiloniscus (Oniscidea,    | 10.5852/eit 2018 434 | GBIF   | 1         |
| Pudeoniscidae) with description of a new species   | 10.0002/03020101101  |        | -         |
| TBW-Schafberg                                      | 10.15468/swvmoa      | GBIF   | 1         |
| The first Turcolana Argano & Pesce, 1980           | 10.11646/zootaxa.417 | GBIF   | 1         |
| (Isopoda: Cirolanidae) from the Greek mainland     | 0.1.6                | 0.511  | -         |
| The fishery ground near Alexandria. XXI.           |                      |        |           |
| Tanaidacea and Isopoda by H.J. Larwood             | 10.15468/1w5yeb      | GBIF   | 1         |
| (1940).Notes and Memoirs No35.                     |                      |        |           |
| Three new species of Scyracepon Tattersall, 1905   |                      |        |           |
| (Isopoda: Bopyridae) from Pacific islands, with    | 10.11646/zootaxa.485 | GBIF   | 1         |
| comments on the rarity of bopyrids parasitizing    | 1.1.6                |        |           |
| brachyurans                                        | 10.154(0/1:1         | CDIE   | 1         |
| Tiere und Pflanzen um uns herum!                   | 10.15468/nbirph      | GBIF   | 1         |
| Tiergarten Straubing                               | 10.15468/zpadpe      | GBIF   | 1         |
| Iriebesbach (Zeulenroda-Iriebes)                   | 10.15468/3zqivb      | GBIF   | 1         |
| Uterzone Wipper (Biesenrode)                       | 10.15468/ceibjl      | GBIF   | 1         |
| Umgebung der Gesamtschule Winterhude               | 10.15468/dmw3vl      | GBIF   | 1         |
| (Hamburg)                                          | 10.15469/1-102       | CDIE   | 1         |
| University of Alberta Encohyster Investable        | 10.15468/K1ap02      | GBIF   | 1         |
| Collection (UAFIC)                                 | 10.18165/ryex9i      | GBIF   | 1         |
| University of Texas. Biodiversity Center.          |                      |        |           |
| Entomology Collection (UTIC)                       | 10.15468/sanyq7      | GBIF   | 1         |
| Unser Schulhof                                     | 10.15468/cyeusg      | GBIF   | 1         |
| Unter hellen Zinnen und finsteren Grotten          | 10.15468/mzruxi      | GBIF   | 1         |
| Urwald 2 (Bad Waldsee)                             | 10.15468/xo6205      | GBIF   | 1         |

| Vergleich der Fauna eines naturbelassenen mit<br>einem wasserwirtschaftlich veränderten Gewässer10.15468/ud5tqeGBIF1Waldränder der Frankenhöhe (Rothenburg ob der<br>Tauber)10.15468/nmjchuGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Wasermann10.15468/mayagGBIF11Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/kayaqwamGBIF1Werl macht sich auf die Suche10.15468/slizazsGBIF1Wirbach10.15468/slizazsGBIF1Wirbach10.15468/slizazsGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/cefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zo |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| einem wasserwirtschaftlich veränderten Gewässer10.15468/ud5tdeGBIF1Waldränder der Frankenhöhe (Rothenburg ob der<br>Tauber)10.15468/nmjchuGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/t2pfbbGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/tkpq49GBIF1Wassermann10.15468/mwqkjgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/tkpq49GBIF1Wert macht sich auf die Suche10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/ihzazsGBIF1Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/pakpdGBIF1Zoo Frankfurt10.15468/pakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS3,599Sweden since 197110.15468/fggzdrOBIS3,016Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssx<                                                |
| Waldränder der Frankenhöhe (Rothenburg ob der<br>Tauber)10.15468/nmjchuGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldwandel in Monschau-Mützenich-Boverei10.15468/t2pfbbGBIF1Wassermann10.15468/tagvdgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/tkpq49GBIF1Werl macht sich auf die Suche10.15468/kazasGBIF1Wirbach10.15468/jhzazsGBIF1Wirbach10.15468/jhzazsGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/fagzdrGBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                        |
| Tauber)10.15408/illijelutOBIF1Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldwandel in Monschau-Mützenich-Boverei10.15468/t2pfbbGBIF1Wassermann10.15468/mwqkjgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/kqwqxmGBIF1Werl macht sich auf die Suche10.15468/eoamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wirbach10.15468/ihzazsGBIF1Wirbach10.15468/mipz3iGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                      |
| Waldstück am Schullandheim Bad Bederkesa10.15468/sdiz8hGBIF1Waldwandel in Monschau-Mützenich-Boverei10.15468/t2pfbbGBIF1Wassermann10.15468/tmwqkjgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/xqwqxmGBIF1Werl macht sich auf die Suche10.15468/coamwtGBIF1Werremündung im Schwarzatal10.15468/ibzazsGBIF1Wirbach10.15468/s2td5oGBIF1Wirbach10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>sweden since 197110.17031/mehqrqOBIS3,016Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS2,797since 19720002,797                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Waldwandel in Monschau-Mützenich-Boverei10.15468/t2pfbbGBIF1Wassermann10.15468/mwqkjgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/xqwqxmGBIF1Werl macht sich auf die Suche10.15468/coamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/ibzazsGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/mipz3iGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.17031/mehqrqOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS2,797Since 19720002,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wassermann10.15468/mwqkjgGBIF1Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/xqwqxmGBIF1Werl macht sich auf die Suche10.15468/eaamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wirdes Bremer Leben im Park10.15468/ibzazsGBIF1Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/g2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.17031/mehqrqOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                     |
| Weidenhüttendorf an der Würm (München)10.15468/tkpq49GBIF1Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/xqwqxmGBIF1Werl macht sich auf die Suche10.15468/koamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/jtzd5oGBIF1Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/q2gkolGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.15468/cesssxOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Weinberge und angrenzende Felsflächen<br>(Drieschen) in Hatzenport/Terrassenmosel10.15468/xqwqxmGBIF1Werl macht sich auf die Suche10.15468/eoamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/jtzd50GBIF1Wirbach10.15468/jtzd50GBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.15468/fggzdrOBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (Drieschen) in Hatzenport/Terrassenmosel10.15468/aqwqAnnOBIF1Werl macht sich auf die Suche10.15468/eoamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/52td5oGBIF1Wirbach10.15468/s52td5oGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Werl macht sich auf die Suche10.15468/eoamwtGBIF1Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/52td50GBIF1Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/q2gkolGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Werremündung im Schwarzatal10.15468/ihzazsGBIF1Wildes Bremer Leben im Park10.15468/52td5oGBIF1Wirbach10.15468/mip23iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/q2gkolGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Wildes Bremer Leben im Park10.15468/52td50GBIF1Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wirbach10.15468/mipz3iGBIF1Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wupperaue bei Kemna (Wuppertal)10.15468/eu9jpaGBIF1Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zielbach (Töll)10.15468/q2gkolGBIF1Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zoo Frankfurt10.15468/phakpdGBIF1RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RSMP Baseline Dataset10.14466/CefasDataH<br>ub.34OBIS6,858SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RSMP Baseline Datasetub.34OBIS0,838SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SHARK - National zoobenthos monitoring in<br>Sweden since 197110.15468/fggzdrOBIS3,599Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sweden since 197110.13406/1922dfOBIS3,399Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Marine Recorder Snapshot extract of surveys<br>entered by JNCC10.17031/mehqrqOBIS3,016SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden<br>since 197210.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| entered by JNCC10.170517 menqrqOBIS3,010SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden<br>since 197210.15468/cesssxOBIS2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SHARK - Regional monitoring, recipient control<br>and monitoring projects of zoobenthos in Sweden10.15468/cesssxOBIS2,797since 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and monitoring projects of zoobenthos in Sweden 10.15468/cesssx OBIS 2,797 since 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| since 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Marine Recorder Snapshot extract of surveys 10.17031/thn0xd OBIS 1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| entered by Natural England                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Marine Recorder Snapshot extract of surveys 10.17031/b3efts OBIS 1.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| entered by NRW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bigood - OBIS 1,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Marine Recorder Snapshot extract of surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| entered by National Museums Northern Ireland 10.17031/frdvov OBIS 1,009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SHARK_Epibenthos_2015_DEEP_Asko_version OBIS 948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2017-04-26.21p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Marine Recorder Snapshot extract of surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| entered by The archive for marine species and 10.1/031/myrqac OBIS 921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| habitats data (DASSH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| POILID uatabase - UBIS 913   NUWA Investebrate Collection ODIS (C2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NI wA Invertebrate Collection - UBIS 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| internet Recorder Snapshot extract of surveys 10.17031/pqhlyg OBIS 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SILARK Eniherthes 2010 AODI Sedermenland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| version 2017-04-26 zin - OBIS 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Dataset name                                       | DOI              | Source | # Records |
|----------------------------------------------------|------------------|--------|-----------|
| Macrobenthos from the eastern English Channel in   |                  | OPIS   | 287       |
| 1999 and 2001                                      | -                | ODIS   | 567       |
| North Atlantic and Arctic Isopoda sampled during   |                  | OBIS   | 384       |
| the IceAGE project                                 | -                | ODIS   | 504       |
| DFO Central and Arctic Multi-species Stock         |                  | OBIS   | 362       |
| Assessment Surveys                                 | -                | ODIS   | 502       |
| COLEÇÃO DE CARCINO DO MUSEU                        | _                | OBIS   | 320       |
| NACIONAL (CARCINO:MNRJ)                            | -                | ODIS   | 529       |
| Discovery Expedition Biological Reports            | -                | OBIS   | 252       |
| North Atlantic and Arctic Isopoda sampled during   | _                | OBIS   | 252       |
| the BIOICE project                                 | -                | ODIS   | 232       |
| NOAA National Benthic Inventory                    | -                | OBIS   | 227       |
| Atlantic Reference Centre                          | -                | OBIS   | 190       |
| Marine Recorder Snapshot extract of surveys        | 10.17031/ya0aba  | OPIS   | 182       |
| entered by SeaSearch                               | 10.17031/yq0g0g  | ODIS   | 102       |
| Biodiversity of benthic assemblages on the Arctic  |                  |        |           |
| continental shelf: historical data from Canada     | -                | OBIS   | 173       |
| (1955 to 1977)                                     |                  |        |           |
| DFO Quebec Region MLI museum collection            | -                | OBIS   | 169       |
| Irish Benthos monitoring as part of the Water      |                  | OBIS   | 168       |
| framework directive since 2012                     | -                | ODIS   | 100       |
| Benthic Haploniscidae (Isopoda) collected around   |                  |        |           |
| Iceland during the BIOICE, IceAGE,                 | 10 14284/551     | OBIS   | 157       |
| IceAGE2,IceAGE_RR and IceAGE3 expeditons in        | 10.1 120 1/ 551  |        | 157       |
| 1992-2020                                          |                  |        |           |
| Dutch long term monitoring of macrobenthos in      |                  |        |           |
| the Dutch Continental Economical Zone of the       | -                | OBIS   | 155       |
| North Sea                                          |                  |        |           |
| 1778-1998 Ivor Rees North Wales Marine Fauna       | 10.17031/35prlf  | OBIS   | 128       |
| Ad-hoc sightings shore and ship-based surveys      |                  |        |           |
| Royal Belgian Institute of Natural Sciences        | -                | OBIS   | 118       |
| Crustacea Collection                               |                  |        |           |
| University of Florida Museum of Natural History    | -                | OBIS   | 113       |
| Invertebrate Zoology                               |                  | 0 DIS  |           |
| MEDITS-Spain: Demersal and mega-benthic            |                  |        |           |
| species from the MEDITS (Mediterranean             | -                | OBIS   | 112       |
| International Trawl Survey) project on the Spanish |                  | 0 DIS  |           |
| continental shelf between 1994 and 2010            |                  |        |           |
| QUADRIGE - Coastal monitoring database and         | -                | OBIS   | 111       |
| products, 1974 onwards. (6064)                     |                  |        |           |
| British Antarctic (Terra Nova) Expedition Zoology  | -                | OBIS   | 101       |
| Marine Recorder Snapshot extract of surveys        | 10.17031/rkwbds  | OBIS   | 101       |
| entered by Kent Wildlife Trust                     | 1011,001/18.0000 |        | 101       |
| HELCOM/OSPAR Ballast water observations            | -                | OBIS   | 99        |
| Bishop Museum Marine Invertebrates Specimens       | -                | OBIS   | 96        |

| Dataset name                                               | DOI                | Source | # Records |
|------------------------------------------------------------|--------------------|--------|-----------|
| Marine Invertebrata specimen database of Osaka             | 10.15468/zhubgk    | OBIS   | 83        |
| Museum of Natutal History                                  |                    |        |           |
| DFO Zoobenthos data from upper Frobisher Bay, 1967 to 1973 | -                  | OBIS   | 67        |
| Bay of Puck dataset                                        | -                  | OBIS   | 52        |
| MBIS Marine Fauna and Flora observations around            |                    | 0.210  |           |
| New Zealand                                                | -                  | OBIS   | 51        |
| iNaturalist research-grade observations                    | -                  | OBIS   | 49        |
| Macrobenthos monitoring in function of aggregate           |                    |        |           |
| extraction activities in the Belgian part of the North Sea | 10.14284/199       | OBIS   | 49        |
| Roscoff inventories: marine fauna and flora since 1800     | 10.21411/qhtc-a855 | OBIS   | 49        |
| Sizing ocean giants: patterns of intraspecific size        |                    | ODIS   | 40        |
| variation in marine megafauna                              | -                  | ODIS   | 42        |
| Abundance and biomass of infaunal species as part          |                    |        |           |
| of Essential fish habitat surveys, Co. Down Coast          | 10.17031/wykk77    | OBIS   | 47        |
| (Northern Ireland) 2012-2013                               |                    |        |           |
| 2014 Centre for the Environment, Fisheries and             |                    |        |           |
| Aquaculture Science (Cefas) Farnes East                    |                    | ODIC   | 12        |
| recommended Marine Conservation Zone (rMCZ)                | -                  | OBIS   | 43        |
| Seabed survey Update                                       |                    |        |           |
| Biomôr 1 dataset. Benthic data from the Southern           |                    | ODIC   | 20        |
| Irish Sea from 1989-1991                                   | -                  | OBIS   | 38        |
| 2012-2015 Orkney Islands Council Marine Non-               | 10.17021/: 6 :     | ODIC   | 22        |
| Native Species Monitoring Programme                        | 10.1/031/jnfcip    | OBIS   |           |
| Bay of Fundy Species List                                  | -                  | OBIS   | 33        |
| SEFSC CAGES Alabama Fish length Data with                  |                    | ODIC   | 22        |
| CPUE                                                       | -                  | OBIS   | 32        |
| 2012-2013 University of Plymouth Falmouth maerl            | 10 17021/1710      | ODIC   | 20        |
| bed infauna and sediment survey using diver cores          | 10.1/031/1/10      | OBIS   | 30        |
| Soviet Antarctic Expedition 1956-1958                      | -                  | OBIS   | 29        |
| Explore Your Shore                                         | 10.14284/563       | OBIS   | 28        |
| Ocean Genome Legacy Collection                             |                    | OBIS   | 27        |
| Colección de Artropodos del Museo de Historia              |                    |        |           |
| Natural Marina de Colombia - Makuriwa                      | 10.15472/eateut    | OBIS   | 26        |
| Macrobenthos samples collected in the Scottish             |                    |        |           |
| waters in 2001                                             | -                  | OBIS   | 25        |
| Infaunal abundances from mud samples taken from            |                    |        |           |
| the Outer Ards penninsula (Northern Ireland) in            |                    |        |           |
| 2014 and 2016 as part of an assessment of the              | -                  | OBIS   | 24        |
| Modiolus modiolus reefs                                    |                    |        |           |
| Mytilini                                                   | -                  | OBIS   | 24        |
| Species list recorded by baited cameras at deep sea        |                    | 2210   | 21        |
| area in Japan                                              | 10.48518/00007     | OBIS   | 24        |

| Dataset name                                        | DOI                 | Source | # Records |  |
|-----------------------------------------------------|---------------------|--------|-----------|--|
| Survey data of tidal flats on the Monitoring sites  | _                   | OBIS   | 24        |  |
| 1000 project, BDCJ                                  | -                   | ODIS   | 24        |  |
| Benthic fauna collected in the Arrábida Marine      | 10 14284/461        | ORIS   | 21        |  |
| Protected Area (SW Portugal) from 2007 to 2009      | 10.14204/401        | ODIS   | 21        |  |
| FRB: Bottom fauna of Saint John Harbour and         | _                   | OBIS   | 21        |  |
| estuary as surveyed in 1959 and 1961                | _                   | ODIS   | 21        |  |
| Plankton&BenthosResearch                            | -                   | OBIS   | 20        |  |
| Macrobenthos Data from Shoreham, the Tyne and       | 10.14466/CefasDataH | OBIS   | 19        |  |
| the Thames Estuaries, UK, 2000 to 2006              | ub.45               | ODIS   | 17        |  |
| Macrozoobenthos_sand_Coconet_IBER-BAS               | -                   | OBIS   | 19        |  |
| Cobscook Bay Inventory: A Historical Checklist of   | _                   | OBIS   | 18        |  |
| Marine Invertebrates Spanning 162 Years             | _                   | ODIS   | 10        |  |
| IOW Macrozoobenthos monitoring Baltic Sea           | _                   | ORIS   | 18        |  |
| (1980-2005)                                         | _                   | ODIS   | 10        |  |
| Subtidal hyperbenthos monitoring in function of a   |                     |        |           |  |
| foreshore suppletion at the Belgian coast, period   | 10.14284/344        | OBIS   | 18        |  |
| 2013-2016                                           |                     |        |           |  |
| Benthos Gironde Estuary                             | -                   | OBIS   | 17        |  |
| Macrobenthos in the Dutch Sector of the North Sea   | _                   | OBIS   | 17        |  |
| 1991-2001                                           | _                   | ODIS   | 17        |  |
| Benthic fauna of the Southwest Alentejo and         |                     |        |           |  |
| Vicentine Coast Natural Park (SW Portugal)          | 10.14284/464        | OBIS   | 15        |  |
| collected in August 2011                            |                     |        |           |  |
| CEMIEO_GS_RL_UNAM                                   | -                   | OBIS   | 15        |  |
| Littoral Monitoring Network of Cantabria            | _                   | OBIS   | 15        |  |
| (Invertebrates)                                     |                     | 0010   | 10        |  |
| Macrobenthos data from the Norwegian Skagerrak      | _                   | OBIS   | 14        |  |
| coast                                               |                     |        |           |  |
| Macrobenthos from the Norwegian waters              | -                   | OBIS   | 14        |  |
| North Sea Benthos Survey                            | -                   | OBIS   | 13        |  |
| Macrobenthos monitoring at long-term monitoring     | 10.14284/202        | OBIS   | 12        |  |
| locations, period 2001-ongoing                      | 10111201/202        |        |           |  |
| Zooplankton data from central and northern Strait   | _                   | OBIS   | 12        |  |
| of Georgia                                          |                     | 0.210  |           |  |
| Abundance of intertidal algae and invertebrates on  | _                   | OBIS   | 11        |  |
| the Atlantic coast of Nova Scotia                   |                     |        |           |  |
| LBMRev                                              | -                   | OBIS   | 11        |  |
| Macrozoobenthos of marine waters in mainland        | 10 14284/463        | OBIS   | 11        |  |
| Portugal collected in March and September 2010      | 10.11201/103        | ODIO   |           |  |
| Specific diversity data of macrobenthic             |                     |        |           |  |
| communities in the "Pierre Noire" study site in the | 10.21411/kfms-pq29  | OBIS   | 11        |  |
| English Channel from 1977 on                        |                     |        |           |  |
| Macrobenthos of the Western Scheldt (Ossenisse,     |                     |        |           |  |
| Valkenisse, Terneuzen and Vlissingen) on 27 and     | 10.14284/231        | OBIS   | 9         |  |
| 28 September 1978                                   |                     |        |           |  |

| Dataset name                                       | DOI                                           | Source | # Records |
|----------------------------------------------------|-----------------------------------------------|--------|-----------|
| ACER: Marine Resource Inventory of the Seaside     |                                               | OBIS   | 8         |
| Adjunct, Kejimkujik National Park                  | -                                             | ODIS   | 0         |
| Asia-Pacific Dataset                               | -                                             | OBIS   | 7         |
| Laspibay-Black Sea                                 | -                                             | OBIS   | 7         |
| Macrozoobenthos data collected from the            |                                               |        |           |
| Constanta East profile in the Romanian marine      | -                                             | OBIS   | 7         |
| waters between 1977 and 1999                       |                                               |        |           |
| Specific diversity data of macrobenthic            |                                               |        |           |
| communities in the "Rivière de Morlaix" study site | 10.21411/qxef-sr30                            | OBIS   | 7         |
| in the English Channel from 1977 to 1996           |                                               |        |           |
| Acadia University: Invertebrates from mudflats in  |                                               |        |           |
| the Minas Basin (Bay of Fundy), collected for the  | -                                             | OBIS   | 6         |
| NaGISA project July 2008                           |                                               |        |           |
| Benthic macrofauna of the Ericeira coast (central  | 10 1/28///62                                  | ODIS   | 6         |
| Portugal) collected in May 2001                    | 10.14204/402                                  | ODIS   | 0         |
| Macrobenthos monitoring in the Mar Piccolo of      | 10.6002/2ham = x560                           | ODIS   | 6         |
| Taranto in June 2013 and April 2014                | 10.00 <i>92</i> /20 <b>q</b> 11- <b>v</b> 500 | ODIS   | 0         |
| Macrozoobenthos_seagrass_Perseus_IBER-BAS          | -                                             | OBIS   | 6         |
| PELD-ELPA Temporal data series of Benthic          |                                               |        |           |
| macrofauna abundance and composition from the      | -                                             | OBIS   | 6         |
| Patos Lagoon estuary                               |                                               |        |           |
| Subtidal macrobenthos monitoring in function of a  |                                               |        |           |
| foreshore suppletion at the Belgian coast, period  | 10.14284/342                                  | OBIS   | 6         |
| 2013-2016                                          |                                               |        |           |
| UNBSJ: Long-term monitoring of benthic infaunal    |                                               |        |           |
| invertebrates at sites in Saint John Harbour, New  | -                                             | OBIS   | 6         |
| Brunswick                                          |                                               |        |           |
| CAISN: Abundance and biomass of benthic            |                                               |        |           |
| invertebrates collected in four ports of the       | -                                             | OBIS   | 5         |
| Canadian Arctic during summers of 2011 and 2012    |                                               |        |           |
| Danube Mouths Zoobenthos data from 1977 to         | _                                             | OBIS   | 5         |
| 1999                                               | _                                             | ODIS   | 5         |
| Eastern Channel dataset                            | -                                             | OBIS   | 5         |
| Epifauna community at Waarde and Saeftinghe        | 10 14284/224                                  | OBIS   | 5         |
| (Westerschelde) in 1991                            | 10.14204/224                                  | ODIS   | 5         |
| Macrozoobenthos_sand_Perseus_IBER-BAS              | -                                             | OBIS   | 5         |
| Marine Biological Sample Database, JAMSTEC         | 10.48518/00001                                | OBIS   | 5         |
| MARITIMES SUMMER RESEARCH VESSEL                   |                                               | OBIS   | 5         |
| SURVEY                                             | -                                             | ODIS   | 5         |
| Strelbay                                           | -                                             | OBIS   | 5         |
| Abundance & Biomass of benthic infauna from        |                                               |        |           |
| grab samples taken as part of an ecosystem         | 10.17031/5ydwq8                               | OBIS   | 4         |
| assessment of Belfast Lough in 2012                |                                               |        |           |
| Arctic soft-sediment macrobenthos                  | -                                             | OBIS   | 4         |

| Dataset name                                         | DOI                 | Source | # Records |
|------------------------------------------------------|---------------------|--------|-----------|
| Benthic infaunal abundance and biomass from          |                     |        |           |
| Belfast Lough dredge disposal monitoring             | 10.17031/tyhfos     | OBIS   | 4         |
| operations 2017 and 2018                             |                     |        |           |
| Royal Belgian Institute of Natural Sciences marine   |                     | ODIS   | 1         |
| Chelicerata collection                               | -                   | ODIS   | 4         |
| Subtidal epibenthos and demersal fish monitoring     |                     |        |           |
| in function of a foreshore suppletion at the Belgian | 10.14284/343        | OBIS   | 4         |
| coast, period 2013-2016                              |                     |        |           |
| Crustacea of the environs of Saint John, New         |                     | OPIS   | 2         |
| Brunswick, Canada as observed in 1967                | -                   | ODIS   | 5         |
| DFO SABS: Wildish collection of sublittoral          |                     |        |           |
| macro-infauna collected in the Bay of Fundy and      | -                   | OBIS   | 3         |
| its estuaries                                        |                     |        |           |
| Epibenthos and demersal fish monitoring data in      |                     |        |           |
| function of wind energy development in the           | 10.14284/53         | OBIS   | 3         |
| Belgian part of the North Sea                        |                     |        |           |
| Hyperbenthos community in the salt marsh of          | 10 1/28//225        | OPIS   | 2         |
| Saeftinghe in 1990 and 1991                          | 10.14204/223        | ODIS   | 5         |
| Infaunal abundance and biomass data from surveys     | 10.17021/an1mom     | ODIS   | 2         |
| of the East Antrim Maerl bed in 2004                 | 10.1/051/qp1iiieiii | ODIS   | 5         |
| Kalamitsi                                            | -                   | OBIS   | 3         |
| Kongsfjorden/Spitsbergen - soft bottom fauna         | 10.14284/263        | OBIS   | 3         |
| SARONIKOS                                            | -                   | OBIS   | 3         |
| SeaWatch-B: citizens monitoring the Belgian          | 10 1/29///01        | ODIS   | 2         |
| North Sea from the beach (2014-2018)                 | 10.14204/401        | ODIS   | 5         |
| Stable isotope ratios of C and N in benthic          |                     |        |           |
| macrofauna from Mediterranean seagrass litter        | 10.14284/454        | OBIS   | 3         |
| accumulations from Calvi Bay in 2011-2012            |                     |        |           |
| The south coast survey of Hatakejima Islands from    | 10.48518/00012      | OBIS   | 3         |
| 1969                                                 | 10.48318/00012      | ODIS   | 5         |
| VIMS NorthEast Area Monitoring and Assessment        |                     | OPIS   | 2         |
| Program                                              | -                   | ODIS   | 5         |
| Abundance and Biomass of infaunal species from       |                     |        |           |
| grab samples from a benthic assessment for Fair      | 10 17031/wlnar9     | ORIS   | 2         |
| Head tidal energy development site (Fair Head, Co.   | 10.1/051/villa19    | ODIS   | Z         |
| Antrim), 2014                                        |                     |        |           |
| Abundances of benthic infauna from grab sediment     |                     |        |           |
| samples as part of the INIS Hyrdo project, Co.       | 10.17031/ktr5zl     | OBIS   | 2         |
| Down (Northern Ireland), 2011                        |                     |        |           |
| Analysis of macrobenthos in the Southern Bight of    | 10 14284/208        | OBIS   | 2         |
| the North Sea (1971-1972)                            | 10.14204/200        | ODIS   | L         |
| Finnish Baltic Sea zooplankton monitoring            | -                   | OBIS   | 2         |
| Macrobenthos monitoring in the Trieste harbour,      |                     |        |           |
| North Adriatic Sea (Port Authority) in June 2013     | 10.6092/04wy-4b44   | OBIS   | 2         |
| and March 2015                                       |                     |        |           |

| Dataset name                                         | DOI             | Source | # Records |  |
|------------------------------------------------------|-----------------|--------|-----------|--|
| MARITIMES SPRING RESEARCH VESSEL                     | _               | OBIS   | 2         |  |
| SURVEY                                               |                 | ODIS   |           |  |
| MegFeod-Black Sea                                    | -               | OBIS   | 2         |  |
| Scientific Results of the New Zealand Government     | -               | OBIS   | 2         |  |
| Trawling Expedition, 1907                            |                 |        |           |  |
| Spatial distribution of the macrozoobenthos on the   | 10.14284/227    | OBIS   | 2         |  |
| 'Slikken van Vianen' (Oosterschelde) in 1979         |                 |        |           |  |
| Study of epibenthos and demersal fish in and         | 10.1.400.4/100  | ODIG   |           |  |
| around the dredging areas of the Belgian             | 10.14284/192    | OBIS   | 2         |  |
| Continental Shelf (1977-1981)                        | 10 1 400 4 /70  | ODIC   |           |  |
| Study on plankton at the port of Ostend in 1965      | 10.14284/72     | OBIS   | 2         |  |
| Tidal and diurnal rhythms of the hyperbenthos at     | 10.14284/218    | OBIS   | 2         |  |
| the 'Vlakte van de Raan' on 14 October 1996          |                 | ODIC   |           |  |
| Universidad CES                                      | -               | OBIS   | 2         |  |
| Abundance and biomass of benthic infauna as part     | 10 17021/::1 70 | ODIC   | 1         |  |
| of the North Channel habitat mapping project,        | 10.17031/1jdo70 | OBIS   | 1         |  |
|                                                      |                 |        |           |  |
| Analysis of the macrobenthic community hear          | 10.14284/206    | OBIS   | 1         |  |
| DEO Ouchea Pagian Caastal hiadiyarsity of the        |                 |        |           |  |
| bro Quebec Region Coastal biodiversity of the        | 10.26071/ogsl-  | ODIS   | 1         |  |
| (2018 2010)                                          | c2a02113-e69c   | ODIS   | 1         |  |
| Ecological study of the plankton in the port of      |                 |        |           |  |
| Ostend 1965                                          | 10.14284/194    | OBIS   | 1         |  |
| Epibenthos and demersal fish monitoring at long-     |                 |        |           |  |
| term monitoring stations in the Belgian part of the  | 10.14284/54     | OBIS   | 1         |  |
| North Sea                                            |                 |        |           |  |
| Feeding rhythms of the common goby                   |                 |        |           |  |
| Pomatoschistus microps at the brackish tidal marsh   | 10.14284/228    | OBIS   | 1         |  |
| 'Het verdronken land van Saeftinge' in 1994          |                 |        |           |  |
| Groundfish Survey Invertebrate Data                  | -               | OBIS   | 1         |  |
| HELCOM/OSPAR Estonia ports water sampling            | -               | OBIS   | 1         |  |
| HELCOM/OSPAR Netherlands ports water                 |                 | OPIS   | 1         |  |
| sampling                                             | -               | ODIS   | 1         |  |
| Jalta-Black Sea                                      | -               | OBIS   | 1         |  |
| MacroBenthos collected at Issungnak Artificial       |                 | OBIS   | 1         |  |
| Island in Southern Beaufort Sea, 1981-1982           | -               | OBIS   | 1         |  |
| Macrobenthos from English waters between 2000-       | _               | OBIS   | 1         |  |
| 2002                                                 | -               | ODIS   | 1         |  |
| Macrobenthos of the Western Scheldt estuary in       | 10 14284/131    | OBIS   | 1         |  |
| September 1978                                       | 10.1 120 1/ 131 |        | 1         |  |
| Macrobentos de cuatro playas de alta energía         |                 |        |           |  |
| ubicadas en la península de la Guajira, noroeste del | -               | OBIS   | 1         |  |
| Golfo de Venezuela                                   |                 |        |           |  |

| Dataset name                                     | DOI             | Source | # Records |  |
|--------------------------------------------------|-----------------|--------|-----------|--|
| Macrozoobenthos data collected in the Northern   |                 |        |           |  |
| part of the Romanian littoral (Danube mouths)    | -               | OBIS   | 1         |  |
| between 2000 and 2010                            |                 |        |           |  |
| Macrozoobenthos data from the southeastern North |                 | OPIS   | 1         |  |
| Sea in 2000                                      | -               | ODIS   | 1         |  |
| Macrozoobenthos, National Pilot Monitoring       |                 | ODIC   | 1         |  |
| Studies Phyllophora April 2017, EMBLAS-II        | -               | ODIS   | 1         |  |
| Macrozoobenthos, National Pilot Monitoring       |                 | ODIC   | 1         |  |
| Studies Phyllophora August 2017, EMBLAS-II       | -               | ODIS   | 1         |  |
| Macrozoobenthos, National Pilot Monitoring       |                 | ODIC   | 1         |  |
| Studies Phyllophora July 2017, EMBLAS-II         | -               | ODIS   | 1         |  |
| Marine Recorder Snapshot extract of surveys      | 10 17021/2007   | OPIC   | 1         |  |
| entered by Wildlife Trusts                       | 10.1/051/2wi8j2 | ODIS   | 1         |  |
| MARITIMES 4VSW RESEARCH VESSEL                   |                 | OPIC   | 1         |  |
| SURVEY                                           | -               | ODIS   | 1         |  |
| Mesopelagic Crustaceans of the North Western     | 10 1/28////66   | OBIS   | 1         |  |
| Portuguese Coast between 1998 and 2000           | 10.14204/400    | ODIS   | 1         |  |
| NZ research trawl surveys since 2008             | -               | OBIS   | 1         |  |
| Polish Arctic Marine Programme                   | 10.14284/183    | OBIS   | 1         |  |
| Programa Poseidon - Citizen Science Project      | 10 14284/470    | ODIC   | 1         |  |
| Results                                          | 10.14284/470    | UDIS   | 1         |  |
| Rhodolith Beds in Northern New Zealand:          |                 | ODIC   | 1         |  |
| Characterisation of Associated Biodiversity      | -               | UDIS   | 1         |  |
| SHARK_Epibenthos_2012_SVVAEK_Fjallsviksvi        |                 | ODIC   | 1         |  |
| ken_version_2017-04-26.zip                       | -               | OBIS   | 1         |  |
| ZooPlankton_159498                               | -               | OBIS   | 1         |  |
| ZooPlankton_161107                               | -               | OBIS   | 1         |  |
| ZooPlankton_9980                                 | -               | OBIS   | 1         |  |
| For 253 dataset no name or citation was provided | OBIS            | 44,838 |           |  |

# Appendix C – Chapter 5

| Table C1. Bioregions of shallow-water marine Isopoda occurring at depths from 0 to 200 m. For each region the most common species is listed, as well as the five |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a 4° latitudinal-longitudinal grid cell.     |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species            | Top 5 most indicative species                                                                                               |
|-----------|-----------|-----------|---------|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1         | 12,119    | 315       | 25      | 79         | Edotia triloba                 | Ancinus depressus, Paranthura floridensis,<br>Machatrium spathulicarpus, Schizobopyrina<br>urocaridis, Excorallana mexicana |
| 2         | 31,274    | 170       | 42      | 74         | Saduria entomon                | Lekanesphaera rugicauda, Natatolana gallica,<br>Idotea neglecta, Pseudarachna hirsuta,<br>Pleurocrypta galateae             |
| 3         | 3,576     | 306       | 8       | 88         | Bullowanthura pambula          | Amakusanthura olearia, Ianiropsis alanmillari,<br>Apanthura styphelia, Neastacilla macilenta,<br>Crabyzos longicaudatus     |
| 4         | 2,330     | 151       | 12      | 76         | Caecognathia<br>crenulatifrons | Exosphaeroma amplicauda, Gnathia trilobata,<br>Idotea fewkesi, Exosphaeroma rhomburum,<br>Califanthura squamosissima        |
| 5         | 1,279     | 179       | 12      | 88         | Acanthoserolis schythei        | Chaetarcturus aculeatus, Acanthomunna spinipes,<br>Leptoserolis orbiculata, Ianiropsis longipes,<br>Munna gallardoi         |
| 6         | 1,274     | 183       | 5       | 86         | Leptanthura laevigata          | Austroarcturus laevis, Joeropsis beuroisi,<br>Ianiropsis palpalis, Iathrippa capensis, Natatolana<br>pilula                 |
| 7         | 709       | 108       | 5       | 80         | Isocladus armatus              | Cassidina typa, Natatolana aotearoa,<br>Dynamenoides decima, Macrochiridothea<br>uncinata, Natatolana narica                |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species       | Top 5 most indicative species                                                                                                     |
|-----------|-----------|-----------|---------|------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 8         | 604       | 137       | 3       | 83         | Onychatrium forceps       | Gnathia masca, Metacirolana serrata, Gnathia<br>wistari, Gnathia variobranchia, Accalathura<br>avena                              |
| 9         | 204       | 57        | 2       | 84         | Expanathura<br>macronesia | Apanthuroides calculosa, Joeropsis dimorpha,<br>Apanthuroides aldabrae, Paracassidinopsis<br>perlata, Mesanthura quadrata         |
| 10        | 125       | 43        | 2       | 72         | Cassidias africana        | Elaphognathia ramosa, Oxinasphaera furcata,<br>Baharilana lira, Metacirolana chemola, Cirolana<br>undata                          |
| 11        | 174       | 32        | 1       | 63         | Lyidotea nodata           | Haliophasma beaufortia, Paracassidina incompta,<br>Agostodina shara, Neastacilla soelae,<br>Austrarcturella pictila               |
| 12        | 201       | 19        | 1       | 53         | Neonaesa rugosa           | Mesanthura hieroglyphica, Paranthura bellicauda,<br>Joeropsis hawaiiensis, Creniola breviceps,<br>Colidotea edmondsoni            |
| 13        | 61        | 16        | 1       | 63         | Acanthoserolis schythei   | Leptoserolis sheppardae, Munnogonium<br>quequensis, Macrochiridothea robusta,<br>Pentaceration pleonarietis, Cassidias argentinea |
| 14        | 50        | 10        | 1       | 60         | Cymodoce brasiliensis     | Cymodoce brasiliensis, Excorallana oculata,<br>Aporobopyrus calypso, Sphaeromopsis mourei,<br>Cymodoce meridionalis               |

**Table C2.** Bioregions of marine Isopoda occurring at intermediate depths of more than 200 m down to 500 m. For each region the most common species is listed, as well as the five most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a 4° latitudinal-longitudinal grid cell.

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species            | Top 5 most indicative species                                                                                                  |
|-----------|-----------|-----------|---------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1         | 10,717    | 118       | 18      | 88         | Ilyarachna longicornis         | Leptanthura tenuis, Eurydice truncata,<br>Echinopleura aculeata, Rocinela danmoniensis,<br>Caecognathia abyssorum              |
| 2         | 259       | 82        | 4       | 93         | Ceratoserolis<br>trilobitoides | Serolella pagenstecheri, Desmosoma modestum,<br>Dolichiscus ferrazi, Lionectes humicephalotus,<br>Chaetarcturus longispinosus  |
| 3         | 139       | 61        | 2       | 100        | Tasmarcturus<br>simplicissimus | Tasmarcturus simplicissimus, Joeropsis bicarinata,<br>Acanthomunna lagorchestes, Notopais minya,<br>Pentaceration spinosissima |
| 4         | 127       | 24        | 2       | 50         | Politolana polita              | Ptilanthura tenuis, Hyssura vimsae, Politolana<br>polita, Politolana impressa, Rocinela americana                              |
| 5         | 117       | 22        | 1       | 82         | Notopais spicatus              | Califanthura pingouin, Munna neglecta,<br>Paranthura costana, Bathygnathia porca,<br>Meridiosignum kerguelensis                |
| 6         | 76        | 12        | 1       | 67         | Cirolana mclaughlinae          | Cirolana mclaughlinae, Dolichiscus spinosetosus,<br>Edotia tangaroa, Accalathura gigantissima,<br>Leptanthura glacialis        |
| 7         | 55        | 8         | 1       | 88         | Acanthamunnopsis<br>milleri    | Acanthamunnopsis milleri, Zeuxokoma setosa,<br>Paramunna quadratifrons, Munnogonium erratum,<br>Munna stephenseni              |
| 8         | 50        | 5         | 1       | 80         | Brucerolis hurleyi             | Brucerolis hurleyi, Aega semicarinata, Rocinela<br>satagia, Brucerolis bromleyana, Natatolana nitida                           |

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species           | Top 5 most indicative species                                                                                                |
|-----------|-----------|-----------|---------|------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1         | 1,831     | 148       | 13      | 67         | Ilyarachna longicornis        | Echinozone arctica, Caecognathia abyssorum,<br>Pleurogonium rubicundum, Dendrotion spinosum,<br>Astacilla intermedia         |
| 2         | 1,630     | 120       | 5       | 59         | Macrostylis magnifica         | Macrostylis magnifica, Leptanthura chardyi,<br>Cornuamesus biscayensis, Munnopsurus<br>atlanticus, Acanthocope carinata      |
| 3         | 895       | 77        | 4       | 52         | Chelator insignis             | Astacilla caeca, Bathygnathia curvirostris,<br>Storthyngura truncata, Caecognathia multispinis,<br>Rapaniscus dewdneyi       |
| 4         | 322       | 80        | 3       | 90         | Brucerolis victoriensis       | Stylomesus sarsi, Haplodendron buzwilsoni,<br>Tasmarcturus simplicissimus, Austrarcturella<br>brychia, Xenosella coxospinosa |
| 5         | 129       | 71        | 2       | 87         | Ceratoserolis<br>meridionalis | Holodentata caeca, Frontoserolis abyssalis,<br>Desmosoma australis, Antarcturus hempeli,<br>Macrostylis cerritus             |
| 6         | 156       | 51        | 2       | 88         | Haploniscus bruuni            | Eurycope manifesta, Desmosoma dolosus, Gnathia<br>lacunacapitalis, Nannoniscus perunis,<br>Nannoniscus coalescum             |
| 7         | 235       | 40        | 4       | 83         | Brucerolis brandtae           | Haploniscus miccus, Acanthomunna proteus,<br>Prochelator tupuhi, Notopais zealandica,<br>Aegiochus nohinohi                  |
| 8         | 121       | 25        | 2       | 60         | Bathynomus giganteus          | Zeuxokoma elongata, Politolana concharum,<br>Politolana wickstenae, Prochelator incomitatus,<br>Hapsidohedra ochlera         |

**Table C3.** Bioregions of deep-sea Isopoda occurring deeper than 500 m. For each region the most common species is listed, as well as the five most indicative species for the region. The percentage of endemic species in each bioregion is given. A cell equals a  $4^{\circ}$  latitudinal-longitudinal grid cell.

#### Table C3. Continued

| Bioregion | # Records | # Species | # Cells | % Endemism | Most common species     | Top 5 most indicative species                                                                                             |
|-----------|-----------|-----------|---------|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 9         | 58        | 24        | 1       | 92         | Stylomesus natalensis   | Stylomesus natalensis, Bathynatalia gilchristi,<br>Apanthura insignifica, Notoxenoides acalama,<br>Brianaudea louwae      |
| 10        | 56        | 24        | 1       | 100        | Chaetarcturus crosnieri | Leptanthura segonzaci, Pseudione clevai, Eragia<br>profunda, Stegidotea carinata, Gigantione<br>elconaxii                 |
| 11        | 53        | 18        | 1       | 83         | Natatolana pellucida    | Bullowanthura crebrui, Quantanthura pacifica,<br>Albanthura stenodactyla, Paranthura longa,<br>Bathygnathia tapinoma      |
| 12        | 52        | 18        | 1       | 72         | Nannoniscus menziesi    | Nannoniscus menziesi, Haploniscus intermedius,<br>Janirella ornata, Microthambema tenuis,<br>Micromesus nannoniscoides    |
| 13        | 59        | 13        | 1       | 92         | Eugerdella kurabyssalis | Dendromunna kurilensis, Austroniscus acutus,<br>Fortimesus trispiculum, Parvochelus serricaudis,<br>Microcope stenopigus  |
| 14        | 53        | 9         | 1       | 67         | Haploniscus silus       | Haploniscus saphos, Haploniscus silus,<br>Hydroniscus lobocephalus, Bathybadistes<br>andrewsi, Chauliodoniscus tasmanaeus |
| 15        | 60        | 7         | 1       | 100        | Metacirolana arnaudi    | Metacirolana arnaudi, Bathylana apalpalis,<br>Ianiropsis palpalis, Iathrippa capensis, Natatolana<br>anophthalma          |
| 16        | 53        | 5         | 1       | 20         | Munneurycope murrayi    | Vanhoeffenura pulchra, Munneurycope murrayi,<br>Limnoria hicksi, Munnopsis abyssalis,<br>Hemiarthrus abdominalis          |

# Appendix D – List of subterranean isopods

| Species                          | Species                    |
|----------------------------------|----------------------------|
| Abebaioscia troglodytes          | Alpioniscus vejdovskyi     |
| Acanthastenasellus forficuloides | Alpioniscus velebiticus    |
| Acteoniscus petrochilosi         | Alpioniscus verhoeffi      |
| Aegonethes antilocapra           | Amakusanthura botosaneanui |
| Aegonethes cervinus              | Amakusanthura lathridia    |
| Afrocerberus letabai             | Amazoniscus eleonorae      |
| Alboscia jotajota                | Amazoniscus leistikowi     |
| Alistratia beroni                | Amazoniscus spica          |
| Alloschizidium cavernicolum      | Amerigoniscus centralis    |
| Alpioniscus balthasari           | Amerigoniscus henroti      |
| Alpioniscus busljetai            | Amerigoniscus nicholasi    |
| Alpioniscus christiani           | Andhracoides shabuddin     |
| Alpioniscus drazinai             | Androniscus brentanus      |
| Alpioniscus epigani              | Androniscus degener        |
| Alpioniscus fragilis             | Androniscus dentiger       |
| Alpioniscus giurensis            | Androniscus noduliger      |
| Alpioniscus haasi                | Androniscus paolettii      |
| Alpioniscus henroti              | Androniscus stygius        |
| Alpioniscus heroldii             | Androniscus subterraneus   |
| Alpioniscus herzegowinensis      | Angeliera cosettae         |
| Alpioniscus hirci                | Angeliera dubitans         |
| Alpioniscus iapodicus            | Angeliera gracilis         |
| Alpioniscus kratochvili          | Angeliera ischiensis       |
| Alpioniscus kuehni               | Angeliera phreaticola      |
| Alpioniscus lossinii             | Angeliera psamathus        |
| Alpioniscus magnus               | Angeliera racovitzai       |
| Alpioniscus mandalinae           | Angeliera rivularis        |
| Alpioniscus matsakisi            | Angeliera xarifae          |
| Alpioniscus onnisi               | Annina fustis              |
| Alpioniscus sideralis            | Annina lacustris           |
| Alpioniscus stochi               | Antrolana lira             |
| Alpioniscus strasseri            | Armadillidium tabacarui    |
| Alpioniscus thracicus            | Arubolana aruboides        |
| Alpioniscus trogirensis          | Arubolana imula            |
| Alpioniscus vardarensis          | Arubolana parvioculata     |

Table D1. Alphabetical list of subterranean isopod species.

| Species                         | Species                         |
|---------------------------------|---------------------------------|
| Arubolana rotunditelson         | Brackenridgia reddelli          |
| Asellus (Asellus) hilgendorfii  | Brackenridgia sphinxensis       |
| Asellus (Asellus) ismailsezarii | Brackenridgia villalobosi       |
| Asellus (Asellus) musashiensis  | Bragasellus afonsoae            |
| Asellus (Asellus) primoryensis  | Bragasellus aireyi              |
| Atlantasellus cavernicolus      | Bragasellus bragai              |
| Atlantasellus dominicanus       | Bragasellus comasi              |
| Baeticoniscus bullonorum        | Bragasellus comasioides         |
| Bahalana abacoana               | Bragasellus conimbricensis      |
| Bahalana bowmani                | Bragasellus escolai             |
| Bahalana caicosana              | Bragasellus frontellum          |
| Bahalana cardiopus              | Bragasellus incurvatus          |
| Bahalana exumina                | Bragasellus lagari              |
| Bahalana geracei                | Bragasellus lagarioides         |
| Bahalana yagerae                | Bragasellus meijersae           |
| Balkanoniscus corniculatus      | Bragasellus molinai             |
| Balkanoniscus minimus           | Bragasellus notenboomi          |
| Balkanostenasellus rumelicus    | Bragasellus pauloae             |
| Balkanostenasellus skopljensis  | Bragasellus rouchi              |
| Bamaoniscus lobatus             | Bragasellus seabrai             |
| Banatoniscus karbani            | Bragasellus stocki              |
| Benthana iporangensis           | Brasileirinho cavaticus         |
| Benthana xiquinhoi              | Buddelundia eberhardi           |
| Beroniscus capreolus            | Bulgarocerberus phreaticus      |
| Beroniscus marcelli             | Bulgaronethes haplophthalmoides |
| Biharoniscus fericeus           | Bunderanthura bundera           |
| Biharoniscus racovitzai         | Bureschia bulgarica             |
| Bilistra cavernicola            | Bureschia serbica               |
| Bilistra mollicopulans          | Burmoniscus coecus              |
| Borutzkyella ravesi             | Caecianiropsis birsteini        |
| Botolana leptura                | Caecianiropsis ectiformis       |
| Brackenphiloscia vandeli        | Caecianiropsis goseongensis     |
| Brackenridgia acostai           | Caecianiropsis psammophila      |
| Brackenridgia ashleyi           | Caecidotea acuticarpa           |
| Brackenridgia bridgesi          | Caecidotea adenta               |
| Brackenridgia cavernarum        | Caecidotea alabamensis          |
| Brackenridgia palmitensis       | Caecidotea alleghenyensis       |
| Species                    | Species                               |
|----------------------------|---------------------------------------|
| Caecidotea ancyla          | Caecidotea pasquinii                  |
| Caecidotea antricola       | Caecidotea paurotrigona               |
| Caecidotea barri           | Caecidotea phreatica                  |
| Caecidotea beattyi         | Caecidotea pricei                     |
| Caecidotea bicrenata       | Caecidotea recurvata                  |
| Caecidotea bilineata       | Caecidotea reddelli                   |
| Caecidotea cannula         | Caecidotea richardsonae               |
| Caecidotea carolinensis    | Caecidotea rotunda                    |
| Caecidotea catachaetus     | Caecidotea salemensis                 |
| Caecidotea chiapas         | Caecidotea scrupulosa                 |
| Caecidotea circulus        | Caecidotea scypha                     |
| Caecidotea cumberlandensis | Caecidotea sequoiae                   |
| Caecidotea cyrtorhynchus   | Caecidotea serrata                    |
| Caecidotea dauphina        | Caecidotea simonini                   |
| Caecidotea dimorpha        | Caecidotea simulator                  |
| Caecidotea extensolinguala | Caecidotea sinuncus                   |
| Caecidotea filicispeluncae | Caecidotea spatulata                  |
| Caecidotea fonticulus      | Caecidotea steevesi                   |
| Caecidotea franzi          | Caecidotea stiladactyla               |
| Caecidotea fustis          | Caecidotea stygia                     |
| Caecidotea henroti         | Caecidotea teresae                    |
| Caecidotea hobbsi          | Caecidotea tridentata                 |
| Caecidotea holsingeri      | Caecidotea vandeli                    |
| Caecidotea incurva         | Caecidotea vomeri                     |
| Caecidotea insula          | Caecidotea zullini                    |
| Caecidotea jordani         | Caecosphaeroma (Caecosphaeroma) virei |
| Caecidotea kendeighi       | Caecosphaeroma (Vireia) burgundum     |
| Caecidotea kenki           | Caecostenetroides ascensionis         |
| Caecidotea lesliei         | Caecostenetroides ischitanum          |
| Caecidotea mackini         | Caecostenetroides leptosoma           |
| Caecidotea macropropoda    | Caecostenetroides nipponicum          |
| Caecidotea metcalfi        | Caecostenetroides ruderalis           |
| Caecidotea mitchelli       | Calabozoa pellucida                   |
| Caecidotea nickajackensis  | Calasellus californicus               |
| Caecidotea nordeni         | Calasellus longus                     |
| Caecidotea nortoni         | Calycuoniscus spinosus                |
| Caecidotea packardi        | Castellanethes ighousi                |

| Species                      | Species                     |
|------------------------------|-----------------------------|
| Castellanethes ougougensis   | Cordioniscus graevei        |
| Castellanethes sanfilippoi   | Cordioniscus kalimnosi      |
| Castellanethes soloisensis   | Cordioniscus kithnosi       |
| Castellanethes velox         | Cordioniscus lusitanicus    |
| Catailana whitteni           | Cordioniscus paragamiani    |
| Caucasocyphoniscus cavaticus | Cordioniscus patrizii       |
| Caucasonethes borutzkyi      | Cordioniscus schmalfussi    |
| Caucasonethes vandeli        | Cordioniscus stebbingi      |
| Cetinjella monasterii        | Cordioniscus vandeli        |
| Chaimowiczia obybytyra       | Coxicerberus abbotti        |
| Chaimowiczia tatus           | Coxicerberus adriaticus     |
| Chaimowiczia uai             | Coxicerberus andamanensis   |
| Circoniscus buckupi          | Coxicerberus anfindicus     |
| Circoniscus carajasensis     | Coxicerberus arenicola      |
| Cirolana acanthura           | Coxicerberus boninensis     |
| Cirolana adriani             | Coxicerberus brasiliensis   |
| Cirolana conditoria          | Coxicerberus delamarei      |
| Cirolana crenata             | Coxicerberus enckelli       |
| Cirolana cubensis            | Coxicerberus fukudai        |
| Cirolana lingua              | Coxicerberus insularis      |
| Cirolana magna               | Coxicerberus interstitialis |
| Cirolana marosina            | Coxicerberus kiiensis       |
| Cirolana pleoscissa          | Coxicerberus littoralis     |
| Cirolana poissoni            | Coxicerberus machadoi       |
| Cirolana radicicola          | Coxicerberus magnus         |
| Cirolana yucatana            | Coxicerberus mexicanus      |
| Cirolana yunca               | Coxicerberus minutus        |
| Cirolanides texensis         | Coxicerberus mirabilis      |
| Cirolanides wassenichae      | Coxicerberus nunezi         |
| Colchidoniscus kutaissianus  | Coxicerberus parvulus       |
| Columbasellus acheron        | Coxicerberus pauliani       |
| Cordioniscus africanus       | Coxicerberus predatoris     |
| Cordioniscus andreevi        | Coxicerberus ramosae        |
| Cordioniscus antiparosi      | Coxicerberus redangensis    |
| Cordioniscus beroni          | Coxicerberus remanei        |
| Cordioniscus bulgaricus      | Coxicerberus renaudi        |
| Cordioniscus graecus         | Coxicerberus rossii         |

| Species                        | Species                      |
|--------------------------------|------------------------------|
| Coxicerberus ruffoi            | Graeconiscus paxi            |
| Coxicerberus simplex           | Graeconiscus strinatii       |
| Coxicerberus singhalensis      | Graeconiscus strouhali       |
| Coxicerberus syrticus          | Haloniscus anophthalmus      |
| Coxicerberus tabai             | Haloniscus longiantennatus   |
| Creaseriella anops             | Haloniscus stilifer          |
| Cruregens fontanus             | Haloniscus tomentosus        |
| Cubaris mirandai               | Haplophthalmus caecus        |
| Curassanthura bermudensis      | Haplophthalmus movilae       |
| Curassanthura canariensis      | Haplophthalmus siculus       |
| Curassanthura halma            | Haplophthalmus tismanicus    |
| Curassanthura jamaicensis      | Haptolana belizana           |
| Curassanthura yucatanensis     | Haptolana bowmani            |
| Cyathura tridentata            | Haptolana pholeta            |
| Cylindroniscus cavicola        | Haptolana somala             |
| Cylindroniscus flaviae         | Haptolana trichostoma        |
| Cylindroniscus maya            | Haptolana yarraloola         |
| Cylindroniscus platoi          | Hawaiioscia microphthalma    |
| Cylindroniscus vallesensis     | Hawaiioscia paeninsulae      |
| Cyphonethes biseriatus         | Hawaiioscia parvituberculata |
| Cyphonethes herzegowinensis    | Hawaiioscia rapui            |
| Cyphonethes tajanus            | Hawaiioscia rotundata        |
| Cyphoniscellus gueorguievi     | Hoctunus vespertilio         |
| Cyphoniscellus herzegowinensis | Hondoniscus kitakamiensis    |
| Etlastenasellus confinis       | Hondoniscus mogamiensis      |
| Etlastenasellus mixtecus       | Hondoniscus ureirensis       |
| Eurydice dollfusi              | Hyloniscus flammula          |
| Exalloniscus convexus          | Hypsimetopus intrusor        |
| Exumalana reptans              | lansaoniscus georginae       |
| Faucheria faucheri             | lansaoniscus iraquara        |
| Gabunillo aridicola            | Iansaoniscus leilae          |
| Gallasellus heilyi             | Iansaoniscus paulae          |
| Graeconiscus caecus            | Isoyvesia striata            |
| Graeconiscus gevi              | Iuiuniscus iuiuensis         |
| Graeconiscus guanophilus       | Janinella brasiliensis       |
| Graeconiscus kournasensis      | Janinella renaudae           |
| Graeconiscus liebegotti        | Johannella purpurea          |

| Species                            | Species                        |
|------------------------------------|--------------------------------|
| Kagalana tonde                     | Metacirolana ponsi             |
| Kensleylana briani                 | Metaprosekia igatuensis        |
| Kimberleydillo waldockae           | Metastenasellus boutini        |
| Kithironiscus dobrogicus           | Metastenasellus camerounensis  |
| Kithironiscus paragamiani          | Metastenasellus congolensis    |
| Leonardoscia hassalli              | Metastenasellus dartevellei    |
| Leucocyphoniscus pisanus           | Metastenasellus leleupi        |
| Libanonethes novus                 | Metastenasellus leysi          |
| Libanonethes probosciferus         | Metastenasellus powelli        |
| Ligidium (Stygoligidium) cavaticum | Metastenasellus tarrissei      |
| Lirceolus bisetus                  | Metastenasellus wikkiensis     |
| Lirceolus cocytus                  | Metatrichoniscoides salirensis |
| Lirceolus hardeni                  | Mexicerberus troglodytes       |
| Lirceolus nidulus                  | Mexiconiscus laevis            |
| Lirceolus pilus                    | Mexilana saluposi              |
| Lirceolus smithii                  | Mexistenasellus atotonoztok    |
| Lirceus culveri                    | Mexistenasellus coahuila       |
| Lirceus usdagalun                  | Mexistenasellus colei          |
| Lucayalana troglexuma              | Mexistenasellus floridensis    |
| Macedonethes castellonensis        | Mexistenasellus magniezi       |
| Macedonethes skopjensis            | Mexistenasellus nulemex        |
| Macedonethes stankoi               | Mexistenasellus parzefalli     |
| Mackinia birsteini                 | Mexistenasellus wilkensi       |
| Mackinia continentalis             | Microcerberus appolliniacus    |
| Mackinia coreana                   | Microcerberus caroliniensis    |
| Mackinia japonica                  | Microcerberus monodi           |
| Mackinia troglodytes               | Microcerberus plesai           |
| Magniezia africana                 | Microcerberus remyi            |
| Magniezia gardei                   | Microcerberus stygius          |
| Magniezia guinensis                | Microcerberus thracicus        |
| Magniezia laticarpa                | Microcharon acherontis         |
| Magniezia studiosorum              | Microcharon agripensis         |
| Marocolana delamarei               | Microcharon alamiae            |
| Merozoon vestigatum                | Microcharon anatolicus         |
| Mesoniscus alpicola                | Microcharon angelicae          |
| Mesoniscus graniger                | Microcharon angelieri          |
| Metacirolana mayana                | Microcharon antonellae         |

| Species                     | Species                           |
|-----------------------------|-----------------------------------|
| Microcharon apolloniacus    | Microcharon orphei                |
| Microcharon arganoi         | Microcharon othrys                |
| Microcharon ariegensis      | Microcharon oubrahimae            |
| Microcharon boui            | Microcharon ourikensis            |
| Microcharon boulanouari     | Microcharon phlegethonis          |
| Microcharon boutini         | Microcharon phreaticus            |
| Microcharon bureschi        | Microcharon profundalis           |
| Microcharon coineanae       | Microcharon quilli                |
| Microcharon comasi          | Microcharon raffaellae            |
| Microcharon doueti          | Microcharon reginae               |
| Microcharon eurydices       | Microcharon rouchi                |
| Microcharon galapagoensis   | Microcharon sabulum               |
| Microcharon halophilus      | Microcharon salvati               |
| Microcharon harrisi         | Microcharon silverii              |
| Microcharon heimi           | Microcharon sisyphus              |
| Microcharon hellenae        | Microcharon stygius               |
| Microcharon hercegovinensis | Microcharon tanakai               |
| Microcharon herrerai        | Microcharon tantalus              |
| Microcharon hispanicus      | Microcharon teissieri             |
| Microcharon juberthiei      | Microcharon thracicus             |
| Microcharon karamani        | Microcharon ullae                 |
| Microcharon kirghisicus     | Microcharon zibani                |
| Microcharon latus           | Microjaera anisopoda              |
| Microcharon letiziae        | Microjaera morii                  |
| Microcharon longistylus     | Microjanira dentifrons            |
| Microcharon luciae          | Microparasellus aloufi            |
| Microcharon lydicus         | Microparasellus hellenicus        |
| Microcharon major           | Microparasellus libanicus         |
| Microcharon margalefi       | Microparasellus puteanus          |
| Microcharon marinus         | Miktoniscus longispina            |
| Microcharon meijersae       | Miktoniscus racovitzai            |
| Microcharon motasi          | Mingrelloniscus inchhuricus       |
| Microcharon notenboomi      | Mladenoniscus belavodae           |
| Microcharon novariensis     | Monolistra (Microlistra) bolei    |
| Microcharon nuragicus       | Monolistra (Microlistra) calopyge |
| Microcharon oltenicus       | Monolistra (Microlistra) fongi    |
| Microcharon orghidani       | Monolistra (Microlistra) jalzici  |

| Species                                 | Species                           |
|-----------------------------------------|-----------------------------------|
| Monolistra (Microlistra) pretneri       | Nipponasellus kagaensis           |
| Monolistra (Microlistra) schottlaenderi | Papuaphiloscia insulana           |
| Monolistra (Microlistra) sketi          | Papuaphiloscia laevis             |
| Monolistra (Microlistra) spinosa        | Papuaphiloscia parkeri            |
| Monolistra (Microlistra) spinosissima   | Paractenoscia cavernicola         |
| Monolistra (Monolistra) caeca           | Paraplatyarthrus crebesconiscus   |
| Monolistra (Monolistra) monstruosa      | Paraplatyarthrus cunyuensis       |
| Monolistra (Monolistrella) velkovrhi    | Paraplatyarthrus occidentoniscus  |
| Monolistra (Pseudomonolistra) bosnica   | Paraplatyarthrus pallidus         |
| Monolistra (Pseudomonolistra)           | Paraplatyarthrus subterraneus     |
| hercegovinensis                         | Parastenasellus chappuisi         |
| Monolistra (Pseudomonolistra) radjai    | Pectenoniscus carinhanhensis      |
| Monolistra (Typhlosphaeroma) bericum    | Pectenoniscus fervens             |
| Monolistra (Typhlosphaeroma) boldorii   | Pectenoniscus iuiuensis           |
| Monolistra (Typhlosphaeroma) lavalensis | Pectenoniscus juveniliensis       |
| Monolistra (Typhlosphaeroma) matjasici  | Pectenoniscus liliae              |
| Monolistra (Typhlosphaeroma) pavani     | Pectenoniscus montalvaniensis     |
| Monolistra (Typhlosphaeroma) racovitzai | Pectenoniscus morrensis           |
| Moserius elbanus                        | Pectenoniscus pankaru             |
| Moserius gruberae                       | Pectenoniscus santanensis         |
| Moserius inexpectatus                   | Phreatoasellus akyioshiensis      |
| Moserius percoi                         | Phreatoasellus higoensis          |
| Moserius talamonensis                   | Phreatoasellus iriei              |
| Namibianira aigamasensis                | Phreatoasellus joianus            |
| Namibianira aikabensis                  | Phreatoasellus kawamurai          |
| Namibianira arnhemensis                 | Phreatoasellus miurai             |
| Namibianira dracohalitus                | Phreatoasellus uenoi              |
| Neophreatoicus assimilis                | Phreatoasellus yoshinoensis       |
| Neostenetroides magniezi                | Phreatoicoides gracilis           |
| Neostenetroides schotteae               | Phreatoicoides longicollis        |
| Neostenetroides stocki                  | Phreatoicus orarii                |
| Niambia botswanaensis                   | Phreatoicus typicus               |
| Niambia ghaubensis                      | Pilbarophreatoicus platyarthricus |
| Niambia namibiaensis                    | Platanosphaera ariadnae           |
| Nichollsia kashiense                    | Platanosphaera cavernarum         |
| Nichollsia menoni                       | Platanosphaera kournasensis       |
| Nipponasellus hubrichti                 | Platyarthrus hoffmannseggii       |

| Species                     | Species                    |
|-----------------------------|----------------------------|
| Pongycarcinia xiphidiourus  | Proasellus elegans         |
| Porcellio cavernicolus      | Proasellus escolai         |
| Porcellionides cavernarum   | Proasellus espanoli        |
| Porcellionides habanensis   | Proasellus exiguus         |
| Porcellionides minutissimus | Proasellus ezzu            |
| Proasellus acutianus        | Proasellus faesulanus      |
| Proasellus adriaticus       | Proasellus franciscoloi    |
| Proasellus alavensis        | Proasellus gardinii        |
| Proasellus albigensis       | Proasellus gauthieri       |
| Proasellus ambracicus       | Proasellus gineti          |
| Proasellus amiterninus      | Proasellus gjorgjevici     |
| Proasellus anophtalmus      | Proasellus gourbaultae     |
| Proasellus aquaecalidae     | Proasellus grafi           |
| Proasellus aragonensis      | Proasellus granadensis     |
| Proasellus arnautovici      | Proasellus guipuzcoensis   |
| Proasellus arthrodilus      | Proasellus henseni         |
| Proasellus bagradicus       | Proasellus hercegovinensis |
| Proasellus barduanii        | Proasellus hermallensis    |
| Proasellus basnosanui       | Proasellus hurki           |
| Proasellus bellesi          | Proasellus hypogeus        |
| Proasellus beroni           | Proasellus intermedius     |
| Proasellus beticus          | Proasellus jaloniacus      |
| Proasellus boui             | Proasellus karamani        |
| Proasellus cantabricus      | Proasellus lagari          |
| Proasellus cavaticus        | Proasellus lescherae       |
| Proasellus chappuisi        | Proasellus leysi           |
| Proasellus chauvini         | Proasellus ligusticus      |
| Proasellus claudei          | Proasellus linearis        |
| Proasellus coiffaiti        | Proasellus ljovuschkini    |
| Proasellus collignoni       | Proasellus lusitanicus     |
| Proasellus comasi           | Proasellus lykaonicus      |
| Proasellus cretensis        | Proasellus malagensis      |
| Proasellus danubialis       | Proasellus maleri          |
| Proasellus delhezi          | Proasellus margalefi       |
| Proasellus deminutus        | Proasellus mateusorum      |
| Proasellus dianae           | Proasellus meijersae       |
| Proasellus ebrensis         | Proasellus micropectinatus |

| Species                      | Species                           |
|------------------------------|-----------------------------------|
| Proasellus minoicus          | Proasellus vizcayensis            |
| Proasellus monodi            | Proasellus vulgaris               |
| Proasellus monsferratus      | Proasellus walteri                |
| Proasellus montenigrinus     | Proasellus winteri                |
| Proasellus navarrensis       | Protelsonia bureschi              |
| Proasellus nolli             | Protelsonia gjorgjevici           |
| Proasellus notenboomi        | Protelsonia hungarica             |
| Proasellus orientalis        | Protelsonia lakatnikensis         |
| Proasellus ortizi            | Protocerberus schminkei           |
| Proasellus oviedensis        | Protocharon arenicola             |
| Proasellus pamphylicus       | Protocharon stocki                |
| Proasellus parvulus          | Protojanira leleupi               |
| Proasellus patrizii          | Protojanira prenticei             |
| Proasellus pavani            | Protojaniroides ficki             |
| Proasellus phreaticus        | Protojaniroides perbrincki        |
| Proasellus pisidicus         | Protonethes ocellatus             |
| Proasellus polychaetus       | Protracheoniscus gakalicus        |
| Proasellus racovitzai        | Pseudobuddelundiella hostensis    |
| Proasellus rectangulatus     | Pseudobuddelundiella ljovuschkini |
| Proasellus rectus            | Pygolabis eberhardi               |
| Proasellus rouchi            | Pygolabis gascoyne                |
| Proasellus similis           | Pygolabis humphreysi              |
| Proasellus sketi             | Pygolabis paraburdoo              |
| Proasellus slavus            | Pygolabis weeliwolli              |
| Proasellus slovenicus        | Quatuordillo caecus               |
| Proasellus solanasi          | Remasellus parvus                 |
| Proasellus soriensis         | Rhodopioniscus beroni             |
| Proasellus spelaeus          | Saharolana seurati                |
| Proasellus spinipes          | Salmasellus howarthi              |
| Proasellus stocki            | Salmasellus steganothrix          |
| Proasellus strouhali         | Schizidium beroni                 |
| Proasellus synaselloides     | Schizidium perplexum              |
| Proasellus thermonyctophilus | Sibirasellus parpurae             |
| Proasellus valdensis         | Skotobaena monodi                 |
| Proasellus vandeli           | Skotobaena mortoni                |
| Proasellus variegatus        | Spelaeonethes brixiensis          |
| Proasellus vignai            | Spelaeonethes mancinii            |

| Species                     | Species                         |
|-----------------------------|---------------------------------|
| Spelaeonethes medius        | Stenasellus costai              |
| Spelaeonethes nodulosus     | Stenasellus covillae            |
| Spelaeoniscus ragonesei     | Stenasellus deharvengi          |
| Spelunconiscus castroi      | Stenasellus escolai             |
| Spelunconiscus septemlacuum | Stenasellus foresti             |
| Speocirolana bolivari       | Stenasellus galhanoae           |
| Speocirolana disparicornis  | Stenasellus grafi               |
| Speocirolana endeca         | Stenasellus guinensis           |
| Speocirolana fustiura       | Stenasellus henryi              |
| Speocirolana guerrei        | Stenasellus javanicus           |
| Speocirolana hardeni        | Stenasellus kenyensis           |
| Speocirolana lapenita       | Stenasellus magniezi            |
| Speocirolana pelaezi        | Stenasellus messanai            |
| Speocirolana prima          | Stenasellus migiurtinicus       |
| Speocirolana pubens         | Stenasellus mongnatei           |
| Speocirolana thermydronis   | Stenasellus monodi              |
| Speocirolana xilitla        | Stenasellus nuragicus           |
| Speocirolana zumbadora      | Stenasellus pardii              |
| Sphaerolana affinis         | Stenasellus racovitzai          |
| Sphaerolana interstitialis  | Stenasellus rigali              |
| Sphaerolana karenae         | Stenasellus ruffoi              |
| Sphaeromides bureschi       | Stenasellus simonsi             |
| Sphaeromides polateni       | Stenasellus stocki              |
| Sphaeromides raymondi       | Stenasellus strinatii           |
| Sphaeromides virei          | Stenasellus taitii              |
| Spherarmadillo cavernicola  | Stenasellus tashanensis         |
| Stenasellus agiuranicus     | Stenasellus tashanicus          |
| Stenasellus asiaticus       | Stenasellus vermeuleni          |
| Stenasellus assorgiai       | Stenasellus virei               |
| Stenasellus bedosae         | Stenobermuda iliffei            |
| Stenasellus boutini         | Stenobermuda mergens            |
| Stenasellus bragai          | Strouhaloniscellus anophthalmus |
| Stenasellus breuili         | Strouhaloniscellus biokovoensis |
| Stenasellus brignolii       | Strouhaloniscellus gordani      |
| Stenasellus buili           | Stygasellus phreaticus          |
| Stenasellus cambodianus     | Stygocyathura beroni            |
| Stenasellus chapmani        | Stygocyathura broodbakkeri      |

| Species                     | Species                       |
|-----------------------------|-------------------------------|
| Stygocyathura chapmani      | Synasellus leysi              |
| Stygocyathura cuborientalis | Synasellus longicauda         |
| Stygocyathura curassavica   | Synasellus longicornis        |
| Stygocyathura fijiensis     | Synasellus mariae             |
| Stygocyathura filipinica    | Synasellus mateusi            |
| Stygocyathura hummelincki   | Synasellus meijersae          |
| Stygocyathura mexidos       | Synasellus meirelesi          |
| Stygocyathura milloti       | Synasellus minutus            |
| Stygocyathura motasi        | Synasellus nobrei             |
| Stygocyathura munae         | Synasellus notenboomi         |
| Stygocyathura numeae        | Synasellus pireslimai         |
| Stygocyathura orghidani     | Synasellus pombalensis        |
| Stygocyathura papuae        | Synasellus robusticornis      |
| Stygocyathura parapotamica  | Synasellus serranus           |
| Stygocyathura rapanuia      | Synasellus tirsensis          |
| Stygocyathura salpiscinalis | Synasellus transmontanus      |
| Stygocyathura sbordonii     | Synasellus valpacensis        |
| Stygocyathura specus        | Synasellus vidaguensis        |
| Stygocyathura taitii        | Synasellus vilacondensis      |
| Stygocyathura univam        | Tainisopus fontinalis         |
| Stygocyathura wadincola     | Tainisopus napierensis        |
| Synasellus albicastrensis   | Tauroligidium stygium         |
| Synasellus barcelensis      | Tauronethes lebedinskyi       |
| Synasellus bragai           | Thailandoniscus brehieri      |
| Synasellus bragaianus       | Thailandoniscus whitteni      |
| Synasellus brigantinus      | Thaumatoniscellus speluncae   |
| Synasellus capitatus        | Titanethes albus              |
| Synasellus dissimilis       | Trachelipus cavaticus         |
| Synasellus exiguus          | Trachelipus troglobius        |
| Synasellus favaiensis       | Trichonethes kosswigi         |
| Synasellus flaviensis       | Trichoniscoides arlanza       |
| Synasellus fragilis         | Trichoniscoides bellesi       |
| Synasellus henrii           | Trichoniscoides broteroi      |
| Synasellus hurki            | Trichoniscoides cantabricus   |
| Synasellus insignis         | Trichoniscoides galiana       |
| Synasellus intermedius      | Trichoniscoides govillari     |
| Synasellus lafonensis       | Trichoniscoides jonfernandezi |

| Species                      | Species                        |
|------------------------------|--------------------------------|
| Trichoniscoides machadoi     | Trichorhina cipoensis          |
| Trichoniscoides marinae      | Trichorhina guanophila         |
| Trichoniscoides meridionalis | Trichorhina pataxosi           |
| Trichoniscoides ouremensis   | Trichorhina pearsei            |
| Trichoniscoides serrai       | Trichorhina vandeli            |
| Trichoniscoides sicoensis    | Tricyphoniscus bureschi        |
| Trichoniscoides subterraneus | Troglarmadillidium stygium     |
| Trichoniscoides viejoi       | Troglarmadillo cavernae        |
| Trichoniscus anopthalmus     | Trogleluma machadoi            |
| Trichoniscus aphonicus       | Troglocyphoniscus absoloni     |
| Trichoniscus baschierii      | Troglocyphoniscus osellai      |
| Trichoniscus bassoti         | Trogloianiropsis lloberai      |
| Trichoniscus beroni          | Troglonethes arrabidaensis     |
| Trichoniscus beschkovi       | Troglonethes aurouxi           |
| Trichoniscus bononiensis     | Troglonethes fonsocalvoi       |
| Trichoniscus bulgaricus      | Troglonethes olissipoensis     |
| Trichoniscus bureschi        | Trogloniscus cavernicolus      |
| Trichoniscus cavernicola     | Trogloniscus clarkei           |
| Trichoniscus dancaui         | Trogloniscus deharvengi        |
| Trichoniscus garevi          | Trogloniscus hengliensis       |
| Trichoniscus gudauticus      | Trogloniscus trilobatus        |
| Trichoniscus hoctuni         | Troglopactes botosaneanui      |
| Trichoniscus jeanneli        | Troglophiloscia belizensis     |
| Trichoniscus lindbergi       | Troglophiloscia laevis         |
| Trichoniscus petrovi         | Troglophiloscia silvestrii     |
| Trichoniscus racovitzai      | Turcolana adaliae              |
| Trichoniscus rhodopiensis    | Turcolana cariae               |
| Trichoniscus stoevi          | Turcolana detecta              |
| Trichoniscus tenebrarum      | Turcolana lepturoides          |
| Trichoniscus tranteevi       | Turcolana pamphyliae           |
| Trichoniscus tuberculatus    | Turcolana reichi               |
| Trichoniscus valkanovi       | Turcolana rhodica              |
| Trichoniscus vandeli         | Turcolana smyrnae              |
| Trichorhina anophthalma      | Turcolana steinitzi            |
| Trichorhina atoyacensis      | Typhlarmadillidium occidentale |
| Trichorhina bequaerti        | Typhlocirolana buxtoni         |
| Trichorhina boneti           | Typhlocirolana fontis          |

| Species                         |
|---------------------------------|
| Typhlocirolana gurneyi          |
| Typhlocirolana haouzensis       |
| Typhlocirolana ichkeuli         |
| Typhlocirolana longimera        |
| Typhlocirolana margalefi        |
| Typhlocirolana moraguesi        |
| Typhlocirolana rifana           |
| Typhlocirolana tiznitensis      |
| Typhlocirolana troglobia        |
| Typhloligidium coecum           |
| Typhloligidium karabijajlae     |
| Typhloligidium kovali           |
| Typhloligidium lithophagum      |
| Typhlotricholigioides aquaticus |
| Uenasellus iyoensis             |
| Vandeloniscellus bulgaricus     |
| Venezillo articulatus           |
| Venezillo boneti                |
| Venezillo cacahuampilensis      |
| Venezillo chiapensis            |
| Venezillo llamasi               |
| Venezillo osorioi               |
| Venezillo pleogoniophorus       |
| Venezillo tenerifensis          |
| Wiyufiloides osornoensis        |
| Xangoniscus aganju              |
| Xangoniscus ceci                |
| Xangoniscus dagua               |
| Xangoniscus ibiracatuensis      |
| Xangoniscus itacarambiensis     |
| Xangoniscus lapaensis           |
| Xangoniscus loboi               |
| Xangoniscus lundi               |
| Xangoniscus odara               |
| Xangoniscus santinhoi           |
| Yucatalana robustispina         |
| Zulialana coalescens            |

#### Appendix E – List of parasitic isopods

**Table E1.** Annotated species list of parasitic isopods. Species are listed alphabetically. Information is provided on the type of parasitism (ecto- or endoparasitic), the site of attachment to the host, and the taxonomic placement of the host species. However, for some species the hosts and/or site of attachment is not known. This is especially the case for gnathiids, where only the larval stages are parasitic and species are commonly described and identified based on the adult male. (?) indicates that the consulted literature did not specifically mention the given information or was inconclusive. In these cases the typical site of attachment for the genus or family is provided.

| Scientific name        | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)          |
|------------------------|-----------------|----------------------|------------------------------------------|
| Achelion occidentalis  | endoparasitic   | brood cavity         | Decapoda – Mithracidae &<br>Inachoididae |
| Acrobelione anisopoda  | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae                   |
| Acrobelione halimedae  | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae                   |
| Acrobelione langi      | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae                   |
| Acrobelione reverberii | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae                |
| Aegathoa elongata      | ectoparasitic   | unknown              | Teleostei – Carangidae                   |
| Aegathoa oculata       | ectoparasitic   | unknown              | Teleostei – Sparidae (?)                 |
| Aegoniscus gigas       | ectoparasitic   | marsupium            | Isopoda – Aegidae                        |
| Aegophila cappa        | ectoparasitic   | thorax               | Isopoda – Aegidae                        |
| Aegophila socialis     | ectoparasitic   | legs; marsupium      | Isopoda – Aegidae                        |
| Afrignathia multicavea | ectoparasitic   | unknown              | unknown                                  |
| Agarna bengalensis     | ectoparasitic   | unknown              | unknown                                  |
| Agarna cumulus         | ectoparasitic   | branchial cavity     | Teleostei – Acanthuridae                 |
| Agarna malayi          | ectoparasitic   | branchial cavity     | Teleostei – Dorosomatidae<br>& Mugilidae |
| Agarna pustulosa       | ectoparasitic   | branchial cavity     | unknown                                  |
| Akrophryxus acinaces   | ectoparasitic   | antennules           | Decapoda – Goneplacidae                  |
| Akrophryxus milvus     | ectoparasitic   | antennules           | Decapoda – Ethusidae                     |

| Scientific name                  | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)         |
|----------------------------------|-----------------|----------------------|-----------------------------------------|
| Akrophryxus<br>pallipalicus      | ectoparasitic   | antennules           | Decapoda – Palicidae                    |
| Albunione australiana            | ectoparasitic   | branchial cavity (?) | Decapoda – Albuneidae                   |
| Albunione indecora               | ectoparasitic   | branchial cavity (?) | Decapoda – Albuneidae                   |
| Albunione yoda                   | ectoparasitic   | branchial cavity     | Decapoda – Albuneidae                   |
| Allathelges alisonae             | ectoparasitic   | abdomen              | Decapoda – Diogenidae                   |
| Allathelges<br>pakistanensis     | ectoparasitic   | abdomen              | Decapoda – Diogenidae                   |
| Allobopyrus rumphiusi            | ectoparasitic   | unknown              | Decapoda – Palaemonidae                 |
| Allocancrion yunnu               | endoparasitic   | visceral cavity      | Decapoda – Plagusiidae                  |
| Allodiplophryxus<br>floridanus   | ectoparasitic   | abdomen              | Decapoda – Palaemonidae                 |
| Allodiplophryxus<br>unilateralis | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae                 |
| Allokepon hendersoni             | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae                   |
| Allokepon longicauda             | ectoparasitic   | unknown              | Decapoda – Portunidae                   |
| Allokepon monodi                 | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae &<br>Inachoididae |
| Allokepon sinensis               | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae                   |
| Allokepon tiariniae              | ectoparasitic   | branchial cavity     | Decapoda – Epialtidae                   |
| Allophryxus ruber                | ectoparasitic   | unknown              | unknown                                 |
| Allorbimorphus<br>australiensis  | ectoparasitic   | unknown              | Decapoda – Porcellanidae                |
| Allorbimorphus haigae            | ectoparasitic   | unknown              | Decapoda – Porcellanidae                |
| Allorbimorphus<br>lamellosus     | ectoparasitic   | unknown              | Decapoda – Porcellanidae                |
| Allorbimorphus<br>scabriculi     | ectoparasitic   | unknown              | Decapoda – Porcellanidae                |
| Allorbimorphus<br>tuberculus     | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae                |
| Amblycephalon<br>indicus         | ectoparasitic   | body surface         | Teleostei – Sphyraenidae                |

| Scientific name               | Parasitism type | Site of attachment | Hosts<br>(Order/Class – Family)                                   |
|-------------------------------|-----------------|--------------------|-------------------------------------------------------------------|
| Amblycephalon<br>schadleri    | ectoparasitic   | body surface (?)   | unknown                                                           |
| Anacepon sibogae              | ectoparasitic   | unknown            | Decapoda – Parthenopidae                                          |
| Anathelges foliosus           | ectoparasitic   | abdomen (?)        | unknown                                                           |
| Anathelges hyphalus           | ectoparasitic   | abdomen            | Decapoda – Paguridae                                              |
| Anathelges hyptius            | ectoparasitic   | abdomen            | Decapoda – Paguridae                                              |
| Anathelges<br>resupinatus     | ectoparasitic   | abdomen (?)        | unknown                                                           |
| Anchiarthrus<br>derelictus    | ectoparasitic   | abdomen (?)        | Decapoda – Alpheidae                                              |
| Ancyroniscus bonnieri         | ectoparasitic   | marsupium          | Isopoda – Sphaeromatidae                                          |
| Ancyroniscus<br>orientalis    | ectoparasitic   | marsupium (?)      | Isopoda – Aegidae                                                 |
| Anilocra abudefdufi           | ectoparasitic   | beneath eye        | Teleostei – Pomacentridae                                         |
| Anilocra acanthuri            | ectoparasitic   | fins               | Teleostei – Acanthuridae                                          |
| Anilocra acuminata            | ectoparasitic   | unknown            | unknown                                                           |
| Anilocra acuta                | ectoparasitic   | base of fins       | Holostei – Lepisosteidae;<br>Teleostei – Sciaenidae &<br>Esocidae |
| Anilocra alloceraea           | ectoparasitic   | unknown            | Teleostei (?)                                                     |
| Anilocra amboinensis          | ectoparasitic   | unknown            | Teleostei – Acanthuridae &<br>Balistidae                          |
| Anilocra<br>angeladaviesae    | ectoparasitic   | unknown            | unknown                                                           |
| Anilocra ankistra             | ectoparasitic   | unknown            | Teleostei (?)                                                     |
| Anilocra apogonae             | ectoparasitic   | head               | Teleostei – Apogonidae                                            |
| Anilocra atlantica            | ectoparasitic   | unknown            | Teleostei (?)                                                     |
| Anilocra australis            | ectoparasitic   | unknown            | unknown                                                           |
| Anilocra brillae              | ectoparasitic   | beneath eye        | Teleostei – Serranidae                                            |
| Anilocra<br>bunkleywilliamsae | ectoparasitic   | unknown            | Teleostei – Sparidae                                              |

| Scientific name       | Parasitism type | Site of attachment             | Hosts<br>(Order/Class – Family)                                       |
|-----------------------|-----------------|--------------------------------|-----------------------------------------------------------------------|
| Anilocra capensis     | ectoparasitic   | below dorsal fin               | Teleostei – Sparidae                                                  |
| Anilocra caudata      | ectoparasitic   | unknown                        | Teleostei (?)                                                         |
| Anilocra cavicauda    | ectoparasitic   | unknown                        | Teleostei (?)                                                         |
| Anilocra chaetodontis | ectoparasitic   | beneath eye                    | Teleostei – Chaetodontidae                                            |
| Anilocra chromis      | ectoparasitic   | beneath eye                    | Teleostei – Pomacentridae                                             |
| Anilocra clupei       | ectoparasitic   | head                           | Teleostei – Dorosomatidae<br>& Pempheridae                            |
| Anilocra coxalis      | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra dimidiata    | ectoparasitic   | body surface                   | Teleostei – Dorosomatidae<br>& Leiognathidae                          |
| Anilocra elviae       | ectoparasitic   | claspers                       | Elasmobranchii (sharks) –<br>Lamnidae                                 |
| Anilocra frontalis    | ectoparasitic   | body surface                   | Teleostei – Sparidae,<br>Mullidae, Sciaenidae,<br>Soleidae & Labridae |
| Anilocra gigantea     | ectoparasitic   | unknown                        | Teleostei – Lutjanidae                                                |
| Anilocra grandmaae    | ectoparasitic   | body surface                   | Teleostei – Dorosomatidae                                             |
| Anilocra guinensis    | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra hadfieldae   | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra haemuli      | ectoparasitic   | body surface                   | Teleostei – Haemulidae                                                |
| Anilocra hedenborgi   | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra holacanthi   | ectoparasitic   | beneath eye                    | Teleostei – Pomacanthidae                                             |
| Anilocra holocentri   | ectoparasitic   | interorbital region of<br>head | Teleostei – Holocentridae                                             |
| Anilocra huacho       | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra ianhudsoni   | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra jovanasi     | ectoparasitic   | unknown                        | unknown                                                               |
| Anilocra koolanae     | ectoparasitic   | body surface                   | Teleostei – Caesionidae &<br>Carangidae                               |

| Scientific name       | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                   |
|-----------------------|-----------------|------------------------------------|-------------------------------------------------------------------|
| Anilocra laevis       | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra leptosoma    | ectoparasitic   | body surface;<br>branchial cavity  | Teleostei – Dorosomatidae<br>& Sciaenidae                         |
| Anilocra longicauda   | ectoparasitic   | caudal peduncle                    | Teleostei – Polynemidae                                           |
| Anilocra marginata    | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra meridionalis | ectoparasitic   | beneath eye;<br>operculum          | Teleostei – Dorosomatidae                                         |
| Anilocra monoma       | ectoparasitic   | unknown                            | Teleostei – Sparidae,<br>Dorosomatidae, Clupeidae<br>& Sciaenidae |
| Anilocra montti       | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Salmonidae                                            |
| Anilocra morsicata    | ectoparasitic   | anterior to dorsal fin             | Teleostei – Stomiidae                                             |
| Anilocra myripristis  | ectoparasitic   | unknown                            | Teleostei – Holocentridae                                         |
| Anilocra nemipteri    | ectoparasitic   | posterodorsally to eye             | Teleostei – Nemipteridae                                          |
| Anilocra occidentalis | ectoparasitic   | unknown                            | Teleostei (?)                                                     |
| Anilocra partiti      | ectoparasitic   | beneath eye                        | Teleostei – Pomacentridae                                         |
| Anilocra paulsikkeli  | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra physodes     | ectoparasitic   | body surface                       | Teleostei – Sparidae,<br>Sphyraenidae & Mugilidae                 |
| Anilocra pilchardi    | ectoparasitic   | body surface                       | Teleostei – Alosidae,<br>Dorosomatidae, Engraulidae<br>& Sparidae |
| Anilocra plebeia      | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra pomacentri   | ectoparasitic   | posterodorsally to eye             | Teleostei – Pomacentridae                                         |
| Anilocra prionuri     | ectoparasitic   | below nostril                      | Teleostei – Acanthuridae                                          |
| Anilocra recta        | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra rhodotaenia  | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra rissoniana   | ectoparasitic   | unknown                            | unknown                                                           |
| Anilocra soelae       | ectoparasitic   | unknown                            | Teleostei (?)                                                     |

| Scientific name              | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)         |
|------------------------------|-----------------|----------------------|-----------------------------------------|
| Anilocra tropica             | ectoparasitic   | unknown              | unknown                                 |
| Anisarthrus okunoi           | ectoparasitic   | abdomen              | Decapoda –<br>Rhynchocinetidae          |
| Anisarthrus pelseneeri       | ectoparasitic   | abdomen              | Decapoda – Alpheidae                    |
| Anisorbione curva            | ectoparasitic   | unknown              | Decapoda – Penaeidae                    |
| Anomophryxus<br>deformatus   | ectoparasitic   | abdomen              | Decapoda – Pandalidae                   |
| Anphira branchialis          | ectoparasitic   | branchial cavity     | Teleostei – Serrasalmidae               |
| Anphira guianensis           | ectoparasitic   | branchial cavity     | Teleostei – Serrasalmidae               |
| Anphira junki                | ectoparasitic   | branchial cavity     | Teleostei – Triportheidae               |
| Anphira xinguensis           | ectoparasitic   | branchial cavity     | Teleostei – Serrasalmidae               |
| Antephrya limacis            | ectoparasitic   | unknown              | unknown                                 |
| Anuropodione<br>amphiandra   | ectoparasitic   | branchial cavity     | Decapoda – Munididae                    |
| Anuropodione<br>carolinensis | ectoparasitic   | branchial cavity     | Decapoda – Munididae                    |
| Anuropodione dubius          | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae                  |
| Anuropodione<br>megacephalon | ectoparasitic   | branchial cavity     | Decapoda – Munididae                    |
| Anuropodione<br>senegalensis | ectoparasitic   | branchial cavity     | Decapoda – Munididae                    |
| Aparapenaeon<br>brevicoxalis | ectoparasitic   | branchial cavity (?) | Decapoda – Solenoceridae<br>& Penaeidae |
| Aparapenaeon<br>calculosa    | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                    |
| Aparapenaeon<br>japonica     | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                    |
| Aparapenaeon takii           | ectoparasitic   | branchial cavity (?) | unknown                                 |
| Apocepon digitatum           | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae                  |
| Apocepon leucosiae           | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae                  |
| Apocepon pulcher             | ectoparasitic   | branchial cavity     | Decapoda – Leucosiidae                  |

| Scientific name              | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|------------------------------|-----------------|----------------------|---------------------------------|
| Apocumoechus<br>paranebaliae | ectoparasitic   | unknown              | Leptostraca – Paranebaliidae    |
| Apophrixus constrictus       | ectoparasitic   | abdomen              | Decapoda – Alpheidae            |
| Apophrixus<br>philippinensis | ectoparasitic   | abdomen              | Decapoda                        |
| Aporobopyrina<br>amboinae    | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Aporobopyrina<br>anomala     | ectoparasitic   | branchial cavity     | Decapoda – Munididae            |
| Aporobopyrina<br>javaensis   | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Aporobopyrina<br>lamellata   | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyroides<br>upogebiae | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Aporobopyrus<br>aduliticus   | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus<br>bonairensis  | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus<br>bourdonis    | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus calypso         | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus collardi        | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus curtatus        | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus dollfusi        | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Aporobopyrus<br>enosteoidis  | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Aporobopyrus<br>galleonus    | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus gracilis        | ectoparasitic   | branchial cavity     | Decapoda                        |
| Aporobopyrus<br>megacephalon | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Aporobopyrus<br>muguensis    | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Aporobopyrus<br>orientalis   | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae          |
| Aporobopyrus<br>oviformis    | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |

| Scientific name              | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                         |
|------------------------------|-----------------|----------------------|---------------------------------------------------------|
| Aporobopyrus<br>parvulus     | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae                                |
| Aporobopyrus parvus          | ectoparasitic   | branchial cavity     | Decapoda                                                |
| Aporobopyrus<br>pleopodatus  | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae                                |
| Aporobopyrus retrorsa        | ectoparasitic   | branchial cavity     | Decapoda – Munididae                                    |
| Aporobopyrus<br>ryukyuensis  | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae                                |
| Aporobopyrus<br>trilobatus   | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae                                |
| Arcturocheres<br>gaussicola  | ectoparasitic   | marsupium            | Isopoda – Austrarcturellidae                            |
| Arcturocheres<br>pulchripes  | ectoparasitic   | marsupium            | Isopoda – Arcturidae                                    |
| Argeia atlantica             | ectoparasitic   | branchial cavity (?) | Decapoda – Crangonidae                                  |
| Argeia pugettensis           | ectoparasitic   | branchial cavity     | Decapoda – Crangonidae                                  |
| Argeiopsis guamensis         | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                                    |
| Argeiopsis inhacae           | ectoparasitic   | branchial cavity     | Decapoda – Stenopodidae                                 |
| Argeiopsis kensleyi          | ectoparasitic   | branchial cavity     | Decapoda – Spongicolidae                                |
| Arthrophryxus<br>beringanus  | ectoparasitic   | unknown              | Lophogastrida – Eucopiidae                              |
| Artystone<br>bolivianensis   | endoparasitic   | visceral cavity      | Teleostei – Loricariidae                                |
| Artystone minima             | endoparasitic   | visceral cavity      | Teleostei – Lebiasinidae &<br>Characidae                |
| Artystone trysibia           | endoparasitic   | visceral cavity      | Teleostei – Loricariidae,<br>Cichlidae & Callichthyidae |
| Asconiscus simplex           | ectoparasitic   | marsupium            | Mysida –Mysidae                                         |
| Asotana formosa              | ectoparasitic   | buccal cavity        | Teleostei – Serrasalmidae                               |
| Asotana magnifica            | ectoparasitic   | buccal cavity        | Teleostei – Serrasalmidae                               |
| Asotana splendida            | ectoparasitic   | buccal cavity (?)    | Teleostei – Loricariidae                                |
| Aspidophryxus<br>discoformis | ectoparasitic   | cephalothorax        | Mysida – Mysidae                                        |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                 | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|---------------------------------|-----------------|----------------------|---------------------------------------|
| Aspidophryxus<br>frontalis      | ectoparasitic   | cephalon             | Mysida – Mysidae                      |
| Aspidophryxus<br>izuensis       | ectoparasitic   | carapace             | Mysida – Mysidae                      |
| Aspidophryxus<br>japonicus      | ectoparasitic   | thorax               | Mysida – Mysidae                      |
| Aspidophryxus<br>peltatus       | ectoparasitic   | antennules           | Mysida – Mysidae                      |
| Astalione cruciaria             | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae              |
| Asymmetrione<br>aequalis        | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                 |
| Asymmetrione<br>ambodistorta    | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae                 |
| Asymmetrione<br>asymmetrica     | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae                 |
| Asymmetrione<br>clibanarii      | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                 |
| Asymmetrione dardani            | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae                 |
| Asymmetrione desultor           | ectoparasitic   | branchial cavity (?) | Decapoda – Paguridae                  |
| Asymmetrione foresti            | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                 |
| Asymmetrione<br>globifera       | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae &<br>Paguridae  |
| Asymmetrione<br>harmoniae       | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae                 |
| Asymmetrione<br>nossibensis     | ectoparasitic   | branchial cavity     | Decapoda                              |
| Asymmetrione sallyae            | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                 |
| Asymmetrione shiinoi            | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae                 |
| Asymmetrione<br>tuxtlaensis     | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae &<br>Calcinidae |
| Asymmetrorbione<br>drepanopleon | ectoparasitic   | branchial cavity     | Decapoda – Sicyoniidae                |
| Asymmetrorbione<br>kempi        | ectoparasitic   | branchial cavity     | Decapoda – Sicyoniidae                |
| Athelges aegyptius              | ectoparasitic   | abdomen              | Decapoda – Diogenidae                 |
| Athelges ankistron              | ectoparasitic   | abdomen              | Decapoda – Diogenidae                 |

| Scientific name             | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|-----------------------------|-----------------|----------------------|---------------------------------------|
| Athelges bilobus            | ectoparasitic   | abdomen (?)          | Decapoda – Paguridae                  |
| Athelges caudalis           | ectoparasitic   | abdomen              | Decapoda – Calcinidae &<br>Diogenidae |
| Athelges cladophorus        | ectoparasitic   | abdomen              | Decapoda – Paguridae                  |
| Athelges guitarra           | ectoparasitic   | abdomen (?)          | Decapoda – Paguridae                  |
| Athelges intermedia         | ectoparasitic   | abdomen (?)          | Decapoda – Paguridae                  |
| Athelges lacertosi          | ectoparasitic   | abdomen (?)          | Decapoda – Paguridae                  |
| Athelges paguri             | ectoparasitic   | abdomen              | Decapoda – Paguridae                  |
| Athelges pelagosae          | ectoparasitic   | abdomen              | Decapoda – Paguridae                  |
| Athelges prideauxii         | ectoparasitic   | abdomen (?)          | Decapoda – Paguridae                  |
| Athelges<br>takanoshimensis | ectoparasitic   | abdomen              | Decapoda – Paguridae &<br>Diogenidae  |
| Athelges tenuicaudis        | ectoparasitic   | abdomen              | Decapoda – Paguridae                  |
| Atypocepon<br>intermedium   | ectoparasitic   | branchial cavity (?) | unknown                               |
| Avada eldredgei             | ectoparasitic   | unknown              | Decapoda – Porcellanidae              |
| Avada kedavra               | ectoparasitic   | unknown              | Decapoda – Epialtidae                 |
| Avada porcellanae           | ectoparasitic   | unknown              | Decapoda – Porcellanidae              |
| Axiophilus<br>mirabiledictu | endoparasitic   | unknown              | Decapoda – Callianassidae             |
| Azygopleon schmitti         | ectoparasitic   | abdomen              | Decapoda – Alpheidae                  |
| Balanopleon<br>tortuganus   | ectoparasitic   | branchial cavity     | Decapoda – Munididae                  |
| Bambalocra intwala          | ectoparasitic   | unknown              | Teleostei – Pomacanthidae             |
| Bathione<br>humboldtensis   | ectoparasitic   | unknown              | Decapoda – Munididae                  |
| Bathione magnafolia         | ectoparasitic   | branchial cavity     | Decapoda – Munidopsidae               |
| Bathygnathia adlerzia       | ectoparasitic   | unknown              | Teleostei (?)                         |

| Scientific name               | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-------------------------------|-----------------|----------------------|---------------------------------|
| Bathygnathia affinis          | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia bathybia         | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia<br>cardiocondyla | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygnathia<br>curvirostris  | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygnathia<br>depaolorosae  | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia japonica         | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia<br>magnifica     | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia monodi           | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia oedipus          | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia<br>opisthopsis   | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygnathia porca            | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygnathia<br>segonzaci     | ectoparasitic   | unknown              | unknown                         |
| Bathygnathia<br>tapinoma      | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygnathia<br>vollenhovia   | ectoparasitic   | unknown              | Teleostei (?)                   |
| Bathygyge grandis             | ectoparasitic   | branchial cavity     | Decapoda –<br>Glyphocrangonidae |
| Bopyrella articulata          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrella calmani             | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Bopyrella harmopleon          | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Bopyrella malensis            | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrella moluccensis         | ectoparasitic   | unknown              | Decapoda – Alpheidae            |
| Bopyrella tanytelson          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrella thomsoni            | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |

| Scientific name             | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-----------------------------|-----------------|----------------------|---------------------------------|
| Bopyrina abbreviata         | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae         |
| Bopyrina choprai            | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Bopyrina gigas              | ectoparasitic   | branchial cavity (?) | Decapoda – Hippolytidae         |
| Bopyrina ocellata           | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae         |
| Bopyrina sewelli            | ectoparasitic   | branchial cavity (?) | Decapoda –<br>Chlorotocellidae  |
| Bopyrinella albida          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrinella<br>hadrocoxalis | ectoparasitic   | branchial cavity     | Decapoda – Thoridae             |
| Bopyrinella nipponica       | ectoparasitic   | branchial cavity     | Decapoda – Thoridae             |
| Bopyrinella parameces       | ectoparasitic   | branchial cavity (?) | Decapoda – Ogyrididae           |
| Bopyrinella<br>stricticauda | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrinella thorii          | ectoparasitic   | branchial cavity     | Decapoda – Thoridae             |
| Bopyrinina<br>dorsimaculata | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Bopyrinina<br>paucimaculata | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Bopyrione<br>longicapitata  | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrione<br>multifeminae   | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Bopyrione synalphei         | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Bopyrione toloensis         | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Bopyrione<br>woodmasoni     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae            |
| Bopyrissa dawydoffi         | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae           |
| Bopyrissa diogeni           | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae           |
| Bopyrissa distorta          | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae           |
| Bopyrissa fraissei          | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae           |

| Scientific name                     | Parasitism type                  | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|-------------------------------------|----------------------------------|----------------------|---------------------------------------|
| Bopyrissa guamensis                 | ectoparasitic                    | branchial cavity     | Decapoda – Calcinidae                 |
| Bopyrissa kensleyi                  | ectoparasitic                    | branchial cavity     | Decapoda – Diogenidae                 |
| Bopyrissa liberorum                 | ectoparasitic                    | branchial cavity (?) | Decapoda – Diogenidae                 |
| Bopyrissa magellanica               | ectoparasitic                    | branchial cavity     | Decapoda – Diogenidae                 |
| Bopyrissa marami                    | ectoparasitic                    | branchial cavity     | Decapoda – Calcinidae                 |
| Bopyrissa<br>novaeguineensis        | ectoparasitic                    | branchial cavity (?) | Decapoda                              |
| Bopyrissa oceania                   | ectoparasitic                    | branchial cavity     | Decapoda – Calcinidae                 |
| Bopyrissa pyriforma                 | ectoparasitic                    | branchial cavity (?) | Decapoda – Diogenidae                 |
| Bopyrissa wolffi                    | ectoparasitic                    | branchial cavity     | Decapoda – Diogenidae                 |
| Bopyrissa<br>xiphidiostega          | ectoparasitic                    | branchial cavity     | Decapoda – Calcinidae &<br>Diogenidae |
| Bopyroides cluthae                  | ectoparasitic                    | branchial cavity     | Decapoda – Pandalidae                 |
| Bopyroides hippolytes               | ectoparasitic                    | branchial cavity     | Decapoda – Thoridae                   |
| Bopyroides shiinoi                  | ectoparasitic                    | branchial cavity (?) | Decapoda – Hippolytidae &<br>Thoridae |
| Bopyrophryxus<br>branchiabdominalis | ectoparasitic                    | branchial cavity     | Decapoda – Parapaguridae              |
| Bopyrosa phryxiformis               | ectoparasitic                    | branchial cavity (?) | unknown                               |
| Bopyrus bimaculatus                 | ectoparasitic                    | branchial cavity     | Decapoda – Palaemonidae               |
| Bopyrus crangorum                   | ectoparasitic                    | branchial cavity     | Decapoda – Palaemonidae               |
| Bourdonia tridentata                | ectoparasitic;<br>hyperparasitic | marsupium            | Isopoda – Bopyridae                   |
| Braga amapaensis                    | ectoparasitic                    | buccal cavity        | Teleostei –<br>Acestorhynchidae       |
| Braga bachmanni                     | ectoparasitic                    | buccal cavity (?)    | Teleostei (?)                         |
| Braga brasiliensis                  | ectoparasitic                    | unknown              | Teleostei (?)                         |
| Braga cichlae                       | ectoparasitic                    | buccal cavity        | Teleostei – Cichlidae                 |

| Scientific name                | Parasitism type                  | Site of attachment                                            | Hosts<br>(Order/Class – Family)                                                   |
|--------------------------------|----------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Braga fluviatilis              | ectoparasitic                    | buccal cavity                                                 | Teleostei – Anostomidae                                                           |
| Braga nasuta                   | ectoparasitic                    | skin close to pectoral fins and anus                          | Teleostei – Arapaimidae                                                           |
| Braga patagonica               | ectoparasitic                    | branchial cavity;<br>buccal cavity; skin<br>behind dorsal fin | Teleostei – Serrasalmidae,<br>Bryconidae, Cynodontidae,<br>Sciaenidae & Cichlidae |
| Branchiophryxus<br>caulleryi   | ectoparasitic                    | branchial cavity                                              | Euphausiacea –<br>Euphausiidae                                                    |
| Branchiophryxus<br>koehleri    | ectoparasitic                    | branchial cavity                                              | Euphausiacea –<br>Euphausiidae                                                    |
| Branchiophryxus<br>nyctiphanae | ectoparasitic                    | branchial cavity                                              | Euphausiacea –<br>Euphausiidae                                                    |
| Brucethoa bharata              | ectoparasitic                    | branchial cavity                                              | Teleostei – Argentinidae                                                          |
| Bythognathia<br>yucatanensis   | ectoparasitic                    | unknown                                                       | Teleostei (?)                                                                     |
| Cabirnalia nausicaa            | ectoparasitic                    | abdomen; pereopods                                            | Decapoda – Cryptochiridae                                                         |
| Cabirops<br>bombyliophila      | ectoparasitic;<br>hyperparasitic | marsupium                                                     | Isopoda – Bopyridae                                                               |
| Cabirops codreanui             | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops fraissei              | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops ibizae                | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops<br>lernaeodiscoides   | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops lobiformis            | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops marsupialis           | ectoparasitic;<br>hyperparasitic | marsupium                                                     | Isopoda – Bopyridae                                                               |
| Cabirops<br>montereyensis      | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops orbionei              | ectoparasitic;<br>hyperparasitic | marsupium                                                     | Isopoda – Bopyridae                                                               |
| Cabirops perezi                | ectoparasitic;<br>hyperparasitic | marsupium                                                     | Isopoda – Bopyridae                                                               |
| Cabirops pseudioni             | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops reverberii            | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |
| Cabirops tenuis                | ectoparasitic;<br>hyperparasitic | marsupium (?)                                                 | Isopoda – Bopyridae                                                               |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                | Parasitism type                  | Site of attachment | Hosts<br>(Order/Class – Family)      |
|--------------------------------|----------------------------------|--------------------|--------------------------------------|
| Cabirops tuberculatus          | ectoparasitic;<br>hyperparasitic | marsupium (?)      | Isopoda – Bopyridae                  |
| Caecognathia<br>abyssorum      | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia agwillisi         | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>akaroensis     | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>albescenoides  | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>andamanensis   | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>antarctica     | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia arctica           | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia bicolor           | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>branchyponera  | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia caeca             | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia calva             | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia cerina            | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>consobrina     | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>coralliophila  | ectoparasitic                    | body surface       | Teleostei – Labridae &<br>Serranidae |
| Caecognathia<br>crenulatifrons | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>cryptopais     | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>diacamma       | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>dolichoderus   | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>elongata       | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia<br>floridensis    | ectoparasitic                    | body surface (?)   | unknown                              |
| Caecognathia galzini           | ectoparasitic                    | body surface (?)   | unknown                              |

| Scientific name               | Parasitism type | Site of attachment | Hosts<br>(Order/Class – Family) |
|-------------------------------|-----------------|--------------------|---------------------------------|
| Caecognathia<br>gnamptogenys  | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia hirsuta          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>hodgsoni      | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia huberia          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>leptanilla    | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>multispinis   | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia nieli            | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>nipponensis   | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia pacifica         | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>paratrechia   | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>pilosipes     | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia polaris          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>polythrix     | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>pustulosa     | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia regalis          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia rhektos          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia robusta          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>sanctaecrucis | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>schistifrons  | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia serrata          | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia stygia           | ectoparasitic   | body surface (?)   | unknown                         |
| Caecognathia<br>trachymesopus | ectoparasitic   | body surface (?)   | unknown                         |

| Scientific name               | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                                        |
|-------------------------------|-----------------|----------------------|------------------------------------------------------------------------|
| Caecognathia<br>vanhoeffeni   | ectoparasitic   | body surface (?)     | unknown                                                                |
| Caecognathia vemae            | ectoparasitic   | body surface (?)     | unknown                                                                |
| Caecognathia wagneri          | ectoparasitic   | body surface (?)     | unknown                                                                |
| Cancricepon<br>anagibbosus    | ectoparasitic   | branchial cavity (?) | Decapoda –<br>Nanocassiopidae                                          |
| Cancricepon<br>beibusinus     | ectoparasitic   | branchial cavity (?) | Decapoda – Scalopidiidae                                               |
| Cancricepon castroi           | ectoparasitic   | branchial cavity     | Decapoda – Trapeziidae                                                 |
| Cancricepon choprae           | ectoparasitic   | branchial cavity     | Decapoda – Panopeidae,<br>Pseudorhombilidae,<br>Domeciidae & Xanthidae |
| Cancricepon elegans           | ectoparasitic   | branchial cavity     | Decapoda – Pilumnidae                                                  |
| Cancricepon garthi            | ectoparasitic   | branchial cavity     | Decapoda –<br>Dacryopilumnidae                                         |
| Cancricepon knudseni          | ectoparasitic   | branchial cavity (?) | Decapoda – Eriphiidae                                                  |
| Cancricepon<br>multituberosum | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                                                   |
| Cancricepon pilula            | ectoparasitic   | branchial cavity (?) | Decapoda – Xanthidae                                                   |
| Cancricepon savignyi          | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                                                   |
| Cancricepon xanthi            | ectoparasitic   | branchial cavity (?) | Decapoda – Xanthidae                                                   |
| Cancrion australiensis        | endoparasitic   | visceral cavity      | Decapoda – Portunidae                                                  |
| Cancrion cancrorum            | endoparasitic   | visceral cavity (?)  | Decapoda – Xanthidae                                                   |
| Cancrion carolinus            | endoparasitic   | visceral cavity      | Decapoda                                                               |
| Cancrion deltoides            | endoparasitic   | visceral cavity      | Decapoda – Pilumnidae                                                  |
| Cancrion floridus             | endoparasitic   | visceral cavity (?)  | Decapoda – Xanthidae                                                   |
| Cancrion khanhensis           | endoparasitic   | visceral cavity      | Decapoda – Portunidae                                                  |
| Cancrion miser                | endoparasitic   | visceral cavity (?)  | Decapoda – Pilumnidae                                                  |
| Cancrion needleri             | endoparasitic   | visceral cavity      | Decapoda                                                               |

| Scientific name             | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                                                            |
|-----------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Capitetragonia alphei       | ectoparasitic   | branchial cavity                   | Decapoda – Alpheidae                                                                                                                       |
| Capitetragonia<br>elliptica | ectoparasitic   | branchial cavity (?)               | Decapoda – Alpheidae                                                                                                                       |
| Capitoniscus australis      | ectoparasitic   | unknown                            | unknown                                                                                                                                    |
| Capitoniscus cumacei        | ectoparasitic   | marsupium                          | Cumacea – Lampropidae                                                                                                                      |
| Capitoniscus<br>peruvicus   | ectoparasitic   | unknown                            | unknown                                                                                                                                    |
| Carcinione<br>platypleura   | ectoparasitic   | branchial cavity                   | Decapoda – Cryptochiridae                                                                                                                  |
| Cardiocepon pteroides       | ectoparasitic   | branchial cavity (?)               | Decapoda – Gecarcinidae                                                                                                                    |
| Carocryptus<br>laticephalus | ectoparasitic   | unknown                            | unknown                                                                                                                                    |
| Castrione<br>digiticaudata  | ectoparasitic   | branchial cavity (?)               | Decapoda – Micheleidae                                                                                                                     |
| Castrione<br>longicaudata   | ectoparasitic   | branchial cavity (?)               | Decapoda – Micheleidae                                                                                                                     |
| Cataphryxus primus          | ectoparasitic   | branchial cavity (?)               | Decapoda – Lysmatidae                                                                                                                      |
| Catoessa ambassae           | ectoparasitic   | buccal cavity                      | Teleostei – Ambassidae                                                                                                                     |
| Catoessa boscii             | ectoparasitic   | buccal cavity                      | Teleostei – Carangidae                                                                                                                     |
| Catoessa gruneri            | ectoparasitic   | branchial cavity                   | Teleostei – Leiognathidae                                                                                                                  |
| Catoessa scabricauda        | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                                                              |
| Ceratothoa africanae        | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae                                                                                                                       |
| Ceratothoa angulata         | ectoparasitic   | buccal cavity                      | Teleostei – Hemiramphidae                                                                                                                  |
| Ceratothoa arimae           | ectoparasitic   | buccal cavity                      | Teleostei – Kyphosidae                                                                                                                     |
| Ceratothoa banksii          | ectoparasitic   | buccal cavity                      | Teleostei – Carangidae,<br>Scombridae, Salmonidae,<br>Latridae, Scatophagidae,<br>Kyphosidae, Mugilidae,<br>Pomatomidae &<br>Hemiramphidae |
| Ceratothoa barracuda        | ectoparasitic   | buccal cavity                      | Teleostei – Sphyraenidae                                                                                                                   |
| Ceratothoa capri            | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Caproidae,<br>Sparidae & Mugilidae                                                                                             |

| Scientific name              | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                                                             |
|------------------------------|-----------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Ceratothoa carinata          | ectoparasitic   | buccal cavity                      | Teleostei – Carangidae &<br>Lutjanidae                                                                                                      |
| Ceratothoa collaris          | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae,<br>Serranidae & Moronidae                                                                                             |
| Ceratothoa famosa            | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae                                                                                                                        |
| Ceratothoa gilberti          | ectoparasitic   | buccal cavity                      | Teleostei – Mugilidae                                                                                                                       |
| Ceratothoa globulus          | ectoparasitic   | unknown                            | Teleostei (?)                                                                                                                               |
| Ceratothoa gobii             | ectoparasitic   | unknown                            | Teleostei – Gobiidae                                                                                                                        |
| Ceratothoa guttata           | ectoparasitic   | buccal cavity                      | Teleostei – Exocoetidae                                                                                                                     |
| Ceratothoa imbricata         | ectoparasitic   | buccal cavity                      | Teleostei – Scatophagidae                                                                                                                   |
| Ceratothoa italica           | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae                                                                                                                        |
| Ceratothoa marisrubri        | ectoparasitic   | buccal cavity                      | Teleostei – Mullidae &<br>Sparidae                                                                                                          |
| Ceratothoa oestroides        | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae &<br>Moronidae                                                                                                         |
| Ceratothoa<br>oxyrrhynchaena | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Sparidae &<br>Acropomatidae;<br>Elasmobranchii (rays &<br>sharks) – Rajidae,<br>Torpedinidae &<br>Scyliorhinidae                |
| Ceratothoa parallela         | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Scorpaenidae,<br>Sparidae, Citharidae,<br>Gadidae, Mullidae,<br>Merlucciidae & Triglidae;<br>Elasmobranchii (rays) –<br>Rajidae |
| Ceratothoa retusa            | ectoparasitic   | buccal cavity                      | Teleostei – Hemiramphidae                                                                                                                   |
| Ceratothoa springbok         | ectoparasitic   | buccal cavity                      | Teleostei – Sparidae                                                                                                                        |
| Ceratothoa<br>steindachneri  | ectoparasitic   | buccal cavity                      | Teleostei – Trachinidae,<br>Sparidae, Serranidae &<br>Chlorophthalmidae                                                                     |
| Ceratothoa<br>toyamaensis    | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                                                               |
| Ceratothoa<br>trigonocephala | ectoparasitic   | unknown                            | Teleostei (?)                                                                                                                               |
| Ceratothoa<br>usacarangis    | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                                                               |

| Scientific name                | Parasitism type                  | Site of attachment | Hosts<br>(Order/Class – Family)             |
|--------------------------------|----------------------------------|--------------------|---------------------------------------------|
| Ceratothoa verrucosa           | ectoparasitic                    | buccal cavity      | Teleostei – Sparidae                        |
| Chimaeroniscus<br>spheramator  | ectoparasitic;<br>hyperparasitic | marsupium          | Isopoda – Dajidae                           |
| Cinusa nippon                  | ectoparasitic                    | buccal cavity      | Teleostei – Tetraodontidae                  |
| Cinusa tetrodontis             | ectoparasitic                    | buccal cavity      | Teleostei – Tetraodontidae                  |
| Cirolanoniscus willeyi         | ectoparasitic                    | unknown            | Isopoda – Cirolanidae                       |
| Cironiscus dahli               | ectoparasitic                    | marsupium          | Isopoda – Cirolanidae                       |
| Claustrathelges<br>macdermotti | ectoparasitic                    | abdomen            | Decapoda – Diogenidae                       |
| Clypeoniscus<br>cantacuzenei   | ectoparasitic                    | unknown            | Isopoda – Holognathidae                     |
| Clypeoniscus hanseni           | ectoparasitic                    | thorax             | Isopoda – Idoteidae                         |
| Clypeoniscus meinerti          | ectoparasitic                    | unknown            | Isopoda – Idoteidae                         |
| Clypeoniscus sarsi             | ectoparasitic                    | unknown            | unknown                                     |
| Clypeoniscus stenetrii         | ectoparasitic                    | body surface       | Isopoda – Stenetriidae                      |
| Colophryxus<br>novangliae      | ectoparasitic                    | unknown            | unknown                                     |
| Coxalione inaequalis           | ectoparasitic                    | branchial cavity   | Decapoda – Laomediidae                      |
| Creniola breviceps             | ectoparasitic                    | fins               | Teleostei – Acanthuridae &<br>Priacanthidae |
| Creniola laticauda             | ectoparasitic                    | head               | Teleostei – Platycephalidae                 |
| Creniola saurida               | ectoparasitic                    | unknown            | Teleostei (?)                               |
| Crinoniscus alepadis           | ectoparasitic                    | unknown            | Scalpellomorpha –<br>Heteralepadidae        |
| Crinoniscus<br>cephalatus      | ectoparasitic                    | prosoma            | Scalpellomorpha –<br>Scalpellidae           |
| Crinoniscus equitans           | ectoparasitic                    | unknown            | Balanomorpha – Balanidae                    |
| Crinoniscus<br>politosummus    | ectoparasitic                    | prosoma            | Scalpellomorpha –<br>Poecilasmatidae        |
| Crinoniscus<br>stroembergi     | ectoparasitic                    | egg-sac lamella    | Scalpellomorpha –<br>Heteralepadidae        |

| Scientific name                 | Parasitism type                  | Site of attachment | Hosts<br>(Order/Class – Family)                                                                                                                          |
|---------------------------------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cryptobopyrus<br>elongatus      | ectoparasitic                    | unknown            | Decapoda                                                                                                                                                 |
| Cryptocancrion<br>brevibrachium | endoparasitic                    | visceral cavity    | Decapoda – Panopeidae                                                                                                                                    |
| Cryptocisus laevis              | ectoparasitic                    | unknown            | unknown                                                                                                                                                  |
| Cryptocotitus acus              | ectoparasitic                    | unknown            | unknown                                                                                                                                                  |
| Cryptoniscus paguri             | ectoparasitic;<br>hyperparasitic | unknown            | Rhizocephala –<br>Peltogastridae                                                                                                                         |
| Cryptoniscus<br>planarioides    | ectoparasitic;<br>hyperparasitic | unknown            | Rhizocephala –<br>Peltogastridae                                                                                                                         |
| Cterissa australiensis          | ectoparasitic                    | unknown            | Teleostei – Holocentridae                                                                                                                                |
| Cterissa sakaii                 | ectoparasitic                    | branchial cavity   | Teleostei – Holocentridae                                                                                                                                |
| Cumoechus insignis              | ectoparasitic                    | marsupium          | Cumacea – Diastylidae &<br>Lampropidae                                                                                                                   |
| Cymothoa<br>asymmetrica         | ectoparasitic                    | buccal cavity      | Teleostei – Sphyraenidae                                                                                                                                 |
| Cymothoa borbonica              | ectoparasitic                    | buccal cavity      | Teleostei – Carangidae                                                                                                                                   |
| Cymothoa brasiliensis           | ectoparasitic                    | buccal cavity      | Teleostei – Carangidae &<br>Sparidae                                                                                                                     |
| Cymothoa bychowskyi             | ectoparasitic                    | buccal cavity      | Teleostei – Fistulariidae                                                                                                                                |
| Cymothoa carangii               | ectoparasitic                    | buccal cavity (?)  | Teleostei (?)                                                                                                                                            |
| Cymothoa catarinensis           | ectoparasitic                    | buccal cavity      | Teleostei – Sciaenidae                                                                                                                                   |
| Cymothoa cinerea                | ectoparasitic                    | buccal cavity      | Teleostei – Stromateidae                                                                                                                                 |
| Cymothoa curta                  | ectoparasitic                    | buccal cavity      | Teleostei – Anablepidae                                                                                                                                  |
| Cymothoa dufresni               | ectoparasitic                    | buccal cavity (?)  | Teleostei (?)                                                                                                                                            |
| Cymothoa elegans                | ectoparasitic                    | buccal cavity      | Teleostei – Scatophagidae &<br>Serranidae                                                                                                                |
| Cymothoa epimerica              | ectoparasitic                    | buccal cavity (?)  | Teleostei – Serranidae                                                                                                                                   |
| Cymothoa eremita                | ectoparasitic                    | buccal cavity      | Teleostei – Carangidae,<br>Psettodidae, Mugilidae,<br>Stromateidae, Serranidae,<br>Tetraodontidae, Aulopidae,<br>Siganidae, Haemulidae &<br>Sphyraenidae |

| Scientific name            | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                            |
|----------------------------|-----------------|------------------------------------|------------------------------------------------------------------------------------------------------------|
| Cymothoa excisa            | ectoparasitic   | buccal cavity                      | Teleostei – Gerreidae,<br>Haemulidae, Lutjanidae,<br>Priacanthidae, Sciaenidae &<br>Synodontidae           |
| Cymothoa exigua            | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Lutjanidae                                                                                     |
| Cymothoa eximia            | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa frontalis         | ectoparasitic   | buccal cavity                      | Teleostei – Belonidae                                                                                      |
| Cymothoa gadorum           | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa gerris            | ectoparasitic   | buccal cavity                      | Teleostei – Gerreidae                                                                                      |
| Cymothoa gibbosa           | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa globosa           | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa<br>guadeloupensis | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa hermani           | ectoparasitic   | buccal cavity                      | Teleostei – Scaridae                                                                                       |
| Cymothoa ianuarii          | ectoparasitic   | buccal cavity (?)                  | Teleostei – Priacanthidae &<br>Pleuronectidae                                                              |
| Cymothoa ichtiola          | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa indica            | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Mugilidae,<br>Gobiidae, Holocentridae,<br>Cichlidae, Sphyraenidae,<br>Synodontidae & Belonidae |
| Cymothoa liannae           | ectoparasitic   | buccal cavity                      | Teleostei – Carangidae                                                                                     |
| Cymothoa limbata           | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa<br>nigropunctata  | ectoparasitic   | buccal cavity (?)                  | Teleostei (?)                                                                                              |
| Cymothoa oestrum           | ectoparasitic   | buccal cavity                      | Teleostei – Carangidae,<br>Priacanthidae & Sciaenidae                                                      |
| Cymothoa parupenei         | ectoparasitic   | buccal cavity                      | Teleostei – Mullidae                                                                                       |
| Cymothoa plebeia           | ectoparasitic   | buccal cavity (?)                  | Teleostei – Haemulidae &<br>Sciaenidae                                                                     |
| Cymothoa propria           | ectoparasitic   | buccal cavity (?)                  | Teleostei – Carangidae                                                                                     |
| Cymothoa pulchrum          | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Tetraodontidae<br>& Diodontidae                                                                |

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)           |
|--------------------------------|-----------------|----------------------|-------------------------------------------|
| Cymothoa recifea               | ectoparasitic   | buccal cavity        | Teleostei – Centropomidae<br>& Carangidae |
| Cymothoa recta                 | ectoparasitic   | buccal cavity        | Teleostei – Balistidae                    |
| Cymothoa rhina                 | ectoparasitic   | buccal cavity        | Teleostei – Lutjanidae                    |
| Cymothoa rotunda               | ectoparasitic   | buccal cavity (?)    | Teleostei (?)                             |
| Cymothoa scopulorum            | ectoparasitic   | buccal cavity (?)    | Teleostei (?)                             |
| Cymothoa selari                | ectoparasitic   | buccal cavity (?)    | Teleostei – Carangidae                    |
| Cymothoa slusarskii            | ectoparasitic   | buccal cavity        | Teleostei – Sparidae                      |
| Cymothoa sodwana               | ectoparasitic   | buccal cavity        | Teleostei – Carangidae                    |
| Cymothoa spinipalpa            | ectoparasitic   | buccal cavity        | Teleostei – Carangidae                    |
| Cymothoa truncata              | ectoparasitic   | buccal cavity (?)    | Teleostei (?)                             |
| Cymothoa vicina                | ectoparasitic   | buccal cavity        | Teleostei – Mugilidae &<br>Plotosidae     |
| Cyproniscus<br>crossophori     | ectoparasitic   | unknown              | Myodocopida –<br>Cypridinidae             |
| Cyproniscus<br>cypridinae      | ectoparasitic   | unknown              | Myodocopida –<br>Cypridinidae             |
| Cyproniscus<br>decemspinosus   | ectoparasitic   | unknown              | unknown                                   |
| Cyproniscus<br>octospinosus    | ectoparasitic   | unknown              | unknown                                   |
| Dactylokepon<br>barbuladigitus | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                      |
| Dactylokepon<br>caribaeus      | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae                    |
| Dactylokepon catoptri          | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae                     |
| Dactylokepon holthuisi         | ectoparasitic   | branchial cavity (?) | Decapoda – Scyllaridae                    |
| Dactylokepon<br>hunterae       | ectoparasitic   | branchial cavity     | Decapoda – Pinnotheridae                  |
| Dactylokepon<br>marchadi       | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae                    |
| Dactylokepon<br>palaoensis     | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae                     |

| Scientific name               | Parasitism type                  | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|-------------------------------|----------------------------------|----------------------|---------------------------------------|
| Dactylokepon<br>richardsonae  | ectoparasitic                    | branchial cavity (?) | Decapoda – Portunidae                 |
| Dactylokepon<br>semipennatus  | ectoparasitic                    | branchial cavity (?) | Decapoda – Portunidae &<br>Pilumnidae |
| Dactylokepon<br>seychellensis | ectoparasitic                    | branchial cavity     | Decapoda – Tetraliidae                |
| Dactylokepon sulcipes         | ectoparasitic                    | branchial cavity     | Decapoda – Leucosiidae                |
| Dajus afromysidis             | ectoparasitic                    | marsupium (?)        | Mysida – Mysidae                      |
| Dajus mysidis                 | ectoparasitic                    | marsupium (?)        | Mysida – Mysidae                      |
| Dajus profundus               | ectoparasitic                    | marsupium            | Mysida – Mysidae                      |
| Dajus siriellae               | ectoparasitic                    | marsupium (?)        | Mysida – Mysidae                      |
| Danalia caulleryi             | ectoparasitic                    | unknown              | Decapoda – Galatheidae                |
| Danalia cervix                | ectoparasitic                    | brood cavity         | Decapoda – Cryptochiridae             |
| Danalia curvata               | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia dohrnii               | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia falsicrura            | ectoparasitic                    | abdomen              | Decapoda – Cryptochiridae             |
| Danalia galea                 | ectoparasitic                    | abdomen; pereopods   | Decapoda – Cryptochiridae             |
| Danalia gregaria              | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia hapalocarcini         | ectoparasitic                    | carapace             | Decapoda – Cryptochiridae             |
| Danalia inopinata             | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia larvaeformis          | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia longicollis           | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia pellucida             | ectoparasitic;<br>hyperparasitic | unknown              | Rhizocephala – Sacculinidae           |
| Danalia vesica                | ectoparasitic                    | carapace             | Decapoda – Cryptochiridae             |
| Danalia ypsilon               | ectoparasitic                    | unknown              | Decapoda – Galatheidae                |
| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                  |
|--------------------------------|-----------------|----------------------|--------------------------------------------------|
| Dicropleon bifidus             | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae                          |
| Dicropleon morator             | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae                          |
| Dicropleon<br>periclimenis     | ectoparasitic   | abdomen              | Decapoda – Palaemonidae                          |
| Dicropleon processae           | ectoparasitic   | abdomen (?)          | Decapoda – Processidae                           |
| Diogenion vermifactus          | endoparasitic   | visceral cavity      | Decapoda – Diogenidae,<br>Calcinidae & Paguridae |
| Diplophryxus alphei            | ectoparasitic   | abdomen (?)          | Decapoda – Alpheidae                             |
| Diplophryxus<br>alveolatus     | ectoparasitic   | abdomen (?)          | Decapoda – Alpheidae                             |
| Diplophryxus<br>gargantua      | ectoparasitic   | abdomen              | Decapoda – Alpheidae                             |
| Diplophryxus gracilis          | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae                          |
| Diplophryxus jordani           | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae                          |
| Diplophryxus kempi             | ectoparasitic   | abdomen              | Decapoda – Palaemonidae                          |
| Diplophryxus<br>negrimaculatus | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae                          |
| Diplophryxus<br>siankaanensis  | ectoparasitic   | abdomen              | Decapoda – Alpheidae                             |
| Discomorphus<br>magnifoliatus  | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae                         |
| Discorsobopyrus<br>stebbingi   | ectoparasitic   | branchial cavity     | Decapoda – Pandalidae                            |
| Dolichophryxus<br>geminatus    | ectoparasitic   | unknown              | unknown                                          |
| Elaphognathia<br>aldabrae      | ectoparasitic   | unknown              | Teleostei (?)                                    |
| Elaphognathia<br>amboinenesis  | ectoparasitic   | unknown              | unknown                                          |
| Elaphognathia<br>australis     | ectoparasitic   | unknown              | Teleostei (?)                                    |
| Elaphognathia<br>bacescoi      | ectoparasitic   | unknown              | Teleostei (?)                                    |
| Elaphognathia<br>bifurcilla    | ectoparasitic   | unknown              | Teleostei (?)                                    |
| Elaphognathia<br>cornigera     | ectoparasitic   | unknown              | Teleostei – Gobiidae                             |

| Scientific name                 | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|---------------------------------|-----------------|----------------------|---------------------------------|
| Elaphognathia<br>discolor       | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia ferox             | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia forceps           | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia<br>froygattella   | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia gladia            | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia insolita          | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia<br>kikuchii       | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>korachaensis   | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>lucanoides     | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia monodi            | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>nunomurai      | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>queenslandica  | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia ramosa            | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia<br>rangifer       | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>rimifrons      | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>strombosa      | ectoparasitic   | unknown              | unknown                         |
| Elaphognathia<br>sugashimaensis | ectoparasitic   | unknown              | Teleostei (?)                   |
| Elaphognathia wolffi            | ectoparasitic   | unknown              | unknown                         |
| Elocryptus<br>amplitruncus      | ectoparasitic   | unknown              | unknown                         |
| Elthusa acutinasa               | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Elthusa alvaradoensis           | ectoparasitic   | branchial cavity     | Teleostei – Synodontidae        |
| Elthusa arnoglossi              | ectoparasitic   | branchial cavity     | Teleostei – Bothidae            |

| Scientific name            | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|----------------------------|-----------------|----------------------|---------------------------------|
| Elthusa atlantniroi        | ectoparasitic   | branchial cavity     | Teleostei – Cepolidae           |
| Elthusa californica        | ectoparasitic   | branchial cavity     | Teleostei – Cottidae            |
| Elthusa caudata            | ectoparasitic   | branchial cavity     | Teleostei – Ophidiidae          |
| Elthusa emarginata         | ectoparasitic   | branchial cavity     | Teleostei – Mullidae            |
| Elthusa epimerias          | ectoparasitic   | branchial cavity (?) | unknown                         |
| Elthusa epinepheli         | ectoparasitic   | branchial cavity     | Teleostei – Serranidae          |
| Elthusa fistularia         | ectoparasitic   | branchial cavity     | Teleostei – Fistulariidae       |
| Elthusa foveolata          | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Elthusa frontalis          | ectoparasitic   | branchial cavity (?) | Teleostei – Balistidae          |
| Elthusa menziesi           | ectoparasitic   | branchial cavity     | Teleostei – Cottidae            |
| Elthusa methepia           | ectoparasitic   | branchial cavity     | Teleostei – Achiridae           |
| Elthusa moritakii          | ectoparasitic   | branchial cavity     | Teleostei – Ereuniidae          |
| Elthusa myripristae        | ectoparasitic   | branchial cavity     | Teleostei – Holocentridae       |
| Elthusa nanoides           | ectoparasitic   | branchial cavity (?) | unknown                         |
| Elthusa neocytta           | ectoparasitic   | buccal cavity        | Teleostei – Oreosomatidae       |
| Elthusa nierstraszi        | ectoparasitic   | branchial cavity (?) | unknown                         |
| Elthusa ochotensis         | ectoparasitic   | branchial cavity (?) | unknown                         |
| Elthusa parabothi          | ectoparasitic   | branchial cavity     | Teleostei – Bothidae            |
| Elthusa parva              | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Elthusa philippinensis     | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Elthusa<br>poutassouiensis | ectoparasitic   | branchial cavity     | Teleostei – Gadidae             |
| Elthusa propinqua          | ectoparasitic   | branchial cavity     | Teleostei – Macrouridae         |

| Scientific name          | Parasitism type                  | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                                                                                                  |
|--------------------------|----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elthusa<br>pseudorhombus | ectoparasitic                    | branchial cavity                   | Teleostei – Paralichthyidae                                                                                                                                                      |
| Elthusa raynaudii        | ectoparasitic                    | buccal cavity                      | Teleostei – Lutjanidae                                                                                                                                                           |
| Elthusa rotunda          | ectoparasitic                    | branchial cavity (?)               | Teleostei (?)                                                                                                                                                                    |
| Elthusa sacciger         | ectoparasitic                    | buccal cavity;<br>branchial cavity | Teleostei –<br>Synaphobranchidae                                                                                                                                                 |
| Elthusa samariscii       | ectoparasitic                    | branchial cavity                   | Teleostei – Samaridae                                                                                                                                                            |
| Elthusa samoensis        | ectoparasitic                    | branchial cavity (?)               | unknown                                                                                                                                                                          |
| Elthusa sigani           | ectoparasitic                    | branchial cavity                   | Teleostei – Scorpaenidae &<br>Siganidae                                                                                                                                          |
| Elthusa sinuata          | ectoparasitic                    | branchial cavity                   | Teleostei – Cepolidae,<br>Pleuronectidae, Sparidae,<br>Gobidae, Bramidae,<br>Trichiuridae &<br>Argentinidae;<br>Elasmobranchii (rays) –<br>Rajidae; also found on<br>cephalopods |
| Elthusa splendida        | ectoparasitic                    | buccal cavity                      | Teleostei – Squalidae                                                                                                                                                            |
| Elthusa tropicalis       | ectoparasitic                    | branchial cavity                   | Teleostei – Ogcocephalidae                                                                                                                                                       |
| Elthusa turgidula        | ectoparasitic                    | branchial cavity (?)               | Teleostei (?)                                                                                                                                                                    |
| Elthusa uranoscopus      | ectoparasitic                    | branchial cavity                   | Teleostei – Uranoscopidae                                                                                                                                                        |
| Elthusa vulgaris         | ectoparasitic                    | branchial cavity                   | Teleostei – Paralichthyidae,<br>Hexagrammidae &<br>Sebastidae                                                                                                                    |
| Elthusa winstoni         | ectoparasitic                    | branchial cavity                   | Teleostei – Acanthuridae                                                                                                                                                         |
| Elthusa xena             | ectoparasitic                    | branchial cavity (?)               | Teleostei – Clinidae                                                                                                                                                             |
| Emetha adriatica         | ectoparasitic                    | buccal cavity (?)                  | Teleostei (?)                                                                                                                                                                    |
| Emetha audouini          | ectoparasitic                    | buccal cavity                      | Teleostei – Sparidae                                                                                                                                                             |
| Enthylacus trivinctus    | endoparasitic;<br>hyperparasitic | mantel cavity (?)                  | Rhizocephala – Sacculinidae                                                                                                                                                      |
| Entione achaei           | endoparasitic                    | visceral cavity (?)                | Decapoda – Alpheidae                                                                                                                                                             |
| Entione cavolinii        | endoparasitic                    | visceral cavity (?)                | Decapoda – Grapsidae                                                                                                                                                             |

| Scientific name            | Parasitism type | Site of attachment  | Hosts<br>(Order/Class – Family) |
|----------------------------|-----------------|---------------------|---------------------------------|
| Entionella eriphiae        | endoparasitic   | visceral cavity (?) | Decapoda – Eriphiidae           |
| Entionella fluviatilis     | endoparasitic   | visceral cavity (?) | Decapoda – Varunidae            |
| Entionella monensis        | endoparasitic   | visceral cavity     | Decapoda – Majidae              |
| Entionella<br>okayamaensis | endoparasitic   | visceral cavity (?) | Decapoda – Sesarmidae           |
| Entoniscoides okadai       | endoparasitic   | visceral cavity (?) | Decapoda – Xanthidae            |
| Entoniscus creplinii       | endoparasitic   | visceral cavity     | Decapoda – Porcellanidae        |
| Entoniscus japonicus       | endoparasitic   | visceral cavity     | Decapoda – Porcellanidae        |
| Entoniscus muelleri        | endoparasitic   | visceral cavity (?) | Decapoda – Porcellanidae        |
| Entoniscus<br>porcellanae  | endoparasitic   | visceral cavity (?) | Decapoda – Porcellanidae        |
| Entophilus omnitectus      | endoparasitic   | visceral cavity     | Decapoda – Munididae            |
| Eophrixus adriaticus       | ectoparasitic   | abdomen (?)         | Decapoda – Hippolytidae         |
| Eophrixus brevicauda       | ectoparasitic   | abdomen             | Decapoda – Alpheidae            |
| Eophrixus caudatus         | ectoparasitic   | branchial cavity    | Decapoda – Alpheidae            |
| Eophrixus<br>enchophyllus  | ectoparasitic   | abdomen             | Decapoda – Alpheidae            |
| Eophrixus kuboi            | ectoparasitic   | abdomen (?)         | Decapoda – Palaemonidae         |
| Eophrixus laevimanus       | ectoparasitic   | abdomen             | Decapoda – Alpheidae            |
| Eophrixus leptochelae      | ectoparasitic   | abdomen (?)         | Decapoda – Pasiphaeidae         |
| Eophrixus lysmatae         | ectoparasitic   | abdomen             | Decapoda – Lysmatidae           |
| Eophrixus<br>nigrocinctus  | ectoparasitic   | abdomen             | Decapoda – Palaemonidae         |
| Eophrixus pikei            | ectoparasitic   | abdomen             | Decapoda – Palaemonidae         |
| Eophrixus shojii           | ectoparasitic   | abdomen (?)         | Decapoda – Alpheidae            |
| Eophrixus subcaudalis      | ectoparasitic   | abdomen             | Decapoda – Alpheidae            |

| Scientific name             | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|-----------------------------|-----------------|----------------------|---------------------------------------|
| Eophrixus yusakiensis       | ectoparasitic   | abdomen (?)          | Decapoda – Alpheidae                  |
| Epicepon belema             | ectoparasitic   | branchial cavity     | Decapoda –<br>Cyclodorippidae         |
| Epicepon indicum            | ectoparasitic   | branchial cavity     | Decapoda –<br>Cyclodorippidae         |
| Epicepon japonicum          | ectoparasitic   | branchial cavity     | Decapoda –<br>Cyclodorippidae         |
| Epipenaeon elegans          | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                  |
| Epipenaeon fissurae         | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                  |
| Epipenaeon grande           | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                  |
| Epipenaeon ingens           | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                  |
| Epipenaeon latifrons        | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                  |
| Epipenaeon oviforme         | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                  |
| Epipenaeon pestai           | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                  |
| Epiphrixus adriaticus       | ectoparasitic   | abdomen              | Decapoda – Alpheidae                  |
| Eragia profunda             | ectoparasitic   | branchial cavity     | Decapoda – Crangonidae                |
| Eremitione biacuta          | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae                 |
| Eremitione brandaoi         | ectoparasitic   | branchial cavity (?) | Decapoda – Diogenidae                 |
| Eremitione calcinii         | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae                 |
| Eremitione<br>clibanaricola | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae &<br>Calcinidae |
| Eremitione giardi           | ectoparasitic   | branchial cavity     | Decapoda – Paguridae                  |
| Eremitione hyndmanni        | ectoparasitic   | branchial cavity (?) | Decapoda – Paguridae                  |
| Eremitione lata             | ectoparasitic   | branchial cavity (?) | Decapoda – Paguridae                  |
| Eremitione nobilii          | ectoparasitic   | branchial cavity (?) | Decapoda – Pylochelidae               |
| Eremitione quasimodo        | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                 |

| Scientific name               | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|-------------------------------|-----------------|----------------------|---------------------------------------|
| Eremitione tuberculata        | ectoparasitic   | branchial cavity (?) | Decapoda – Lithodidae                 |
| Ergyne cervicornis            | ectoparasitic   | branchial cavity (?) | Decapoda – Polybiidae                 |
| Eriphrixus obesus             | ectoparasitic   | abdomen (?)          | Decapoda – Palaemonidae               |
| Eumetor liriopides            | endoparasitic   | visceral cavity (?)  | Rhizocephala – Sacculinidae           |
| Euneognathia gigas            | ectoparasitic   | unknown              | Teleostei (?)                         |
| Falsanathelges mariae         | ectoparasitic   | abdomen              | Decapoda – Calcinidae &<br>Diogenidae |
| Falsanathelges<br>muelleri    | ectoparasitic   | abdomen (?)          | Decapoda – Diogenidae &<br>Calcinidae |
| Filophryxus dorsalis          | ectoparasitic   | abdomen              | Decapoda – Palaemonidae               |
| Galathocrypta<br>acaudata     | ectoparasitic   | branchial cavity     | Decapoda – Munidopsidae               |
| Gareia arafurae               | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae                  |
| Gibbagnathia<br>europalothrix | ectoparasitic   | unknown              | Teleostei (?)                         |
| Gigantione bouvieri           | ectoparasitic   | branchial cavity     | Decapoda – Pilumnidae &<br>Dromiidae  |
| Gigantione elconaxii          | ectoparasitic   | branchial cavity (?) | Decapoda – Axiidae                    |
| Gigantione giardi             | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Gigantione<br>hainanensis     | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Gigantione<br>hawaiiensis     | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Gigantione<br>ishigakiensis   | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae &<br>Carpiliidae |
| Gigantione moebii             | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Gigantione mortenseni         | ectoparasitic   | branchial cavity     | Decapoda – Dromiidae                  |
| Gigantione notonyxae          | ectoparasitic   | branchial cavity     | Decapoda – Goneplacidae               |
| Gigantione<br>petalomerae     | ectoparasitic   | branchial cavity (?) | Decapoda – Dromiidae                  |
| Gigantione pikei              | ectoparasitic   | branchial cavity     | Decapoda – Axiidae                    |

| Scientific name             | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-----------------------------|-----------------|----------------------|---------------------------------|
| Gigantione pratti           | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae            |
| Gigantione rathbunae        | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae            |
| Gigantione rhombos          | ectoparasitic   | branchial cavity     | Decapoda – Euryplacidae         |
| Gigantione<br>sagamiensis   | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae            |
| Gigantione tau              | ectoparasitic   | branchial cavity     | Decapoda – Goneplacidae         |
| Gigantione<br>tuberculata   | ectoparasitic   | branchial cavity     | Decapoda – Goneplacidae         |
| Gigantione<br>uberlackerae  | ectoparasitic   | branchial cavity     | Decapoda – Axiidae              |
| Glossobius albinae          | ectoparasitic   | buccal cavity (?)    | Teleostei (?)                   |
| Glossobius anctus           | ectoparasitic   | buccal cavity        | Teleostei – Hemiramphidae       |
| Glossobius auritus          | ectoparasitic   | buccal cavity        | Teleostei – Exocoetidae         |
| Glossobius crassa           | ectoparasitic   | buccal cavity (?)    | Teleostei (?)                   |
| Glossobius<br>hemiramphi    | ectoparasitic   | buccal cavity        | Teleostei – Hemiramphidae       |
| Glossobius impressus        | ectoparasitic   | buccal cavity        | Teleostei – Exocoetidae         |
| Glossobius linearis         | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Glossobius<br>ogasawarensis | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Gnathia acrorudus           | ectoparasitic   | unknown              | unknown                         |
| Gnathia africana            | ectoparasitic   | body surface; fins   | Teleostei – Clinidae            |
| Gnathia albescens           | ectoparasitic   | unknown              | unknown                         |
| Gnathia<br>albipalpebrata   | ectoparasitic   | branchial cavity     | Elasmobranchii (sharks)         |
| Gnathia alces               | ectoparasitic   | unknown              | unknown                         |
| Gnathia andrei              | ectoparasitic   | unknown              | unknown                         |
| Gnathia antonbruunae        | ectoparasitic   | unknown              | unknown                         |

| Scientific name          | Parasitism type | Site of attachment                | Hosts<br>(Order/Class – Family)                                                                                                                  |
|--------------------------|-----------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Gnathia arabica          | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia asperifrons      | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia<br>aureamaculosa | ectoparasitic   | body surface;<br>branchial cavity | Teleostei – Acanthuridae,<br>Balastidae, Caesionidae,<br>Gobiidae, Haemulidae,<br>Labridae, Mullidae,<br>Scaridae, Siganidae &<br>Tetraodontidae |
| Gnathia aureola          | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia beethoveni       | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia bengalensis      | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia bermudensis      | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia biorbis          | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia brachyuropus     | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia brucei           | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia bungoensis       | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia calamitosa       | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia calmani          | ectoparasitic   | unknown                           | Teleostei – Balistidae                                                                                                                           |
| Gnathia calsi            | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia camponotus       | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia camuripenis      | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia capillata        | ectoparasitic   | branchial cavity                  | Elasmobranchii (rays) –<br>Dasyatidae                                                                                                            |
| Gnathia capitellum       | ectoparasitic   | body surface                      | Teleostei – Platycephalidae<br>& Tetraodontidae                                                                                                  |
| Gnathia capricornica     | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia carinodenta      | ectoparasitic   | unknown                           | unknown                                                                                                                                          |
| Gnathia clementensis     | ectoparasitic   | unknown                           | unknown                                                                                                                                          |

| Scientific name          | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                                          |
|--------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Gnathia cooki            | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia coralmaris       | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia cornuta          | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia<br>coronadoensis | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia dejimagi         | ectoparasitic   | branchial cavity                   | Elasmobranchii (sharks)                                                                                                  |
| Gnathia dentata          | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia derzhavini       | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia disjuncta        | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia epopstruma       | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia eumeces          | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia excavata         | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia falcipenis       | ectoparasitic   | unknown                            | Teleostei – Carangidae,<br>Pomacentridae, Belonidae,<br>Acanthuridae, Albulinidae,<br>Chanidae, Scaridae &<br>Balistidae |
| Gnathia fallax           | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia firingae         | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia formosa          | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia fragilis         | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia glauca           | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia glaucostega      | ectoparasitic   | unknown                            | Elasmobranchii (rays) –<br>Glaucostegidae                                                                                |
| Gnathia gonzalezi        | ectoparasitic   | unknown                            | unknown                                                                                                                  |
| Gnathia grandilaris      | ectoparasitic   | branchial cavity;<br>buccal cavity | Elasmobranchii (rays &<br>sharks) – Dasyatidae &<br>Carcharhinidae                                                       |
| Gnathia grutterae        | ectoparasitic   | unknown                            | Teleostei – Balistidae,<br>Labridae & Tetraodontidae                                                                     |

| Scientific name            | Parasitism type | Site of attachment | Hosts<br>(Order/Class – Family)       |
|----------------------------|-----------------|--------------------|---------------------------------------|
| Gnathia gurjanovae         | ectoparasitic   | unknown            | unknown                               |
| Gnathia halei              | ectoparasitic   | unknown            | unknown                               |
| Gnathia hamletgast         | ectoparasitic   | unknown            | unknown                               |
| Gnathia hemingwayi         | ectoparasitic   | unknown            | unknown                               |
| Gnathia hirsuta            | ectoparasitic   | unknown            | unknown                               |
| Gnathia illepidus          | ectoparasitic   | unknown            | unknown                               |
| Gnathia incana             | ectoparasitic   | unknown            | unknown                               |
| Gnathia indoinsularis      | ectoparasitic   | unknown            | unknown                               |
| Gnathia inopinata          | ectoparasitic   | unknown            | unknown                               |
| Gnathia iridomyrmex        | ectoparasitic   | unknown            | unknown                               |
| Gnathia johanna            | ectoparasitic   | unknown            | unknown                               |
| Gnathia koreana            | ectoparasitic   | unknown            | unknown                               |
| Gnathia kumejimensis       | ectoparasitic   | unknown            | unknown                               |
| Gnathia<br>lacunacapitalis | ectoparasitic   | unknown            | unknown                               |
| Gnathia latidens           | ectoparasitic   | unknown            | unknown                               |
| Gnathia lignophila         | ectoparasitic   | unknown            | unknown                               |
| Gnathia limicola           | ectoparasitic   | unknown            | unknown                               |
| Gnathia luxata             | ectoparasitic   | unknown            | unknown                               |
| Gnathia maculosa           | ectoparasitic   | branchial cavity   | Elasmobranchii (rays) –<br>Dasyatidae |
| Gnathia<br>magdalenensis   | ectoparasitic   | unknown            | unknown                               |
| Gnathia malaysiensis       | ectoparasitic   | unknown            | unknown                               |
| Gnathia margaritarum       | ectoparasitic   | unknown            | unknown                               |

| Scientific name         | Parasitism type | Site of attachment                                            | Hosts<br>(Order/Class – Family)                                                                                                      |
|-------------------------|-----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Gnathia marionis        | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia marleyi         | ectoparasitic   | unknown                                                       | Teleostei – Haemulidae,<br>Lutjanidae, Serranidae,<br>Holocentridae,<br>Pomacentridae,<br>Acanthuridae,<br>Chaetodontidae & Scaridae |
| Gnathia masca           | ectoparasitic   | unknown                                                       | Teleostei – Tetraodontidae,<br>Serranidae & Lethrinidae                                                                              |
| Gnathia maxillaris      | ectoparasitic   | body surface; base of<br>fins; around eyes; near<br>operculum | Teleostei – Sparidae,<br>Blenniidae, Lotidae,<br>Cottidae & Labridae                                                                 |
| Gnathia meticola        | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia micheli         | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia mortenseni      | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia mulieraria      | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia mutsuensis      | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia mystrium        | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia nasuta          | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia nicembola       | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia nkulu           | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia notostigma      | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia nubila          | ectoparasitic   | branchial cavity                                              | Elasmobranchii (rays) –<br>Aetobatidae                                                                                               |
| Gnathia obtusispina     | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia<br>odontomachus | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia oxyuraea        | ectoparasitic   | fins                                                          | Teleostei – Gadidae,<br>Triglidae & Sciaenidae                                                                                       |
| Gnathia panousei        | ectoparasitic   | unknown                                                       | unknown                                                                                                                              |
| Gnathia pantherina      | ectoparasitic   | branchial cavity;<br>nares; buccal cavity                     | Elasmobranchii (rays &<br>sharks) – Scyliorhinidae &<br>Torpedinidae; Teleostei –<br>Serranidae                                      |

| Scientific name            | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                                                                           |
|----------------------------|-----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Gnathia parvirostrata      | ectoparasitic   | branchial cavity                   | Elasmobranchii (sharks)                                                                                                                   |
| Gnathia perimulica         | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia<br>phallonajopsis  | ectoparasitic   | branchial cavity;<br>buccal cavity | Teleostei – Gadidae                                                                                                                       |
| Gnathia philogona          | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia pilosus            | ectoparasitic   | unknown                            | Teleostei – Blenniidae,<br>Pomacentridae,<br>Acanthuridae, Sparidae,<br>Serranidae, Labridae,<br>Gobiidae, Scorpaenidae &<br>Terapontidae |
| Gnathia pipinde            | ectoparasitic   | body surface                       | Teleostei – Tetraodontidae                                                                                                                |
| Gnathia piscivora          | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia<br>productatridens | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia prolasius          | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia puertoricensis     | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia rathi              | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia rectifrons         | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia rhytidoponera      | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia ricardoi           | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia rufescens          | ectoparasitic   | branchial cavity                   | Elasmobranchii (rays) –<br>Dasyatidae                                                                                                     |
| Gnathia samariensis        | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia sanrikuensis       | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia scabra             | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia schmidti           | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia serrula            | ectoparasitic   | unknown                            | unknown                                                                                                                                   |
| Gnathia serrulatifrons     | ectoparasitic   | unknown                            | unknown                                                                                                                                   |

| Scientific name       | Parasitism type | Site of attachment                                        | Hosts<br>(Order/Class – Family)                                                                                                                                                                                                                                                |
|-----------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gnathia sifae         | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia somalia       | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia spongicola    | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia steveni       | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia stigmacros    | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia stoddarti     | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia taprobanensis | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia teissieri     | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia teruyukiae    | ectoparasitic   | branchial cavity;<br>buccal cavity                        | Elasmobranchii (rays &<br>sharks) – Dasyatidae &<br>Ginglymostomatidae                                                                                                                                                                                                         |
| Gnathia tridens       | ectoparasitic   | unknown                                                   | Teleostei – Clinidae                                                                                                                                                                                                                                                           |
| Gnathia trilobata     | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia trimaculata   | ectoparasitic   | branchial cavity;<br>buccal cavity; fins;<br>body surface | Elasmobranchii (rays &<br>sharks) – Carcharhinidae,<br>Squatinidae, Orectolobidae,<br>Ginglymostomatidae,<br>Stegostomatidae,<br>Sphyrnidae, Myliobatidae,<br>Dasyatidae, Urolophidae,<br>Gymnuridae, Rhinobatidae,<br>Rajidae & Rhincodontidae;<br>Teleostei – Tripterygiidae |
| Gnathia triospathiona | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia tuberculata   | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia tuberculosa   | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia ubatuba       | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia varanus       | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia variobranchia | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |
| Gnathia vellosa       | ectoparasitic   | unknown                                                   | unknown                                                                                                                                                                                                                                                                        |

| Scientific name                | Parasitism type                  | Site of attachment                                        | Hosts<br>(Order/Class – Family)                                                                                     |
|--------------------------------|----------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Gnathia venusta                | ectoparasitic                    | unknown                                                   | unknown                                                                                                             |
| Gnathia virginalis             | ectoparasitic                    | unknown                                                   | unknown                                                                                                             |
| Gnathia vorax                  | ectoparasitic                    | body surface; fins;<br>branchial cavity;<br>buccal cavity | Teleostei – Serranidae,<br>Apogonidae, Bothidae,<br>Carangidae, Pomacentridae,<br>Labridae, Sparidae &<br>Mugilidae |
| Gnathia wistari                | ectoparasitic                    | unknown                                                   | unknown                                                                                                             |
| Gnathia zanzibarensis          | ectoparasitic                    | unknown                                                   | unknown                                                                                                             |
| Gnomoniscus<br>podasconis      | ectoparasitic;<br>hyperparasitic | marsupium (?)                                             | Isopoda – Podasconidae                                                                                              |
| Goleathopseudione<br>bilobatus | ectoparasitic                    | branchial cavity                                          | Decapoda – Munidopsidae                                                                                             |
| Gorgoniscus<br>incisodactylus  | endoparasitic                    | brood cavity                                              | Laurida – Synagogidae                                                                                               |
| Grapsicepon<br>belizeianum     | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Mithracidae                                                                                              |
| Grapsicepon edwardsi           | ectoparasitic                    | branchial cavity                                          | Decapoda – Grapsidae                                                                                                |
| Grapsicepon magnum             | ectoparasitic                    | branchial cavity                                          | Decapoda – Majidae                                                                                                  |
| Grapsicepon messoris           | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Grapsidae                                                                                                |
| Grapsicepon<br>micronesianum   | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Tetraliidae &<br>Trapeziidae                                                                             |
| Grapsicepon rotundum           | ectoparasitic                    | branchial cavity                                          | Decapoda – Xanthidae                                                                                                |
| Gyge angularis                 | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Upogebiidae                                                                                              |
| Gyge branchialis               | ectoparasitic                    | branchial cavity                                          | Decapoda – Upogebiidae                                                                                              |
| Gyge fujianensis               | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Upogebiidae                                                                                              |
| Gyge irregularis               | ectoparasitic                    | branchial cavity (?)                                      | Decapoda – Upogebiidae                                                                                              |
| Gyge ovalis                    | ectoparasitic                    | branchial cavity                                          | Decapoda – Upogebiidae                                                                                              |
| Hemiarthrus<br>abdominalis     | ectoparasitic                    | abdomen                                                   | Decapoda – Pandalidae &<br>Thoridae                                                                                 |
| Hemiarthrus alphei             | ectoparasitic                    | abdomen                                                   | Decapoda – Alpheidae                                                                                                |

| Scientific name                 | Parasitism type                  | Site of attachment   | Hosts<br>(Order/Class – Family)            |
|---------------------------------|----------------------------------|----------------------|--------------------------------------------|
| Hemiarthrus<br>nematocarcini    | ectoparasitic                    | abdomen              | Decapoda –<br>Campylonotidae               |
| Hemiarthrus surculus            | ectoparasitic                    | abdomen              | Decapoda – Alpheidae                       |
| Hemiarthrus synalphei           | ectoparasitic                    | abdomen              | Decapoda – Alpheidae                       |
| Hemicepon muelleri              | ectoparasitic                    | branchial cavity (?) | Decapoda                                   |
| Hemioniscus anatifae            | ectoparasitic;<br>hyperparasitic | unknown              | Scalpellomorpha –<br>Lepadidae             |
| Hemioniscus balani              | endoparasitic                    | ovaries              | Balanomorpha – Balanidae<br>& Chthamalidae |
| Hemioniscus<br>pagurophilus     | ectoparasitic;<br>hyperparasitic | mantle cavity        | Lithoglyptida –<br>Trypetesidae            |
| Hemiphryxus<br>malindiae        | ectoparasitic                    | abdomen              | Decapoda – Palaemonidae                    |
| Heterocepon<br>marginatum       | ectoparasitic                    | branchial cavity     | Decapoda – Pinnotheridae                   |
| Heterophryxus<br>appendiculatus | ectoparasitic                    | cephalothorax        | Euphausiacea –<br>Euphausiidae             |
| Heterophryxus<br>australis      | ectoparasitic                    | unknown              | unknown                                    |
| Heterophryxus<br>elongatus      | ectoparasitic                    | unknown              | unknown                                    |
| Heterophryxus<br>pacificus      | ectoparasitic                    | unknown              | unknown                                    |
| Holophryxus<br>acanthephyrae    | ectoparasitic                    | carapace             | Decapoda –<br>Acanthephyridae              |
| Holophryxus<br>alaskensis       | ectoparasitic                    | carapace             | Decapoda – Pasiphaeidae                    |
| Holophryxus<br>citriformis      | ectoparasitic                    | carapace             | Decapoda –<br>Acanthephyridae              |
| Holophryxus<br>fusiformis       | ectoparasitic                    | carapace (?)         | Decapoda – Sergestidae                     |
| Holophryxus giardi              | ectoparasitic                    | carapace             | Decapoda –<br>Benthesicymidae              |
| Holophryxus<br>polyandrus       | ectoparasitic                    | unknown              | unknown                                    |
| Holophryxus<br>quadratahumerale | ectoparasitic                    | unknown              | unknown                                    |
| Holophryxus richardi            | ectoparasitic                    | unknown              | Decapoda – Sergestidae                     |
| Holophryxus<br>septapodus       | ectoparasitic                    | unknown              | unknown                                    |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                    | Parasitism type | Site of attachment                     | Hosts<br>(Order/Class – Family) |
|------------------------------------|-----------------|----------------------------------------|---------------------------------|
| Holophryxus truncatus              | ectoparasitic   | unknown                                | unknown                         |
| Hypercepon<br>guamensis            | ectoparasitic   | branchial cavity                       | Decapoda – Trapeziidae          |
| Hyperphrixus<br>castrensis         | ectoparasitic   | abdomen                                | Decapoda – Palaemonidae         |
| Hyperphrixus<br>filiformis         | ectoparasitic   | abdomen (?)                            | Decapoda – Alpheidae            |
| Hyperphrixus<br>tattersalli        | ectoparasitic   | branchial cavity (?)                   | Decapoda – Palaemonidae         |
| Hypocepon enoeensis                | ectoparasitic   | unknown                                | Decapoda – Pinnotheridae        |
| Hypocepon globosus                 | ectoparasitic   | unknown                                | Decapoda – Pinnotheridae        |
| Hypohyperphrixus<br>latilamellaris | ectoparasitic   | abdomen                                | Decapoda – Alpheidae            |
| Ichthyoxenos africana              | ectoparasitic   | unknown                                | Teleostei – Cichlidae           |
| Ichthyoxenos<br>amurensis          | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos<br>asymmetrica        | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos<br>circularius        | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos<br>dentimaxillus      | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos expansus              | ectoparasitic   | unknown                                | Teleostei – Distichodontidae    |
| Ichthyoxenos<br>formosanus         | ectoparasitic   | unknown                                | Teleostei – Cyprinidae          |
| Ichthyoxenos<br>fushanensis        | ectoparasitic   | unknown                                | Teleostei – Cyprinidae          |
| Ichthyoxenos geei                  | mesoparasitic   | flesh-burrowing                        | Teleostei – Cyprinidae          |
| Ichthyoxenos<br>hsiakowensis       | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos<br>japonensis         | mesoparasitic   | flesh-burrowing; near<br>pectoral fin  | Teleostei – Cyprinidae          |
| Ichthyoxenos<br>jellinghausii      | mesoparasitic   | flesh-burrowing;<br>behind lateral fin | Teleostei – Cyprinidae          |
| Ichthyoxenos<br>longenditus        | ectoparasitic   | unknown                                | Teleostei (?)                   |
| Ichthyoxenos micronyx              | ectoparasitic   | unknown                                | Teleostei (?)                   |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                  | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)              |
|----------------------------------|-----------------|----------------------|----------------------------------------------|
| Ichthyoxenos<br>minabensis       | ectoparasitic   | buccal cavity        | Teleostei – Chaunacidae                      |
| Ichthyoxenos<br>montanus         | mesoparasitic   | flesh-burrowing (?)  | Teleostei – Cyprinidae                       |
| Ichthyoxenos<br>opisthopterygium | ectoparasitic   | unknown              | Teleostei (?)                                |
| Ichthyoxenos puhi                | ectoparasitic   | branchial cavity     | Teleostei – Muraenidae                       |
| Ichthyoxenos<br>quadratus        | ectoparasitic   | unknown              | Teleostei (?)                                |
| Ichthyoxenos sinensis            | ectoparasitic   | unknown              | Teleostei (?)                                |
| Ichthyoxenos<br>tanganyikae      | ectoparasitic   | buccal cavity        | Teleostei – Cichlidae                        |
| Ichthyoxenos tchangi             | ectoparasitic   | unknown              | Teleostei (?)                                |
| Ichthyoxenos<br>yunnanensis      | ectoparasitic   | unknown              | Teleostei (?)                                |
| Idusa carinata                   | ectoparasitic   | buccal cavity        | Teleostei – Mugilidae                        |
| Idusa dieuzeidei                 | ectoparasitic   | branchial cavity     | Teleostei – Cynoglossidae                    |
| Idusa plagusiae                  | ectoparasitic   | branchial cavity (?) | Teleostei (?)                                |
| Ione cornuta                     | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae                    |
| Ione ovata                       | ectoparasitic   | branchial cavity     | Decapoda – Callianassidae<br>& Callichiridae |
| Ione taiwanensis                 | ectoparasitic   | branchial cavity (?) | Decapoda – Callianideidae                    |
| Ione thompsoni                   | ectoparasitic   | branchial cavity     | Decapoda – Callianassidae                    |
| Ione thoracica                   | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae                    |
| Ione tubulata                    | ectoparasitic   | branchial cavity (?) | Decapoda (?)                                 |
| Ionella agassizii                | ectoparasitic   | branchial cavity     | Decapoda – Callianassidae                    |
| Ionella compressa                | ectoparasitic   | branchial cavity (?) | Decapoda – Callichiridae &<br>Callianassidae |
| Ionella maculata                 | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae                    |
| Ionella murchisoni               | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae                    |

| Scientific name               | Parasitism type                  | Site of attachment          | Hosts<br>(Order/Class – Family)                                 |
|-------------------------------|----------------------------------|-----------------------------|-----------------------------------------------------------------|
| Isonebula<br>acanthopleon     | ectoparasitic                    | buccal cavity               | Teleostei – Curimatidae                                         |
| Isonebula maculatus           | ectoparasitic                    | body surface; buccal cavity | Teleostei – Serrasalmidae                                       |
| Izuohshimaphryxus<br>hoshinoi | ectoparasitic                    | abdomen                     | Decapoda – Palaemonidae                                         |
| Joryma brachysoma             | ectoparasitic                    | branchial cavity            | Teleostei – Pristigasteridae,<br>Clupeidae & Scombridae         |
| Joryma engraulidis            | ectoparasitic                    | branchial cavity            | Teleostei – Engraulidae                                         |
| Joryma hilsae                 | ectoparasitic                    | branchial cavity            | Teleostei – Pristigasteridae,<br>Dorosomatidae &<br>Engraulidae |
| Joryma malabaricus            | ectoparasitic                    | branchial cavity            | Teleostei – Pristigasteridae<br>& Dorosomatidae                 |
| Joryma sawayah                | ectoparasitic                    | branchial cavity            | Teleostei – Pristigasteridae<br>& Terapontidae                  |
| Joryma tartoor                | ectoparasitic                    | branchial cavity            | Teleostei – Carangidae &<br>Pristigasteridae                    |
| Kepon grapsi                  | ectoparasitic                    | branchial cavity            | Decapoda – Grapsidae                                            |
| Kepon halimi                  | ectoparasitic                    | unknown                     | Decapoda – Majidae                                              |
| Kepon orientalis              | ectoparasitic                    | branchial cavity (?)        | Decapoda – Varunidae                                            |
| Kepon typus                   | ectoparasitic                    | branchial cavity (?)        | Decapoda – Grapsidae                                            |
| Kolourione<br>premordica      | ectoparasitic                    | branchial cavity            | Decapoda – Porcellanidae                                        |
| Kuna insularis                | ectoparasitic                    | branchial cavity            | Teleostei – Pomacentridae                                       |
| Lathraena insidiosa           | ectoparasitic                    | buccal cavity               | Teleostei – Engraulidae                                         |
| Leidya bimini                 | ectoparasitic                    | branchial cavity            | Decapoda – Sesarmidae                                           |
| Leidya distorta               | ectoparasitic                    | branchial cavity            | Decapoda – Ocypodidae                                           |
| Leidya infelix                | ectoparasitic                    | branchial cavity (?)        | Decapoda – Grapsidae                                            |
| Leidya ucae                   | ectoparasitic                    | branchial cavity (?)        | Decapoda – Ocypodidae                                           |
| Liriopsis<br>monophthalmus    | ectoparasitic;<br>hyperparasitic | mantle cavity               | Rhizocephala –<br>Peltogastridae                                |
| Liriopsis pygmaea             | ectoparasitic;<br>hyperparasitic | mantle cavity               | Rhizocephala –<br>Peltogastridae                                |

| Scientific name              | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                         |
|------------------------------|-----------------|------------------------------------|-----------------------------------------------------------------------------------------|
| Litobopyrus<br>longicaudatus | ectoparasitic   | branchial cavity (?)               | Decapoda – Alpheidae                                                                    |
| Livoneca bowmani             | ectoparasitic   | branchial cavity                   | Teleostei – Sciaenidae,<br>Atherinidae & Clupeidae                                      |
| Livoneca ovalis              | ectoparasitic   | branchial cavity;<br>buccal cavity | Elasmobranchii (rays) –<br>Pristidae                                                    |
| Livoneca redmanii            | ectoparasitic   | branchial cavity                   | Teleostei – Moronidae,<br>Carangidae, Mugilidae,<br>Soleidae, Cichlidae &<br>Sciaenidae |
| Lobothorax laevis            | ectoparasitic   | buccal cavity                      | Teleostei (?)                                                                           |
| Lobothorax nicosmiti         | ectoparasitic   | buccal cavity                      | Teleostei – Gempylidae                                                                  |
| Lobothorax typus             | ectoparasitic   | buccal cavity                      | Teleostei – Trichiuridae                                                                |
| Loki athanus                 | ectoparasitic   | abdomen                            | Decapoda – Alpheidae                                                                    |
| Loki circumsaltanus          | ectoparasitic   | abdomen                            | Decapoda – Thoridae                                                                     |
| Mediophrixus pinuum          | ectoparasitic   | abdomen                            | Decapoda – Alpheidae                                                                    |
| Megacepon choprai            | ectoparasitic   | branchial cavity                   | Decapoda – Sesarmidae                                                                   |
| Megacepon<br>disparatum      | ectoparasitic   | branchial cavity                   | Decapoda – Varunidae                                                                    |
| Megacepon goetici            | ectoparasitic   | branchial cavity (?)               | Decapoda – Varunidae                                                                    |
| Megacepon<br>pleopodatopus   | ectoparasitic   | branchial cavity (?)               | Decapoda – Sesarmidae &<br>Varunidae                                                    |
| Megacepon sesarmae           | ectoparasitic   | branchial cavity (?)               | Decapoda – Sesarmidae                                                                   |
| Megacepon sheni              | ectoparasitic   | branchial cavity                   | Decapoda – Varunidae                                                                    |
| Mesocepon<br>tosizimensis    | ectoparasitic   | branchial cavity (?)               | Decapoda – Leucosiidae                                                                  |
| Mesophryxus ventralis        | ectoparasitic   | abdomen                            | Decapoda – Palaemonidae                                                                 |
| Metacepon leidyi             | ectoparasitic   | branchial cavity (?)               | Decapoda – Matutidae                                                                    |
| Metacepon pleopodata         | ectoparasitic   | branchial cavity (?)               | Decapoda – Litocheiridae                                                                |
| Metaphrixus carolii          | ectoparasitic   | abdomen                            | Decapoda – Hippolytidae                                                                 |
| Metaphrixus intutus          | ectoparasitic   | abdomen                            | Decapoda – Palaemonidae                                                                 |

| Scientific name                  | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)          |
|----------------------------------|-----------------|----------------------|------------------------------------------|
| Metaphrixus rastriferis          | ectoparasitic   | abdomen              | Decapoda – Palaemonidae                  |
| Metaphrixus<br>setouchiensis     | ectoparasitic   | abdomen (?)          | decapoda – Hippolytidae                  |
| Metathelges muelleri             | ectoparasitic   | branchial cavity (?) | Decapoda                                 |
| Micippion<br>asymmetricus        | endoparasitic   | visceral cavity (?)  | Decapoda – Majidae                       |
| Microniscus acartii              | ectoparasitic   | unknown              | Copepoda – Acartiidae                    |
| Microniscus calani               | ectoparasitic   | thorax               | Copepoda – Calanidae                     |
| Microniscus eucalani             | ectoparasitic   | unknown              | Copepoda – Eucalanidae                   |
| Microniscus fuscus               | ectoparasitic   | unknown              | Copepoda                                 |
| Microniscus latyfrons            | ectoparasitic   | unknown              | Copepoda – Acartiidae &<br>Paracalanidae |
| Microniscus ornatus              | ectoparasitic   | unknown              | Copepoda (?)                             |
| Micropodiphryxus<br>richardsonae | ectoparasitic   | abdomen              | Decapoda – Crangonidae                   |
| Minicopenaeon<br>apertum         | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                     |
| Minicopenaeon<br>crosnieri       | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                     |
| Minicopenaeon<br>intermedium     | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                     |
| Minicopenaeon<br>liuruiyui       | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                     |
| Minimathelges<br>minutus         | ectoparasitic   | abdomen (?)          | Decapoda                                 |
| Minimathelges nanus              | ectoparasitic   | abdomen              | Decapoda – Paguridae                     |
| Miophrixus latreutidis           | ectoparasitic   | abdomen              | Decapoda – Hippolytidae                  |
| Monodgnathia<br>colobostruma     | ectoparasitic   | unknown              | Teleostei (?)                            |
| Monodgnathia<br>cristatipes      | ectoparasitic   | unknown              | unknown                                  |
| Monodgnathia ponera              | ectoparasitic   | unknown              | Teleostei (?)                            |
| Monodgnathia<br>poteriophora     | ectoparasitic   | unknown              | unknown                                  |

| Scientific name          | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                               |
|--------------------------|-----------------|------------------------------------|---------------------------------------------------------------|
| Mothocya affinis         | ectoparasitic   | buccal cavity                      | Teleostei – Hemiramphidae                                     |
| Mothocya andoni          | ectoparasitic   | branchial cavity                   | Teleostei – Monodactylidae                                    |
| Mothocya argenosa        | ectoparasitic   | branchial cavity;<br>buccal cavity | Teleostei – Atherinopsidae,<br>Hemiramphidae &<br>Atherinidae |
| Mothocya arrosor         | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae                                     |
| Mothocya belonae         | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |
| Mothocya bermudensis     | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae                                     |
| Mothocya bertlucy        | ectoparasitic   | branchial cavity                   | Teleostei – Blenniidae                                        |
| Mothocya bohlkeorum      | ectoparasitic   | branchial cavity                   | Teleostei – Apogonidae                                        |
| Mothocya collettei       | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |
| Mothocya epimerica       | ectoparasitic   | branchial cavity;<br>buccal cavity | Teleostei – Atherinidae                                       |
| Mothocya gilli           | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae                                     |
| Mothocya girellae        | ectoparasitic   | branchial cavity                   | Teleostei – Kyphosidae                                        |
| Mothocya halei           | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae<br>& Kyphosidae                     |
| Mothocya kaorui          | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |
| Mothocya karobran        | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |
| Mothocya komatsui        | ectoparasitic   | branchial cavity (?)               | unknown                                                       |
| Mothocya lineata         | ectoparasitic   | buccal cavity                      | Teleostei – Hemiramphidae                                     |
| Mothocya longicopa       | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |
| Mothocya<br>melanosticta | ectoparasitic   | branchial cavity                   | Teleostei – Exocoetidae                                       |
| Mothocya nana            | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae                                     |
| Mothocya omidaptria      | ectoparasitic   | branchial cavity                   | Teleostei – Hemiramphidae                                     |
| Mothocya panamica        | ectoparasitic   | branchial cavity                   | Teleostei – Belonidae                                         |

| Scientific name              | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                  |
|------------------------------|-----------------|----------------------|--------------------------------------------------|
| Mothocya parvostis           | ectoparasitic   | branchial cavity (?) | Teleostei – Hemiramphidae                        |
| Mothocya<br>plagulophora     | ectoparasitic   | branchial cavity     | Teleostei – Hemiramphidae                        |
| Mothocya powelli             | ectoparasitic   | branchial cavity     | Teleostei (?)                                    |
| Mothocya renardi             | ectoparasitic   | branchial cavity     | Teleostei – Belonidae                            |
| Mothocya rosea               | ectoparasitic   | branchial cavity     | Teleostei – Hemiramphidae                        |
| Mothocya sajori              | ectoparasitic   | branchial cavity     | Teleostei – Hemiramphidae                        |
| Mothocya taurica             | ectoparasitic   | branchial cavity     | Teleostei – Alosidae,<br>Clupeidae & Engraulidae |
| Mothocya waminda             | ectoparasitic   | branchial cavity     | Teleostei – Atherinidae                          |
| Mothocya<br>xenobranchia     | ectoparasitic   | branchial cavity     | Teleostei – Belonidae                            |
| Munidion cubense             | ectoparasitic   | branchial cavity     | Decapoda – Munididae                             |
| Munidion irritans            | ectoparasitic   | branchial cavity     | Decapoda – Munididae                             |
| Munidion laterale            | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                             |
| Munidion longipedis          | ectoparasitic   | branchial cavity     | Decapoda – Munididae                             |
| Munidion parvum              | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                             |
| Munidion<br>pleuroncodis     | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                             |
| Munidion princeps            | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                             |
| Munnoniscus<br>marsupialis   | ectoparasitic   | marsupium (?)        | Isopoda – Munnopsidae                            |
| Munnoniscus sarsi            | ectoparasitic   | marsupium (?)        | Isopoda – Munnopsidae                            |
| Nalocryptus<br>longicaudatus | ectoparasitic   | unknown              | unknown                                          |
| Neophryxus<br>globicaudatus  | ectoparasitic   | pleopods             | Decapoda – Palaemonidae                          |
| Neritoniscus<br>euphoticus   | ectoparasitic   | unknown              | unknown                                          |

| Scientific name       | Parasitism type | Site of attachment             | Hosts<br>(Order/Class – Family)                                                                                                                                                                                             |
|-----------------------|-----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nerocila acuminata    | ectoparasitic   | body surface; fins             | Teleostei – Ariidae,<br>Anablepidae, Megalopidae,<br>Auchenipteridae,<br>Engraulidae, Atherinidae,<br>Serranidae, Mugilidae,<br>Embiotocidae & Sciaenidae;<br>Elasmobranchii (rays) –<br>Rhinobatidae                       |
| Nerocila armata       | ectoparasitic   | fins                           | Teleostei – Priacanthidae                                                                                                                                                                                                   |
| Nerocila arres        | ectoparasitic   | caudal peduncle;<br>caudal fin | Teleostei – Terapontidae &<br>Nemipteridae                                                                                                                                                                                  |
| Nerocila barramundae  | ectoparasitic   | body surface; fins             | Teleostei – Ariidae                                                                                                                                                                                                         |
| Nerocila benrosei     | ectoparasitic   | head; below or above<br>eye    | Teleostei – Labridae                                                                                                                                                                                                        |
| Nerocila bivittata    | ectoparasitic   | caudal peduncle                | Teleostei – Blenniidae,<br>Labridae, Scorpaenidae,<br>Cottidae, Sparidae,<br>Mugilidae, Centracanthidae,<br>Merluccidae,<br>Monacanthidae, Sciaenidae,<br>Mullidae, Gobiidae,<br>Serranidae, Triglidae &<br>Platycephalidae |
| Nerocila blainvillei  | ectoparasitic   | unknown                        | Teleostei (?)                                                                                                                                                                                                               |
| Nerocila californica  | ectoparasitic   | fins; body surface             | Teleostei – Mugilidae,<br>Paralichthyidae,<br>Engraulidae, Carangidae,<br>Embiotocidae, Ariidae,<br>Serranidae, Atherinidae &<br>Scorpaenidae                                                                               |
| Nerocila congener     | ectoparasitic   | unknown                        | Teleostei (?)                                                                                                                                                                                                               |
| Nerocila depressa     | ectoparasitic   | fins; body surface             | Teleostei – Dorosomatidae,<br>Engraulididae, Cyprinidae &<br>Pristigasteridae                                                                                                                                               |
| Nerocila donghaiensis | ectoparasitic   | body surface                   | Teleostei – Sciaenidae                                                                                                                                                                                                      |
| Nerocila excisa       | ectoparasitic   | unknown                        | Teleostei (?)                                                                                                                                                                                                               |
| Nerocila exocoeti     | ectoparasitic   | body surface                   | Teleostei – Exocoetidae                                                                                                                                                                                                     |
| Nerocila falcata      | ectoparasitic   | unknown                        | Teleostei (?)                                                                                                                                                                                                               |
| Nerocila falklandica  | ectoparasitic   | unknown                        | Teleostei (?)                                                                                                                                                                                                               |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name           | Parasitism type | Site of attachment            | Hosts<br>(Order/Class – Family)                                                                                                                                                         |
|---------------------------|-----------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nerocila fluviatilis      | ectoparasitic   | body surface                  | Teleostei – Priacanthidae                                                                                                                                                               |
| Nerocila<br>hemirhamphusi | ectoparasitic   | unknown                       | Teleostei – Hemiramphidae                                                                                                                                                               |
| Nerocila heterozota       | ectoparasitic   | unknown                       | Teleostei (?)                                                                                                                                                                           |
| Nerocila japonica         | ectoparasitic   | fins                          | Teleostei – Lateolabracidae,<br>Cyprinidae, Mugilidae,<br>Triglidae, Latidae, Sparidae,<br>Terapontidae, Embiotocidae,<br>Gobiidae, Labridae,<br>Monacanthidae, Molidae &<br>Kyphosidae |
| Nerocila kisra            | ectoparasitic   | caudal peduncle;<br>lower jaw | Teleostei – Terapontidae,<br>Scombridae, Lutjanidae,<br>Polynemidae,<br>Pristigasteridae, Sparidae &<br>Sciaenidae                                                                      |
| Nerocila lanceolata       | ectoparasitic   | fins                          | Teleostei – Lobotidae &<br>Sparidae                                                                                                                                                     |
| Nerocila laticeps         | ectoparasitic   | unknown                       | Teleostei (?)                                                                                                                                                                           |
| Nerocila livida           | ectoparasitic   | branchial cavity              | Teleostei (?)                                                                                                                                                                           |
| Nerocila lomatia          | ectoparasitic   | branchial cavity              | Teleostei – Clupeidae                                                                                                                                                                   |
| Nerocila longispina       | ectoparasitic   | body surface; fins            | Teleostei – Terapontidae &<br>Sciaenidae                                                                                                                                                |
| Nerocila loveni           | ectoparasitic   | caudal peduncle               | Teleostei – Leiognathidae,<br>Haemulidae, Carangidae &<br>Dorosomatidae                                                                                                                 |
| Nerocila milesensis       | ectoparasitic   | anal fin                      | Teleostei – Scorpaenidae                                                                                                                                                                |
| Nerocila monodi           | ectoparasitic   | body surface                  | Teleostei – Sparidae &<br>Cichlidae                                                                                                                                                     |
| Nerocila munda            | ectoparasitic   | dorsal fin                    | Elasmobranchii (sharks) –<br>Triakidae                                                                                                                                                  |

(Continued)

| Scientific name       | Parasitism type | Site of attachment | Hosts<br>(Order/Class – Family)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nerocila orbignyi     | ectoparasitic   | body surface; fins | Teleostei – Mugilidae,<br>Moronidae, Pleuronectidae,<br>Cichlidae, Salmonidae,<br>Sparidae, Soleidae,<br>Gempylidae,<br>Rhombosoleidae, Clupeidae,<br>Batrachoididae, Lophiidae,<br>Belonidae, Triglidae,<br>Gadidae, Serranidae,<br>Arripidae, Carangidae,<br>Labridae, Scorpaenidae,<br>Scombridae,<br>Dactylopteridae, Girellidae,<br>Molidae, Platycephalidae,<br>Pomatomidae, Sillaginidae<br>& Trachinidae; Holocephali<br>– Chimaeridae &<br>Callorhinchidae;<br>Elasmobranchii (rays) –<br>Rajidae |
| Nerocila phaiopleura  | ectoparasitic   | body surface       | Teleostei – Sphyraenidae,<br>Carangidae, Dussumieriidae,<br>Chirocentridae, Clupeidae,<br>Engraulidae,<br>Pristigasteridae, Mugilidae,<br>Ariidae, Plotosidae,<br>Istiophoridae,<br>Leiognathidae, Polynemidae<br>& Scombridae                                                                                                                                                                                                                                                                             |
| Nerocila philippensis | ectoparasitic   | unknown            | Teleostei (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nerocila pigmentata   | ectoparasitic   | unknown            | Teleostei (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nerocila pulicatensis | ectoparasitic   | body surface       | Teleostei – Plotosidae &<br>Bagridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nerocila recurvispina | ectoparasitic   | body surface       | unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nerocila serra        | ectoparasitic   | body surface       | Teleostei – Ariidae,<br>Plotosidae & Bagridae; also<br>found on sea snakes                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nerocila sigani       | ectoparasitic   | caudal fin         | Teleostei – Siganidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nerocila sundaica     | ectoparasitic   | body surface; fins | Teleostei – Carangidae,<br>Pristigasteridae, Sciaenidae<br>& Terapontidae                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nerocila swainsoni    | ectoparasitic   | unknown            | Teleostei (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nerocila tenuipes     | ectoparasitic   | unknown            | Teleostei (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Scientific name              | Parasitism type | Site of attachment                 | Hosts<br>(Order/Class – Family)                                                          |
|------------------------------|-----------------|------------------------------------|------------------------------------------------------------------------------------------|
| Nerocila trichiura           | ectoparasitic   | body surface                       | Teleostei – Exocoetidae                                                                  |
| Nerocila trivittata          | ectoparasitic   | unknown                            | Teleostei (?)                                                                            |
| Nikione natalensis           | ectoparasitic   | branchial cavity                   | Decapoda – Processidae                                                                   |
| Nococryptus angustus         | ectoparasitic   | unknown                            | unknown                                                                                  |
| Norileca borealis            | ectoparasitic   | body surface                       | Teleostei – Scombridae                                                                   |
| Norileca indica              | ectoparasitic   | branchial cavity                   | Teleostei – Scombridae,<br>Carangidae, Dorosomatidae,<br>Nemipteridae &<br>Leiognathidae |
| Norileca triangulata         | ectoparasitic   | body surface;<br>branchial cavity  | Teleostei – Carangidae,<br>Scombridae, Dorosomatidae<br>& Exocoetidae                    |
| Notophryxus clypeatus        | ectoparasitic   | branchial cavity                   | Mysida – Mysidae                                                                         |
| Notophryxus<br>globularis    | ectoparasitic   | unknown                            | Euphausiacea –<br>Euphausiidae                                                           |
| Notophryxus lateralis        | ectoparasitic   | branchial cavity                   | Euphausiacea –<br>Euphausiidae                                                           |
| Notophryxus lobatus          | ectoparasitic   | unknown                            | Mysida – Mysidae                                                                         |
| Notophryxus lobus            | ectoparasitic   | branchial cavity                   | Mysida                                                                                   |
| Notophryxus<br>longicaudatus | ectoparasitic   | unknown                            | unknown                                                                                  |
| Notophryxus ocellatus        | ectoparasitic   | abdomen                            | Mysida – Mysidae                                                                         |
| Notophryxus ovalis           | ectoparasitic   | unknown                            | unknown                                                                                  |
| Notophryxus ovoides          | ectoparasitic   | abdomen                            | Mysida – Mysidae                                                                         |
| Oculophryxus bicaulis        | ectoparasitic   | eyestalk                           | Euphausiacea –<br>Euphausiidae                                                           |
| Ogyridione<br>caroliniana    | ectoparasitic   | branchial cavity                   | Decapoda – Ogyrididae                                                                    |
| Olencira lamarckii           | ectoparasitic   | unknown                            | Teleostei (?)                                                                            |
| Olencira praegustator        | ectoparasitic   | buccal cavity;<br>branchial cavity | Teleostei – Alosidae                                                                     |
| Onisocryptus<br>kurilensis   | ectoparasitic   | carapace                           | Myodocopida –<br>Cypridinidae                                                            |

| Scientific name            | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|----------------------------|-----------------|----------------------|---------------------------------|
| Onisocryptus ovalis        | ectoparasitic   | trunk                | Myodocopida –<br>Cypridinidae   |
| Onisocryptus sagittus      | ectoparasitic   | brood cavity         | Myodocopida –<br>Cypridinidae   |
| Onkokepon articulatus      | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae          |
| Onkokepon beibuensis       | ectoparasitic   | branchial cavity (?) | Decapoda – Leucosiidae          |
| Onocryptus alatus          | ectoparasitic   | unknown              | unknown                         |
| Onychocepon giardi         | ectoparasitic   | branchial cavity (?) | Decapoda – Pinnotheridae        |
| Onychocepon harpax         | ectoparasitic   | branchial cavity (?) | Decapoda – Pinnotheridae        |
| Onychocepon<br>resupinum   | ectoparasitic   | branchial cavity (?) | Decapoda – Pinnotheridae        |
| Orbimorphus<br>constrictus | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Orbione angusta            | ectoparasitic   | branchial cavity (?) | Decapoda – Solenoceridae        |
| Orbione aristei            | ectoparasitic   | branchial cavity (?) | Decapoda – Aristeidae           |
| Orbione bonnieri           | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae            |
| Orbione digitata           | ectoparasitic   | branchial cavity (?) | Decapoda – Solenoceridae        |
| Orbione halipori           | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae            |
| Orbione izuensis           | ectoparasitic   | branchial cavity (?) | Decapoda – Aristeidae           |
| Orbione penei              | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae            |
| Orbione thielemanni        | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae            |
| Orophryxus shiinoi         | ectoparasitic   | carapace             | Decapoda – Palaemonidae         |
| Orthione furcata           | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Orthione griffenis         | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae          |
| Orthione<br>mesoamericana  | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Osicryptus hirsutus        | ectoparasitic   | unknown              | unknown                         |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)            |
|--------------------------------|-----------------|----------------------|--------------------------------------------|
| Ourozeuktes<br>bopyroides      | mesoparasitic   | flesh-burrowing      | Teleostei – Monacanthidae                  |
| Ovobopyrus<br>alphezemiotes    | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae                       |
| Ovoionella obovata             | ectoparasitic   | branchial cavity     | Decapoda – Munididae                       |
| Pagurion tuberculata           | ectoparasitic   | branchial cavity (?) | Decapoda – Calcinidae                      |
| Paguristione<br>uniuropodus    | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae                      |
| Paguritherium alatum           | endoparasitic   | visceral cavity      | Decapoda – Paguridae                       |
| Paguritherium<br>manggagaway   | endoparasitic   | visceral cavity      | Decapoda – Calcinidae                      |
| Pagurocryptella<br>holthuisi   | ectoparasitic   | branchial cavity (?) | Decapoda – Paguridae                       |
| Pagurocryptella<br>paguri      | ectoparasitic   | branchial cavity     | Decapoda – Parapaguridae                   |
| Palaemonellione<br>cebuensis   | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae                    |
| Parabopyrella<br>angulosa      | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella angusta          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>australiensis | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>barnardi      | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>bonnieri      | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae                       |
| Parabopyrella choprai          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae &<br>Hippolytidae (?) |
| Parabopyrella<br>crenulata     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>cuspidata     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>delagoae      | ectoparasitic   | branchial cavity (?) | Decapoda                                   |
| Parabopyrella<br>distincta     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>elongata      | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |
| Parabopyrella<br>essingtoni    | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                       |

| Scientific name               | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)      |
|-------------------------------|-----------------|----------------------|--------------------------------------|
| Parabopyrella<br>hodgarti     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella incisa          | ectoparasitic   | branchial cavity (?) | Decapoda                             |
| Parabopyrella indica          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella<br>intermedia   | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella lata            | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae &<br>Lysmatidae |
| Parabopyrella<br>megatelson   | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella<br>mortenseni   | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae &<br>Lysmatidae |
| Parabopyrella<br>nierstraszi  | ectoparasitic   | branchial cavity     | Decapoda – Lysmatidae                |
| Parabopyrella pacifica        | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae                 |
| Parabopyrella<br>perplexa     | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella<br>richardsonae | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella saronae         | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae              |
| Parabopyrella<br>setoensis    | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella<br>symmetros    | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella<br>tanyensis    | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrella thomasi         | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae              |
| Parabopyriscus<br>stellatus   | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Parabopyrus kiiensis          | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                 |
| Paracepon nierstraszi         | ectoparasitic   | branchial cavity (?) | Decapoda (?)                         |
| Paracepon stebbingi           | ectoparasitic   | branchial cavity (?) | Decapoda – Inachidae                 |
| Paracymothoa<br>astyanaxi     | ectoparasitic   | buccal cavity        | Teleostei – Characidae               |
| Paracymothoa parva            | ectoparasitic   | buccal cavity        | Teleostei – Characidae               |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name               | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                                       |
|-------------------------------|-----------------|----------------------|-----------------------------------------------------------------------|
| Paracymothoa<br>tholoceps     | ectoparasitic   | unknown              | Teleostei – Erythrinidae                                              |
| Paraeragia<br>kiribatiensis   | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                                                  |
| Paragigantione<br>americana   | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                                                  |
| Paragigantione indica         | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                                                  |
| Paragigantione<br>papillosa   | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                                                  |
| Paragnathia formica           | ectoparasitic   | unknown              | Teleostei – Anguillidae,<br>Pleuronectidae, Clupeidae &<br>Scombridae |
| Paranikione distorta          | ectoparasitic   | branchial cavity (?) | Decapoda – Processidae                                                |
| Paranikione sibogae           | ectoparasitic   | branchial cavity (?) | Decapoda – Processidae                                                |
| Parapagurion calcinicola      | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae &<br>Diogenidae                                 |
| Parapagurion<br>imbricata     | ectoparasitic   | branchial cavity (?) | Decapoda – Parapaguridae<br>& Diogenidae                              |
| Parapenaeon<br>consolidata    | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeon diatropa          | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeon georgei           | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeon<br>lobulatum      | ectoparasitic   | branchial cavity (?) | Decapoda                                                              |
| Parapenaeon<br>richardsonae   | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeon<br>sicyoniae      | ectoparasitic   | branchial cavity (?) | Decapoda – Sicyoniidae                                                |
| Parapenaeonella<br>coarctatum | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeonella<br>distincta  | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                                                  |
| Parapenaeonella<br>expansa    | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeonella<br>minutopoda | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeonella<br>secunda    | ectoparasitic   | branchial cavity (?) | Decapoda – Penaeidae                                                  |
| Parapenaeonella tertia        | ectoparasitic   | branchial cavity     | Decapoda – Penaeidae                                                  |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                   | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-----------------------------------|-----------------|----------------------|---------------------------------|
| Parapleurocrypta<br>alphei        | ectoparasitic   | branchial cavity     | Decapoda – Alpheidae            |
| Parapleurocrypta<br>digitata      | ectoparasitic   | branchial cavity (?) | Decapoda (?)                    |
| Parapleurocryptella<br>elasmonoti | ectoparasitic   | branchial cavity (?) | Decapoda – Munidopsidae         |
| Parapleurocryptella<br>minuta     | ectoparasitic   | branchial cavity (?) | Decapoda – Chirostylidae        |
| Parapodascon<br>stebbingi         | ectoparasitic   | marsupium            | Amphipoda – Uristidae           |
| Parargeia ornata                  | ectoparasitic   | branchial cavity (?) | Decapoda – Crangonidae          |
| Paraspidophryxus<br>terminalis    | ectoparasitic   | unknown              | unknown                         |
| Parasymmetrione<br>tuberculineata | ectoparasitic   | branchial cavity     | Decapoda – Diogenidae           |
| Parasymmetrorbione<br>bicauda     | ectoparasitic   | branchial cavity (?) | Decapoda – Solenoceridae        |
| Parathelges aniculi               | ectoparasitic   | abdomen              | Decapoda – Calcinidae           |
| Parathelges cardonae              | ectoparasitic   | abdomen              | Decapoda – Diogenidae           |
| Parathelges carolii               | ectoparasitic   | abdomen              | Decapoda – Diogenidae           |
| Parathelges<br>enoshimensis       | ectoparasitic   | abdomen              | Decapoda – Paguridae            |
| Parathelges foliatus              | ectoparasitic   | abdomen              | Decapoda – Paguridae            |
| Parathelges<br>neotenuicaudis     | ectoparasitic   | abdomen              | Decapoda – Paguridae            |
| Parathelges<br>occidentalis       | ectoparasitic   | abdomen              | Decapoda – Diogenidae           |
| Parathelges piriformis            | ectoparasitic   | abdomen              | Decapoda – Paguridae            |
| Parathelges racovitzai            | ectoparasitic   | abdomen              | Decapoda – Diogenidae           |
| Parathelges tumidipes             | ectoparasitic   | abdomen              | Decapoda – Calcinidae           |
| Parione ischyrandra               | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Parione lamellata                 | ectoparasitic   | branchial cavity (?) | Decapoda                        |
| Parione pachychelii               | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |

| Scientific name                 | Parasitism type                  | Site of attachment                      | Hosts<br>(Order/Class – Family) |
|---------------------------------|----------------------------------|-----------------------------------------|---------------------------------|
| Parione paucisecta              | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Munididae            |
| Parione pisidiae                | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Parionella decidens             | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Parionella elegans              | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Munididae            |
| Parionella notexocha            | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Eumunididae          |
| Parionella<br>richardsonae      | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Parionina chinensis             | ectoparasitic                    | branchial cavity (?)                    | Decapoda                        |
| Parionina pacifica              | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Galatheidae          |
| Parioninella astridae           | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Parioninella liuruiyui          | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Parioninella pacifica           | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Porcellanidae        |
| Pauperella rotunda              | ectoparasitic                    | branchial cavity (?)                    | Decapoda – Upogebiidae          |
| Perezina gregaria               | ectoparasitic;<br>hyperparasitic | mantle cavity                           | Rhizocephala – Sacculinidae     |
| Philostomella cigarra           | ectoparasitic                    | buccal cavity                           | Teleostei – Characidae          |
| Phyllodurus<br>abdominalis      | ectoparasitic                    | abdomen (?)                             | Decapoda – Upogebiidae          |
| Pinnixion sexdecennia           | endoparasitic                    | visceral cavity                         | Decapoda – Pinnotheridae        |
| Pinnotherion setoensis          | endoparasitic                    | visceral cavity                         | Decapoda – Inachidae            |
| Pinnotherion<br>vermiforme      | endoparasitic                    | visceral cavity                         | Decapoda – Pinnotheridae        |
| Pleonobopyrus<br>kumanonadensis | ectoparasitic                    | abdomen                                 | Decapoda – Crangonidae          |
| Pleopodias diaphus              | ectoparasitic                    | body surface; anterior<br>to dorsal fin | Teleostei – Myctophidae         |
| Pleopodias elongatus            | ectoparasitic                    | unknown                                 | Teleostei (?)                   |
| Pleopodias nielbrucei           | ectoparasitic                    | unknown                                 | Teleostei (?)                   |

| Scientific name                            | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|--------------------------------------------|-----------------|----------------------|---------------------------------|
| Pleopodias vigilans                        | ectoparasitic   | unknown              | Teleostei (?)                   |
| Pleurocrypta dubia                         | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae          |
| Pleurocrypta floridana                     | ectoparasitic   | branchial cavity     | Decapoda – Galatheidae          |
| Pleurocrypta galateae                      | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae          |
| Pleurocrypta keiensis                      | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocrypta<br>longibranchiata            | ectoparasitic   | branchial cavity     | Decapoda – Galatheidae          |
| Pleurocrypta<br>macrocephala               | ectoparasitic   | branchial cavity     | Decapoda – Porcellanidae        |
| Pleurocrypta<br>meridionalis               | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocrypta<br>microbranchiata            | ectoparasitic   | branchial cavity     | Decapoda – Galatheidae          |
| Pleurocrypta<br>petrolisthis               | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Pleurocrypta<br>piriformis                 | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae          |
| Pleurocrypta<br>porcellanaelongicorni<br>s | ectoparasitic   | branchial cavity (?) | Decapoda – Porcellanidae        |
| Pleurocrypta strigosa                      | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae          |
| Pleurocryptella altalis                    | ectoparasitic   | branchial cavity     | Decapoda – Munidopsidae         |
| Pleurocryptella<br>crassandra              | ectoparasitic   | branchial cavity (?) | Decapoda – Munidopsidae         |
| Pleurocryptella<br>fimbriata               | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocryptella<br>formosa                 | ectoparasitic   | branchial cavity (?) | Decapoda – Sternostylidae       |
| Pleurocryptella infecta                    | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocryptella laevis                     | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocryptella<br>latilamellaris          | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pleurocryptella<br>shinkai                 | ectoparasitic   | branchial cavity     | Decapoda – Munidopsidae         |
| Pleurocryptella<br>superba                 | ectoparasitic   | branchial cavity (?) | Decapoda – Munidopsidae         |

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|--------------------------------|-----------------|----------------------|---------------------------------------|
| Pleurocryptella wolffi         | ectoparasitic   | branchial cavity     | Decapoda – Munidopsidae               |
| Pleurocryptina indica          | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae                |
| Pliophrixus philonika          | ectoparasitic   | abdomen (?)          | Decapoda – Processidae                |
| Plotor indus                   | ectoparasitic   | unknown              | Teleostei (?)                         |
| Podascon chevreuxi             | ectoparasitic   | marsupium (?)        | Amphipoda – Ampeliscidae              |
| Podascon dellavallei           | ectoparasitic   | marsupium (?)        | Amphipoda – Ampeliscidae              |
| Podascon haploopis             | ectoparasitic   | marsupium (?)        | Amphipoda – Ampeliscidae              |
| Podoniscus<br>multidentatus    | ectoparasitic   | unknown              | unknown                               |
| Pontobopyrus<br>abyssorum      | ectoparasitic   | branchial cavity (?) | Decapoda – Crangonidae                |
| Portunion bourdoni             | endoparasitic   | visceral cavity (?)  | Decapoda – Epialtidae                 |
| Portunion conformis            | endoparasitic   | visceral cavity      | Decapoda – Varunidae                  |
| Portunion flavidus             | endoparasitic   | visceral cavity      | Decapoda – Grapsidae &<br>Plagusiidae |
| Portunion kossmanni            | endoparasitic   | visceral cavity      | Decapoda – Carcinidae                 |
| Portunion maenadis             | endoparasitic   | visceral cavity      | Decapoda – Carcinidae                 |
| Portunion moniezii             | endoparasitic   | visceral cavity (?)  | Decapoda – Polybiidae                 |
| Portunion salvatoris           | endoparasitic   | visceral cavity (?)  | Decapoda – Polybiidae                 |
| Priapion fraissei              | endoparasitic   | visceral cavity      | Decapoda – Polybiidae                 |
| Probopyrinella heardi          | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae               |
| Probopyrinella<br>latreuticola | ectoparasitic   | branchial cavity     | Decapoda – Hippolytidae               |
| Probopyrione plana             | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                  |
| Probopyriscus<br>novempalensis | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                  |
| Probopyrus aberrans            | ectoparasitic   | branchial cavity (?) | Decapoda – Thoridae                   |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name             | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-----------------------------|-----------------|----------------------|---------------------------------|
| Probopyrus abhoyai          | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus alcocki          | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus<br>annandalei    | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus ascendens        | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus<br>bengalensis   | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus bithynis         | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus borrei           | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus<br>brachysoma    | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus brevipes         | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus buitendijki      | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus demani           | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus floridensis      | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus fluviatilis      | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus gangeticus       | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus giardi           | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus<br>godaveriensis | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus incertus         | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus insularis        | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae         |
| Probopyrus<br>iriomotensis  | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus marinus          | ectoparasitic   | branchial cavity (?) | Decapoda (?)                    |
| Probopyrus markhami         | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Probopyrus<br>pacificensis  | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae         |
| Scientific name              | Parasitism type | Site of attachment      | Hosts<br>(Order/Class – Family) |
|------------------------------|-----------------|-------------------------|---------------------------------|
| Probopyrus palaemoni         | ectoparasitic   | branchial cavity (?)    | Decapoda – Palaemonidae         |
| Probopyrus<br>pandalicola    | ectoparasitic   | branchial cavity        | Decapoda – Palaemonidae         |
| Probopyrus pica              | ectoparasitic   | branchial cavity (?)    | Decapoda – Palaemonidae         |
| Probopyrus prashadi          | ectoparasitic   | branchial cavity        | Decapoda – Palaemonidae         |
| Probopyrus ringuelti         | ectoparasitic   | branchial cavity        | Decapoda – Palaemonidae         |
| Probopyrus semperi           | ectoparasitic   | branchial cavity (?)    | Decapoda – Palaemonidae         |
| Probynia obstipa             | ectoparasitic   | branchial cavity        | Decapoda – Palaemonidae         |
| Probynia<br>pleurocephala    | ectoparasitic   | branchial cavity (?)    | Decapoda                        |
| Probynia<br>ramiroromani     | ectoparasitic   | branchial cavity        | Decapoda – Palaemonidae         |
| Procepon horridulum          | ectoparasitic   | branchial cavity (?)    | Decapoda – Upogebiidae          |
| Procepon insolitum           | ectoparasitic   | branchial cavity (?)    | Decapoda – Upogebiidae          |
| Procepon liuruiyui           | ectoparasitic   | branchial cavity        | Decapoda – Upogebiidae          |
| Prodajus<br>bigelowiensis    | ectoparasitic   | marsupium               | Mysida – Mysidae                |
| Prodajus bilobatus           | ectoparasitic   | lower surface of thorax | Mysida – Mysidae                |
| Prodajus<br>curviabdominalis | ectoparasitic   | marsupium               | Mysida – Mysidae                |
| Prodajus gastrosacci         | ectoparasitic   | marsupium               | Mysida – Mysidae                |
| Prodajus lobiancoi           | ectoparasitic   | marsupium               | Mysida – Mysidae                |
| Prodajus ostendensis         | ectoparasitic   | branchial cavity        | Mysida – Mysidae                |
| Prodajus ovatus              | ectoparasitic   | marsupium               | Mysida – Mysidae                |
| Progebiophilus assisi        | ectoparasitic   | branchial cavity (?)    | Decapoda – Upogebiidae          |
| Progebiophilus bakeri        | ectoparasitic   | branchial cavity (?)    | Decapoda – Upogebiidae          |
| Progebiophilus brevis        | ectoparasitic   | branchial cavity (?)    | Decapoda – Upogebiidae          |

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|--------------------------------|-----------------|----------------------|---------------------------------|
| Progebiophilus<br>bruscai      | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae          |
| Progebiophilus<br>chapini      | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Progebiophilus<br>elongatus    | ectoparasitic   | branchial cavity     | Decapoda – Callianassidae       |
| Progebiophilus<br>euxinicus    | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae          |
| Progebiophilus<br>filicaudatus | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Progebiophilus<br>insperatus   | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Progebiophilus<br>kensleyi     | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Progebiophilus sinicus         | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Progebiophilus<br>upogebiae    | ectoparasitic   | branchial cavity     | Decapoda – Upogebiidae          |
| Progebiophilus<br>villosus     | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |
| Prophryxus alascensis          | ectoparasitic   | unknown              | unknown                         |
| Propseudione<br>rhombicosoma   | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae           |
| Pseudione affinis              | ectoparasitic   | branchial cavity     | Decapoda – Pandalidae           |
| Pseudione ampla                | ectoparasitic   | branchial cavity (?) | Decapoda – Pandalidae           |
| Pseudione<br>andamanicae       | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae            |
| Pseudione atlantica            | ectoparasitic   | branchial cavity (?) | Decapoda – Nephropidae          |
| Pseudione borealis             | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae       |
| Pseudione<br>callianassae      | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae       |
| Pseudione chiesai              | ectoparasitic   | branchial cavity     | Decapoda – Munididae            |
| Pseudione chiloensis           | ectoparasitic   | branchial cavity (?) | Decapoda – Hippolytidae         |
| Pseudione clevai               | ectoparasitic   | branchial cavity     | Decapoda – Stylodactylidae      |
| Pseudione cognata              | ectoparasitic   | branchial cavity (?) | Decapoda – Crangonidae          |

| Scientific name              | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)        |
|------------------------------|-----------------|----------------------|----------------------------------------|
| Pseudione crenulata          | ectoparasitic   | branchial cavity     | Decapoda – Munididae                   |
| Pseudione dohrni             | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae              |
| Pseudione fibriata           | ectoparasitic   | branchial cavity (?) | Decapoda                               |
| Pseudione<br>galacanthae     | ectoparasitic   | branchial cavity     | Decapoda – Munididae                   |
| Pseudione hanseni            | ectoparasitic   | branchial cavity (?) | Decapoda – Axiidae                     |
| Pseudione hayi               | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                   |
| Pseudione incerta            | ectoparasitic   | branchial cavity (?) | Decapoda                               |
| Pseudione indica             | ectoparasitic   | branchial cavity     | Decapoda – Crangonidae &<br>Pandalidae |
| Pseudione intermedia         | ectoparasitic   | branchial cavity     | Decapoda – Paguridae                   |
| Pseudione itsindrae          | ectoparasitic   | branchial cavity (?) | Decapoda – Munidopsidae                |
| Pseudione ivanklini          | ectoparasitic   | branchial cavity     | Decapoda – Nephropidae                 |
| Pseudione japanensis         | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae                 |
| Pseudione kossmanni          | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                   |
| Pseudione longicauda         | ectoparasitic   | branchial cavity (?) | Decapoda – Callianassidae              |
| Pseudione magna              | ectoparasitic   | branchial cavity (?) | Decapoda – Pandalidae                  |
| Pseudione<br>minimocrenulata | ectoparasitic   | branchial cavity     | Decapoda – Munididae                   |
| Pseudione munidae            | ectoparasitic   | branchial cavity     | Decapoda – Munididae                   |
| Pseudione<br>murawaiensis    | ectoparasitic   | branchial cavity     | Decapoda – Callianassidae              |
| Pseudione nephropsi          | ectoparasitic   | branchial cavity (?) | Decapoda – Nephropidae                 |
| Pseudione parviramus         | ectoparasitic   | branchial cavity (?) | Decapoda – Pandalidae                  |
| Pseudione pontocari          | ectoparasitic   | branchial cavity     | Decapoda – Crangonidae                 |
| Pseudione sagamiensis        | ectoparasitic   | branchial cavity (?) | Decapoda – Galatheidae                 |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|--------------------------------|-----------------|----------------------|---------------------------------------|
| Pseudione serejoae             | ectoparasitic   | branchial cavity     | Decapoda – Munididae                  |
| Pseudione stylopoda            | ectoparasitic   | branchial cavity     | Decapoda – Stylodactylidae            |
| Pseudione<br>subcrenulata      | ectoparasitic   | branchial cavity (?) | Decapoda – Munididae                  |
| Pseudione<br>tanimbarensis     | ectoparasitic   | branchial cavity (?) | Decapoda – Nephropidae                |
| Pseudione tattersalli          | ectoparasitic   | branchial cavity     | Decapoda – Pandalidae                 |
| Pseudionella akuaku            | ectoparasitic   | branchial cavity     | Decapoda – Calcinidae                 |
| Pseudionella attenuata         | ectoparasitic   | branchial cavity     | Decapoda – Paguridae                  |
| Pseudionella deflexa           | ectoparasitic   | branchial cavity     | Decapoda – Paguridae                  |
| Pseudionella<br>markhami       | ectoparasitic   | branchial cavity     | Decapoda – Paguridae                  |
| Pseudionella<br>spiropaguri    | ectoparasitic   | branchial cavity (?) | Decapoda – Paguridae                  |
| Pseudirona laeopsi             | ectoparasitic   | branchial cavity     | Teleostei – Bothidae                  |
| Pseudostegias<br>atlantica     | ectoparasitic   | abdomen              | Decapoda – Diogenidae                 |
| Pseudostegias<br>dulcilacuum   | ectoparasitic   | abdomen (?)          | Decapoda – Diogenidae                 |
| Pseudostegias<br>hapalogasteri | ectoparasitic   | abdomen              | Decapoda – Lithodidae                 |
| Pseudostegias<br>mossambica    | ectoparasitic   | abdomen (?)          | Decapoda                              |
| Pseudostegias<br>otagoensis    | ectoparasitic   | abdomen              | Decapoda – Diogenidae                 |
| Pseudostegias<br>setoensis     | ectoparasitic   | abdomen              | Decapoda – Calcinidae &<br>Diogenidae |
| Pseudostegias<br>trisagitta    | ectoparasitic   | abdomen              | Decapoda – Calcinidae                 |
| Quadripediphryxus<br>mayuzumii | ectoparasitic   | abdomen              | Decapoda – Alpheidae                  |
| Renocila alkoo                 | ectoparasitic   | unknown              | Teleostei (?)                         |
| Renocila bijui                 | ectoparasitic   | body surface         | Teleostei – Acanthuridae              |
| Renocila bollandi              | ectoparasitic   | body surface         | Teleostei – Scorpaenidae              |

| Scientific name           | Parasitism type | Site of attachment                         | Hosts<br>(Order/Class – Family)                               |
|---------------------------|-----------------|--------------------------------------------|---------------------------------------------------------------|
| Renocila bowmani          | ectoparasitic   | body surface                               | Teleostei – Serranidae                                        |
| Renocila colini           | ectoparasitic   | body surface                               | Teleostei – Apogonidae                                        |
| Renocila curtipinnata     | ectoparasitic   | body surface (?)                           | Teleostei – Scorpaenidae                                      |
| Renocila heterozota       | ectoparasitic   | body surface                               | Teleostei – Pomacentridae                                     |
| Renocila indica           | ectoparasitic   | unknown                                    | Teleostei (?)                                                 |
| Renocila kohnoi           | ectoparasitic   | body surface                               | Teleostei – Pomacanthidae                                     |
| Renocila limbata          | ectoparasitic   | body surface (?)                           | Teleostei (?)                                                 |
| Renocila loriae           | ectoparasitic   | head; above eye                            | Teleostei – Apogonidae                                        |
| Renocila ovata            | ectoparasitic   | body surface; posterior<br>to pectoral fin | Teleostei – Pomacentridae                                     |
| Renocila<br>periophthalma | ectoparasitic   | unknown                                    | Teleostei – Gobiidae                                          |
| Renocila plesiopi         | ectoparasitic   | body surface                               | Teleostei – Plesiopidae &<br>Apogonidae                       |
| Renocila quadrata         | ectoparasitic   | body surface (?)                           | Teleostei – Acanthuridae,<br>Zanclidae & Chaetodontidae       |
| Renocila richardsonae     | ectoparasitic   | body surface                               | Teleostei – Mullidae                                          |
| Renocila thresherorum     | ectoparasitic   | branchial cavity                           | Teleostei – Apogonidae,<br>Cichlidae, Mugilidae &<br>Soleidae |
| Renocila trillesi         | ectoparasitic   | body surface                               | Teleostei – Serranidae                                        |
| Renocila waldneri         | ectoparasitic   | body surface                               | Teleostei – Serranidae                                        |
| Renocila yamazatoi        | ectoparasitic   | head                                       | Teleostei – Pomacentridae                                     |
| Rhiothra callipia         | ectoparasitic   | unknown                                    | Teleostei (?)                                                 |
| Rhopalione atrinicolae    | ectoparasitic   | abdomen                                    | Decapoda – Pinnotheridae                                      |
| Rhopalione incerta        | ectoparasitic   | branchial cavity (?)                       | Decapoda – Pinnotheridae                                      |
| Rhopalione kali           | ectoparasitic   | abdomen                                    | Decapoda – Pinnotheridae                                      |
| Rhopalione sinensis       | ectoparasitic   | abdomen                                    | Decapoda – Pinnotheridae                                      |

Table E1. Continued

| Scientific name                 | Parasitism type                  | Site of attachment                                         | Hosts<br>(Order/Class – Family)                                                                 |
|---------------------------------|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Rhopalione uromyzon             | ectoparasitic                    | branchial cavity;<br>abdomen                               | Decapoda – Pinnotheridae                                                                        |
| Riggia acuticaudata             | ectoparasitic                    | peritoneal cavity (?)                                      | Teleostei – Loricariidae                                                                        |
| Riggia brasiliensis             | mesoparasitic                    | flesh-burrowing                                            | Teleostei – Pimelodidae &<br>Anostomidae                                                        |
| Riggia cryptocularis            | ectoparasitic                    | peritoneal cavity                                          | Teleostei – Characidae &<br>Loricariidae                                                        |
| Riggia nana                     | ectoparasitic                    | peritoneal cavity (?)                                      | Teleostei – Anostomidae,<br>Apteronotidae,<br>Sternopygidae &<br>Hypopomidae                    |
| Riggia paranensis               | ectoparasitic                    | peritoneal or pericardial cavity                           | Teleostei – Curimatidae                                                                         |
| Riggia puyensis                 | ectoparasitic                    | peritoneal cavity                                          | Teleostei – Loricariidae                                                                        |
| Robinione brattstroemi          | ectoparasitic                    | branchial cavity (?)                                       | Decapoda – Callianassidae                                                                       |
| Robinione overstreerti          | ectoparasitic                    | branchial cavity                                           | Decapoda – Callichiridae                                                                        |
| Rolandoniscus<br>serratus       | ectoparasitic;<br>hyperparasitic | unknown                                                    | Isopoda – Bopyridae                                                                             |
| Ryukyua circularis              | ectoparasitic                    | branchial cavity                                           | Teleostei – Dorosomatidae                                                                       |
| Ryukyua globosa                 | ectoparasitic                    | branchial cavity                                           | Teleostei – Dorosomatidae                                                                       |
| Scalpelloniscus<br>binoculis    | ectoparasitic                    | unknown                                                    | unknown                                                                                         |
| Scalpelloniscus nieli           | ectoparasitic                    | prosoma                                                    | Scalpellomorpha –<br>Scalpellidae                                                               |
| Scalpelloniscus<br>penicillatus | ectoparasitic                    | unknown                                                    | Scalpellomorpha –<br>Scalpellidae                                                               |
| Scalpelloniscus<br>vomicus      | endoparasitic                    | embedded in muscular<br>tissue of peduncle or<br>capitulum | Scalpellomorpha –<br>Heteralepadidae &<br>Poecilasmatidae;<br>Calanticomorpha –<br>Calanticidae |
| Schizobopyrina<br>amakusaensis  | ectoparasitic                    | branchial cavity (?)                                       | Decapoda – Palaemonidae                                                                         |
| Schizobopyrina<br>andamanica    | ectoparasitic                    | branchial cavity (?)                                       | Decapoda – Palaemonidae                                                                         |
| Schizobopyrina<br>bombyliaster  | ectoparasitic                    | branchial cavity                                           | Decapoda – Palaemonidae                                                                         |
| Schizobopyrina<br>brachytelson  | ectoparasitic                    | branchial cavity (?)                                       | Decapoda – Palaemonidae                                                                         |

| Table E1. | Continued |
|-----------|-----------|
|-----------|-----------|

| Scientific name                 | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)       |
|---------------------------------|-----------------|----------------------|---------------------------------------|
| Schizobopyrina<br>bruscai       | ectoparasitic   | branchial cavity (?) | Decapoda – Thoridae                   |
| Schizobopyrina<br>cochinensis   | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae               |
| Schizobopyrina<br>gracilis      | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae               |
| Schizobopyrina<br>kossmanni     | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae               |
| Schizobopyrina lobata           | ectoparasitic   | branchial cavity (?) | Decapoda – Hippolytidae               |
| Schizobopyrina<br>miyakei       | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae               |
| Schizobopyrina<br>platylobata   | ectoparasitic   | branchial cavity (?) | Decapoda – Palaemonidae               |
| Schizobopyrina striata          | ectoparasitic   | branchial cavity (?) | Decapoda – Hippolytidae &<br>Thoridae |
| Schizobopyrina<br>urocaridis    | ectoparasitic   | branchial cavity     | Decapoda – Palaemonidae               |
| Scyracepon<br>australiana       | ectoparasitic   | branchial cavity (?) | Decapoda –<br>Macrophthalmidae        |
| Scyracepon biglobosus           | ectoparasitic   | branchial cavity     | Decapoda – Majidae                    |
| Scyracepon distincta            | ectoparasitic   | branchial cavity     | Decapoda – Corystidae                 |
| Scyracepon<br>hawaiiensis       | ectoparasitic   | branchial cavity     | Decapoda – Goneplacidae               |
| Scyracepon levis                | ectoparasitic   | branchial cavity (?) | Decapoda – Epialtidae                 |
| Scyracepon oceanicum            | ectoparasitic   | branchial cavity (?) | Decapoda – Eriphiidae                 |
| Scyracepon<br>polynesiensis     | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Scyracepon<br>pseudoliomerae    | ectoparasitic   | branchial cavity     | Decapoda – Xanthidae                  |
| Scyracepon<br>quadrihamatum     | ectoparasitic   | branchial cavity (?) | Decapoda – Majidae                    |
| Scyracepon thalamitae           | ectoparasitic   | branchial cavity (?) | Decapoda – Portunidae                 |
| Scyracepon<br>tuberculosa       | ectoparasitic   | branchial cavity (?) | Decapoda – Epialtidae                 |
| Septembopyrina<br>tozeumaophila | ectoparasitic   | branchial cavity (?) | Decapoda – Hippolytidae               |
| Shiinoella gracilipes           | ectoparasitic   | branchial cavity (?) | Decapoda – Alpheidae                  |

| Scientific name              | Parasitism type                  | Site of attachment                 | Hosts<br>(Order/Class – Family)                      |
|------------------------------|----------------------------------|------------------------------------|------------------------------------------------------|
| Sigyn branchialis            | ectoparasitic                    | branchial cavity                   | Decapoda – Alpheidae                                 |
| Smenispa convexa             | ectoparasitic                    | buccal cavity;<br>branchial cavity | Teleostei – Carangidae                               |
| Smenispa irregularis         | ectoparasitic                    | buccal cavity                      | Teleostei – Sparidae,<br>Psettodidae & Carangidae    |
| Spathione<br>aprosdovrima    | ectoparasitic                    | abdomen                            | Decapoda – Cryptochiridae                            |
| Stegias andronophoros        | ectoparasitic                    | abdomen (?)                        | Decapoda                                             |
| Stegias angusta              | ectoparasitic                    | abdomen (?)                        | unknown                                              |
| Stegias clibanarii           | ectoparasitic                    | abdomen                            | Decapoda – Diogenidae                                |
| Stegoalpheon kempi           | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Stegoargeia lowisi           | ectoparasitic                    | branchial cavity                   | Decapoda – Alpheidae                                 |
| Stegoargeia nierstraszi      | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Stellatoniscus shieldsi      | endoparasitic;<br>hyperparasitic | marsupium (?)                      | Isopoda – Entoniscidae                               |
| Stellatoniscus<br>tentaculus | endoparasitic;<br>hyperparasitic | marsupium                          | Isopoda – Entoniscidae                               |
| Streptodajus<br>equilibrans  | ectoparasitic                    | unknown                            | Mysida – Mysidae                                     |
| Synalpheion giardi           | endoparasitic                    | visceral cavity (?)                | Decapoda – Alpheidae                                 |
| Synsynella choprai           | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Synsynella deformans         | ectoparasitic                    | branchial cavity                   | Decapoda – Alpheidae                                 |
| Synsynella hayi              | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Synsynella inoi              | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Synsynella integra           | ectoparasitic                    | branchial cavity (?)               | Decapoda – Alpheidae                                 |
| Telephryxus clypeus          | ectoparasitic                    | antennules                         | Decapoda – Munidopsidae                              |
| Telotha henselii             | ectoparasitic                    | branchial cavity; body<br>surface  | Teleostei – Loricariidae;<br>Decapoda – Palaemonidae |
| Telotha indica               | ectoparasitic                    | branchial cavity (?)               | Teleostei (?)                                        |

| Scientific name                   | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family) |
|-----------------------------------|-----------------|----------------------|---------------------------------|
| Telotha lunaris                   | ectoparasitic   | branchial cavity     | Teleostei – Apteronotidae       |
| Telotha silurii                   | ectoparasitic   | branchial cavity (?) | Teleostei (?)                   |
| Tenerognathia visus               | ectoparasitic   | unknown              | Teleostei – Sebastidae          |
| Tetragonocephalon<br>lutianus     | ectoparasitic   | branchial cavity (?) | Teleostei – Lutjanidae          |
| Thaumastognathia<br>bicorniger    | ectoparasitic   | unknown              | Elasmobranchii (sharks)         |
| Thaumastognathia<br>diceros       | ectoparasitic   | unknown              | unknown                         |
| Thaumastognathia<br>metaphone     | ectoparasitic   | unknown              | Teleostei (?)                   |
| Thaumastognathia<br>orectognathus | ectoparasitic   | unknown              | Teleostei (?)                   |
| Thaumastognathia<br>tanseimaruae  | ectoparasitic   | unknown              | unknown                         |
| Thaumastognathia<br>wasmannia     | ectoparasitic   | unknown              | Teleostei (?)                   |
| Thermaloniscus<br>cotylophorus    | ectoparasitic   | unknown              | unknown                         |
| Tiarinion fulvus                  | endoparasitic   | visceral cavity      | Decapoda – Epialtidae           |
| Tiarinion texopallium             | endoparasitic   | visceral cavity      | Decapoda – Epialtidae           |
| Trapezicepon<br>amicorum          | ectoparasitic   | branchial cavity (?) | Decapoda – Trapeziidae          |
| Trapezicepon<br>domeciae          | ectoparasitic   | branchial cavity     | Decapoda – Domeciidae           |
| Trisopodoniscus<br>abyssorum      | ectoparasitic   | unknown              | unknown                         |
| Tylokepon biturus                 | ectoparasitic   | branchial cavity (?) | Decapoda – Epialtidae           |
| Tylokepon bonnieri                | ectoparasitic   | branchial cavity (?) | Decapoda – Epialtidae           |
| Tylokepon marianensis             | ectoparasitic   | branchial cavity     | Decapoda – Epialtidae           |
| Tylokepon micippae                | ectoparasitic   | branchial cavity (?) | Decapoda – Majidae              |
| Tylokepon naxiae                  | ectoparasitic   | branchial cavity     | Decapoda – Majidae              |
| Upogebione<br>bidigitatus         | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae          |

| Scientific name            | Parasitism type | Site of attachment   | Hosts<br>(Order/Class – Family)                                                                            |
|----------------------------|-----------------|----------------------|------------------------------------------------------------------------------------------------------------|
| Upogebione ovalis          | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae                                                                                     |
| Upogebione<br>phuketensis  | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae                                                                                     |
| Upogebione tropica         | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae                                                                                     |
| Upogebiophilus<br>rhadames | ectoparasitic   | branchial cavity (?) | Decapoda – Upogebiidae                                                                                     |
| Urobopyrus processae       | ectoparasitic   | branchial cavity     | Decapoda – Processidae                                                                                     |
| Vanamea symmetrica         | ectoparasitic   | buccal cavity        | Teleostei – Serrasalmidae,<br>Pimelodidae, Doradidae,<br>Cichlidae, Trichomycteridae<br>& Gasteropelecidae |
| Xanthion spadix            | endoparasitic   | visceral cavity      | Decapoda – Xanthidae                                                                                       |
| Zeuxokoma alphei           | ectoparasitic   | unknown              | Decapoda – Alpheidae                                                                                       |
| Zeuxokoma elogata          | ectoparasitic   | abdomen              | Decapoda –<br>Nematocarcinidae                                                                             |
| Zeuxokoma glabra           | ectoparasitic   | abdomen; thorax      | Decapoda – Alpheidae                                                                                       |
| Zeuxokoma luetzeni         | ectoparasitic   | abdomen              | Decapoda – Alpheidae                                                                                       |
| Zeuxokoma<br>musaeformis   | ectoparasitic   | unknown              | Decapoda – Pandalidae                                                                                      |
| Zeuxokoma setosa           | ectoparasitic   | unknown              | Decapoda – Thoridae                                                                                        |
| Zonophryxus agassizi       | ectoparasitic   | unknown              | unknown                                                                                                    |
| Zonophryxus<br>dodecapus   | ectoparasitic   | carapace             | Decapoda – Pandalidae                                                                                      |
| Zonophryxus grimaldii      | ectoparasitic   | unknown              | Decapoda – Pandalidae                                                                                      |
| Zonophryxus<br>probisowa   | ectoparasitic   | unknown              | Decapoda – Pandalidae                                                                                      |
| Zonophryxus<br>quinquedens | ectoparasitic   | carapace             | Decapoda –<br>Nematocarcinidae                                                                             |
| Zonophryxus retrodens      | ectoparasitic   | carapace             | Decapoda – Pandalidae                                                                                      |
| Zonophryxus trilobus       | ectoparasitic   | carapace             | Decapoda – Pandalidae                                                                                      |