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Abstract 
Automated image systems to characterize aquatic organisms improve re-
search and enable fast response to environmental risk situations. In Novem-
ber 2015, a dam in Mariana City-MG (Brazil) collapsed and led to the dis-
posal of mud tailings from the mining process to the Doce River. The acci-
dent resulted in several casualties and incalculable damage to surrounding 
communities and the environment. The mud increased water turbidity, an 
essential condition to the functioning of the image analysis systems, and di-
rectly affected the characterization of the organisms, making it impossible to 
distinguish copepods in the mud, due to the blurred outline. To get a quick 
response evaluating environmental situations, this work aimed to develop 
and test different algorithms characterizing and classifying copepods by their 
size (length and area) using in situ images acquired by the Lightframe 
On-Sight Keyspecies Investigation device. Field tests were carried out under 
different turbidity levels throughout the gradient observed in the coastal zone 
adjacent to the Doce River. The best algorithm reduced nearly 50% of the 
noise in some images when compared with manual treatment and led to 96% 
accuracy in measurement and counting. Semi-automated devices that per-
form post-processing corrections are suitable for fast environmental evalua-
tion under high turbidity scenarios. 
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1. Introduction 

The zooplankton assemblage comprises a diverse group of organisms that in-
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habit aquatic ecosystems around the world [1]. They play a key role in the or-
ganic matter transfer, from primary producers to higher trophic levels and, con-
sequently, in the global carbon cycle [1]. Copepods are usually the dominant 
group in plankton assemblages and thus a proxy for the ecosystem status [2]. 
Most studies addressing copepod diversity and abundance still depend on the 
classical WP-2 cylindrical nets used for zooplankton sampling, a device that in-
tegrates the whole plankton assemblage through depth and is inaccurate to ad-
dress vertical differences in the distribution of copepods in the water column. 
Additionally, the time required to analyze many samples under microscopy im-
poses constraints on long-term studies or large geographical areas. For this rea-
son, other tools have been improved, such as several environmental imaging 
systems, which provide fast and accurate in situ measurements of the physical 
and biological properties of the ecosystem [3]. In the last three decades, a great 
number of technologies capable of recording zooplankton images have been de-
veloped. This includes portable laboratory equipment, such as ZooScan [4] and 
Flow Cytometer and Microscope (FlowCAM) [5], as well as in situ systems, such 
as “Underwater Vision Profiler” (UVP) [6], “Zooplankton Visualization System” 
(ZOOVIS) [3], and the In Situ Ichthyoplankton Imaging System (ISIIS) [7]. 

These instruments have been developed and used for automated particle 
analysis through the detection (binarization and segmentation), counting, and 
measurement of individual particles and planktonic organisms. The automatic 
methods, with their high acquisition potential, gather a great number of images, 
intensifying the analysis and treatment of image issues. The majority of these 
devices, however, are less suitable for the acquisition of images of plankton un-
der high turbidity conditions since the fuzziness tends to increase. According to 
[3]-[8], the processing of images obtained from muddy waters, with high con-
centrations of debris, remains a great challenge. Highly turbid waters reduce 
light penetration and add noise from light refraction and attenuation, preventing 
the acquisition of high-quality images needed for accurate analysis. Second [10] 
in nearshore areas, a turbidity around 6.2 NTU yielded blurry images. The 
background on the images was much brighter, therefore making it harder to dis-
tinguish the particle of interest. When turbidity rose to 10.2 NTU, images were 
recorded. This turbid condition imposes a challenge during the cropping of re-
gions of interest (ROIs) that should contain only a single and distinguishable 
organism at once, without losing any part of the target organisms. Hence, the 
number of particles in each image results in an inaccurate estimation of ROIs 
and numerous erroneously segmented objects. For instance, gelatinous plankton 
is particularly susceptible to fragmentation in multiple pseudo-organisms. This 
happens due to the uncertainty as to whether one marginal pixel belongs to the 
organism or actually to the background, as suspended solids in front of organ-
isms represent a noise in the image. 

An effective method to accurately identify and account for marine organisms, 
particularly copepods, would allow the reprocessing of samples stored in plank-
ton collections, enabling new large-scale spatial and temporal projects to be car-
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ried out [3]. The development of copepod enumeration and classification algo-
rithms would improve the data analysis process and, therefore, would enable 
long-term environmental monitoring of the plankton dynamics. Considering the 
advantages of the use of imaging systems as complementary to the traditional 
techniques, this study aimed to develop a procedure to reduce noise in images 
obtained in waters with a high quantity of suspended solids. On top of that, the 
main aim is to develop and test algorithms that automatically enumerate and 
measure copepods from images obtained in situ under low or high turbid waters.  

2. Material and Methods 
2.1. Study Site 

A set of 1000 images produced in two sites with different suspended sediment 
concentrations was selected to test the noise-reduction algorithms. The images 
were obtained on November 27, 2015, two days after the collapse of the dam lo-
cated in Mariana (MG), when the waste with a high concentration of suspended 
sediment reached the outfall of the Doce River. During the operations of the R/V 
H39 “Vital de Oliveira”, from the Brazilian Navy, images were recorded in situ 
through a Light Frame On-Sight Key Species Investigation (LOKI, Isitech, 
Bremerhaven, Germany). The hauls were vertical from near the bottom with a 
mesh of 200 μm and an acquisition rate of 20 frames per second. The hauls were 
carried out at two distinct sites along the plume of sediments in the coastal zone, 
throughout a gradient of turbidity. The first site (1) was located as close as pos-
sible to the outfall of the Doce River, under high turbidity and shallow copepod 
assemblage (~20 meters deep). The second site (2) was located far from the Doce 
River opening with less turbid waters and deeper copepod assemblage (~100 
meters). 

The vertical profile of turbidity (NTU) and suspended particle concentration 
(CPS, particles·L−1) in the two sites were simultaneously addressed using a tur-
bidity sensor attached to a Multiparameter Datalogger (Horiba) and a Moving 
Vessel Profiler (MVP) equipped with a Laser Optical Plankton Counter (LOPC). 
The turbidity sensor was down from the deck up to 20 meters on both sites 1 
and 2, and the water turbidity was annotated. The MVP + LOPC was deployed 
from site 1 to site 2 with seven sequential launches to address the suspended 
particle concentration in the plume.  

2.2. The Light Frame On-Sight Key Species Investigation (LOKI) 

The LOKI is a system with 5 main parts: 1) A concentration net, with a mouth 
opening of 0.28 m2 and a mesh aperture of 200 μm, 2) a computer with a 
solid-state driver to store the images, 3) a CTD with temperature, pressure, dis-
solved oxygen, and fluorescence sensors, 4) a Prosilica GC 1380H (AVT-Allied 
Vision Technologies, Canada) with the Pentax 2514-M lens and 5) a set of battery. 
The raw image has 1360 × 1024 pixels with a final resolution of 23 μm·pixel−1. It 
has a high-power LED unit, synchronized with the camera’s exposure-shooting 
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signal, which allows a fast shut-off time (55 μs) avoiding motion blurring that 
causes image distortion. In combination, it has an image channel 4 mm high 
(length = 31.3 mm, width = 20.75 mm, volume = 2.6 cm3), causing all the parti-
cles of the image to stay in focus. All images are stored in the LOKI solid-state 
drive, where they can be accessed for further analysis. The recording starts in-
stantly after the power is on, resulting in many waste images gathered either be-
fore or after the actual haul. From all images gathered since the equipment 
started functioning on the ship deck, only those generated during the haul from 
near the bottom to the surface represent a valid set of images of organisms in the 
water column and, therefore, were selected for characterization and quantifica-
tion of copepod populations. The distinction and separation of these images of 
interest were performed automatically according to the actual depth measured 
by the pressure sensor. Hence, the onset of the haul was defined as the instant of 
maximum pressure (Figure 1). The end of the haul, in contrast, includes safety 
procedures to bring the LOKI back to the ship deck. These procedures produce 
an oscillation in the equipment due to the waves at the surface that are captured 
by the pressure sensors and might bias the density estimation near the surface 
(Figure 1). All images produced during this oscillation, therefore, were removed 
to avoid counting the same particle twice. 
 

 

Figure 1. Example of vertical profile of temperature (˚C) and pressure (mbar) during 
a LOKI haul. The red dotted square highlights the valid set of images obtained during 
the vertical haul from near the bottom back to the surface. 

 
After sorting the valid set of raw images, we performed 1) automatic recogni-

tion of the region of interest (ROI) and cropping, 2) background removal, and 3) 
counting and measurement of organisms (Figure 2). A vignette is a smaller im-
age cut from the original raw image and containing a prominent particle. To 
check if the counting and measurement steps are less accurate in places with 
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high turbidity, thus biasing the estimation of copepod size and abundance, si-
multaneous manual and semi-automated procedures were compared. To per-
form the automated measurements of organisms surrounded by distinct 
amounts of suspended sediments, a subset of 1000 vignettes were randomly se-
lected, after which all vignettes with a single copepod (singlets) were manually 
counted and sorted into a different folder. This subset of copepods was proc-
essed in the 16 different binarization algorithms available in the ImageJ software 
(2.3.0) [9]. The accuracy of each algorithm was calculated by the comparison of 
the counting made manually by the taxonomist and automatically by the ImageJ 
contour detection (function “Analyze particle”, ImageJ). The same approach was 
adopted for morphometric measurements of the copepod’s body (e.g., area, pe-
rimeter, and fitted ellipses). The abundance was calculated by the percentage of 
singlets correctly identified by the algorithms. 

 

 

Figure 2. Steps of the treatment of the images. (A) Original vignette, a 
singlet of a copepod automatically cropped by the LOKI system; (B) 
Resulting binarization of the vignette exemplified by the “Default” al-
gorithm (ImageJ); (C) Resulting contour detection algorithm used in 
the copepod counting and measurement; (D) Resulting fragmentation 
of copepod’s body after binarization by distinct algorithms, compared 
to the actual copepod contour (manual). The numbers in red represent 
the particles detected and counted. 

 
To improve the accuracy of copepod enumeration and measurement, three 

additional algorithms based on convolution matrices (herein named algorithms 
2 to 4) were elaborated with different sequential steps of noise reduction done 
before the binarization. To evaluate the constancy and linearity of the results, the 
algorithms were tested with 3 subsets of 1000 randomly selected images from 
each site. Algorithm 2 includes an increase in contrast before the binarization 
step to accentuate details in the target ROI by applying a kernel to replace each 
pixel with a weighted average of the 3 × 3 neighborhood: 

1 1 1
1 12 1
1 1 1

− − −
− −
− − −
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The third algorithm, in contrast, reduced the exposition of the vignettes to 
check if noise could be removed before the binarization step to let only those 
pixels from a target ROI be left in the vignette. The reduction of exposition was 
achieved by reducing each pixel value by 25 (10% of the full 255 grayscale). Pixel 
values between 0 and 24 were set to zero. The fourth algorithm applies the “Sta-
tistical Region Merging” algorithm (Nock and Nielsen 2004) to highlight the 
copepod from the surrounding suspended particles (“noise”).  

3. Results 
3.1. Selecting a Valid Set of Raw Images in Vertical Haul,  

Recognition of ROI and Cropping  

Each vertical haul lasts for nearly two minutes, starting approximately five min-
utes after the LOKI is powered on (Figure 3, red dotted rectangle). In site 1 
(Figure 3A), the equipment was towed over nearly 20 meters (pressure ~260 
mbar) for 2 minutes and a half, with an oscillating minute in the surface (8' - 9'). 
In contrast, the net in site 2 was quickly towed for 100 meters (5× longer) and 
only 2 minutes, with no oscillation near the surface. The tow speed of the first 
haul was estimated as 0.12 meter·sec−1, while the second haul reached 0.9 me-
ter·sec−1. 

 

 

Figure 3. Vertical profiles of temperature (˚C) and pressure (mbar) during the two LOKI hauls at the point with high turbidity 
(A), site 1) and low turbidity (B), site 2). The red dotted rectangles highlight the accepted vertical haul from which images were 
analyzed. 
 

As expected, the water turbidity was extremely different between sites, mainly 
near the bottom where the plume of suspended sediments was more intense 
(Table 1). Therefore, the number of particles in suspension near site 1 (>5000) 
was 5 times higher than that at site 2 (<1000 CPS). In total, 40,375 vignettes were 
produced under high turbidity conditions, contrasting to only 21,664 under low 
turbidity conditions. By considering the different depths and operating times at 
each point, more vignettes were obtained in shallower and highly turbid waters 
(2018 vignettes·m−1) than in deeper ones (217 vignettes·m−1). 
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Table 1. Turbidity and particle concentration at the two sites. 

 Site 1 Site 2 

Local Depth 20 m 100 m 

Turbidity (NTU) Surface 8 <0.01 

Turbidity (NTU) 20 meters 412 <0.01 

Single Element Plankton (CPS, particles·L−1) >5000 <1000 

Total Vignettes 40,375 21,664 

Vignettes/m 2018 217 

 
The performance of the LOKI system to automatically recognize an ROI in a 

raw image and crop the corresponding vignettes was significantly affected by the 
turbidity and concentration of suspended particles (Table 2). From 1000 ran-
domly selected images obtained under high turbid waters (Figures 4A-J), the 
majority (96%) were either badly segmented or non-segmented ROI (Figure 4B) 
that needed additional processing steps. In contrast, under less turbid waters 
(site 2), nearly 99% of the stored images were correctly segmented singlets 
(Figures 4K-R).  

 
Table 2. Comparison of the performance of the LOKI segmentation algorithm in crop-
ping vignettes (ROI) under high and low turbidity. 

Automatic Crop High Turbidity Low Turbidity 

Singlets (well-segmented full organism) 20 986 

Badly segmented vignettes or non-segmented images 960 14 

 

 

Figure 4. Examples of vignettes obtained under high turbid waters (A-J) and low turbid waters (K-R). All vignettes are 
on the same scale (scale bar = 1 mm).  

 
The size of the ROI cropped reflected the smaller particles dominating site 1 

with high turbidity. Nearly 60% of the random set represents vignettes with 1 to 
10 kb (Figure 5A), while those from site 2 predominate in the 10 - 50 kb (Figure 
5B). Full images resulting from failed segmentation have 1.2 Mb and were more 
frequent under high turbidity.  
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Figure 5. File size distribution (histogram) of the 1000 vignettes sorted from high turbidity (A) and 
low turbidity (B) areas. 

 
The presence of suspended sediments can be seen in vignettes from site 1 as 

white dots around the copepods (Figure 6A). In contrast, copepods from site 2 
with less suspended sediments have less “noise” and the resulting histogram of 
grayscale values is less skewed to the right (Figure 6B). Nevertheless, the presence 
of “noise” in one vignette is revealed by the differences between modes, rather 
than the mean pixel value (Table 3). Both pictures have very similar means (50 
and 56), while the vignette with more suspended particles exhibits a surprisingly 
darker mode (17). In both cases, the standard deviation was higher than the mean. 

 

 

Figure 6. Examples of in situ photography (grayscale) and the corre-
sponding histogram showing more suspended sediments (“noise”) 
around the copepod in site 1 (A) than in the copepod in site 2 (B). 

 
Table 3. Statistics of the above grayscale images (vignettes) from site 1 (with high 
“noise”) and site 2 (with low “noise”). 

 High “noise” Low “noise” 

Number of Pixels 6688 22,496 

Mean pixel value (grayscale) 50 56 

Standard Deviation 60 68 

Minimum 12 13 

Maximum 255 255 

Mode 17 24 

# pixels in the Mode 376 (5.62%) 1633 (7.26%) 

3.2. Background Removal and Binarization Performance during  
Counting and Measuring of Copepods 

The resulting number of copepods according to the four automatic approaches 
revealed percentages of accuracy ranging between 90% and 507% (Table 4). A 
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total of 678 and 1038 copepods were registered from a set of 1000 randomly se-
lected images, respectively from high and low turbid waters. The abundance was 
either highly overestimated (>300%) or underestimated in turbid waters due to 
the presence of sediments when either the contrast is increased, or the adjacent 
mean pixel value (Statistical Region Merging) is used as pre-treatment. Despite 
underestimation, the most efficient method for counting organisms under highly 
turbid water was just binarization using “the first higher average” algorithm (or 
Default in ImageJ) without pre-treatment or by performing a slight reduction of 
exposition to remove some noise. The abundance under high turbidity was 5% 
to 10% underestimated (90% to 95%), while under low turbidity it was 13% 
overestimated (113%). Such results are observed in (Table 4) and the binariza-
tion evident in (Figure 7). 

 
Table 4. Comparison of distinct pre-treatment performances in estimating the number of 
copepods (N) and the corresponding percentage (%) done automatically by the computer 
and manually by an expert (visual counting, 100%) on two sets of 1000 images obtained 
under low and high turbid waters. Note that some images can have more than one cope-
pod, while others can have no copepods but other groups. 

 
Copepod Count 

High Turbidity Low Turbidity 
N % N % 

Manual     
Visual counting 678 100% 1038 100% 

Automatic     
No pre-treatment 644 95% 1176 113% 
Increased contrast 3441 507% 1782 171% 

Reduced exposition 612 90% 1178 113% 
Statistical Region Merging 2423 357% 1937 186% 

 

 

Figure 7. Results of pre-treatments before binarization on two 
vignettes (original image) from high and low turbidity waters. 
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The use of distinct binarization steps without pre-treatment to reduce the 
noise in turbid waters also resulted in different estimates of abundance accord-
ing to the algorithm used. The total abundance was again underestimated in tur-
bid waters while under less turbid ones it was occasionally overestimated (Table 
5). The three best algorithms for high turbid waters (Huang, Intermodes, and Li) 
estimated nearly 88% of the actual abundance. As expected, higher efficiency 
(>95%) occurs when addressing the abundance of copepods from low turbid 
waters. There was no coincidence in algorithms with the best performance under 
low and high turbid waters, except for the “Intermodes”. 

 
Table 5. Percentual of the actual abundance of copepods automatically recovered by the 
16 algorithms, under high and low turbidity.  

Algorithm High Low 

Default 83% 95% 

Huang 87% 104% 

Intermodes 86% 98% 

IsoData 83% 95% 

Li 88% 113% 

MaxEntropy 80% 77% 

Mean 84% 86% 

MinError 39% 43% 

Minimum 79% 82% 

Moments 84% 92% 

Otsu 83% 96% 

Percentile 1% 0% 

RenyiEntropy 76% 65% 

Shanbhag 81% 46% 

Triangle 77% 71% 

Yen 62% 38% 

 
The surrounding particles that might be miscounted as a copepod were evi-

denced in vignettes with increasing contrast (Figures 8E-H and Figures 8M-P) 
but smoothed in vignettes with high degree of erosion (Figures 8A-D and Fig-
ures 8I-K). An apparent good contour of copepod, with full antennae preserved 
and proportionally less surrounding particles was achieved after the “Huang” 
binarization algorithm (Figure 8B). 

From a dorsal view, the average area of a copepod (prosome + urosome + an-
tennae) as manually estimated by visual analysis was equal to 312,639 μm2 (mean 
= 591 pixels2 ± 369 pixels2). Most of the automatic algorithms tested herein re-
sulted in a good approximation of the actual size, as demonstrated by the high 
linear correlation (R2 > 80%) (Table 6). The “Renyi Entropy” algorithm had the 
highest correlation (R2 = 0.895, Figure 9M). 
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Figure 8. The 16 binarization methods ((A)-Default, (B)-Huang, (C)-Intermodes, 
(D)-IsoData, (E)-Li, (F)-MaxEntropy, (G)-Mean, (H)-MinError, (I)-Minimum, 
(J)-Moments, (K)-Otsu, (L)-Percentile, (M)-RenyiEntropy, (N)-Shanbhag, (O)- 
Triangle, (P)-Yen) available on ImageJ, compared to the manual method. 

 
Table 6. Linear regression between the copepod’s area automatically estimated by the 16 
algorithms and manually by an expert. 

 Slope Intercept R2 

Default 0.5085 26.11 0.86 

Huang 0.6656 96.88 0.74 

Intermodes 0.4938 30.138 0.83 

IsoData 0.5084 26.067 0.86 

Li 0.668 45.443 0.88 

MaxEntropy 0.9304 -9.957 0.88 

Mean 0.8545 79.117 0.87 

MinError 1.7169 199.16 0.45 

Minimum 0.0983 219.51 0.04 

Moments 0.5511 10.675 0.86 

Otsu 0.5082 26.128 0.86 

Percentile 2.0267 567.88 0.77 

RenyiEntropy 1.0718 -8.153 0.90 

Shanbhag 0.4577 209.06 0.14 

Triangle 0.9658 66.412 0.83 

Yen 1.4117 -73.679 0.86 
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Figure 9. Relationship between the copepod’s body area as estimated from 16 automatic algorithms and the actual area manually 
measured. The linear regression equation and the correlation coefficient (R2) for each algorithm are shown inside the scatterplot. 

4. Discussion 

Considering the factors of operation time, local depth, and turbidity, the results 
point to water turbidity and haul speed as highly effective factors in the genera-
tion of multiple ROIs. To avoid the bias produced by operator procedures, the 
speed of a vertical haul, although subjected to sea conditions and the winch 
quality, should be kept as close as possible to 1 meter·sec−1 regardless of local 
depth. Our results highlighted the potential use of pressure sensors while towing 
the net as an additional step in validating the haul. 

The set of images used to address the effect of turbidity on the in situ analyses 
of the abundance and size of copepods indicates that sediments and suspended 
particles attenuate and scatter light, reducing image quality and limiting the 
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performance of the equipment. Additionally, we found that increasing the num-
ber of particles in the background reduces the effectiveness of the histogram as a 
tool to set the threshold during binarization. The large amount of suspended 
sediments was expected to displace the mode toward the white value (255), but 
our results revealed the opposite. The presence of sediments attenuates the de-
tection of the organism’s contour and leads to an increased surrounding margin 
of most vignettes obtained under high turbidity. A similar problem occurs when 
the target organisms are gelatinous or include translucent [10], parts in which 
the image quality is strongly affected and thus the recognition performance [11]. 

The presence of scattered material that is not the target object, like sediments 
and particles in the water under analysis is thought to impose additional chal-
lenges for automatic segmentation [3]. The higher variability in the resulting 
accuracy under high turbid waters compared with less turbid ones imposes addi-
tional steps in the quality checking. Some approaches tend to underestimate 
10%, while others overestimate 500%. The overestimation in counting organisms 
was evident in algorithms affecting the image contrast when either a large 
amount of noise (sediment) is highlighted, or the target organism was eroded. 
The bad erosion of the thinnest parts of the body, like the antennae, led to mul-
tiple “chimaera particles” counted independently as one entire organism and 
resulted in 500% overestimation of the abundance obtained in their study a loss 
of the smaller and more translucent copepods [12]. 

In our result vignettes, the background is toned toward the black (0) and both 
the organism’s body and sediments to the white (255), creating a confusing con-
trast. The presence of chitin in the exoskeleton of copepods usually culminates 
in a well-identifiable body contour, but the appendages and antennae are gener-
ally not clear enough. Thus, more noise can be added to the automatic recogni-
tion of a copepod’s silhouette by performing an increase in the contrast, as ob-
served in both the Statistical Region Merging. Differently, low contrast images 
usually result in underestimation of size and counting [13]. 

This additional noise as white dots derived from the sediments in the sur-
rounding background was thus compensated by the large margin full of black 
pixels in vignettes from highly turbid waters. Our results reveal no significant 
difference between means and modes of vignettes from high and low turbid 
conditions. Despite more white dots, the large margin with more black pixels 
sets the mean and mode pixels back to the “natural” value. Thus, by using the 
smoothed histogram instead of the intra-class variance, the Intermodes algo-
rithm resulted in the best estimation of copepod abundance in general. The 
widely used algorithm that searches for a minimum intra-class variance (Otsu) 
was significantly affected by the sediments (noise) in the background and seems 
to be not suitable for high turbid waters. Similarly to the use of a smoothed his-
togram, the search for a maximum entropy among the two classes—white and 
black—resulted in good estimations of organisms’ contour, particularly after 
combining the maximum entropy with the correlation entropy used in the Renyi 
Entropy algorithm [1]. The use of entropy as a measure of fuzziness is largely 
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adopted mostly due to the high correspondence between binary and original 
image [14] [15] and our results revealed that entropy (Renyi, MaxEntropy, and 
Li) is better than the iterative intermeans algorithm under high turbid waters 
(Default, IsoData, and Intermodes). Exceptions to this rule resulted from Huang 
and Otsu algorithms, reinforcing the use of either local thresholding or iterative 
triclass approaches. Our results suggest that the use of the Otsu algorithm should 
be avoided on images from high turbid waters due to the imbalance of variances 
between classes [16] [17]. 

Automated and semi-automated zooplankton imaging systems have long been 
sought as part of a modern approach to monitoring the marine environment. 
The need for sensors capable of providing abundance and biomass data in high 
resolution over an extent of time has generated a growing effort to bridge the 
gap between different contemporary sampling methods in marine sciences [18]. 
The results acquired in this research highlighted the future trend in the im-
provement of the available plankton image processing technologies, particularly 
regarding better algorithms for counting and measurement. 
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