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Acoustic signals, especially those of biological source, remain unexplored in the
Belgian part of the North Sea (BPNS). The BPNS, although dominated by
anthrophony (sounds from human activities), is expected to be acoustically
diverse given the presence of biodiverse sandbanks, gravel beds and artificial
hard structures. Under the framework of the LifeWatch Broadband Acoustic
Network, sound data have been collected since the spring of 2020. These
recordings, encompassing both biophony, geophony and anthrophony, have
been listened to and annotated for unknown, acoustically salient sounds. To
obtain the acoustic features of these annotations, we used two existing automatic
feature extractions: the Animal Vocalization Encoder based on Self-Supervision
(AVES) and a convolutional autoencoder network (CAE) retrained on the data
from this study. An unsupervised density-based clustering algorithm (HDBSCAN)
was applied to predict clusters. We coded a grid search function to reduce the
dimensionality of the feature sets and to adjust the hyperparameters of
HDBSCAN. We searched the hyperparameter space for the most optimized
combination of parameter values based on two selected clustering evaluation
measures: the homogeneity and the density-based clustering validation (DBCV)
scores. Although both feature sets produced meaningful clusters, AVES feature
sets resulted in more solid, homogeneous clusters with relatively lower intra-
cluster distances, appearing to be more advantageous for the purpose and
dataset of this study. The 26 final clusters we obtained were revised by a
bioacoustics expert. We were able to name and describe 10 unique sounds,
but only clusters named as ‘Jackhammer’ and ‘Tick’ can be interpreted as
biological with certainty. Although unsupervised clustering is conventional in
ecological research, we highlight its practical use in revising clusters of annotated
unknown sounds. The revised clusters we detailed in this study already define a
few groups of distinct and recurring sounds that could serve as a preliminary
component of a valid annotated training dataset potentially feeding supervised
machine learning and classifier models.
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1 Introduction

Sounds in the environment can convey ecologically relevant
information and have been used to investigate animal diversity,
abundance, behavior and population dynamics (Gage and Farina,
2017; Lindseth and Lobel, 2018). Especially in the marine
environment where sound travels faster and further compared to
in air, underwater sound is a key component in the life of marine
fauna. Multitudes of animals including mammals, fish and
invertebrates produce and listen to sounds linked to
communication, foraging, navigation, reproduction and social
and behavioral interactions (Cotter, 2008; Rako-Gospić and
Picciulin, 2019). Marine animals also have a widely varying
hearing capacity, ranging from lower frequencies (<5 kHz) in
invertebrates, fish and reptiles, to higher frequencies (up to
200 kHz) in cetaceans (Duarte et al., 2021; Looby et al., 2023).
Sounds serve as signals that allow these animals to relate to their
environment, making the changing ocean soundscape of the
Anthropocene an added stressor to life underwater. Adverse
effects in the physiology and behavior of various marine animals
were reported due to noise from anthropogenic activities such as
vessel traffic, active sonar, acoustic deterrent devices, construction
and seismic surveys.

Continuous monitoring of ocean soundscapes using passive
acoustics has led to a wealth of underwater recordings containing
vocalizations of marine mammals (Sousa-Lima, 2013), feeding of sea
urchins (Cato et al., 2006), stridulations of crustaceans and fish
(Montgomery and Radford, 2017), bivalve movements (Solé et al.,
2023) and fish sounds that can, in some cases, form choruses (Amorim,
2006; Parsons et al., 2016), along with numerous unidentified
(biological) sounds. Several sounds have been validated and
associated with almost all marine mammals, fewer than a hundred
aquatic invertebrate species and about a thousand fish species, which
has led to the discovery of the soniferous behavior of more species each
year (Parsons et al., 2022; Rice et al., 2022). Simultaneously, passive
acoustics has been used to assess biodiversity, ecological states and
corresponding environmental changes, encompassing the more recent
fields of Soundscape Ecology or Ecoacoustics (Sueur and Farina, 2015;
Mooney et al., 2020).

Biological underwater sound libraries already exist in the web,
such as FishSounds (https://fishsounds.net/), FishBase (https://www.
fishbase.se/), Watkins Marine Mammal Sound Database (https://
whoicf2.whoi.edu/science/B/whalesounds/index.cfm) and the
British Library Sound Archive (https://sounds.bl.uk/Environment),
to facilitate working with the growing number of acoustic
recordings. Recently, a call for a Global Library of Underwater
Biological Sounds (GLUBS) was published by Parsons et al. (2022),
to allow a better integrated manner of sharing and confirming
underwater biological sounds. As manual annotation becomes an
almost unattainable task, especially if focal sounds are poorly
known, the growing wealth of acoustic data requires new
methods of machine learning (ML) and unsupervised
classification algorithms (Ness and Tzanetakis, 2014; Stowell,
2022). Automatic detection of different acoustic signals,
characterized by distinct features such as frequency, amplitude,
duration and repetition rate, lies on the premise that would lead
to an efficient and objective identification of species and animal
behaviors based on specific vocal repertoires (Mooney et al., 2020).

The Belgian part of the North Sea (BPNS), although dominated
by anthrophony (sounds from human activities), is expected to be
acoustically diverse given the presence of biodiverse sandbanks,
gravel beds and artificial hard structures which all serve as either
feeding grounds, nursery or spawning grounds to 140 different
species of fish currently known in the BPNS in addition to a
multitude of macrobenthic communities (Houziaux et al., 2007;
Kerckhof et al., 2018; Degraer et al., 2022). Although there are a few
marine mammals in the BPNS whose soniferous behaviors have
been investigated, such as the harbor porpoise (Phocoena phocoena),
white-beaked dolphin (Lagenorbynchus albirostris), bottlenose
dolphin (Tursiops truncatus) and grey seal (Halichoerus grypus),
there are presently more unknown sounds than identified and
characterized. Assigning a source to a sound type which has not
yet been identified is highly challenging, particularly when visual
surveys underwater are restricted by high turbidity (Wall
et al., 2012).

In the turbid, highly dynamic and shallow BPNS, acoustic
recorders have been moored on the seafloor under the
framework of the LifeWatch Broadband Acoustic Network to
collect sound data since the spring of 2020 (Parcerisas et al.,
2021). The recordings, encompassing biophony (biotic sounds),
geophony (abiotic sounds) and anthrophony (man-made noise),
were listened to and annotated for unknown, acoustically salient
sounds of any target event, with no discrimination depending on the
source since this is uncertain. Sounds of known origin, which were
clearly not biological, were excluded from this study. No pre-defined
sound classification scheme nor strategy existed. Moreover, human
annotations are inherently inconsistent, varying between analysts
and between separate periods of annotation due to annotator
personality or acoustic event type and its SNR (Leroy et al., 2018;
Nguyen Hong Duc et al., 2021). Therefore, their reliability is often
questioned, especially when used to evaluate or train models (Van
Osta et al., 2023). This leads to a need for subsequent clustering and
revision of the annotations, which highlights the importance of
iterative refinement in data analysis during the process of
annotation.

Therefore, in the present work, we introduce these
annotated unknown sounds with a focus on those that are
recurring and potentially of biological origin, and propose
steps to derive meaningful clusters from these annotations.
We discuss the following related questions: (1) how can we
(automatically) identify which of the annotations are from the
same source? (2) how can we derive meaningful clusters from
annotated unknown sounds in the BPNS? and (3) which of the
obtained clusters represent recurring sounds that are likely
biological?

2 Methodology

2.1 Data collection

Stations of bottom-moored acoustic recorders were deployed
across the BPNS (Figure 1), a shallow, biodiverse marine
environment with an average depth of 20 m and a maximum of
45 m, characterized by a unique sandbank system, complex acoustic
propagation patterns, strong tides and a wide range of human
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activities such as shipping, renewable energy, fishery and sand
extraction (Parcerisas et al., 2023a). The acoustic recorders were
steadily fixed to a steel mooring frame with the hydrophones
situated 1 m above the seabed. Data were collected using a
RESEA 320 recorder manufactured by RTSys (France), coupled
with a GP1190M-LP hydrophone from Colmar (Italy). The
hydrophone exhibited a sensitivity of −180 dB/V re 1 µPa and
had a frequency response within a −3 dB range from 10 Hz
to 170 kHz.

2.2 Data selection and annotation

Raw audio files used for annotation were manually chosen based
on recording quality and possible presence of acoustically salient
elements within the files, depending on environmental conditions
such as period of the year, moment of the day, location and
previously identified sound events. These annotations were part
of an initial data exploration, and they were not annotated following
a defined strategy. Only segments deemed to contain acoustically

FIGURE 1
The stations of the LifeWatch Broadband Acoustic Network (Parcerisas et al., 2021) in the Belgian part of the North Sea (BPNS). Also shown in themap
are the active renewable energy zone and shipwrecks.
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salient elements were annotated, with durations ranging from
several minutes to several hours. Annotated samples were from
four of the seven present stations, namely, Belwind, Birkenfels,
Buitenratel and Grafton (Figure 1). The total duration of
annotated samples per station is listed in Supplementary Table
S1. All files were annotated using Raven Pro version 1.6.52, and
the settings used during annotation are listed in
Supplementary Table S2.

Audio events considered to be target events (acoustically salient)
were meticulously identified and labeled by drawing boxes around
each identified signal. All sounds were labeled, both known and
unknown. This means that in addition to sounds possibly
originating from marine organisms, other sounds labeled
included anthropogenic and geophonic sounds.

Label tag names were cross-checked with tags available in
underwater sound repositories, such as FishSounds (fishsounds.
net) and Dosits (dosits.org). Sounds with similar acoustic
characteristics to the descriptions found online were named
accordingly. If a sound of interest could not be related to a
sound from one of these online platforms, another tag name was
chosen based on auditory characteristics exhibited by each sound.
Sounds with similar shapes within the spectrogram, auditory
characteristics, frequency range and duration were assigned the
same tag name.

The absence of prior knowledge about the present biological
sound sources posed a significant challenge, even when cross-
checking with existing libraries. In response, rather than focusing
on a time-intensive process of meticulously evaluating and
classifying each sound type, an alternative approach was adopted
where subjective categories were assigned to any encountered sound,
irrespective of repetition or a pre-defined classification scheme,
followed by clustering and revision of the identified sounds
(see Section 2.4).

2.3 Automatic feature extraction

We decided to use automatic feature extraction and following
statistical clustering of these features to group and describe
unknown sounds. As it is not clear which are the best acoustic
features to describe and differentiate unknown underwater sounds,
we decided to use available published state-of-the-art deep learning
algorithms pre-trained and/or tested in bioacoustics data, containing (at
least, partly) underwater sounds. Two different options were
considered, namely, the Animal Vocalization Encoder based on Self-
Supervision (AVES; Hagiwara, 2023) and a convolutional autoencoder
network (CAE; Best et al., 2023) to obtain acoustic features. Since the
autoencoder approach is unsupervised, we trained it on our own data
(for training details see Supplementary Table S3). AVES extracts the
features directly from the waveform, which has the advantage that no
parameters must be chosen manually to create a representative
spectrogram. Conversely, CAE uses spectrograms as an input, and
all the snippets need to be cut (or zero-padded) to a certain length before
generating the spectrogram images. Both models were developed with
the intention of being robust across datasets, by evaluating them on
datasets which were not used to train the model. AVES was tested on
data from birds, terrestrial mammals, marine mammals, insects
(mosquitos) and amphibians (frogs), and CAE on data from

different birds and marine mammals. Due to their proven
generalizability, they were considered appropriate for this study.

Before the extraction of features, we filtered all manual annotations
to have aminimumduration of 0.0625 s, amaximumduration of 10 s, a
maximum low frequency of 24,000 Hz, and a minimum NIST-Quick
SNR of 10 dB. For the annotations whose maximum high frequency
exceeded 24,000 Hz the high frequency was adapted to 24,000 Hz. This
assured that the characteristics of the remaining sounds complied with
the requirements of the two feature extraction algorithms and assured
the exclusion of false annotations. All sound files were decimated to
48,000 Hz before feature extraction to assure comparability in
extracted features.

For each of the models, two different strategies were tested,
leading to four different feature sets.

For the AVES-bio-base model, we first extracted snippets from
the raw audio files using the start and end time of each annotation.
These snippets were then band-pass filtered to the frequency limits
of each annotation using a Butterworth filter of order four from the
scipy Python package (Virtanen et al., 2020). The filtered snippet
was then converted to audio representations using the AVES-bio
model (1) subjected to mean-pooling (AVES-mean) or (2) subjected
to max-pooling (AVES-max) to derive a 768-feature long vector per
sound event for succeeding clustering analysis.

The CAE from Best et al. (2023) is applied to spectrogram
representations of the sounds instead of raw waveforms. Therefore,
Mel spectrograms were created from 3s-windows around the center
time of an annotation with an NFFT value of 2048 and 128 Mel
filterbanks and passed through the CAE with the bottleneck set to 256,
deriving vectors of the same number (CAE-original). As a modification
to this to better represent the large variabilities in duration and
bandwidth that we observed among the annotated unknown sounds
in our data, we also trained the CAE network with cropped
spectrograms to their start and end times and low and high
frequency limits (CAE-crops). For this, spectrograms were created
for the actual duration of the sound event with an NFFT value
chosen to deliver at least 128 frequency bins between the minimum
and themaximum frequency, and the window overlap was set to deliver
at least 128 time slots. The resulting spectrogram matrix was then
cropped to the actual frequency limits of the sound event. To achieve
compliance with the input format to the CAE, all resulting spectrogram
images were then reshaped to 128 × 128 bins before they were also
passed through the CAE with the bottleneck set to the default number
of 256, based on the study of Best et al. (2023) on varying bottleneck
sizes. This derived vectors of 256 features at the end. For both CAE
approaches (CAE-original and CAE-crops), the audio snippets were
filtered to the frequency limits of the annotations using the same
filtering strategy as for AVES, a band-pass Butterworth filter of
order four from the scipy Python package (Virtanen et al., 2020).

To all four different types of feature vectors, we added four
additional features which were directly extracted from the Raven
selection tables, namely, low frequency, high frequency, bandwidth
and duration.

2.4 Statistical clustering

Feature selection is often conducted in large and high-
dimensional datasets prior to applying clustering algorithms to
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get a subset of features which will best discriminate the resulting
clusters (Dash and Liu, 2000). This was done because most
clustering algorithms do not perform well in high dimensional
space, a problem known as “the curse of dimensionality”. First,
using the scikit-learn Python library (Pedregosa et al., 2011), the
feature sets were centered to the mean and scaled to unit variance.
Then, sparse Principal Component Analysis (sPCA) was applied to
reduce the four feature sets to the most discriminant features. sPCA
forms principal components with sparse loadings—each principal
component (PC) resulting to a subset of principal variables, in
contrast to ordinary Principal Component Analysis (PCA)
wherein each PC is a linear combination of all original variables
(Zou et al., 2006). The four additional features—low frequency, high
frequency, bandwidth and duration, were retained in addition to the
sPCA-selected features.

Upon choosing a clustering algorithm that would give
meaningful clusters from our annotations, two aspects of the
dataset were of concern due to the manner of annotation done in
this study: (1) the variation among cluster densities as the selection
of recording files to annotate was not done in a standardized
manner, and (2) the presence of noise, or falsely annotated
samples in the datasets, due to the inherent nature of
annotations on underwater sounds, especially when the source is
unknown. Therefore, an unsupervised density-based clustering
algorithm, HDBSCAN (McInnes et al., 2017), based on
hierarchical density estimates was chosen. HDBSCAN partitions

the samples according to the most significant clusters with varying
density thresholds, excluding samples that are identified as noise by
the algorithm itself (Campello et al., 2013). The clustering was
applied to the sPCA-reduced CAE (CAE-original and CAE
crops) and AVES (AVES-mean and AVES max) feature
sets (Figure 2).

We coded a grid search function to adjust the hyperparameters
of sPCA andHDBSCAN.We searched the hyperparameter space for
the most optimized combination of parameter values based on two
selected clustering evaluation measures: (1) the homogeneity score
score from the scikit-learn Python library (Pedregosa et al., 2011)
based on annotations, and (2) the density-based clustering
validation (DBCV) score from the DBCV library (Jenness, 2017),
based on the quality of clusters and not the annotations. Both scores
range from 0 to 1, with one representing a perfect score. The
homogeneity score compares the similarity of original
annotations with the predicted clusters, wherein a score of one
satisfies homogeneity of all predicted clusters (Rosenberg and
Hirschberg, 2007). The DBCV score is an index proposed for
density-based clusters which are not necessarily spherical. This
score is based on the density of samples in a cluster, and the
within- and between-cluster distances (Moulavi et al., 2014).

We inspected which parameters had a drastic effect on the
resulting clusters and must be adjusted, prior to conducting grid
search. For sPCA, only the parameter alpha, which controls the
sparseness of components, was adjusted. The higher the alpha, the

FIGURE 2
Overview of the methodology conducted in this study from two different audio representations up to cluster evaluation measures. After feature
extraction using the Animal Vocalization Encoder based on Self-Supervision (AVES) and a convolutional autoencoder network (CAE), the dimensionality
of the datasets was reduced by selecting relevant features using sparse Principal Component Analysis (sPCA). Different values of the hyperparameters of
sPCA and HDBSCAN were tested using a coded grid search function. Obtained clusters were evaluated using its homogeneity score and density-
based clustering validation (DBCV) score, and visualized using Uniform Manifold Approximation and Projection (UMAP).
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sparser the components, resulting to a lower number of ‘relevant’
features. We set different values of alpha (Supplementary Table S4,
Supplementary) according to the range of features that formed
reasonable/acceptable clusters during the data exploration phase
of the study. For HDBSCAN, a grid of values based on three
parameters–the minimum cluster size (5, 8, 10 and 12), the
minimum samples (3, 4 and 5), and epsilon (0.2, 0.5, 0.8)–were
specified. While the minimum cluster size specifies the smallest
number of samples to form a cluster, the minimum samples
parameter is the number of neighboring points to be considered
a dense region, therefore restricting the formation of clusters to the
denser areas and classifying more samples as noise. The epsilon
value is a threshold by which a cluster is split into smaller denser
clusters (McInnes et al., 2016).

For selecting the best clustering result from the grid search
function, criteria had to be defined as high scores do not directly
translate to high clustering performances. Performance is also based
on the number of samples classified as noise and the number of
resulting clusters. The following criteria were therefore set: (1) the
percentage of samples clustered is >15%; that is, only a maximum of
85% of samples classified as noise by HDBSCAN was acceptable, (2)
the number of clusters is ≤ the original number of annotation
classes, and (3) with the highest average of homogeneity and
DBCV scores. For visual comparative analysis, each grid search
clustering result was also embedded into Euclidean space using a
uniform manifold approximation and projection (UMAP; McInnes
et al., 2020) with a number of neighbors equal to 15 and a minimum
distance of 0.2. Significant differences in the homogeneity and
DBCV scores among the four feature sets were tested using the
non-parametric Kruskal–Wallis test (Kruskal and Wallis, 1952).
Pairwise comparisons were performed using a Wilcoxon rank
sum test (Wilcoxon, 1945) as a post-hoc. To test the association
of the parameters with the two scoring metrics, the parameters were
fitted in a generalized linear model (GLM) with a Gamma
distribution using the ‘stats’ R package. Finally, predicted clusters
from the best grid search result were then revised by a bioacoustics
expert (J.A.) and one representative sound was chosen per cluster,
which had a good SNR and the highest resemblance to the other
sounds within the same cluster. Intra- and inter-cluster variation
were assessed using the ‘clv’ R package (Nieweglowski, 2023) and
visualized using the ‘qgraph’ R package (Epskamp et al., 2023).
Intra-cluster distance was calculated as the distance between the two
furthest points within each cluster, while inter-cluster distances was
calculated for each possible pair of cluster as the average distance
between all samples of two different clusters.

An overview of the methodology from feature extraction up to
evaluation of clusters is shown in Figure 2. Feature extraction and
unsupervised clustering were performed using Python version 3.11.5
(Python developers, 2023), while statistical tests were performed
using R version 4.3.1 (R Core Team, 2023), with scripts made
available on the GitHub repository: https://github.com/lifewatch/
unknown_underwater_sounds.

3 Results

From all the selected raw audio files from the LifeWatch
Broadband Acoustic Network in the BPNS, there were

2,874 target sounds of interest, annotated with 30 different tags
(Figure 3). From all the annotations, those whose source could be
identified and were not of biological origin were excluded from the
analysis. These included boat noises, out of water sounds, water
movements, deployment sounds, electronic noises and
interferences. Acoustic features extracted through AVES and
CAE were each reduced through sPCA. Different values of alpha
were embedded in the grid search giving a similar range (15–31) of
principal features for each dataset (Supplementary Table S4). The
different values of sPCA alpha in combination with the different
HDBSCAN clustering parameters (epsilon, minimum cluster size
and minimum samples) gave a total of 431 grid search results.

Of the total 431 grid search results, only 238 results met the
criteria set in this study with percentage of samples clustered >15%
(>431 annotated samples) and the number of clusters less than or
equal to the number of original annotation tags (=30). From these
238 grid search results, where the same parameters regardless of the
epsilon value gave the same homogeneity and DBCV scores, we only
kept the grid search result with the highest epsilon value—further
narrowing down the 238 grid search results to 149. Within these
149 grid search results, homogeneity scores ranged from 0.005 to
0.800, DBCV scores from 0.221 to 0.837 and the average of the two
scores from 0.240 to 0.687 (Figure 4). Seven (CAE-crops and CAE-
original) and four (CAE-crops) grid search results had homogeneity
and DBCV scores considered outliers, respectively. The means and
standard deviations of the scores from the grid search for each
feature set are detailed in Supplementary Table S5.

Homogeneity and DBCV scores were significantly different
among the feature sets (Figure 5; Kruskal–Wallis test, p = 2.2–16

[homogeneity], p = 0.0001 [DBCV]). Pairwise comparisons using
Wilcoxon rank sum test showed that homogeneity scores among the
four feature sets were significantly different from each other (p <
0.05). Likewise, the same test showed that DBCV scores were
significantly different between the AVES feature sets and CAE-
original (all p < 0.05). While AVES-max and AVES-mean feature
sets had higher homogeneity scores, DBCV scores were higher for
CAE-original. Finally, fitting all parameters in a GLM (details in
Supplementary Table S6; Supplementary Figure S1), the number of
features was significantly associated to DBCV (p = 5.960–5), and the
minimum cluster size to homogeneity scores (p = 9.864–5).

Among the AVES feature sets, grid search result index # 420
(AVES-mean) had the highest average of homogeneity and DBCV
scores (=0.687), with the number of features reduced to 15. There
were 635 samples (22% of the total samples) that were clustered with
a minimum cluster size of 10. Among the CAE feature sets, grid
search result index # 141 (CAE-original) ranked with the highest
average score (=0.517), with features reduced to 31. There were
1,279 samples (45% of the total samples) that were clustered, with a
minimum cluster size of 12. The UMAP embeddings of grid search
results # 420 and # 141 (best of each approach) show a considerable
separation between most of the clusters (Figure 6), with bigger
clusters more evident from the UMAP embedding of grid search
result index # 141 (Figure 6B).

The best grid search result index # 420, with a homogeneity
score of 0.733 and DBCV score of 0.641, yielded 26 clusters
(Figure 7). Descriptions of the resulting sound categories are
summarized in Table 1. Spectrograms of representative sound
tags are shown in Figure 8 and Supplementary Figure S2. Of the
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FIGURE 3
Annotated samples with corresponding tags in the Belgian part of the North Sea (BPNS), which excluded audio events related to boat operations,
water movements, deployment operations, electronic noises and interference.

FIGURE 4
Homogeneity and density-based clustering validation (DBCV) scores of the 149 grid search results (indicated by the grid search result indices on the
x-axis) grouped by feature set. The black dotted lines indicate the average of the two scores, while the red dashed line indicates the highest average score
among the grid search results within AVES and CAE feature sets.
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26 clusters, seven were completely homogeneous (clusters 3, 4, 7, 21,
22, 23 and 24; Figure 7)—that is, samples within each of those
clusters were labeled with the same tags during annotation. Two
additional clusters (15 and 16) were assessed as completely
homogeneous after revision. Of the total nine completely
homogeneous clusters, six were represented by ‘Whistling’, two
of ‘Tick’ and one of ‘Metallic Bell’. Two clusters (10 & 20) had
less than 50% homogeneity: cluster 10 was composed of tags
‘Crustacean Stridulation’, ‘Impulsive Clack’, ‘Jackhammer’ and
‘Fish Grunt’, while cluster 20 was composed of ‘Impulsive Poc’,
‘Crustacean Stridulation’, ‘Fish Grunt’, ‘Knock’ and ‘Plop’. Multiple
clusters represented by the same sound, such as clusters represented
by ‘Whistling’, ‘Impulsive Poc’, ‘Impulsive Click’ and ‘Tick’, had
lower inter-cluster distances, but also relatively high intra-cluster

distances (Figure 10). Additionally, a clear separation between
subgroups of clusters under ‘Whistling’ and ‘Crustacean
Stridulation’ can be observed. Separation of clusters 3–4 and
21–24, all represented by ‘Whistling’, and clusters 1, 10, 5 and 6,
all represented by ‘Crustacean Stridulation’, indicates variation in
acoustic representations within the same classification of sound.

4 Discussion

The lack of reliable annotated training datasets and sound
libraries is a critical methodological gap in studying soundscapes
where sound sources are unknown. Our study demonstrated that
unsupervised clustering of annotated unknown sounds eases

FIGURE 5
Boxplots of homogeneity and density-based clustering validation (DBCV) scores for the four feature sets (AVES-max, AVES-mean, CAE-crops and
CAE-original). Homogeneity scores were significantly different between each feature set (all p < 0.05). DBCV scores were significantly different between
the AVES feature sets and CAE-original (p = 0.001).

FIGURE 6
Uniform Manifold Approximation and Projection (UMAP) of the 26 predicted clusters from grid search result # 420 (AVES-mean; (A) and the
29 predicted clusters from grid search result # 141 (CAE-original; (B), which had the highest average of homogeneity and DBCV scores among the AVES
and CAE feature sets, respectively.
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revision and validation of annotated datasets. The revised clusters
(Figure 8) we detailed already define a few groups of recurring
distinct sounds that could serve as a preliminary component of an
annotated training dataset. Annotation and labeling, in the absence
of a reference dataset with validated annotations, are arduous and
subjective especially for an underwater soundscape such as the
BPNS, where sound signatures are unknown and the inherent
acoustic scene is complex (Parcerisas et al., 2023b). Although
unsupervised clustering is conventional in ecological research
(Sainburg et al., 2020; Schneider et al., 2022; Guerrero et al.,
2023), we highlight its practical use in revising clusters of
annotated unknown sounds. Unsupervised clustering and
subsequent revision of obtained clusters are therefore proposed
steps to systematically reduce annotations to distinct and
recurring sound events deemed relevant (Figure 9). With the
proposed approach, labeling efforts only become a requisite for
unclassified sounds of interest from newly gathered data, which do
not fall under the same classification as the obtained revised clusters
when clustered together with the old data, potentially forming new
clusters. Sounds falling under the obtained clusters would not need
to be manually labeled then. This approach speeds up the entire
process of future human annotations and labeling efforts. The
obtained datasets can be used for supervised ML (Figure 9),
provided that the built training dataset is sufficient. Supervised
ML models would render automatic detections and classification
of already named and characterized sound signatures, whether the
source is known or unknown. Human labeling and classifying efforts
of these distinct and recurring sound events would then become
unnecessary in the future.

The most crucial step to achieve a meaningful characterization
of recurring unknown sound signatures with our approach is the
formation of relevant clusters. Two factors largely influenced the
formation of clusters: (1) obtaining a relevant feature representation
of the annotated dataset and (2) adjusting the hyperparameters of
the chosen algorithms. Slight changes in any configuration altered
the quality of clusters obtained. For instance, the choice of subjecting
AVES feature sets to mean- or max-pooling (AVES-mean vs. AVES-

max) or cropping spectrogram representations to the actual
frequency limits and duration of the sound event (CAE-crops vs.
CAE-original), accounted for significant differences in the
homogeneity and shape of formed clusters (Figure 5). Selecting
different minimum sizes of clusters significantly affected
homogeneity scores, and the number of relevant features
significantly affected DBCV scores.

While selecting the best representation model to extract features
and applying the most appropriate clustering method have been
obvious factors to consider in bioacoustics research, we highlight the
performance variations brought by the large search space of
hyperparameter configurations (Best et al., 2023) which have
remained obscure in the literature. As these configurations,
mostly related to hyperparameters of algorithms, are often
ambiguous and dataset-specific, grid search is therefore a step
that should be considered when applying any algorithm. Though
deep learning features, such as AVES and CAE, can be used
efficiently by neural networks to classify sounds, not all extracted
features are directly representative for any dataset. Varying numbers
of selected discriminant features in the grid search using sparse PCA
contributed to performance variation. Although, due to time-
constraint, we only revised the best clustering result with the
highest average of homogeneity and DBCV scores, it is also
possible to revise other clustering results which performed as
well, such as grid search result index # 141 (CAE-original).

In evaluating clustering performance, understanding the
reliability of annotations determines the type of scoring metrics.
As manual annotations made by a single individual are not fully
reliable, additionally scoring the clusters through an unsupervised
metric (DBCV) allowed for a reasonable evaluation of cluster
quality. Scoring metrics must be cautiously interpreted, however,
as high scores do not necessarily translate to relevant clusters. We
excluded 43% of our grid search results from subsequent analyses,
although some of these had higher homogeneity or DBCV scores,
since these either gave too many clusters of the smallest size possible
or very few clusters of the largest size possible, with more than 85%
of the samples rejected by HDBSCAN. With highly conservative

FIGURE 7
Agreement of annotations with predicted clusters of grid search result # 420. The grids are shaded by the percentage of occurrence of a tag within a
predicted cluster.
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clusters, higher homogeneity and DBCV scores are obviously easier
to achieve but would defeat the purpose of grouping vocalization
repertoires per species or sounds derived from the same source in
the same cluster. As a consequence of underwater sound variability
(both in sound production and reception), sounds could possibly be
originating from the same source yet either grouped into several

smaller clusters, or classified as noise by HDBSCAN, due to slight
differences in selected acoustic representation. The similarity of
multiple clusters within the same classification of sound was evident
in clusters represented by ‘Whistling’, ‘Impulsive Poc’, ‘Impulsive
Click’ and ‘Tick’ (Figure 10). However, in some cases, variation
within a cluster could be just as large as the variation between

TABLE 1 Summary of descriptions of the obtained sound types after clustering. Spectrogram representations of each cluster are plotted in Supplementary
Figure S2. N refers to “number” and Avg to “average”. Revision (%) shows the number of samples correctly clustered.

Sound
name

Description N of
clusters

Total N
of

samples

Cluster
N

N of
samples

Avg
Min
Freq
(Hz)

Avg
max
Freq
(Hz)

Avg
duration

(s)

Revision
(%)

Whistling Constant frequency tone
around approximately
1,200 Hz lasting up to several
seconds

6 126 3 15 2.6 2.0 0.54 100

4 10 2.5 2.0 0.34 100

21 16 1.6 1.1 1.44 100

22 25 1.7 1.2 1.08 100

23 50 1.6 1.0 2.18 100

24 10 1.6 1.0 0.74 100

Crustacean
Stridulation

Semi-tonal component at
around 1.3 kHz with
multiple simultaneous
impulsive sounds with energy
up to 4 kHz, lasting up
to 0.3 s

4 80 1 45 23.9 0.6 0.31 80

5 11 2.9 1.8 0.19 91

6 13 3.3 2.1 0.20 92

10 11 4.7 0.1 0.25 64

Impulsive
Poc

Short impulsive sound with a
peak frequency around
2 kHz lasting around 40 ms

4 117 8 13 0.9 0.0 0.12 54

20 55 2.0 0.2 0.10 44

25 38 1.8 1.0 0.09 50

26 11 1.8 0.9 0.10 91

Impulsive
Click

Very short (<10 ms),
broadband click between
3 and >24 kHz

3 39 14 10 12.7 4.8 0.11 90

17 16 16.5 5.7 0.10 94

19 13 22.8 8.8 0.08 62

Impulsive
Clicks

Series of ‘Impulsive Click’
lasting up to a second and
containing from 2 to
5 repetitions

2 74 11 17 22.3 3.0 0.38 65

18 57 23.4 4.7 0.12 77

Metallic Bell Fundamental frequency
around approximately
2.2 kHz with higher
frequency components up to
24 kHz lasting up to
almost 2 s

2 78 7 10 23.5 1.3 1.25 100

12 68 15.5 1.7 0.43 88

Tick Series of very short (<10 ms),
high frequency clicks
between 12 and 20 kHz

2 37 15 13 24.0 14.9 1.26 100

16 24 24.0 14.4 0.30 100

Jackhammer Series of short (<30 ms), low
frequency impulsive sounds
between 300 and 2,500 Hz

1 30 13 30 3.2 0.0 0.30 93

Impulsive
Clack

Impulsive sound of about
30 ms and a peak frequency
around 8 kHz

1 19 9 19 8.0 1.7 0.08 84

Metallic
Sound

Very low in SNR presenting a
tonal component at 6 kHz
lasting 0.1 s

1 35 2 35 6.2 4.9 0.16 63
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FIGURE 8
Spectrograms of revised clusters from the best grid search result which had the highest average of homogeneity and DBCV scores. Each
spectrogram is labeled by the cluster # and the representative sound tag which had the highest resemblance to the other sounds from the same cluster.

FIGURE 9
Proposed steps to build a validated training dataset that can feed supervisedmachine learning (ML)models for unknown soundscapes. Unsupervised
clustering is applied to representations of human annotations. Robust clusters, revised and validated by an expert, are named and characterized, and
when possible, their sources are identified. The steps from human annotation to naming and characterization of relevant sound signatures (enclosed in a
grey rectangle) are repeated in a cycle until the training dataset is sufficient to feed supervised ML models.
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clusters represented by different sounds such as ‘Crustacean
Stridulation’ (clusters 1, 10, 5, 6) and ‘Whistling’ (clusters 3–4
and clusters 21–24). This highlights the difficulty of manually
categorizing and naming unidentified sound types. Multiple
clusters of the same sound could arise from signals of varying
SNRs, including the environmental noise of a recording station
(Baker and Logue, 2003), overlapping in time and frequency (Izadi
et al., 2020). Reception of signals can also differ due to differences in
sound propagation and frequency-dependent loss brought by largely
varying distances from the source (Forrest, 1994). This is common
in harmonic sounds such as the ‘Metallic Bell’ where some clusters
have less harmonics visible in the spectrogram. However, multiple
clusters of the same sound could also be partly due to our
imbalanced annotations, which is highly dominated by
‘Crustacean Stridulation’, ‘Whistling’, ‘Impulsive Poc’, ‘Metallic
Bell’, ‘Impulsive Click’, ‘Impulsive Clicks’ and ‘Tick’ (Figure 3).
Thus, small numbers of minimum cluster size and minimum
samples were necessary to consider tags in the annotations with
only a few samples. Since vocal repertoires remain unknown in
the BPNS to date, we rely on this growing dataset to detect
apparent and consistently similar sounds which are likely of the
same origin. In the future, with a bigger dataset composed of
annotations that are more representative of the BPNS
soundscape, an ample number of bigger and denser clusters is
plausibly easier to obtain.

Presently, there is no standard in annotating datasets, or which
acoustic features should be used in bioacoustics research, when
deciding whether two sounds are from the same source (Odom et al.,
2021; Schneider et al., 2022). In the present work, AVES and CAE
performed differently depending on model configurations and
hyperparameters. Meaningful clusters were obtainable from both
models, although AVES-mean consistently ranked with the best
scores since the exploration phase of this study. AVES feature sets
resulted in more solid, homogeneous clusters with relatively lower
intra-cluster distances, appearing to be more advantageous for the
purpose of obtaining distinct clusters of recurring sounds with
precision in this dataset. However, AVES clusters were
disadvantaged by the relatively higher percentage of samples
classified as noise by HDBSCAN. With CAE feature sets, a
higher number of samples (68% on average) were clustered, but
this resulted in more scattered and less homogeneous clusters which
entail greater effort in manual revision. This could be due to the
diversity of sound duration and frequency bands, hence no
spectrogram parameters were found which could visually
represent all different sound types appropriately. Furthermore,
CAE was re-trained on our annotations containing only
2,875 examples, which might not be enough for a deep learning
model. CAE might be more effective in representing datasets with a
more uniform distribution in both sound duration and frequency
boundaries, because then it is possible to ensure that all the

FIGURE 10
Evaluation of intra- and inter-cluster distances between each cluster. Clusters are separated by inter-cluster distance. Line thickness indicates
similarity between each cluster. Clusters are numbered according to the cluster number and colored by the representative sound.
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spectrograms fed to the model are meaningful for all the annotations
using the same parameters. CAE might also be more effective when
trained on bigger datasets, such as those from biologically rich
environments with a large amount of similar fish sounds. A possible
approach to deal with the data limitation would be to use data
augmentation techniques when training the model (Nanni et al.,
2020). This could include, for example, training on both the original
and the cropped spectrograms. The rigor of these models and the
influence of hyperparameters must be continuously explored.

Though the purpose of this study was to obtain clusters of
recurring sounds, a density-based clustering algorithm such as the
HDBSCAN could potentially omit extremely infrequent sound types
with insufficient data by classifying these as noise. Extremely rare
sounds, which occurred less than five times in the dataset (e.g.,
snitch, impulsive knock, fish, electronic impact, bubble, siren,
mouthbubble, impulsive tic toc and composite call; Figure 3),
were classified as noise by the clustering algorithm as we
expected. Separating rare sounds, which were not encountered on
multiple occasions, from actual noise is a common clustering
limitation that consequently underrepresents what is essentially a
more biologically diverse soundscape. Denoising and processing
signals prior to clustering can improve unsupervised learning, such
as source separation techniques (Sun et al., 2022; Lin and Kawagucci,
2024). However, there is currently no algorithm that satisfactorily
addresses a broad spectrum of conditions for bioacoustics data in
general, and marine bioacoustics in particular (Xie et al., 2021;
Juodakis and Marsland, 2022). For this reason, during a preliminary
exploration of the feature extraction algorithms, we compared the
results obtained when (1) applying a non-stationary noise reduction
algorithm (Sainburg et al., 2024), (2) no filter is applied, and (3)
applying a band-pass filtering to each snippet. The results showed
that for this dataset with such a variety of sounds, the band-pass
filtering yielded the best results which could be due to several
reasons. Firstly, for AVES and CAE-original, it allows for
distinguishing between sounds occurring simultaneously at
different frequency bands, which otherwise would be confused by
the models. This is not the case for non-stationary noise reduction
strategies, as both events happening simultaneously would be
enhanced. Secondly, for low SNR annotations, a clearer signal
can be obtained. Noise reduction algorithms such as noisereduce
can enhance the SNR of signals, but they can perform badly for such
short sounds such as ‘Impulsive Click’.

While the complex acoustic scene of the BPNS has been
previously described (Parcerisas et al., 2023b), sound signatures,
especially of biological sources, remain unclear and unidentified. Of
the final revised clusters in the present work, we were able to name
and describe 10 unique sounds (Figures 8, 10). However, only cluster
13 with the ‘Jackhammer’ sounds and clusters 15 and 16 with the
‘Tick’ sounds can be interpreted as biological with some certainty.
The ‘Jackhammer’ sounds fit within the known vocalization
frequency range of fish (<3 kHz) and is a repetitive set of
impulse sounds (Amorim, 2006; Carriço et al., 2019). They
resemble sounds produced by fish species from the family
Sciaenidae (Amorim et al., 2023) and occurrences of an invasive
species of this family have been also documented for the North Sea
(Morais et al., 2017). The short duration, high frequency ‘Tick’
sounds are similar to crustacean acoustic signals, which are known
to span a large range of frequencies (Edmonds et al., 2016; Solé et al.,

2023). While ‘Metallic Bell’ is largely supposed as mooring noise, we
do not fully dismiss the possibility that it is biological. It has high
resemblance to recorded sounds (although from a glass tank) of a
spider crab Maja brachydactyla (Coquereau et al., 2016), which is
present in the BPNS and often found in our moorings. However,
these are just speculations as no ground-truth has been confirmed
and further research would be necessary to assign the species to the
sound with certainty. All other clustered sounds can only be
interpreted with caution (e.g., ‘Metallic Sound’ could be a chirp
of a mammal, ‘Whistling’ could be an anthropogenic sound
originating from boats or geophony caused by wind, and
‘Crustacean Stridulation’ could be something called bio-abrasion,
namely, the mechanical disturbance of the recorder by an
animal–Ryan et al., 2021) as, to our knowledge, there are no
similar sounds described in the literature so far. Spatiotemporal
analyses of sound occurrence (which was not achievable in this study
due to biases during data selection), alongside detailed comparisons
of the acoustic characteristics of encountered sounds, are therefore
necessary to further infer the possible biological sources of
identified sounds.

Apart from AVES and CAE, there are numerous feature extraction
models in the literature which perform differently from case-to-case.
For example, Ozanich et al. (2021) adds an extra clustering layer to an
autoencoder similar to the CAE model to penalize points that are
distant from cluster centers. If licenses of required MATLAB toolboxes
are present, the software CASE (Cluster and Analyze Sound Events;
Schneider et al., 2022) can be freely downloaded for the purpose of
selecting an appropriate clustering algorithm among four methods
(community detection, affinity propagation, HDBSCAN and fuzzy
clustering) and three classifiers (k-nearest neighbor, dynamic time-
warping and cross-correlation) iterated over different values of
parameters. Results are then subsequently evaluated using
normalized mutual information (NMI), a scoring metric similar to
the homogeneity score which relies on the level of agreement with pre-
labeled data. If pre-labeled data are absent or highly unreliable due to
the unidentified nature of the labels, we recommend coding a grid
search function to easily compare results of differently tuned
algorithms. Since incorporating gained information by different
research groups is often difficult, we echo the pressing need for
GLUBS (Parsons et al., 2022) which will highly benefit bioacoustics
research of unknown soundscapes such as the BPNS.
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