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A B S T R A C T   

We study the effects of in utero exposure to climate change induced high ocean salinity levels on 
children’s anthropometric outcomes. Leveraging six geo-referenced waves of the Bangladesh 
Demographic and Health Surveys merged with gridded data on ocean salinity, ocean chemistry 
and weather indicators (temperature, rainfall and humidity) from 1993 to 2018, we find that a 
one standard deviation increase in in utero salinity exposure leads to a 0.11 standard deviation 
decline in height-for-age. Effects on weight-for-height and weight-for-age for a similar magnitude 
increase in salinity are 0.13 and 0.15 standard deviations, respectively. Analyses of parental in
vestments and health-seeking behaviors demonstrate that compensating actions along these di
mensions to attenuate the detrimental effects of salinity are few and restricted to poorer 
households. Using satellite-sourced datasets on agriculture and land-use, we find that increasing 
salinity constrains farmers’ land use choices, restricting cultivation in the more profitable seasons 
which leads to lower agricultural potential. In particular, the effects of salinity on child health 
originate in areas with lower agricultural intensity caused by the progressive salinization of 
productive lands. These results highlight the climate change related costs of environmental insults 
on early-life health outcomes in vulnerable populations.   

1. Introduction 

40% of the world’s population lives within 100 km of the coast, and 10% lives in coastal areas less than 10 m above sea level 
(United Nations, 2017). Due to anthropogenic climate change, coastal areas around the world are increasingly threatened by changing 
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oceanic conditions such as coastal and tidal flooding, shoreline recession, and progressive salination of coastal land and water. 
Vulnerable coastal communities in the developing world, especially women and children, are particularly at risk due to the lack of 
adequate resources to adapt and to build resilience against these changes. 

While there is growing evidence that climate change brings persistent negative impacts in the developing world on mortality 
(Banerjee and Maharaj, 2020; Burgess et al., 2017; Deschenes, 2014), human capital (Fishman et al., 2019; Maccini and Yang, 2009), 
and nutrition (Blom et al., 2022; Randell et al., 2020), most studies from that literature focus on climate-induced temperature and 
precipitation extremes. A smaller literature has focused on the effect of equally important climate-induced changes such as coastal 
flooding (Bakkensen and Barrage, 2022; Bernstein et al., 2019; Diaz, 2016; Gopalakrishnan et al., 2016) and ocean acidification 
(Armand and Taveras, 2022). With global communities facing increasing threats from climate change, there is an urgent need for 
accurate assessments of how oceanic change embodied in features such as rising salinization, generates disproportionately heavier 
burdens for resource-constrained women and children in the developing world. In this study, we address this research gap by analyzing 
the early-life health impacts of in utero exposure to heightened salinity in coastal communities of Bangladesh. We document two key 
insights. First, in utero exposure to salinity significantly worsens health in early-life. Second, the mechanism that explains this is that an 
increase in salinity reduces agricultural potential; more specifically, cultivation during the more profitable Boro dry-season that re
quires the use of irrigation (as compared to the rainfed Aman season) becomes difficult when the saline content of water used for 
irrigation rises. 

We focus on the coastal belt of Bangladesh, a low-lying area home to over 10 million poor people residing in one of the most 
severely impacted regions of the world in terms of saltwater intrusion. Bangladesh already faces significant challenges related to food 
security and malnutrition, with over 30% of children under the age of five classified as being stunted in 2018.1 In recent decades, 
climate change has caused increasingly rapid salination in coastal Bangladesh up to 100 kms inland (Rahman and Bhattacharya, 2006), 
affecting local agricultural practices and ecosystems. Such impacts are likely to have further exacerbated poor health in early 
childhood. 

To study how exposure to elevated salinity levels during pregnancy shapes early-life health, we construct a novel dataset linking 
gridded data on salinity, weather, ocean chemistry, and child health outcomes. We obtain geo-referenced monthly data on sea water 
salinity and other variables at a resolution of 0.083◦ × 0.083◦ (approximately 9 km × 9 km), from January 1993 to December 2019, 
from the Copernicus Marine Environment Monitoring Service (CMEMS). We then combine this data with children’s standardized 
anthropometric measures (height-for-age, weight-for-height, and weight-for-age z-scores) from six geo-referenced waves of the 
Bangladesh Demographic and Health Surveys (BDHS) to match monthly local variation in salinity levels to birth histories ranging over 
almost a quarter of a century. 

We leverage a saturated model that controls for unobserved heterogeneity including location-specific seasonality and regional 
trends, while conditioning on a host of child, mother, and household controls. We exploit exogenous variation in average salinity levels 
9 months preceding the child’s month of birth, measured as deviations from long-run monthly and yearly trends, to identify impacts on 
child health outcomes. The identification rests on comparing very young children that were exposed in the in utero period to different 
levels of exogenous variation in average salinity levels, net of regional (district-level), annual, and seasonal trends, as well as local 
seasonal and local annual patterns. That is, we facilitate causal interpretation by estimating the impact of exogenous deviations in 
ocean salinity over local long-run trends, similar to Dell et al. (2012). 

We find that exogenous deviations in in utero salinity exposure leads to measurable negative effects on child health in early-life. A 
one standard deviation increase in in utero salinity leads to a 0.11 standard deviation decline in the child’s height-for-age z-score as of 
age five, while also increasing the prevalence of stunting and severe stunting by 3.1 and 5.7 percentage points, respectively. Increased 
salinity adversely impacts weight-for-height and weight-for-age as well. Hence, exposure during pregnancy has scarring effects that 
result in children being relatively shorter and lighter as of age 5. These results withstand a battery of robustness checks using alter
native measures of exposure, nonlinear specifications, and additional ocean chemistry controls. We ensure that our results are not 
driven by selective fertility or migration. 

We then undertake a careful exploration of possible mechanisms to gain insights into the channels through which salinity affects 
early-life outcomes. While we are unable to directly assess the physiological impacts of maternal sodium intake given data, we note 
that the average Bangladeshi does not consume more sodium than the world average (Khan et al., 2014; Powles et al., 2013). In light of 
this, we focus on income and examine whether agricultural production is significantly impacted by salinity. We also consider whether 
there are compensatory healthcare investments by parents. We find that increasing salinity constrains farmers’ land use choices, 
reducing acreage for dry season irrigated cropland and increasing acreage for monsoon season rainfed cropland (consistent with 
Shelley et al., 2016). While this switch helps to cope with salty irrigation water that is harmful to crops, it reduces overall yield and 
profitability. We find that the negative effects of salinity on child health primarily originate in the sample of children resident in 
clusters experiencing lower agricultural intensity (reduced pasture area, grazing area, rice area, and total rainfed area) due to the 
progressive salinization of lands. 

We next use information on parental investments and health-seeking behavior to evaluate whether such investments react to 
salinity exposure. In this we are guided by the literature on how parental investments may respond to early-life shocks (Adhvaryu and 
Nyshadham, 2016; Almond and Mazumder, 2013), and the fact that the effects of prenatal shocks may be confounded by parental 
actions (Almond and Currie, 2011; Barker, 1995). We find that there are few corresponding compensating behaviors to attenuate the 

1 World Bank data series: Prevalence of stunting, Bangladesh. https://data.worldbank.org/indicator/SH.STA.STNT.ZS?locations=BD. Accessed 6/ 
3/2023. 
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detrimental effects of salinity in prenatal and antenatal care including vaccinations, number of antenatal visits, iron supplementation 
during pregnancy, skilled prenatal care, skilled attendance at birth, and institutional delivery. A closer examination reveals that among 
poorer households, salinity significantly detracts actions along several of these dimensions, which we hypothesize may be due to the 
increasing opportunity cost of maternal time. 

Our study makes several contributions. First, we contribute to the literature on quantifying the social impact of climate change, 
especially its impacts on vulnerable communities in the developing world. While extensive evidence has been provided on the effect of 
temperature and rainfall, for example on agriculture (Moore et al., 2017; Schlenker and Roberts, 2009), mortality (Barreca, 2012; 
Burgess et al., 2017; Deschenes and Greenstone, 2011), and labor productivity (Liu et al., 2023; Park et al., 2020; Zhang et al., 2018), a 
relatively small literature has focused on estimating ocean-related hazards. Within this space, the focus has been on estimating the 
physical implications of sea-level rise including shoreline erosion and coastal flooding (Bernstein et al., 2019; Bosello et al., 2007; 
Depsky et al., 2022; Diaz, 2016; Gopalakrishnan et al., 2016). To the best of our knowledge, Armand and Taveras (2022) is the only 
other study that offers insights on the effects of climate-induced oceanic alterations on human development. That study analyzed the 
effect of ocean acidification in a cross-country setting and showed, among other things, that ocean acidification reduces the abundance 
of nature’s wealth (fish species) which leads to increased neonatal mortality in coastal areas. We complement this literature by 
quantifying the impact of another important oceanic-induced change, salt intrusion, its persistent scarring effect throughout early 
childhood, and we systematically analyze the various social and behavioral mechanisms through which salinity affects early-life health 
outcomes. More specifically, after demonstrating that salinity exerts harmful effects on early-life child health (conditional on ocean 
acidification and other measures of ocean chemistry), we leverage satellite-sourced datasets on agriculture and land-use to document 
that increased salinity reduces agricultural productivity, thereby highlighting potential income pathways and adaptation strategies at 
play. In exploring parental and health-seeking investments, we reveal changes in behaviors, particularly among poorer households, 
where higher salinity exposure leads to decreased early childhood investments. Our analyses also allow us to pin-point the timing of 
exposure that has the largest impacts, and how those impacts persist over the medium run. Anecdotally, given accelerated sea level rise 
due to changing climate, increasing salinity is the key issue of concern affecting large numbers of people across many low-lying 
countries in the world. 

Second, we contribute to the body of work that considers the effects of in utero shocks on early-life health outcomes, (Almond, 2006; 
Almond and Currie, 2011; Almond and Mazumder, 2011; Banerjee et al., 2010; Barker, 1995; Bleakley, 2007), and specifically the 
effects of environmental shocks (Adhvaryu et al., 2019; DeCicca and Malak, 2020; Rocha and Soares, 2015; Wilde et al., 2017) and how 
these, in turn, shape development outcomes (Dell et al., 2012; Maccini and Yang, 2009). We contribute by evaluating a previously 
under-documented, yet extremely important environmental insult that is expected to further intensify due to climate change, and that 
affects millions of poor people resident in coastal communities globally. The strength of our paper lies in the use of a novel database 
that provides scope to understand the impacts of climate change on early-life health, while providing the richness of information 
required to disentangle parental, agricultural, and selection effects in the context of a developing country. 

Third, we contribute to the literature on understanding the public health implications of salinity and sodium intake, especially on 
maternal and early child health impacts. While the effect of sodium intake on adult health has been extensively studied (Hunter et al., 
2022), few studies have considered its effects on children’s health. In this realm, studies have found that exposure to salinity increases 
pregnancy-related complications (Khan et al. 2011, 2014; Thompson et al., 2022) as well as infant mortality and morbidity (Dasgupta 
et al., 2016; Naser et al., 2020). A majority of this literature focuses on either only during or shortly after pregnancy. We contribute in 
this area by documenting a persistent link between salinity and later-life development beyond prenatal and neonatal periods, while 
simultaneously evaluating the socio-economic and agricultural mechanisms that underlie the linkage as manifested through changes in 
land use and healthcare investments. 

While our study focuses on Bangladesh to ensure that we account for the multifaceted factors that correlate with ground-truth 
realities and distinctive attributes of this population, our findings have global significance that extend far beyond the confines of 
just this country. Due to climate change, vulnerable populations in coastal and low-lying regions across many continents are exposed to 
escalating saltwater intrusion. Hence, the pressing need to address harmful consequences of sea-level rise is a common thread across 
numerous countries. For instance, salinization has destroyed several self-sufficient farming communities in Senegal, transforming 
them into dependent food importers, while also disrupting and threatening habitats with concomitant effects on livelihoods of farmers 
and fishermen. Similar challenges face the Niger Delta region in Nigeria, the Mekong River Delta in south Vietnam (which has wit
nessed destruction of coconut groves, rice paddies, and other agricultural resources), and the Bengal Delta region in India; these are a 
few selected examples from an extensive list of countries combatting coastal erosion and heightened salinity. These examples underline 
that while our focus is the detrimental effects of salinity in Bangladesh, the findings hold lessons for populations more globally. 

Experts agree that the deleterious effects of climate change will exacerbate preexisting vulnerabilities and inequalities, and that 
there is an urgent need for meaningful action to circumvent the coming challenges (Stern, 2022). The results of our study on the 
scarring effects of salinization on fetal health further emphasize these facts. Understanding how climate change related shocks impair 
child health is important given that we know that shocks in childhood have long-lasting consequences that resonate long into the 
future (Currie and Vogl, 2013; Edwards, 2017), and in order to focus attention on engineering effective coping strategies in envi
ronments with limited resources and restricted adaptive capacities.2 

2 We outline some of the coping strategies that are already in place in the last section of our study. 
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2. Background 

2.1. Salination in coastal Bangladesh 

Bangladesh, a low-lying deltaic country with a flat topography, is home to one of the largest populations vulnerable to climate 
change. Criss-crossed by the Brahmaputra, the Ganges, and the Meghna rivers, and located at the tip of the Bay of Bengal, the country is 
continuously subject to sea level rise, tidal surges, shoreline recession, strong cyclones, and riverbank erosion (Rahman et al., 2014). 
Coastal areas along the Bay of Bengal covering about 3.22 million hectares (Rahman et al., 2011), more than 30% of the country’s 
cultivable land (Rasel et al., 2013) and home to around 11.80 million poor people located across 19 districts (Dasgupta et al., 2018), 
are particularly susceptible to seawater intrusion and increased salinity levels. 

The southwest coastal region, lying about 1.5 m above mean sea-level, is most threatened by increases in water salinity (Hossain 
et al., 2018). Annual mean sea-level data for the period 1983–2003 from the Permanent Service for Mean Sea Level (PSMSL) shows that 
sea-level in the southwest coastal region has increased by 122 mm between 1983 and 2003, with a yearly average increase of roughly 
twice the global average of 3 mm per year over this 20-year period.3 As a result, salt intrusion is rapidly increasing in coastal areas. A 
report from the Soil Resource Development Institute (SRDI, 2010) from the Ministry of Agriculture shows that the amount of 
salt-affected area during four decades (1973–2009) in coastal areas has increased by 26.70%. Storm surges, the flow of saline 
groundwater during the dry season coupled with insufficient rainfall to lower saline concentrations, warmer temperatures that in
crease evaporation, and tidal inundation in the wet season, all affect salinity (Baten et al., 2015; Dasgupta et al., 2016). Rising sea level 
advances salty ocean water further inland, reaching up to several miles upstream. In addition, tidal effects and upstream freshwater 
flows cause sea water to travel many miles inland, aggravating the buildup of salt in major rivers. Ground water and surface water 
connected to these major rivers through water inlets and estuaries also experience increased average salinity concentrations as a 
consequence (Alam et al., 2017). These are some of the ways in which offshore saline concentrations can have large effects on salinity 
many miles inland, and which, in turn, affect quality of livelihoods, agricultural yields, cropping intensity, biodiversity, and health 
(Mahmuduzzaman et al., 2014). 

Higher salinity levels distort normal cropping patterns and impede agricultural productivity and economic development.4 Heavy 
reliance on the agricultural sector implies that saltwater intrusion has significant ecological and socioeconomic implications, with 
possible spillover effects for the rest of the economy. Hossain et al. (2018) identifies the main coastal communities affected by salt 
intrusion. Crop farmers, Sundarbans (mangroves) – dependent communities, and landless agricultural laborers are amongst the most 
vulnerable. Increased salinization causes drinking water shortages, food insecurity, degradation of soil quality, unemployment, and 
reduction in tree coverage, posing serious threats to public health and primary production (Dasgupta et al., 2015a,b). 

2.2. The physiological impact of excessive sodium 

The physiological link between sodium intake and health has been studied extensively by the medical science literature.5 Sodium 
intake increases the risk of diseases mainly through renal and vascular functions (Ando and Fujita, 2012; Rodriguez-Iturbe et al., 
2007). The medical literature has concluded that excessive salt intake is a significant contributor to high blood pressure via both 
observational studies (Mente et al., 2014) and randomized control trials (Huang et al., 2020). The link has also been established, with 
less confidence, between excessive sodium intake and cardiovascular diseases (Mente et al., 2018; Taylor et al., 2011; Welsh et al., 
2019). Excessive sodium intake can also lead to a number of other health conditions, most of them in later life, including hypertension, 
stomach cancer, obesity, and urinary and kidney diseases (Hunter et al., 2022; World Health Organization, 2012). 

A smaller public health literature focuses specifically on the impact of sodium intake on maternal and neonatal health outcomes. 
Through observational studies, sodium has been linked to hypertension, preeclampsia, and low-birth weight, which can impact 
stunting and underweight (Khan et al., 2011, 2014; Pizzi et al., 2014; Thompson et al., 2022). No study, to the best of our knowledge, 
has probed the link between maternal sodium exposure and children’s outcomes beyond the neonatal stage. 

It is important to emphasize in this context that even though many coastal communities in Bangladesh are exposed to salt, on 
average, intake is not excessively high. Powles et al. (2013) found that the average Bangladeshi adult consumes 9 g of salt per day. 
While this exceeds the World Health Organization recommended level of 5 g per day (World Health Organization, 2012), average 
sodium intake in Bangladesh is slightly below the global average sodium intake of 10 g per day, and far below other coastal Asian 
countries like China, Korea, Myanmar, and Thailand. This suggests that the physiological mechanism tied to sodium would be unlikely 
to explain the bulk of stunting and/or underweight status in Bangladesh. 

3 The data used is for station ID 1451 (Hiron Point, Bangladesh). More information can be obtained from psmsl.org. The data authority for this 
source is the Bangladesh Inland Water Department of Hydrography, Transport Authority.  

4 The agricultural sector (agriculture, forestry, and fishing, value added) contributed 12.7 percent of Bangladesh’s GDP in 2019, and employed 
38.3 percent of the labor force (WDI, World Bank, 2022).  

5 The rest of the mineral ingredients in seawater-induced salinity, including calcium, magnesium, and potassium, have mostly positive health 
impacts: calcium strengthens bone structure; magnesium decreases the risk of a series of diseases, including hypertension, cardiovascular diseases, 
and diabetes; potassium reduces the negative health impact of sodium intake on blood pressure and heart diseases. 
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2.3. The socio-economic impact of salinity exposure 

In parallel, social scientists and researchers have probed the link between salinity exposure and a wide range of public health 
outcomes. Dasgupta et al. (2016) documents the association between mother’s salinity exposure in the last month of pregnancy and 
infant mortality. Nahian et al. (2018) investigates the correlation between water salinity and health care crises in coastal Bangladesh, 
while Naser et al. (2020) finds a U-shaped association between drinking water salinity and infant and neonatal mortality in 
Bangladesh. Chakraborty et al. (2019), using a cross-sectional study in three coastal sub-districts, finds that excess drinking water 
salinity is associated with increased hospital visits for cardio-vascular diseases, diarrhea, and abdominal pain. Akter (2019) finds that 
exposure to excessive drinking water salinity in southwest coastal districts decreases the grade advancement of 7 to 12-year-old 
children, with poverty exacerbating effects. 

Beyond direct health impacts, studies have also documented salinity affecting agricultural production and aquaculture. The 
shortage of grazing land and fodder crops leads to lower milk production, less cattle-rearing, reduced stock of freshwater fish species, 
and other agro-biodiversity changes that affect households’ diet (Alam et al., 2017). Baten et al. (2015) explains that irrigated water 
demand is affected by saltwater intrusion in surface water, while Rahman et al. (2011) considers the impact of salinity on 
agro-biodiversity to find that the use of brackish water for irrigation limits the cultivation of rice and vegetables in the dry season. Ziaul 
Haider and Zaber Hossain (2013) studies the impact of salinity on farmers’ livelihood strategies. The study finds that while salinity 
motivates adaptations such as shrimp cultivation, detrimental effects on agricultural income and employment opportunities still result 
leading to lower living standards. Anik et al. (2018) investigates the impact of salinity stress on livelihood choices of rural households 
in southwestern Bangladesh to conclude that households highly dependent on agriculture suffer major crop losses due to high salinity 
levels. Chen et al. (2022) documents that salt intrusion leads to a decline in cultivating high-yield, salt intolerant rice varieties, leading 
to a decrease in economic activities in impacted regions. Our results confirm that reduced agricultural productivity is an important 
mechanism that underlies the negative consequences of salinity on early-life health. 

3. Data 

3.1. Children’s health outcomes 

We use 6 rounds of geo-referenced Demographic and Health Surveys (BDHS) for Bangladesh from 1999, 2004, 2007, 2011, 2014, 
and 2017. The BDHS is a stratified two-stage nationally representative sample. In the first stage, enumeration areas (EAs) are randomly 
chosen from the Population and Housing Census of Bangladesh and are used as the sampling frame, with stratification by region.6 In 
the second stage, within the selected EAs (or clusters), a number of households are randomly selected to be surveyed. We use 
anthropometric measures (height-for-age z-score (HAZ), weight-for-height z-score (WAH), and weight-for-age z-score (WAZ)) for all 
children aged 0–5, collected in households within which women of reproductive age (15–49 years) were interviewed. We create in
dicator variables for stunting, wasting, and undernutrition using these measures. We complement the early childhood outcomes with 
additional child and household characteristics and other health-related measures. We use the geographic location of each surveyed 
cluster over rounds to match children by month and year of birth to geo-coded salinity and weather data at the month and year level.7,8 

To identify the BDHS clusters that are most likely to be affected by rising seawater salinity, we use a measure of proximity to the 
ocean’s shore. For each cluster, we calculate the minimum distance between the cluster’s location and the closest shoreline, using the 
Global Self-Consistent, High Resolution Geography Dataset (GSHHG) (Wessel and Smith 1996). Following the literature, we define 
coastal communities as those living within 100 km from the ocean, and classify households living in clusters within 40 km from the 
ocean as being the most vulnerable. Fig. 1 depicts the location of all clusters in our sample. There are 1000 unique clusters among 
coastal communities, and 630 unique clusters in the sample of vulnerable coastal communities. 

3.2. Ocean salinity and chemistry 

Our ocean salinity and chemistry data come from the Copernicus Marine Environment Monitoring Service (CMEMS), which is 
drawn from both satellite Earth Observation and in-situ (non-space) data.9 The gridded dataset has a spatial resolution of 0.083

◦

×

6 Bangladesh has 8 administrative divisions: Barisal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is 
further divided into zilas, and zilas in turn contain upazilas.  

7 We use cluster locations obtained by recording the GPS coordinates of each cluster’s center during the survey’s fieldwork or listing stage. Since 
DHS surveys contain sensitive information, the locations are altered through a process known as displacement or geo-masking to safeguard the 
privacy of survey participants. Urban clusters and rural clusters are displaced up to 2 and 10 km, respectively. However, the displacement procedure 
ensures that the clusters remain within the same administrative units so that the data can be analyzed appropriately within administrative 
frameworks. For more details, please see Burgert et al. (2013).  

8 Michler et al. (2022) indicates that on average, commonly employed privacy protection techniques do not significantly impact regression 
estimates.  

9 We use the global ocean 1/12◦ physical reanalysis (GLORYS12V1) product: “global ocean eddy-resolving reanalysis covering the altimetry”. 
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0.083
◦

(approximately 9 km × 9 km), for the period January 1993 to December 2019.10 We obtain monthly measures on seawater 
salinity, seawater temperature, sea surface height (surface value), eastward and northward wind velocity, and the ocean’s pH levels 
over these years.11 Specifically, our salinity metric measures the amount of dissolved salt in parts per thousand and is commonly 
reported in practical salinity units (psu). 

Following the environmental economics literature, (Deschenes and Greenstone, 2011; Zhang et al., 2017), we use inverse-distance 
matching to obtain measures of local climate at the cluster level. For each cluster, we calculate the weighted average of oceanic 
chemistry metrics from the 5 closest grid points, weighting each point by the inverse of the squared distance from the cluster’s location 

Fig. 1. BDHS coastal communities. 
Notes: Fig. 1 shows the location of all BDHS clusters in our sample. The black triangles represent coastal clusters that are within 40 km from the 
ocean. The gray circles represent coastal clusters that are between 40 km and 100 km from the ocean. The black squares represent all the other DHS 
clusters. Data citation: Wessel, P., and Smith, W. 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database, Journal of 
Geophysical Research, 101, 8741–8743. 

10 The “Global_Reanalysis_PHY_001_030” product contains three datasets (the 3D daily mean fields, monthly mean fields, and monthly climatology 
mean fields). We use the dataset containing monthly mean fields. For more information on the validation methodology and series of diagnostics used 
for the dataset, see Drevillon (2018).  
11 The original file format is the Network Common Data Form (NetCDF) and NetCDF-4. We process these files in Python to obtain month-year level 

data from January 1993 onwards. All variables considered here are on the same regular grid points. 

A. Guimbeau et al.                                                                                                                                                                                                     



Journal of Environmental Economics and Management 125 (2024) 102954

7

so that each grid point has a local influence that diminishes with distance.12 

3.3. Weather data 

Since other features of weather are likely to be correlated with both children’s health and salinity levels, we include a series of 
climatic variables in our analyses.13 We obtain weather data from the Bangladesh Meteorological Department (BMD) which maintains 
records of all meteorological events and archives weather and climate data. We obtain station-month-year level data for all 35 stations 
across Bangladesh from 1970 to 2019, including data on minimum and maximum temperature, rainfall, and humidity.14 Weather data 
is interpolated into cluster-level measures using inverse distance weighting of 5 closest neighbors, and then 9-month average values 
(preceding the child’s time of birth) are merged with the child’s month and year of birth in the BDHS data, consistent with the 
approach for the ocean chemistry variables. 

3.4. Summary statistics 

Table 1 provides summary statistics for the sample that is most vulnerable, that is, within 40 kms of the coastline. The outcomes of 
interest are continuous for HAZ, WAH, and WAZ. The binary variables stunted and severely stunted equal one if child HAZ falls below − 2 
and − 3 standard deviations, respectively. Similarly, wasted and severely wasted are binary variables that equal one if child WAH falls 
below − 2 and − 3 standard deviations, respectively. Underweight and severely underweight are constructed from WAZ in a similar 
fashion. In Panel A, the mean HAZ is − 1.80, and approximately 45% and 19% of children aged 0–5 years are stunted and severely 
stunted, respectively. The mean for WAH and WAZ is − 0.91 and − 1.67, respectively, and almost 15% and 39% of children in this 
sample are wasted or underweight, respectively.15 

In Panel B, the average salinity level during the 9 months preceding the child’s month of birth is 12.59 psu, with a standard de
viation of 4.40 psu.16 Ocean’s pH averages 8.20. Panel C reports the summary statistics for weather-related variables used as controls 
in the regressions. Panel D provides information on the characteristics of children, mothers and fathers in our sample. Half of the 
children are male, and the average child is 29.31 months old. The average birth order is 2.69, and mean mother’s age at first birth is 
17.95 years. Estimates reveal that 24% and 26% of mothers and fathers in our sample had no education, respectively. In 87% of 
observations, the head of the household is male. 

3.5. The distribution and seasonality of ocean salinity 

To visualize climate-induced change in ocean salinity over time, Fig. 2 provides kernel densities plots for average salinity levels.17 

Panel A considers the kernel densities for salinity levels associated with clusters within 100 km of the ocean for two periods: 
1995–2002 and 2011–2018. Panel B includes salinity for the vulnerable coastal clusters living within 40 km of the ocean for the same 

12 Let c denote a DHS cluster, i a station, and nc is the number of stations that relate to cluster c (we choose nc = 5). Let d2
ic be the squared distance 

between cluster c and station i. We thus define the weight Wic as follows: 

Wic =

1
d2

ic

∑nc

k=1

1
d2

kc

for dic ≥ o, and for any i, c  

Thus, temperature Tc at cluster c equals to: 

Tc =
∑nc

i=1
WicTic,with

∑nc

i=1
Wic = 1  

where Tic is the temperature at station i related to cluster c. Simply, Tic is weighted by the inverse of the squared distance given the mean temperature 
at station i (see De Mesnard (2013) for more details on the use of the IDW method in models estimating pollution impact, for instance).  
13 The literature posits that climate change affects the distribution of several climatic variables, and that any model that attempts to evaluate the 

distributional effects of climate change will likely produce biased results if other climatic variables are omitted. Barreca (2012) for instance finds 
that humidity, like temperature, is an important determinant of mortality. Zhang et al. (2017) finds that omitting humidity tends to over-predict the 
cost of climate change (as manifested in temperature and rainfall) on crop yields.  
14 Auffhammer et al. (2013) and Zhang et al. (2017) highlight the importance of having a continuous weather record (and thus few missing 

observations) when averaging station-data across space to ensure relatively lower loss of weather variation when fixed-effects are used in the 
empirical model. Although these data do not have a lot of missing values, we complete the series for the relatively few missing observations by using 
IDW spatial interpolation methods.  
15 Figure A1 shows that there is substantial heterogeneity in the nutritional status of children across sub-districts in Bangladesh.  
16 The WHO recommends no more than 5 g of salt per day but there is no clear translation between this metric and recommended salinity exposure 

in practical salinity units. Nasrin et al. (2020) notes various categories for salinity levels based on optimal conditions for crop growth and soil 
quality: low saline (0.5–5 psu), moderate saline (5–18 psu) and high saline (18–30 psu). An average of 12.59 psu thus falls in the moderate category.  
17 In addition to examining the temporal progression of salinity in Figs. 2 and 3, we also plotted a pair of heatmaps in Figure A2 to visualize the 

spatial distribution of ocean salinity. 
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two periods. In both panels, there is a right-ward shift in the distribution over time. 
Ocean salinity varies with the onset and end of the monsoon period. Panel A of Fig. 3 shows the seasonal variation in salinity 

(monthly average over years) for ocean points matched to coastal clusters. We observe differences in salinity levels over the pre-and 
post-monsoon seasons; in particular, salinity increases in the post-monsoon period (October) through the pre-monsoon month of May, 
after which it declines. Surface salinity in coastal waters is higher in the dry season due to lower rainfall and river discharge, which 
allows saline water to travel further upstream in major rivers through tidal effects and stronger estuarine exchange flows (Baten et al., 
2015; Dasgupta et al., 2015; Shammi et al., 2019). In addition to the monsoons, increases in ice melt in the Himalayas during May 
through October generates a higher upstream flow of freshwater and river water discharge, thus reducing salinity in coastal areas 
(Mahmuduzzaman et al., 2014). Our empirical methodology outlined below is cognizant of these seasonal changes. Panel B of Fig. 3 
shows the distribution of ocean salinity for ocean points matched to sampled coastal clusters. The distribution is mostly skewed to the 
right, but there is also variation in levels across clusters, revealing that the identifying variation stems from the majority of clusters and 
not just from a few outliers. Taken together, the two panels of Fig. 3 illustrate that ocean salinity exhibits considerable variation across 
months and clusters.18 

4. Empirical strategy 

To test for the effects of variation in in utero salinity on early-life health, we employ the following specification: 

yicdmt = βsalinitycdmt + X′
icdmtγ + ηmt + θdm + Φdt + ϵicdmt (1) 

Table 1 
Summary statistics of selected variables.   

Mean Std. Deviation 

(1) (2) 

Panel A: health outcomes 
Height-for-age z-score (HAZ) − 1.804 1.417 
Stunting (HAZ <2 SD) 0.451 0.498 
Severe stunting (HAZ <3 SD) 0.190 0.392 
Weight-for-height z-score (WAH) − 0.910 1.130 
Wasting (WAH <2 SD) 0.146 0.353 
Severe wasting (WAH <3 SD) 0.032 0.177 
Weight-for-age z-score (WAZ) − 1.671 1.153 
Underweight (WAZ <2 SD) 0.390 0.488 
Severe underweight (WAZ <3 SD) 0.119 0.323 
Panel B: ocean chemistry variables 
Ocean salinity (psu) 12.591 4.396 
Ocean’s pH level 8.199 0.045 
Panel C: weather-related variables 
Minimum temperature (deg. Celcius) 18.691 1.660 
Maximum temperature (deg. Celcius) 33.872 0.797 
Rainfall (mm, logs) 5.360 0.402 
Humidity (%) 81.274 2.466 
Panel D: child, mother, household controls 
Child’s age (months) 29.307 17.298 
Child is male 0.503 0.500 
Child birth order 2.691 1.794 
Mother’s age at first birth 17.950 2.957 
Mother’s height 150.895 5.328 
Mother has no education 0.240 0.420 
Father has no education 0.260 0.440 
Head of household is male 0.871 0.335 

Notes: The data sources include the BDHS 1999, 2004, 2007, 2011, 2014, and 2017, and the Copernicus Marine 
Environment Monitoring Service (CMEMS). The sample is restricted to coastal communities living within 40 km 
of the ocean. 

18 We control for river salinity with our measures of land cover specific to brackish water and tree cover flooded with saline water (please see 
Figure A3). 
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Fig. 2. Kernel densities of salinity 1995–2018. 
Notes: Authors’ calculations using the Copernicus Marine Environment Monitoring Service (CMEMS) for two periods. Panel A shows the kernel 
density for ocean’s salinity for clusters within 100 km of the ocean (coastal communities). Panel B shows the kernel density for ocean’s salinity for 
clusters within 40 km of the ocean (vulnerable coastal communities). To match the gridded salinity data to the cluster level, we use the IDW method 
as explained in the text. 

Fig. 3. The seasonality and distribution of salinity in coastal communities. 
Notes: Authors’ calculations using the Copernicus Marine Environment Monitoring Service (CMEMS). Panel A shows the seasonality of salinity 
(average salinity for each month over all the years) for all coastal communities in our data (ocean points matched to clusters in all coastal com
munities). Panel B shows the distribution of salinity in the data for all coastal communities. To match the gridded salinity data to the cluster level, 
we use the IDW method as explained in the text. 
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yicdmt is the health outcome for child i, born in month m in year t, whose mother was surveyed in cluster c in district d.19 We consider the 
effects of salinity exposure in the 9 month in utero phase, and construct salinitycdmt as the average value of ocean salinity (constructed 
from the 5 closest stations, as described above) in the 9 months preceding the child’s month of birth in cluster c20. The coefficient of 
interest is β, and is expected to be negative for HAZ, WAH and WAZ, and positive when the binary indicators for stunting, wasting, and 
underweight are evaluated. 

Xicdmt is a vector of variables including child, mother, and household characteristics, and time-varying weather and other ocean 
chemistry controls that could potentially be correlated with salinity while also determining variation in early-life health. More spe
cifically, we include child’s age, gender, and birth order, mother’s age at first birth, a dummy variable that equals one if the mother is 
uneducated, a dummy variable that equals one if the father is uneducated, mother’s height, and the gender of the household head.21 In 
terms of other weather measures, we include time-varying minimum and maximum temperature, rainfall, the interaction between 
minimum/maximum temperature and rainfall, and humidity. Other ocean controls include those for ocean acidity (pH value) which is 
always included, and seawater temperature, sea surface height, and ocean wind velocity which are additionally included in robustness 
checks. 

Eq. (1) includes a series of temporal and spatial fixed-effects to control for unobserved heterogeneity in seasonality and in regional 
trends. Year by month fixed-effects (ηmt) are included to control for idiosyncratic changes common across clusters. We also include 
district fixed-effects interacted with month of birth (θdm) to control for local seasonal variation, and Φdt which are district-year of birth 
fixed-effects to control for district-specific trends in cohort nutritional status, and thus for any local annual patterns in health out
comes.22 The presence of these fixed-effects implies that we estimate the impact of deviations in ocean salinity over long-run month 
and year trends, facilitating causal interpretation (Dell et al., 2014). The error term is ϵicdmt. Following DHS guidance, regressions are 
weighted so estimates may be interpreted as representative, and we report standard errors clustered at the cluster level (Abadie et al., 
2022). The identifying assumption is that there are no omitted variables that are correlated with both the salinity measure and with 
child health outcomes, so that exposure to salinity levels in utero, conditional on the other variables in the models, is unanticipated and 
as good as random. 

Since oceanic variables are correlated, we employ a double-lasso variable strategy to guide our selection of climatic and oceanic 
variables. The double-lasso strategy works in two steps: the first step regresses the treatment variable (in our case ocean salinity) on the 
full set of control variables in a lasso regression; the second step regresses the outcome variable on the treatment variable and the 
selected set of variables from the first step. The double-lasso strategy provides a robust model selection framework (Belloni et al., 
2014). 

We implement the double-lasso estimator on the within-40km-to-ocean sample with all 9 outcome variables using three different 
selection methods: full cross-validation, adaptive selection, and plugin-adaptive selection. All variables in our main model are included 
in the double-lasso selection, demeaned with the same set of saturated fixed-effects.23 We force household controls and salinity to 
remain in the model, leaving oceanic and weather variables to be selected. Table A1 presents results from running the double-lasso 
algorithm on 27 candidate models and specifications (3 selection methods for each of the 9 outcome variables), which we use as a 
guide for the estimations that follow.,24, 25 

19 As we note above, there are more than 1000 unique clusters when we consider all coastal communities, and 630 unique clusters in the 
vulnerable coastal communities. Using cluster fixed-effects absorbs a large proportion of the underlying variation as we discuss below.  
20 In modeling salinity as exposure in the in utero time period, we follow an established literature which documents that this is the key period of 

interest in understanding the effect of shocks (Barker, 1995; Almond, 2006; Almond and Currie, 2011; Almond and Mazumder, 2011, 2013; 
Edwards, 2017). Alternatives we considered was exposure in the previous growing season(s) or using direct measures of crop yields from previous 
seasons. However, growing seasons themselves have changed because of weather uncertainties as documented in Shelley et al. (2016) and Chen 
et al. (2022). Hence by considering growing seasons instead of a pre-determined gestational length of time, our results may reflect reverse causality. 
We also do not have a direct measure of crop yields unfortunately, since household level crop-yield data is not present in the DHS, and because proxy 
cluster-level crop yield using Normalized Difference Vegetation Index (NDVI) requires us to know exactly which variety of crop is grown at that 
scale. Further, our land use data only allows us to distinguish between irrigated vs. dryland agriculture vs. brackish water, with no additional direct 
details on crop types. In tests below, in order to proxy for previous growing seasons, we include average salinity 6 months prior to conception and 
average salinity 12 months prior to conception, separately, in our baseline model that includes average salinity in the 9 month in utero period. 
Results reveal that average salinity in the in utero time period is of most importance.  
21 We run extensive heterogeneity checks with wealth measures below. In the baseline model, parents’ (especially father’s) educational level 

proxies for household wealth.  
22 We have nineteen districts in our sample.  
23 Demeaning is accomplished by extracting the residuals from the regression y = 1 + fixed-effects. As recommended in Luo et al. (2017), we check 

the residuals obtained from the demeaning regression to find that the within-group means are minimal.  
24 Since sea surface temperature and height are both correlated with ocean salinity, we use non-linear versions of these variables in the robustness 

checks, as we discuss below.  
25 Sea surface height is a significant predictor of storm surges, which affect coastal communities. We matched reconstructed storm surge levels 

from GSSR (http://gssr.info/) with existing sea surface height data from CMES and predicted tidal gauge measured storm surges using sea surface 
height. As we note below, above/below median sea surface height is the best predictor that explains about 40% of the variations. 
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5. Results 

5.1. The effects of in utero salinity exposure 

In Table 2, we present results from the regression in Eq. (1). In Panel A, we restrict the sample to vulnerable coastal areas (DHS 
clusters within 40 km of the ocean), and in Panel B, we restrict the sample to all DHS clusters in coastal areas, that is those within 100 
km of the ocean. Focusing on the coefficients in Panel A, we see consistently negative effects of in utero exposure to ocean salinity on 
children’s anthropometric indicators.26 In column (1), a one standard deviation (SD) increase in in utero salinity leads to a 0.11 SD 
decline in the child’s HAZ.27 In columns (2) and (3), the results are in accordance with our expectations – in utero salinity exposure has 
significant effects on the probability that the child is stunted and severely stunted. A one SD increase in salinity increases the prev
alence of stunting and severe stunting by 3.1 and 5.7 percentage points, respectively. When the sample is restricted to all coastal 
communities in Panel B, while the coefficients are of smaller magnitudes, the negative impacts of salinity exposure are still mostly 
evident. 

In columns (4) through (6), we consider WAH and binary variables for wasted and severely wasted. Column (4) of Panel A indicates 

Table 2 
The effects of salinity exposure on child health.   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ <3 SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Sample of DHS Coastal Clusters Within 40 km 
salinity exposure − 0.025* 0.007* 0.013*** − 0.029** 0.007** 0.006*** − 0.035*** 0.011** 0.005 
(in utero) (0.013) (0.004) (0.004) (0.011) (0.003) (0.002) (0.012) (0.005) (0.004) 
Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
Mean of dependent 

variable 
− 1.804 0.451 0.190 − 0.910 0.146 0.033 − 1.672 0.39 0.119 

R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.218 0.182 
Panel B: Sample of DHS Coastal Clusters Within 100 km 
salinity exposure − 0.007 0.004 0.009*** − 0.026*** 0.007** 0.005*** − 0.023** 0.007* 0.005* 
(in utero) (0.011) (0.004) (0.003) (0.009) (0.003) (0.002) (0.010) (0.004) (0.003) 
Observations 12,544 12,544 12,544 12,544 12,544 12,544 12,544 12,544 12,544 
Mean of dependent 

variable 
− 1.727 0.422 0.167 − 0.837 0.134 0.029 − 1.574 0.353 0.102 

R-squared 0.299 0.255 0.216 0.164 0.131 0.115 0.263 0.204 0.164 
Child, mother, 

household controls 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control 

(pH) 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, 
month of birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of 
birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth 
FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in 
columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. 
Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, 
while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, 
respectively. The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first birth, a 
dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother’s 
height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction 
between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and 
are weighted. Robust standard errors are clustered at the DHS cluster level. Panel A considers the sub-sample of DHS clusters that are within 40 km of 
the ocean while Panel B considers the sub-sample of DHS clusters that are within 100 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1. 

26 We assume a gestation period of 9 months but have checked sensitivity when we extend to 10 months (see Panel E of Table A2).  
27 The coefficient on salinity exposure in column (1) of Table 2 is − 0.025. We multiply this coefficient by the standard deviation of salinity (4.40) 

in order to obtain the 0.11 SD decline. 
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that the effect of a one SD increase in utero salinity leads to a 0.13 SD decrease in WAH, with significant effects evident for wasting and 
severe wasting. As above, corresponding estimates in Panel B are consistent. 

In columns (7) to (9), the dependent variables relate to WAZ. The results again support the hypothesis that in utero exposure to 
salinity exerts detrimental effects on children’s health. Higher in utero salinity levels are associated with lower WAZ; one SD increase in 
salinity decreases WAZ by 0.15 SD (representing 13.4 % of the total variations in WAZ). Salinity exposure also leads to children being 
underweight and severely underweight, signaling nutritional deficiencies in these early years. 

5.2. Robustness checks for the main results 

5.2.1. Alternative specifications of in utero salinity exposure 
We construct alternative measures of in utero exposure to underline the robustness of our main results (Adhvaryu et al., 2019). We 

focus on the results for vulnerable coastal areas (within 40 km of the ocean) henceforth. Please see Section A.1 for a detailed 
description of these results. Overall, our main results hold. 

5.2.2. Effects by trimester 
Please see Section A.2 for a description of these results. 

5.2.3. Timing of exposure: controlling for salinity before conception and after birth 
As a falsification test, we check that impact of salinity matters only in the in utero period (Molina and Saldarriaga, 2017). In Fig. 4, 

we present results estimating the effects of salinity during the pregnancy period including average salinity levels 1–2 months before 
conception (10–11 months before birth), 3–4 months before conception (12–13 months before birth), in the month of birth, and 1 
trimester after birth. We note that exposure before or after pregnancy does not have significant effects for most outcomes.28 

5.2.4. Spatial spillover effects 
To quantify the spatial spillovers of salinity impacts on children’s outcomes, we augment our baseline regression and generate 

dummy variables for each cluster indicating its distance to the coast in 10 km distance bands. We then replace the single salinity metric 
in Eq. (1) with interaction terms between these distance bands and salinity exposure. 

Results are presented in Fig. 5. We find that the effects of salinity on children’s health are larger in clusters closer to the ocean. For 
instance, the impact of salinity on both WAH and WAZ are negative and significant in most clusters that are within 50 kms of the coast, 
and insignificant beyond 50 kms. For severe stunting and severe wasting, the effect is significant within 70 kms of the coast. Across the 
board, the magnitude of the effect decreases over distance, which aligns with expectations. Fig. 5 is also the visual representation of the 
commonly used “donut” regression method to ascertain robustness given displacement of DHS clusters (as noted above Burgert et al., 
2013; Michler et al., 2022 confirm that this displacement does not significantly influence estimates). If we were to exclude a “donut” 
area of 10 km consistent with displacement in rural areas of the Bangladesh DHS, Fig. 5 demonstrates that impacts of salinity still hold. 

5.2.5. The persistence of salinity impacts 
We document the persistence of in utero salinity exposure. To do so, we augment Eq. (1) with dummy variables indicating the 

child’s age band, from 0-6 months to 54–60 months, and interact them with the salinity exposure variable. Fig. 6 presents the result. 
We find suggestive evidence that salinity impacts on HAZ and stunted status of infants is small during the first year, increase in the 
second year peaking at 18–24 months, and then subside thereafter. The effects are mostly insignificant beyond age 4. This is consistent 
with evidence in Heady et al. (2018) that up to 23 months is when stunting is most likely to manifest itself. Similar patterns exist for 
WAZ and WAH where the magnitude of the effect peaks at 12–24 months and then declines. 

5.3. Comparing our findings to related studies 

We place our results in the context of the literature on early-life exposure to environmental shocks and child health. Our work is in 
line with the empirical evidence that climate shocks affect child nutrition (Dimitrova, 2021; Randell et al., 2020; Thiede and Gray, 
2020; van der Merwe et al., 2022). Further, the size of our main estimate is consistent with the 0.12 SD decrease in HAZ caused by a one 
SD change in mean PM 2.5 exposure in Singh et al. (2019).29 Le and Nguyen (2022a) study in utero exposure to the outbreak of desert 
locust swarms in Africa and Asia, and find that compared to unexposed children, those exposed prenatally to the outbreak have lower 
HAZ, WAH, and WAZ (by 0.16, 0.15 and 0.16 SD, respectively). These results are consistent with our findings using nonlinear 
specifications (Panels A and B in Table A3). They are also similar to the decline in HAZ, WAH, and WAZ caused by in utero exposure to 
droughts in Bangladesh (Le and Nguyen, 2022b). 

Focusing on the impact of heat exposure on children aged 3–36 months for five West African countries, Blom et al. (2022) finds that 
for each 100 h of lifetime exposure to temperatures above 35 ◦C relative to exposure to temperatures below 25 ◦C, HAZ falls by 

28 These results also give us confidence that there is little serial correlation in salinity measures.  
29 Note that these are the 2SLS (see for instance, Rosales-Rueda and Triyana (2019) who find that children exposed to fires in utero in Indonesia are 

on average 0.3 standard deviations shorter than unexposed children; and Rangel and Vogl (2019) for the impact of in utero exposure to agricultural 
fires in Brazil on health at birth). 
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0.17–0.30 SD, while the prevalence of stunting increases by 5.9 percentage points. The effects we document are similar. We conclude 
that our results are generally in line with previous studies that investigate the impact of early-life environmental shocks on anthro
pometric measures, and consistent with studies that demonstrate that income shocks in the first thousand days of life have lasting 
consequences (Baird et al., 2019; Barham et al., 2013). 

6. Heterogeneity, mechanisms, and adaptation 

6.1. Heterogeneous effects of salinity exposure 

We explore heterogeneity in the impacts of in utero exposure on health by child, maternal, and locational characteristics. Please see 
Section A.3 for a description of these results. 

6.2. Agricultural and biodiversity-related losses 

Significant reductions in agricultural yields, accompanied with ground water and soil quality degradation have profound impacts 
on livelihoods (Dasgupta et al., 2015; Khanom, 2016).30 We examine agricultural and bio-diversity related adaptation mechanisms, 
guided by the intuition that salinization of agricultural lands may have cascading effects on health via impacts on crop systems, 
aquaculture, livestock, homestead agro-forestry, and land use (Costinot et al., 2016; Waldinger, 2022). We use two complementary 
data sources that provide gridded agricultural/land-use variables in order to undertake this exercise. The first is the annual land cover 

Fig. 4. The effects of salinity on child health, controlling for salinity levels before conception and after birth. 
Notes: The data shows the coefficients of salinity exposure (at different times in the baseline specification). We augment Eq. (1) with controls for the 
average salinity levels 1–2 months before conception, 3–4 months before conception, in the month of birth, and one trimester after birth. The sample 
is restricted to DHS clusters that are within 40 km from the ocean. We use the same set of controls, spatial and temporal fixed-effects as reported in 
Table 2. Confidence intervals are reported at 90% level. The timing of exposure is shown on the horizontal axis, and corresponding point estimates 
are shown on the vertical axis. This falsification test is similar to Molina and Saldarriaga (2017) and Armand and Taveras (2022). 

30 This has caused aquaculture to boom over the past few decades as coastal communities adapt to increased salinity by relying more on shrimp 
cultivation. This in turn worsens the soil salinity problem further as brackish water invades surrounding areas, and leads to a fall in the number of 
indigenous rice varieties (Rahman et al., 2011). 
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classifications for the period 1993–2019 provided by the Copernicus Land Monitoring Service (CLMS) with a spatial resolution of 300 
m (0.003◦). These are consistent with the annual land cover maps from 1992 to 2015 produced by the ESA-CCI LC project (Defourny 
et al., 2017). Using the coordinates of each DHS cluster, we create multiple buffer zones of varying distances and count the total 
number of each land-use class within each buffer zone to track land-use pattern changes over space and time.31 As noted above, 
Figure A3 presents an example of the procedure for the 1999 clusters. The geolocation of clusters is then used to match birth histories 
with land-use patterns. 

We then examine how salinity exposure may drive land use decisions, aiming to shed light on the agricultural mechanism. To do so, 
we explain annual land use patterns from 1993 to 2019 for each 30 km buffer from the cluster’s center with ocean salinity, pH, average 
weather conditions, and a set of fixed-effects (including district FE, year FE, and district-year FE). Table 3 presents the results. We find 
that higher salinity levels are associated with less land used for irrigated crops and more for rainfed crops. This is in line with evidence 
in Shelley et al. (2016) and Chen et al. (2022), where coastal farmers fallow for the winter dry season (boro) and plant rainfed 

Fig. 5. Spatial spillovers of salinity exposure on child health. 
Notes: The panel shows the spatial spillover of in utero salinity impact on health outcomes by distance to the coastline. Each sub-panel represents one 
regression model, which include the interaction between salinity and distance bands indicating the distance between the cluster and the coastline. 
All regressions include child, mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of 
spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are 
weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence interval. 

31 We create buffer zones of 5 km, 10 km, 20 km and 30 km, but report results only for 30 km given space constraints. Further, to proxy for 
agricultural cultivated area, we use the IPCC classes representing rainfed cropland and irrigated cropland. To proxy for forestry area, we aggregate 
the IPCC classes representing tree cover (broad-leaved, needle-leaved, evergreen and deciduous). We also focus on the tree cover flooded with saline 
water, and on other land-use classes for shrub land, grassland, sparse vegetation, other bare areas, and water. For further details, see the corre
spondence between the IPCC land categories used for the change detection and the LCCS legend used in the land cover classes provided by the Land 
Cover Climate Change Initiative - Product User Guide v2. Issue 2.0. 
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agriculture in the wetter monsoon (Aman) season to cope with seasonal salinity exposure. The transition from winter irrigated to 
monsoon rainfed agriculture is often coupled with using salinity-resistant traditional rice varieties which have significantly lower 
yields (Shelley et al., 2016; Chen et al., 2022). We also find significant land use responses moving from forests to shrubland when 
facing higher salinity levels. Taken together, increasing salinity constrains farmers’ land use choices and deters the planting of 
profitable crops such as irrigated rice.32 The repercussions of higher salinity, such as making cultivation less feasible in the more 
profitable Boro dry-season and requiring a shift back to the Aman season, restricts farmers’ choices and potentially affects child health 
through impacts on earnings.33 

We augment Eq. (1) with additional land use mediators, including the share of land within a given buffer for rainfed crops, irrigated 
crops, forests, saline flooded forests (mangroves), wetland, shrubland, and urban settlement. Table 4 presents the results. There is a 
decrease in the magnitude of the salinity coefficient on HAZ after conditioning on land use patterns by 84% (the coefficient becomes 
insignificant). This suggests that land use is an important mediating factor for salinity’s effects on children’s health. 

To substantiate the above with more evidence that the agricultural channel is a plausible one explaining the salinity-child health 
nexus, we use the History Database of the Global Environment – HYDE 3.2 (Goldewijk et al., 2017) to build indicator variables to proxy 

Fig. 6. Persistence of salinity exposure through early childhood. 
Notes: The panel shows the persistence in utero salinity impact on health outcomes by age of children. Each sub-panel represents one regression 
model, which include the interaction between salinity and age bands indicating the age of the child at the time of the survey, from 0-6 months to 
54–60 months. All regressions include child, mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. 
The same set of spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are 
OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence interval. 

32 Rice cultivation is pivotal in Bangladesh, accounting for nearly half of rural employment (Islam et al., 2020). It is grown across three seasons: 
Aus, Aman, and Boro, where the latter two seasons are relatively the more important. Boro is characterized by its need for irrigation, as it occurs 
during the dry period. Due to advanced irrigation methods (shallow and deep tube wells) and high-yielding varieties, Boro rice tends to surpass 
Aman rice in yield and profitability (Shelley et al., 2016). Consequently, Boro rice cultivation has seen substantial growth in recent decades (Shelley 
et al., 2016).  
33 It is possible that there is amplified risk from drought for instance, when farmers are forced to rely on rainfed wet season farming. Thus, one 

climate-induced factor (salinity) forces cultivators to be more exposed to another climate-induced factor (droughts/rainfall uncertainty). We test 
whether in utero exposure to drought has additional significant impacts on child health in the presence of salinity. We find little evidence for this in 
our study sample. 
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Table 3 
The effects of salinity exposure on land use.   

Dependent Variables: 

Share of land within a given buffer for: 

rainfed cropland irrigated cropland forest saline flooded forest wetland shrubland urban settlement 

(1) (2) (3) (4) (5) (6) (7) 

annual salinity exposure 0.0071*** − 0.0225*** − 0.0005 0.0039*** − 0.0001*** 0.0091*** − 0.0013***  
(0.0012) (0.0030) (0.0010) (0.0007) (0.0000) (0.0018) (0.0002) 

annual pH exposure 0.4414*** − 0.4841 0.2131 0.4562*** 0.0188*** 1.1418*** − 0.2159***  
(0.1191) (0.3024) (0.1332) (0.1147) (0.0045) (0.2261) (0.0272) 

annual rainfall 0.0003*** − 0.0010*** − 0.0000 0.0002*** 0.0000 − 0.0001 − 0.0000  
(0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0001) (0.0000) 

annual humidity − 0.0014 0.0154*** − 0.0143*** − 0.0040*** − 0.0005*** − 0.0051*** − 0.0023***  
(0.0029) (0.0058) (0.0025) (0.0012) (0.0001) (0.0014) (0.0003) 

annual max temperature − 0.0182** 0.2034*** 0.0481*** − 0.0061 0.0018*** 0.0196*** − 0.0001  
(0.0071) (0.0190) (0.0068) (0.0043) (0.0003) (0.0065) (0.0009) 

annual min temperature − 0.0363*** 0.2370*** 0.0536*** − 0.0017 0.0013*** 0.0267*** − 0.0004  
(0.0089) (0.0211) (0.0092) (0.0055) (0.0004) (0.0078) (0.0012) 

annual dry temperature − 0.0109 − 0.3456*** − 0.1078*** 0.0177*** − 0.0021*** − 0.1200*** 0.0029  
(0.0200) (0.0294) (0.0206) (0.0068) (0.0007) (0.0168) (0.0032) 

Observations 16,536 16,536 16,536 16,536 16,536 16,536 16,536 
R-squared 0.6974 0.7911 0.6459 0.6106 0.6723 0.7830 0.8478 

Notes: This table shows the impact of annual oceanic and local weather variables on land use choices. Each observation represents a 30-km buffer 
zone centered around a cluster that is within 40 km from the ocean. Dependent variables are percentages of land within the 30-km buffer that are 
devoted to those land use categories. All independent variables are aggregated by calendar year to match with the temporal interval of the dependent 
variables. All regressions include district-year fixed-effects. Robust standard errors presented in parentheses, clustered at the DHS cluster level. ***p 
< 0.01, **p < 0.05, *p < 0.1. 

Table 4 
The effects of salinity exposure on child health conditioning on land use.   

Dependent Variables: 

HAZ Stunted Sev. Stunted WAH Wasted Sev. Wasted WAZ Underweight Sev. Unwt. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Sample of DHS Coastal Clusters Within 40 km 
salinity exposure − 0.004 0.001 0.008** − 0.026* 0.008** 0.005** − 0.021 0.006 0.000 
(in utero) (0.014) (0.005) (0.004) (0.014) (0.004) (0.002) (0.013) (0.005) (0.003) 
rainfed cropland 1.187* − 0.189 − 0.213 0.012 − 0.093 − 0.253*** 0.781 − 0.226 − 0.170  

(0.608) (0.215) (0.153) (0.517) (0.163) (0.082) (0.520) (0.210) (0.154) 
irrigated cropland 0.350 − 0.050 − 0.069 − 0.234 0.105* 0.019 0.075 0.041 − 0.044  

(0.217) (0.078) (0.065) (0.184) (0.053) (0.029) (0.177) (0.071) (0.052) 
forest 2.394*** − 0.521* − 0.688*** 0.813 − 0.160 − 0.375*** 2.038*** − 0.812*** − 0.380*  

(0.710) (0.273) (0.212) (0.653) (0.186) (0.096) (0.592) (0.251) (0.199) 
saline flooded forest 

(mangroves) 
0.062 0.060 − 0.145 0.212 − 0.006 − 0.095 0.320 − 0.133 − 0.206*  

(0.655) (0.240) (0.158) (0.529) (0.160) (0.066) (0.495) (0.199) (0.123) 
wetland − 21.338 4.942 − 0.466 16.989 − 5.426 0.610 − 2.308 − 2.362 − 2.696  

(16.145) (6.061) (4.636) (14.020) (4.007) (2.016) (13.332) (5.911) (3.811) 
shrubland − 1.095** 0.399** 0.334** − 0.323 0.094 0.274*** − 1.010 0.346* 0.341***  

(0.538) (0.201) (0.147) (0.664) (0.131) (0.090) (0.652) (0.206) (0.128) 
urban settlement 2.645 − 1.168 0.735 1.574 − 0.538 0.185 2.273 − 1.664 − 0.245  

(2.900) (1.125) (0.791) (2.971) (0.769) (0.425) (2.755) (1.057) (0.610) 
Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.326 0.279 0.232 0.170 0.152 0.168 0.272 0.222 0.186 

Notes: This table reports coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns 
(1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent 
variables in columns (2), (5), and (8) are binary variables that equal one if the child is stunted, wasted, and underweight, respectively, while in 
columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, respectively. 
The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first birth, a dummy variable 
that equals one if the mother has no education, a dummy variable that equals one if the father has no education, mother’s height, and the gender of the 
household head. Weather controls include min. and max. temp., rainfall (in logs), interactions between min. and max. temp. and log of rainfall, and 
humidity. We also control for the ocean’s pH levels. The land use variables here represent the share of land within a 30 km buffer from each cluster. All 
regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. We consider the sub-sample of DHS clusters that 
are within 40 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1. 
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for the intensity of agricultural activities. The database provides gridded time series of population and land use from 10,000 B.C to 
2017 A.D. The data is available for time intervals 100 years apart until 1700, then 10 years apart till 2000, and in 1-year intervals from 
2000 to 2017. We use the available data from 2000 to 2017 and process the geospatial files for the gridded land use data (available at 
the 0.083◦ by 0.083◦ resolution, or approximately 9 km × 9 km). We thus obtain annual data for total land used for grazing, for pasture, 
for total rainfed agricultural area, total rainfed agricultural area devoted to the production of rice, and total rainfed agricultural area 
for other crops (except rice), all measured in square km per grid cell.34 We then consider the heterogeneous effect of salinity on child 
health by the intensity of these agricultural activities. Fig. 7 reports the coefficients on salinity exposure when different sub-samples 
are used based on indicator variables for below or above median values for pasture area, grazing area, rice, and rainfed cultivated 
area.35 These results provide suggestive evidence that children born in clusters experiencing lower agricultural activities (below 
median) face more pronounced negative health effects. We note in Fig. 7 that the extent and intensity of rainfed agricultural land 
devoted to rice production and to other crops clearly drive the effects of salinity on child health, as coefficients on salinity exposure for 
“rice area” and “total rainfed area” are significant when the samples are restricted to children born in clusters experiencing below 
median agricultural activities in their year of birth. We conclude that the agricultural mechanism is important in explaining the 
harmful effects of salinity. 

6.3. Early childhood health investments 

We test whether the effect of salinity on child health is intensified or mitigated by compensating behaviors of parents (Almond and 
Mazumder, 2011). In Panel A of Table 5 we examine the impact of salinity on post-birth vaccinations. The coefficients are negative 
suggesting that increased exposure reduces early childhood investments. In results discussed below, we find that these negative im
pacts originate mainly in the relatively poorer households, which is suggestive of an income channel. Water and soil salinization lead to 
crop failure, destroying employment opportunities and resulting in lower agricultural incomes. This could hinder health-related in
vestments in both the prenatal and postnatal stages. Increased opportunity cost of maternal time (Bhalotra, 2010; Bharadwaj et al., 
2020) due to livelihood losses could also explain the fall in vaccination rates.36 

In Panel B of Table 5, we consider effects on the number of antenatal visits, prenatal care, medical assistance during delivery, and 
institutional delivery. In columns (1) and (2), we find that higher salinity reduces the number of antenatal visits and lowers the 
likelihood of receiving iron tablets during pregnancy. In columns (3) to (6), the dependent variable equals one if prenatal care and 
medical assistance at birth came from either a doctor or a nurse, respectively. Again, effects are negative. In column (7), “Delivery: at 
home” equals one if the mother reports that she gave birth at home. Greater salinity raises the likelihood of home birth. As we note 
below, these results mainly arise among the relatively poorer households (similar to Banerjee and Maharaj, 2020). 

Differences in parental investments in prenatal and postnatal healthcare drive part of the negative effects of in utero salinity 
exposure. In Table A7, we re-estimate the impact of salinity presented in Table 2, conditioning on these variables. We find that 
receiving antenatal checkups and prenatal assistance from doctors significantly improves children’s outcomes, and the effects of 
salinity become smaller and insignificant. 

Drawing on insights from Baird et al. (2011) regarding the significance of gender and birth order, we explore if the effects of salinity 
on health-seeking behavior differ along these dimensions. The results are reported in Table A8. We find that there are little differential 
impacts in Panel A. In Panel B, it is mostly the sub-sample of non-first-born children who are affected. 

6.4. Higher incidence of diseases 

Please see Section A.4 for a description of these results. 

6.5. Wealth 

We analyze the influence of wealth in mediating the impacts of salinity. The BDHS data has a wealth indicator that classifies 
households in quintiles of the wealth distribution across rounds, constructed using information on assets owned. Since agricultural 
losses in particular are likely to be concentrated among those who own land (the relatively richer households), we create a binary 
variable that equals one for households in the top two quintiles of wealth, zero otherwise (the alternate land use measure in BDHS has 
too many missing values). This indicator thus distinguishes the richest households in the distribution. We begin by investigating the 
effect of salinity exposure on these households and results are presented in Table A10. These show that salinity reduces the likelihood 

34 Note that this reduces the sample size since we cannot match the data for children in the BDHS who were born between 1994 and 1999 as annual 
data are only available from 2000 onwards.  
35 Fig. 7 provides illustrative evidence since these categories are themselves likely to reflect changes in land use patterns as a consequence of 

increased salinity and are thus not exogenous. But we have no clear “before” period in our sample since some level of salinity is likely to have been 
always present.  
36 The literature provides mixed evidence on health shocks, compensating behaviors, and parental investments. Molina and Saldarriaga (2017) 

finds negative effects of heat shocks on medical assistance at birth in the Andean region. Armand and Taveras (2022) does not observe any sig
nificant effect of ocean pH on antenatal and delivery investments. Adhvaryu et al. (2019) finds that health investments reduce the effects of in utero 
dust exposure in West Africa. 
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that households are in the richest quintiles of the wealth distribution. 
Given the strong effect of salinity on wealth, we expect that conditioning on the household wealth indicator in the main results of 

Table 2 will reduce the impact of salinity on outcomes. Results presented in Table A11 confirm this to be the case. Whereas the salinity 
coefficient was significant in eight of the nine outcomes in Table 2, it is significant in five outcomes in Table A11. Additionally, the 
household wealth indicator has strong impacts across all columns. 

To obtain better insights into the strength of the wealth mechanism, we apply sequential g-estimation and use a two-step method as 
outlined in Acharya et al. (2016). Our aim is to compare the average treatment effect (ATE) of higher in utero salinity exposure with the 
average controlled direct effect (ACDE).37 We use the non-linear specification in Panel A of Table A3 to implement this given ease of 
interpretation. The ACDE indicates what the effect of higher in utero levels would be had this mediator not changed, that is, we can 

Fig. 7. Heterogeneous effects of salinity exposure on child health, by intensity of agricultural activities. 
Notes: The panel shows the heterogeneous effects of salinity while in utero on health outcomes by intensity of agricultural activities as proxied by 
indicator variables for below or above sample median values for pasture area, grazing area, rice, and rainfed cultivated area. Estimates are from Eq. 
(1). Each coefficient is computed in separate regressions where the sample is restricted to the corresponding group. All regressions include child, 
mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial and temporal fixed- 
effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are weighted. Robust standard errors 
are clustered at the DHS cluster level. Confidence intervals are reported at 90% level. 

37 The key assumption to identify the ACDE is sequential unconfoundedness (Acharya et al., 2016). In our case, this implies that there should be no 
omitted variables for the effect of in utero salinity exposure on child health outcomes, conditional on the pre-treatment covariates. There should also 
be no omitted variables for the effect of wealth on the outcomes, conditional on salinity levels, pre-treatment controls, and intermediate 
confounders. 
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obtain the main effect on child outcomes after “de-mediating” the effect of wealth.38 

The ACDEs of in utero salinity net of wealth as a mediator are negative and significant (albeit of lower statistical significance when 
the outcome is HAZ), indicating that higher levels of salinity would still negatively impact child health outcomes even if there had been 
no change in wealth. Referring specifically to the difference between the ATEs and the ACDEs of in utero salinity, we find that 
approximately 23.5%, 12.6%, and 17.2% of the total effects are mediated by wealth when the outcomes of interest are HAZ, WAH, and 
WAZ, respectively. 

Finally, we analyze variations in parental investments, health-seeking behavior and prenatal care by wealth status. That is, we 
differentiate results presented in Table 5 by wealth. These results are shown in Table A12 and reveal that many of the significant results 
in Table 5 arise among the poorer households. 

7. Selective fertility and migration 

We address potential selection issues related to fertility, birth, and migration. We start by testing whether exposure to salinity 
induces gender imbalance. Studies have documented the long-term effects of early-life shocks involving boys’ culling and girls’ 
scarring (Catalano and Bruckner, 2006; Liu et al., 2014), and that the vulnerability of male fetuses leads to excess male mortality in 
response to negative health shocks (Sanders and Stoecker, 2015). In Table A13, we test whether salinity exposure affects the prob
ability that the child is male conditional on the set of controls in Eq. (1). In column (1) we consider whether in utero salinity exposure 
alone predicts the child’s gender. In column (2) we consider the impact of salinity while controlling for the salinity level in the month 
of conception. In column (3) we consider average exposure in the 2–9 months period during gestation, and in column (4) we include 

Table 5 
The impact of salinity on parental investments, health-seeking behavior, and prenatal care.   

(1) (2) (3) (4) (5) (6) (7)  

Panel A: Sample of DHS Coastal Clusters Within 40 km  
Early Investments in Child Health: Vaccination Received  
Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus 

salinity exposure − 0.006* − 0.011** − 0.004 − 0.005 − 0.011** − 0.011** − 0.012* 
(in utero) (0.003) (0.005) (0.003) (0.004) (0.005) (0.005) (0.007)         

Observations 7410 7389 7408 7408 7408 7384 4198 
R-squared 0.316 0.377 0.269 0.315 0.371 0.505 0.263  

Panel B: Sample of DHS Coastal Clusters Within 40 km  
Prenatal Care and At Birth Investments  
No. of antenatal 
visits 

Received iron 
tablet 

Prenatal care: Assistance at birth: Delivery: at 
home  Doctor Nurse Doctor Nurse 

salinity exposure − 0.139*** − 0.017** − 0.017*** − 0.006* − 0.008** − 0.013*** 0.018*** 
(in utero) (0.031) (0.007) (0.005) (0.003) (0.004) (0.005) (0.005)         

Observations 5857 3672 5856 5856 6845 6845 6836 
R-squared 0.364 0.339 0.370 0.180 0.283 0.325 0.286 
Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
District, year of birth, month of birth 

FE 
✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The child, mother, household 
controls include the child’s age (in months) and gender, child birth order, mother’s age at first birth, a dummy variable that equals to one if the mother 
has no education, a dummy variable that equals to one if the father has no education, mother’s height, and the gender of the household head. Weather 
controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of 
rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the 
DHS cluster level. Panel A considers the sub-sample of DHS clusters that are within 40 km of the ocean, and the dependent variables are coded as 1 if 
the child has received the type of vaccination presented in each column. In Panel B, we consider the same sample of coastal communities, and the 
dependent variable is continuous in column (1) for the number of antenatal visits. The other outcome variables in columns (2) to (7) are binary 
variables that equal to one if the mother received iron tablet during pregnancy, prenatal care, assistance at birth, and if delivery happened at home, 
respectively. ***p < 0.01, **p < 0.05, *p < 0.1. 

38 In the first stage, we regress the child health outcomes on in utero salinity exposure (measured as a dummy variable for above median exposure), 
the mediator, the pre-treatment controls, and the other covariates used as intermediate confounders. In the second stage, we regress a de-mediated 
version of the predicted child outcome on the treatment, and the pre-treatment covariates. The coefficient on salinity from this second stage 
regression is the estimated ACDE. 
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both salinity in the month of conception and in months 2–9 of gestation. In column (5) we consider a nonlinear specification that 
includes quartiles of salinity levels. None of the estimated coefficients are significant. 

Next, we consider survival bias. In this context we note that weaker children are more likely to die, indicating that those children 
who survive in our sample are positively selected (Dancer et al., 2008). This leads to a conservative bias in our results, that is, our 
estimates would be even larger in the absence of such positive selection. 

We next consider selection on parental characteristics. We demonstrate in Panels A and B of Table A14 that these characteristics do 
not correlate with salinity exposure (these tests are motivated by Buckles and Hungerman (2013) and Wilde et al. (2017)). In Panel A, 
the maternal characteristics considered are mother’s education (6 and 12 years or less of education) in columns (1) and (2), height in 
column (3), a dummy variable that equals one if she is currently working in column (4), and mother’s age. In Panel B, we consider 
mother’s age at the time of first delivery, the age difference with the household’s head, the gender and age of the household head, and 
father’s education (12 years or less of education). There are mostly no effects except in the case of mother’s height and father’s ed
ucation which we control for in all models. 

Finally, we check whether migration impacts our estimates. In the DHS, we observe how long mothers have been resident in the 
cluster (community). We employ two checks related to this information. First, we check whether the estimated salinity impact varies 
by length of residence. We do so by restricting the sample to children whose mothers have lived in the current place of residence for 
more than 3, 5, 10, 15, and 20 years.39 The results are presented in Panel A of Figure A6 and show that as compared to the main results 
in Table 2, the salinity impact is somewhat larger in samples who have been resident in the same location for longer lengths of time. But 
the fact that even households who have been resident in the area for relatively short time periods are affected suggests that selective 
out-migration (perhaps by richer households) overtime cannot explain all our findings. We do lose precision beyond 15 years, likely 
due to small sample size. 

Second, we check whether the estimated effect varies by the relative timing between conception and the mother’s move to the 
current community. Children whose mother moved to the current community after conception (5.3% of the sample) may not receive 
the full length of in utero period salinity exposure corresponding to the current community, potentially attenuating our estimates.40 

Panel B of Figure A6 presents these results. We find slightly larger effects for women who have lived in the community since before 
conception compared to the baseline estimate, although the difference is not statistically significant. 

8. Conclusion 

This study evaluates the harmful consequences of ocean salinity on the health of very young children in coastal Bangladesh and 
finds that in utero exposure to salinity significantly worsens health in early-life. The main reason for this is because rising salinity 
reduces agricultural potential – cultivation during the relatively more profitable Boro dry-season that requires irrigation (as compared 
to the rainfed Aman season) becomes more challenging given the increasing salt content of water used for irrigation. We employ geo- 
referenced data on ocean salinity merged with child health outcomes from 6 waves of the Bangladesh Demographic Health Surveys to 
analyze how variations in in utero salinity exposure affects children anthropometrics. Our strategy leverages exogenous variations in 
salinity over time and space (deviations from long run district-specific means), while controlling for the effects of district-specific 
seasonality and local trends. Our main results indicate that a one standard deviation increase in in utero salinity exposure decreases 
HAZ scores by 0.11 standard deviation (7.7% of the sample mean), while increasing the prevalence of stunting and severe stunting. 
Similar effects are obtained for WAH and WAZ. We underline the validity of our results with numerous robustness and specification 
checks. 

We demonstrate that higher salinity levels are associated with lower early childhood investments in prenatal and post-birth stages, 
mostly among poorer households. The absence of compensating behaviors suggests that parental investments in early-life are not 
mitigation strategies. Where we do find evidence for adaptation is in our analysis of agricultural land use using satellite-sourced in
formation. Here we document suggestive evidence that salinity affects the scale and intensity of agricultural activities, with possible 
deleterious consequences on incomes, food security, and nutritional intake. 

By leveraging exogenous variation in deviations of ocean salinity from long-run trends, our estimates essentially provide a short- 
run impact assessment. Long-run adjustments over elevated salinity levels could include migration, changing production technology 
and practices, or labor reallocation. Unfortunately, data constraints prevent us from directly quantifying long-run adaptation to salt 

39 The sample sizes are 4,292, 3,586, 2,295, 1449 and 919, if we restrict our sample to children whose mothers have lived in the current cluster for 
more than 3, 5, 10, 15, and 20 years, respectively.  
40 3.4% of the sample moved to the current community during pregnancy. 1.9% of the sample moved to the current community after birth. These 

are relatively small proportions and so we do not remove them from our baseline regression. 
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intrusion using long differences or other panel data techniques (e.g. Burke and Emerick, 2016; Cui, 2020; Mérel and Gammans, 2021; 
Liu et al., 2023). In the case of migration in particular, to the extent that our data allow, our study shows that at least in the medium run 
(10–15 years), salinity impacts do not differ between families who stayed and families who recently migrated in. 

Our findings have important implications for coastal communities in Bangladesh and in other low-lying countries across the world 
as climate change induced increases in salinity generate irreversible environmental changes. A clear policy implication is that addi
tional investment in the development of salinity-resistant crop varieties as well as small-scale desalination technologies to provide 
more livelihood options to farmers.41 Further providing health services to women closer to their places of residence and work may help 
to curtail some of the health costs to very young children that arise due to the increasing opportunity cost of mother’s time. Our results 
highlight that a comprehensive assessment of the effects of salinity is essential in order to increase resilience and to minimize cata
strophic fallouts on human health, income, and well-being. 
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APPENDIX 

Section A.1 

In Panel A of Table A2 in the Appendix, the results on child health outcomes remain robust when we use the sum of monthly salinity 
values (in logs) for the 9 months prior to birth as the source of variation. In Panel B, we retain average in utero salinity but also control 
for the number of months in which salinity exceeds the cluster’s mean (by at least one standard deviation) as a measure of intensity. 
The estimates for the main variable of interest are in the same ballpark as those from the main analysis. In Panel C, we use the standard 
deviation of salinity in the 9 months before birth as the variable of interest. The results show that higher salinity dispersion is also 
associated with deteriorating child health outcomes. We exclude the southwestern districts from the sample of vulnerable coastal areas 
in Panel D, given the exceptionally high levels of salinity there. The coefficients remain in the same ballpark. In Panel E, we assume a 
gestation period of 10 months; our main results mostly do not change. In Panel F, we retain in utero exposure as the treatment variable 

41 To overcome salinity challenges, communities have adopted strategies such as seasonal water storage, desalination, rainwater harvesting, crop 
rotation, and transitioning from rice cultivation to alternative crops or marine aquaculture. Hossain et al. (2018) suggests mechanisms for 
recharging groundwater resources, and emphasizes the need for coastal land zoning to strike a balance between shrimp farming and 
crop-agriculture. Khanom (2016) stresses the value of educating farmers on the adoption of salt-tolerant crops, and diversification. Dasgupta et al. 
(2018) spotlights government efforts in promoting salt-resistant rice varieties, underscoring farmer education on cultivation techniques and the 
importance of farmer adaptability. Mazumder and Kabir (2022) advocate for Climate-Smart Agriculture (CSA) techniques, and collaborative ini
tiatives among governmental agricultural services, NGOs, and rural advisories. Several recent reports highlight the urgency for Bangladesh to 
strengthen its protective polders in coastal areas (World Bank 2022). The Coastal Embankment Improvement Project (CEIP) stands out as a crucial 
effort to bolster the resilience of coastal regions against tidal floods, storm surges, and salinity intrusion. CEIP encourages community participation 
and involves strengthening embankments and developing hydraulic infrastructures. The $400 million project, funded jointly by the World Bank and 
other sources, was approved in 2013 with a projected completion date of December 2023. As a result of this important initiative, over 400,000 
people, half of them women, have been protected against tidal flooding and storm surges. By December 2021, the project had strengthened 249 km 
of embankments, constructed over 100 hydraulic structures, and cleared several kilometers of drainage channels. This has significantly increased 
agricultural productivity in the project areas. 
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while simultaneously including average salinity in the month and year of birth. We note that the salinity impact from the month and 
year of birth is not statistically significant by itself, nor does it change the magnitude of the estimated impact of in utero salinity 
exposure significantly.42 

As a falsification check that salinity intrusion and not differences in rainy/dry seasons drives our results, we restrict our sample to 
coastal communities living within 50–100 km from the coast, hypothesizing that these populations experience comparable rainy 
seasons to those on the coast but face lower salinity levels. Consistent with expectations, results in Panel G (which align with insights 
on the spatial spillovers of salinity in Fig. 5) are insignificant. In Panel H, we include cluster fixed-effects in our baseline models along 
with district-month and district-year of birth fixed-effects.43 We lose significance for two outcomes relative to our main results, likely 
because the inclusion of cluster fixed-effects in addition to district fixed-effects interacted with time fixed-effects reduces the iden
tifying variation (the estimated effects for WAZ and WAH are also somewhat larger). Panel I demonstrates the robustness of our 
findings when standard errors are clustered at the district level.44 We incorporate average temperature for each month of gestation in 
Panel J, alongside our set of climatic controls to find little difference. In Panel K of Table A2, we augment our baseline specification 
with additional ocean physics controls including quantiles of sea surface height, median sea surface temperature and ocean wind 
velocity, to check for robustness.45 This also serves to control for factors such as storm surges which can impact local livelihoods.46 In 
general, results on WAH and WAZ remain unaltered. We lose some precision in the case of HAZ, but the sign and magnitude of the 
coefficient remains about the same. 

In Table A3, we replace our variable of interest with binary variables constructed using the sample distribution of salinity to ac
count for non-linearities in effects. In Panel A, we condition on an indicator variable that equals one if salinity is greater or equal to the 
50th percentile value (corresponding to a salinity value of 11.3 psu). The results suggest that children exposed to above median in utero 
salinity levels experience worse health. In Panel B, we use quartiles of salinity exposure and include three indicator variables that each 
equal one if the child experienced in utero salinity levels equal to the second, third, or fourth quartile range of values.47 The results 
show that relative to the lowest quartile exposure (the omitted category), children in the third and fourth quartiles particularly have 
lower HAZ, WAH, and WAZ, and higher prevalence of severe stunting, wasting, and underweight. In Panel C, we exclude the 
southwestern districts from the sample in Panel B to show that results hold. 

Section A.2 

We disaggregate the exposure variable by trimester to understand whether there are gestational periods in which the effects of 
salinity are more pronounced. This involves estimating a variant of our baseline model in Eq. (1) where βSalinitycdmt is replaced with 
three variables for mean salinity exposure in the first, second, and third trimesters. The results are presented in Table A4. Stunting is 
mainly caused by exposure to salinity in the second trimester: a one SD increase in salinity decreases HAZ by 0.18 SDs, increases the 
chance of stunting by 5.7 percentage points, and the chance of severe stunting by 7.1 percentage points. Wasting is mainly caused by 
exposure to salinity in the first trimester (with mild impacts from exposure in the third trimester): a one SD increase in salinity exposure 
in the first trimester decreases WAH by 0.16 SDs. Results for WAZ suggest that second trimester exposure matters. The second trimester 
is when the fetus is in advanced stages of physical and neurological development while the third trimester is when most of the weight 
gain occurs. Impacts on HAZ and WAZ are thus consistent with this course of development. However, since exposure across the 
gestational cycle probably cannot be judged independently, we are reluctant to pinpoint the only trimester that matters significantly 

42 There is additional noise added however in the case of two of the three outcomes related to HAZ. But adding up the point estimates for in utero 
and the month and year of birth coefficients yields a total impact of salinity on HAZ that is of a similar magnitude (− 0.028) to our main specification 
(− 0.025). This is possible since we cannot control for day of birth, and so some children may be exposed for a relatively longer period of time to 
levels in their month of birth depending on the point in time when they are born. Furthermore, we considered another specification that conditions 
on the standardized measure of salinity and other controls where the standardization is with respect to the cluster-level means. However, this 
method soaks up all between cluster variation within upazilas. We also considered using mother fixed-effects to focus on the temporal variations in 
in utero salinity among children born to the same mother. We are unable to implement this given the substantial increase in the number of pa
rameters to be estimated (due to the large number of mothers in the sample) relative to sample size, similar to the issue we face in including cluster 
fixed-effects in this study.  
43 While potentially controlling for issues such as sorting, including more disaggregated levels of fixed-effects in cross-sectional data diminishes 

identifying variation. Following Balietti et al. (2022), which makes this point, Figure A4 plots the standard deviation for salinity with fixed-effects of 
different granularities. When cluster fixed-effects are included, the identifying variation drops by about four-fold. Thus, following Balietti et al. 
(2022), we include regional level fixed-effects (district-level) in the main specification.  
44 This addresses the fact that clustering standard errors at the level of the DHS cluster may create spatial correlation mechanically if nearby 

clusters are likely matched to the same unit of grid cell data for salinity. Since clustering at the higher level of districts does not change our results 
appreciably, mechanical spatial correlation is unlikely.  
45 We include dummy variables for the 20th, median, and 80th percentile of sea surface height.  
46 Only 7 tidal gauges across the Bangladeshi coast record storm surge data. The spatial variation is thus insufficient for our purposes. Instead, we 

proxy storm surge events using sea surface height, as we note above, to find that across different models, predictions at actual tidal gauges mea
surements are best at the median level of sea surface height (R2 is highest and equals 0.40 when using median sea surface height to predict 95th tidal 
gauge readings). We thus use this benchmark value (along with the 20th and 80th percentile values) of sea surface height in these checks.  
47 For the lowest quartile, salinity ≤9.3 psu, second quartile: 9.3–11.3 psu, third quartile: 11.3–15.4 psu, and for the top quartile: salinity ≥15.4 

psu. 
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for these outcomes. 

Section A.3 

As we note above, these analyses focus on the most vulnerable households living within 40 km of the ocean. Results are presented in 
Tables A5 and A6. In Panel A of Table A5, we estimate impacts by gender of the child which we use as a benchmark for several reasons. 
It could be that there exists gender-biased early childhood health investments by parents (Asadullah et al., 2021; Bharadwaj et al., 
2020) in favor of boys (a possibility that we explore below). Or the decline in income caused by progressive salinization could 
differentially impact prenatal care and health-seeking behavior, affecting girls’ health disproportionately (also explored below). It 
could also be that the relative vulnerability of male fetuses to adverse shocks leads healthier boys to survive to term and then to depict 
better health outcomes post-birth (Gualtieri and Hicks 1985; Kraemer 2000; Sanders and Stoecker 2015). We investigate below 
whether this is true in our sample by evaluating the association between salinity exposure and the probability that the child’s gender is 
male. Returning to the results, the estimates using sub-samples restricted to female children point to larger negative effects in many of 
the outcomes. 

In Panel B, we consider heterogeneous effects of salinity across birth order. We see that while salinity has a detrimental impact on 
all children, in general, children of higher parity are more negatively affected relative to first-born children. This result is likely due to 
intrafamily resource constraints such that when the number of children in the household increases, parental investments decrease 
(Becker and Tomes, 1976; Li et al., 2008).48 

We then use mother’s height as an indicator of mother’s health in Panel C. We split the sample by median mother’s height, and 
document evidence that children of relatively shorter mothers are more negatively impacted. In Panel D, we run separate regressions 
for the sample of children whose mothers work outside of the home versus those whose mothers are not engaged in this manner. We 
measure effects relatively more precisely mostly for children whose mothers do not work. Children of unemployed mothers are 
potentially more exposed to the health damages of salinity. Working mothers who are likely educated may have access to knowledge 
on how to protect their children, or have recourse to more effective mitigation strategies.49 

In Table A6, we consider sub-samples created based on location characteristics where population density and built-up area are used 
as proxies for the level of urbanization. In Panel A, we find that the response of outcomes to salinity is greater in areas with population 
density below the sample median. The results in Panel B, where we use total built-up area (measuring the number of towns, cities, and 
other buildings in squared km per grid cell), lend support to these findings.50 

In Figure A5, we consider whether children conceived in different times of the year are affected by salinity exposure differentially, 
given that during the monsoon season, precipitation attenuates salinity impacts. We focus on month of conception since it is usually the 
case that mothers are unaware of being pregnant, and so we are more confident that adaptive behaviors have not been adopted. Panel 
A of Fig. 3 shows that salinities levels are highest in the second quarter (Apr–Jun) and lower in the third quarter (Jul–Sep) when the 
monsoons arrive. Correspondingly, we find that for HAZ, stunted, WAZ and underweight in particular, detrimental effects are larger for 
children conceived in the second quarter relative to those conceived in the third quarter. The estimates for the other outcome measures 
are noisier. 

Section A.4 

We ascertain whether higher in utero salinity exposure affects the incidence of diseases (including fever, cough, and diarrhea). The 
outcome of interest in this case is a dummy variable that equals one if the child had diarrhea in the previous two weeks. Our focus on 
this variable is justified based on the evidence that diarrhea is particularly prevalent in children exposed to high salinity levels in 
coastal Bangladesh (Chakraborty et al., 2019). 

Results are reported in Table A9. In columns (1) and (4), we consider all the households in DHS clusters living within 40 km from 
the ocean. In columns (2) and (5), we restrict the sample to households belonging to the lower wealth quintiles while in columns (3) 
and (6), we report results for the sample restricted to households in the top two quintiles. The variable of interest (a dummy variable 
that takes a value of one if the child is exposed to an above median salinity level) is positive but not significant in column (1). It is 
significant when we restrict our analysis to households in the lower wealth quintiles implying that elevated salinity levels increase the 
incidence of diarrhea for poorer children. In columns (4) to (6), we introduce an interaction term between salinity exposure and child’s 
age in months to investigate whether the association persists as the child grows older. We find that children exposed to above median 
salinity levels have a higher likelihood of suffering from diarrhea, with a more pronounced effect again for poorer children. The 
coefficients on the interaction terms are negative and significant indicating that the association between above median salinity and 
diarrhea diminishes with age.   

48 We show that the negative effects of salinity on prenatal care and at birth investments are more pronounced for non-first born children below.  
49 The differences by gender of the child are not statistically significant. However, there is a consistent pattern in which the more vulnerable 

children (girls, those born later with relatively shorter and potentially uneducated mothers) are especially susceptible. Our reasoning in reporting 
coefficients by gender follows Rocha and Soares (2015).  
50 The data are available from HYDE 3.2, a data source on which we elaborate below. 
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Fig. A1. The nutritional status of children in Bangladesh 
Notes: Panel A shows the percentage of stunted children under five years of age at the upazila (sub-district) level in 2012 in Bangladesh, while Panel 
B shows the percentage of underweight children under five years of age at the upazila (sub-district) level in 2012. The data is available from the Food 
and Agriculture Organization (FAO), and uses the 2012 Undernutrition Maps of Bangladesh.  
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Fig. A2. Spatial distribution of ocean salinity exposure 1994-2019 
Note: Panel A (left) shows heatmaps of calculated average salinity level (in PSU) for each upazila (subdistrict) within 100 km to the coast over our 
sample period (1994–2019). Panel B (right) shows heatmaps of upazila-level deviation from the average district-level salinity level. Upazila-level 
salinity metric is averaged from salinity levels for DHS clusters within each cluster, calculated from inverse distance averaging the five closest 
oceanic salinity observation to each cluster. Gray areas are upazilas that are either more than 100 km away from the coast line or are not sampled by 
the DHS.  
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Fig. A3. Land-cover classifications 
Notes: This shows the land cover map for 1993, and the location of the DHS clusters as of 1999. We also show buffers of 5 km and 10 km drawn 
around each cluster to obtain an estimate of land cover use. Data citation: Defourny, P., Lamarche, C., Bontemps, S., De Maet, T., Van Bogaert, E., 
Moreau, I., Brockmann, C., Boettcher, M., Kirches, G., Wevers, J., Santoro, M., Ramoino, F., and Arino, O. (2017). Land Cover Climate Change 
Initiative - Product User Guide v2. Issue 2.  

Fig. A4. Fixed-effects and Treatment Variation of Ocean Salinity 
Note: This figure plots the empirical distributions of the salinity variable after including different levels of spatial and temporal fixed-effects. Five 
nested levels of fixed-effects are presented: No Fixed-effect, Year + Month FEs, District + Year + Month FEs, District by Year and Month FEs (the 
main specification), and Cluster + District by Year and Month FEs. All distributions are centered around zero. Standard deviation of these distri
butions are displayed in the legend area.     
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Fig. A5. The impacts of salinity exposure on child health by quarter of conception 
Notes: The panel shows the effect of in utero salinity on health outcomes by quarter of conception. Each sub-panel represents one regression model, 
which include the interaction between salinity and the quarter of the child’s conception, tracing back 9 months from the child’s month of birth. All 
regressions include child, mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of 
spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are 
weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence interval.  
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Fig. A6. The impact of salinity exposure by migration status 
Note: Panel A (top) plots salinity impacts by mother’s migration status. Each sub-panel include six regression models: the baseline estimate identical 
to that in Table 2, and five additional models each restricting the sample to include children whose mother have been living in the current com
munity for more than 3, 5, 10, 15, and 20 years. Panel B (bottom) plots salinity impacts by the timing of mother moved to the current community. 
Each sub-panel include four regression models: the baseline estimate identical to that in Table 2, and three additional models restricting the sample 
to include children whose mother moved to the current community before that child’s conception or after that child’s conception. All regressions 
include child, mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial and 
temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are weighted. Robust 
standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence interval.  

Table A1 
Double-lasso selection of oceanic and weather controls  

Variable Frequency Selected Probability Selected Correlation Coeff w/salinity 

(1) (2) (3)  

Ocean Chemistry 

Sea Surface Height 27 100% − 0.92 
Sea Surface Temperature 27 100% 0.79 
North Wind Velocity 18 67% − 0.05 
pH 12 44% − 0.29  

Weather 

Cumulative Rainfall 12 44% 0.23 
Average Humidity 6 22% − 0.15 
Maximum Temperature 6 22% − 0.04 
Minimum Temperature 3 11% 0.33 
Minimum Temperature * Cumulative Rainfall 1 4% 0.39 

Note: Double-Lasso selection on oceanic and weather variables on the 40 km-from-ocean sample. 27 double-Lasso models are estimated on 9 outcome 
variables (HAZ, stunted, severely stunted, WAH, wasted, severely wasted, WAZ, underweight, and severely underweight) using three different criteria 
of selection (cross-validated, adaptive, and plugin adaptive). Ocean salinity and household characteristics are always included in the double-lasso 
model. All variables are demeaned by the same set of saturated fixed-effects through extracting the residual from the regression y = 1 + fixed-ef
fects. Column 1 reports the number of times a variable is included in the double-Lasso selection; Column 2 reports the probability that a variable is 
selected out of 27 candidate models. Column 3 reports the empirical correlation between the variable and ocean salinity after demeaning.  
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Table A2 
The effects of salinity exposure on child health, using alternative measures of exposure and additional controls   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 
SD) 

(WAZ <3 
SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A:   Log accumulated levels of salinity exposure 
Sample of DHS Coastal Clusters Within 40 km    

accumulated salinity levels 
(logs) (past 9 months) 

− 0.332* 0.089 0.174*** − 0.347** 0.097** 0.093*** − 0.448*** 0.144** 0.082* 
(0.174) (0.056) (0.051) (0.148) (0.044) (0.029) (0.152) (0.064) (0.046) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.228 0.169 0.151 0.163 0.268 0.219 0.182 

Panel B:   Control for Number of Months Above Cluster Mean Salinity 
Sample of DHS Coastal Clusters Within 40 km   

salinity exposure (in utero) − 0.026* 0.007* 0.013*** − 0.027** 0.007* 0.006** − 0.035*** 0.011** 0.005 
(0.013) (0.004) (0.004) (0.011) (0.004) (0.002) (0.012) (0.005) (0.004) 

number of months with 
above cluster mean 

0.015 − 0.004 0.002 − 0.029 0.017** 0.008 − 0.012 0.006 0.013 
(0.036) (0.012) (0.010) (0.034) (0.008) (0.005) (0.031) (0.012) (0.008) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.227 0.169 0.151 0.163 0.268 0.219 0.182 

Panel C:   Standard Deviation of Salinity 
Sample of DHS Coastal Clusters Within 40 km    

standard deviation of 
salinity (for the 9 
months before birth) 

− 0.035* 0.007 0.018*** − 0.030* 0.005 0.010*** − 0.043** 0.014* 0.012** 
(0.021) (0.007) (0.006) (0.018) (0.006) (0.004) (0.018) (0.007) (0.005) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.277 0.227 0.168 0.150 0.162 0.267 0.218 0.182 

Panel D:   Sample of DHS Coastal Clusters Within 40 km (excluding southwestern districts)  
salinity exposure (in utero) − 0.028* 0.007 0.013*** − 0.026** 0.006* 0.007*** − 0.035*** 0.012** 0.007* 

(0.014) (0.005) (0.004) (0.012) (0.004) (0.002) (0.013) (0.005) (0.004) 
Observations 7152 7152 7152 7152 7152 7152 7152 7152 7152 
R-squared 0.328 0.279 0.235 0.171 0.155 0.173 0.274 0.219 0.192 

Panel E:   Assuming 10 Months of Gestation 
Sample of DHS Coastal Clusters Within 40 km    

salinity exposure (in utero - 
assume 10 months) 

− 0.025* 0.006 0.012*** − 0.030*** 0.008** 0.006*** − 0.036*** 0.012** 0.006 
(0.014) (0.004) (0.004) (0.012) (0.004) (0.002) (0.012) (0.005) (0.004) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.218 0.182 

Panel F:   Including Salinity at the Month and Year of Birth 
Sample of DHS Coastal Clusters Within 40 km    

salinity exposure (in utero) − 0.017 0.007 0.011*** − 0.037*** 0.009** 0.005** − 0.036*** 0.013** 0.008** 
(0.014) (0.005) (0.004) (0.012) (0.004) (0.002) (0.013) (0.005) (0.004) 

salinity exposure − 0.011 − 0.000 0.003 0.012 − 0.002 0.001 0.001 − 0.002 − 0.003 
(in month and year of birth) (0.009) (0.003) (0.002) (0.008) (0.003) (0.001) (0.007) (0.003) (0.002) 
Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.219 0.182 

Panel G:   Sample of DHS Clusters Between 50 km and 100 km    
salinity exposure (in utero) 0.035 0.001 − 0.001 0.015 − 0.005 − 0.002 0.032 − 0.008 0.006 

(0.025) (0.011) (0.008) (0.028) (0.008) (0.003) (0.026) (0.011) (0.007) 
Observations 3844 3844 3844 3844 3844 3844 3844 3844 3844 
R-squared 0.369 0.329 0.305 0.261 0.235 0.219 0.343 0.290 0.269 

Panel H:   Including Cluster Fixed-effects 
Sample of DHS Coastal Clusters Within 40 km    

salinity exposure (in utero) − 0.008 0.007 0.011 − 0.085*** 0.028*** 0.009* − 0.066** 0.010 0.024*** 
(0.034) (0.012) (0.009) (0.028) (0.010) (0.005) (0.029) (0.012) (0.008) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.406 0.363 0.305 0.263 0.232 0.249 0.359 0.303 0.259 

Panel I:   Standard Error Clustered at the District Level 
Sample of DHS Coastal Clusters Within 40 km    

salinity exposure (in utero) − 0.025 0.007* 0.013* − 0.029** 0.007* 0.006** − 0.035** 0.011* 0.005 
(0.019) (0.004) (0.006) (0.013) (0.004) (0.003) (0.014) (0.005) (0.004) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 

(continued on next page) 
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Table A2 (continued )  

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 
SD) 

(WAZ <3 
SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.218 0.182 

Panel J:   Including Average Temperature for Each Month of Gestation 
Sample of DHS Coastal Clusters Within 40 km   

salinity exposure (in utero) − 0.021 0.006 0.012*** − 0.023** 0.007** 0.005** − 0.029** 0.008* 0.004 
(0.013) (0.004) (0.004) (0.011) (0.003) (0.002) (0.012) (0.005) (0.004) 

Observations 7.920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.324 0.280 0.229 0.172 0.153 0.166 0.271 0.221 0.185 

Panel K:   Controlling for ocean chemistry     
Sample of DHS Coastal Clusters Within 40 km   

salinity exposure (in utero) − 0.019 0.005 0.012*** − 0.030** 0.009** 0.006** − 0.033*** 0.012** 0.006* 
(0.014) (0.005) (0.004) (0.013) (0.004) (0.002) (0.012) (0.005) (0.004) 

Observations 7.920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.227 0.169 0.151 0.163 0.268 0.219 0.182 

Notes: All regressions include the controls in the main regression analysis. The same set of spatial and temporal fixed-effects are used. Please see 
Table 1 for details on dependent variables and controls. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS 
cluster level. ***p < 0.01, **pq < 0.05, *p < 0.1.  

Table A3 
The effects of salinity exposure on child health using nonlinear specifications   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ < 3SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9)  

Panel A: Sample of DHS Coastal Clusters Within 40 km  
(Using below/above median sample value of salinity) 

salinity exposure − 0.145** 0.030 0.036** − 0.149*** 0.036** 0.039*** − 0.206*** 0.069*** 0.043*** 
(in utero) above 

median 
(0.062) (0.022) (0.018) (0.057) (0.018) (0.012) (0.054) (0.022) (0.016) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.226 0.169 0.151 0.164 0.268 0.219 0.183  

Panel B: Sample of DHS Coastal Clusters Within 40 km  
(Using quartiles of salinity) 

salinity exposure − 0.030 0.012 0.046** − 0.013 0.014 0.024** − 0.016 0.002 0.011 
(in utero) second 

quartile 
(0.064) (0.023) (0.020) (0.064) (0.020) (0.010) (0.059) (0.025) (0.018) 

salinity exposure − 0.171* 0.038 0.072*** − 0.156** 0.046* 0.059*** − 0.217*** 0.069** 0.052** 
(in utero) third 

quartile 
(0.087) (0.029) (0.027) (0.076) (0.025) (0.016) (0.076) (0.031) (0.023) 

salinity exposure − 0.159 0.059 0.117*** − 0.214** 0.066** 0.058*** − 0.246** 0.092** 0.049 
(in utero) fourth 

quartile 
(0.111) (0.038) (0.033) (0.100) (0.032) (0.020) (0.100) (0.042) (0.033) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.227 0.169 0.151 0.165 0.268 0.219 0.183  

Panel C: Sample of DHS Coastal Clusters Within 40 km  
(Using quartiles of salinity and excluding southwestern districts) 

salinity exposure 0.008 − 0.012 0.019 − 0.073 0.018 0.027** − 0.034 0.015 0.003 
(in utero) second 

quartile 
(0.071) (0.025) (0.022) (0.067) (0.020) (0.011) (0.064) (0.026) (0.019) 

salinity exposure − 0.101 0.006 0.056** − 0.154** 0.037 0.050*** − 0.172** 0.060** 0.038* 
(in utero) third 

quartile 
(0.079) (0.027) (0.026) (0.074) (0.023) (0.013) (0.071) (0.030) (0.021) 

salinity exposure − 0.214** 0.048 0.077** − 0.240** 0.051* 0.056*** − 0.305*** 0.111*** 0.066** 
(in utero) fourth 

quartile 
(0.106) (0.034) (0.033) (0.094) (0.030) (0.019) (0.097) (0.039) (0.029) 
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Table A3 (continued )  

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ < 3SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Observations 7152 7152 7152 7152 7152 7152 7152 7152 7152 
R-squared 0.328 0.279 0.234 0.171 0.155 0.174 0.275 0.220 0.193 

Notes: All regressions include child, mother, household controls, weather controls, and pH used in the main regression analysis. The same set of 
spatial and temporal fixed-effects are used too. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are 
weighted. Robust standard errors are clustered at the DHS cluster level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A4 
The effects of salinity exposure on child health by trimester   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ < 3SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9)  

Sample of DHS Coastal Clusters Within 40 km 

salinity exposure 0.009 − 0.004 − 0.001 − 0.022** 0.005* 0.003 − 0.008 0.003 0.001 
(in utero) 1st 

trimester 
(0.010) (0.004) (0.003) (0.010) (0.003) (0.002) (0.009) (0.004) (0.003) 

salinity exposure − 0.026** 0.008** 0.010*** − 0.004 − 0.001 − 0.001 − 0.020** 0.006 0.004 
(in utero) 2nd 

trimester 
(0.011) (0.004) (0.003) (0.009) (0.003) (0.001) (0.009) (0.004) (0.003) 

salinity exposure − 0.006 0.002 0.002 − 0.003 0.004 0.004*** − 0.006 0.002 0.000 
(in utero) 3rd 

trimester 
(0.010) (0.003) (0.003) (0.009) (0.003) (0.001) (0.008) (0.004) (0.003) 

Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.323 0.278 0.228 0.169 0.151 0.163 0.268 0.219 0.182 

Notes: All regressions include child, mother, household controls, weather controls, and pH used in the main regression analysis. The same set of 
spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are 
weighted. Robust standard errors are clustered at the DHS cluster level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A5 
The heterogeneous effects of salinity on child health   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ <3 SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Sub-Sample: Male Children Only 

salinity 
exposure 

− 0.001 0.004 0.001 − 0.040** 0.005 0.005** − 0.027* 0.006 0.006 

(in utero) (0.017) (0.006) (0.005) (0.016) (0.005) (0.002) (0.015) (0.007) (0.004) 
Observations 3933 3933 3933 3933 3933 3933 3933 3933 3933  

Sub-Sample: Female Children Only 

salinity 
exposure 

− 0.033* 0.008 0.022*** − 0.024 0.012** 0.008** − 0.040*** 0.014** 0.007 

(in utero) (0.018) (0.006) (0.005) (0.016) (0.005) (0.003) (0.015) (0.007) (0.005) 
Observations 3904 3904 3904 3904 3904 3904 3904 3904 3904 
Panel B: Sub-Sample: First Born Children Only 

salinity 
exposure 

− 0.026 0.008 0.002 − 0.017 0.013* 0.008** − 0.031 0.005 0.002 

(in utero) (0.026) (0.010) (0.007) (0.023) (0.007) (0.004) (0.021) (0.009) (0.006) 
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Table A5 (continued )  

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ <3 SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Observations 2411 2411 2411 2411 2411 2411 2411 2411 2411  
Sub-Sample: Non-First Born Children 

salinity 
exposure 

− 0.027* 0.006 0.015*** − 0.035*** 0.007* 0.007*** − 0.041*** 0.014** 0.010** 

(in utero) (0.015) (0.005) (0.005) (0.013) (0.004) (0.003) (0.013) (0.006) (0.004) 
Observations 5429 5429 5429 5429 5429 5429 5429 5429 5429 
Panel C: Sub-Sample: Mother’s height (below median) 

salinity 
exposure 

− 0.012 0.006 0.011** − 0.050*** 0.006 0.006** − 0.041*** 0.009 0.009** 

(in utero) (0.018) (0.006) (0.005) (0.017) (0.004) (0.003) (0.015) (0.006) (0.004) 
Observations 3899 3899 3899 3899 3899 3899 3899 3899 3899  

Sub-Sample: Mother’s height (above median) 

salinity 
exposure 

− 0.028 0.007 0.013** − 0.015 0.009* 0.005* − 0.028 0.011 0.001 

(in utero) (0.019) (0.006) (0.006) (0.016) (0.005) (0.003) (0.017) (0.008) (0.006) 
Observations 3940 3940 3940 3940 3940 3940 3940 3940 3940 
Panel D: Sub-Sample: Working Mothers 

salinity 
exposure 

− 0.036 0.023** 0.012 − 0.025 0.012 0.010* − 0.038 0.018 − 0.001 

(in utero) (0.032) (0.010) (0.009) (0.030) (0.008) (0.005) (0.027) (0.013) (0.008) 
Observations 1485 1485 1485 1485 1485 1485 1485 1485 1485  

Sub-Sample: Non-Working Mothers 

salinity 
exposure 

− 0.028* 0.005 0.014*** − 0.022* 0.006 0.005* − 0.033** 0.009 0.006 

(in utero) (0.016) (0.005) (0.004) (0.013) (0.004) (0.003) (0.014) (0.006) (0.004) 
Observations 6305 6305 6305 6305 6305 6305 6305 6305 6305 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in 
separate regressions. The dependent variables in columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for- 
age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, 
wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely 
wasted, and severely underweight, respectively. The child, mother, household controls include the child’s age (in months) and gender, child birth 
order, mother’s age at first birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father 
has no education, mother’s height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in 
logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All 
regressions are OLS, are weighted, and include the same set of fixed-effects included in Eq. (1). Robust standard errors are clustered at the DHS cluster 
level. We consider DHS clusters within 40 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A6 
The heterogeneous effects of salinity on child health, based on locational characteristics   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 SD) (HAZ <3 SD)  (WAH <2 SD) (WAH <3 SD)  (WAZ <2 SD) (WAZ <3 SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A Sub-Sample: Population Density (Below Median) 

salinity 
exposure 

− 0.026 0.004 0.014** − 0.027* 0.002 0.006* − 0.036** 0.004 0.007 

(in utero) (0.018) (0.006) (0.006) (0.015) (0.004) (0.003) (0.015) (0.006) (0.006)  
Sub-Sample: Population Density (Above Median) 

salinity 
exposure 

− 0.022 0.009 0.006 − 0.031 0.006 0.010** − 0.032 0.017 0.004 

(in utero) (0.026) (0.010) (0.007) (0.028) (0.008) (0.005) (0.027) (0.011) (0.006) 
Panel B Sub-Sample: Built-Up Areas (Below Median) 
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Table A6 (continued )  

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 SD) (HAZ <3 SD)  (WAH <2 SD) (WAH <3 SD)  (WAZ <2 SD) (WAZ <3 SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

salinity 
exposure 

− 0.036* 0.007 0.015** − 0.030* 0.010* 0.008** − 0.045** 0.008 0.008 

(in utero) (0.020) (0.006) (0.006) (0.016) (0.005) (0.003) (0.018) (0.007) (0.005)  
Sub-Sample: Built-Up Areas (Above Median) 

salinity 
exposure 

0.027 − 0.016* − 0.001 0.000 0.003 0.004 0.019 − 0.015 0.002 

(in utero) (0.029) (0.010) (0.008) (0.034) (0.011) (0.005) (0.030) (0.011) (0.007) 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in 
separate regressions. The dependent variables in columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for- 
age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, 
wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely 
wasted, and severely underweight, respectively. The child, mother, household controls include the child’s age (in months) and gender, child birth 
order, mother’s age at first birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father 
has no education, mother’s height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in 
logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All 
regressions are OLS, are weighted, and include the same set of fixed-effects included in Eq. (1). Robust standard errors are clustered at the DHS cluster 
level. We consider DHS clusters within 40 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A7 
The effects of salinity exposure on child health controlling for prenatal care and at birth investments   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 SD) (WAZ < 3SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

salinity exposure − 0.017 0.001 0.007 − 0.026 0.007 0.004 − 0.028* 0.003 0.005 
(in utero) (0.016) (0.006) (0.005) (0.017) (0.005) (0.003) (0.015) (0.007) (0.005) 
no. of antenatal visits 0.055*** − 0.013*** − 0.007* 0.034** − 0.003 − 0.001 0.057*** − 0.013*** − 0.005*  

(0.015) (0.005) (0.004) (0.014) (0.004) (0.002) (0.013) (0.005) (0.003) 
received iron tablet − 0.108* 0.014 0.013 − 0.088 0.023 0.014* − 0.115** 0.038* 0.023  

(0.065) (0.021) (0.018) (0.055) (0.015) (0.008) (0.052) (0.022) (0.016) 
prenatal care: doctor 0.234*** − 0.075*** − 0.058*** 0.063 − 0.030* − 0.021** 0.167*** − 0.064*** − 0.054***  

(0.073) (0.024) (0.020) (0.058) (0.017) (0.010) (0.063) (0.024) (0.017) 
prenatal care: nurse 0.035 − 0.025 − 0.003 0.022 − 0.012 0.000 0.038 − 0.078*** − 0.016  

(0.093) (0.033) (0.022) (0.077) (0.021) (0.013) (0.076) (0.030) (0.019) 
assistance: doctor 0.141 − 0.058 0.022 − 0.014 0.002 0.001 0.095 0.013 − 0.017  

(0.097) (0.038) (0.026) (0.098) (0.026) (0.014) (0.092) (0.036) (0.025) 
assistance: nurse 0.107 − 0.029 − 0.033 0.129 − 0.000 0.008 0.121 − 0.024 0.019  

(0.090) (0.034) (0.024) (0.081) (0.022) (0.010) (0.076) (0.031) (0.022) 
delivery: at home 0.034 − 0.008 0.009 − 0.084 0.032 0.003 − 0.041 0.061** 0.027  

(0.073) (0.027) (0.020) (0.062) (0.020) (0.009) (0.062) (0.027) (0.019) 
Observations 3663 3663 3663 3663 3663 3663 3663 3663 3663 
R-squared 0.411 0.349 0.297 0.235 0.219 0.175 0.353 0.293 0.240 
Child, mother, 

household controls 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control 

(pH) 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, 
month of birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of 
birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth 
FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in 
columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. 
Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, 
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while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, 
respectively. The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first birth, a 
dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother’s 
height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction 
between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and 
are weighted. Robust standard errors are clustered at the DHS cluster level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A8 
The impact of salinity on health investments, health-seeking behavior, and prenatal care, by gender and birth order   

(1) (2) (3) (4) (5) (6) (7)  

Panel A: Sample of DHS Coastal Clusters Within 40 km  
Early Investments in Child Health: Vaccination Received  
Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus  

Male Children Only 

salinity exposure − 0.007* − 0.012** − 0.004 − 0.004 − 0.011** − 0.015** − 0.008 
(in utero) (0.004) (0.005) (0.004) (0.004) (0.005) (0.006) (0.010)  

Female Children Only 

salinity exposure − 0.006 − 0.010* − 0.006 − 0.006 − 0.011* − 0.006 − 0.020** 
(in utero) (0.004) (0.006) (0.004) (0.004) (0.006) (0.007) (0.008)  

First Born Children Only 

salinity exposure − 0.008* − 0.015** − 0.009** − 0.009* − 0.016** − 0.010 − 0.004 
(in utero) (0.004) (0.007) (0.004) (0.005) (0.007) (0.007) (0.012)  

Non-First Born Children Only 

salinity exposure − 0.006 − 0.009* − 0.003 − 0.004 − 0.010* − 0.014** − 0.014* 
(in utero) (0.004) (0.005) (0.004) (0.004) (0.005) (0.006) (0.007)  

Panel B: Sample of DHS Coastal Clusters Within 40 km  
Prenatal Care and At Birth Investments  

No. of antenatal visits Received iron tablet Prenatal care: Assistance at birth: Delivery: at home   
Doctor Nurse Doctor Nurse   

Male Children Only 

salinity exposure − 0.140*** − 0.012 − 0.019** − 0.002 − 0.009* − 0.017** 0.020*** 
(in utero) (0.043) (0.011) (0.007) (0.005) (0.005) (0.006) (0.007)  

Female Children Only 

salinity exposure − 0.150*** − 0.025** − 0.017*** − 0.009** − 0.006 − 0.009 0.015** 
(in utero) (0.039) (0.011) (0.007) (0.005) (0.005) (0.006) (0.007)  

First Born Children Only 

salinity exposure − 0.183*** − 0.001 − 0.011 − 0.005 0.001 − 0.012 0.025** 
(in utero) (0.057) (0.016) (0.010) (0.007) (0.008) (0.011) (0.011)  

Non-First Born Children Only 

salinity exposure − 0.146*** − 0.022*** − 0.021*** − 0.006* − 0.010** − 0.014*** 0.020*** 
(in utero) (0.035) (0.008) (0.006) (0.004) (0.004) (0.005) (0.005) 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in 
separate regressions. The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first 
birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, 
mother’s height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the 
interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions 
are OLS, are weighted, and include the same set of fixed-effects included in Eq. (1). Robust standard errors are clustered at the DHS cluster level. Panel 
A considers the sub-sample of DHS clusters that are within 40 km of the ocean, and the dependent variables are coded as 1 if the child has received the 
type of vaccination presented in each column. In Panel B, we consider the same sample of coastal communities, and the dependent variable is 
continuous in column (1) for the number of antenatal visits. The other outcome variables in columns (2) to (7) are binary variables that equal to one if 
the mother received iron tablet during pregnancy, prenatal care, assistance at birth, and if delivery happened at home, respectively. ***p < 0.01, **p 
< 0.05, *p < 0.1.  

Table A9 
The Effect of Salinity Exposure During Pregnancy on the Incidence of Diarrhea   

Dependent Variable: Child had diarrhea in the previous 2 weeks 

All Lower wealth quintiles Top two All Lower wealth quintiles Top two  

wealth quintiles  wealth quintiles 

(1) (2) (3) (4) (5) (6)   

Sample of DHS Coastal Clusters Within 40 km  

salinity exposure 0.016 0.028* − 0.004 0.040** 0.054** 0.037 

(continued on next page) 
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Table A9 (continued )  

Dependent Variable: Child had diarrhea in the previous 2 weeks 

All Lower wealth quintiles Top two All Lower wealth quintiles Top two  

wealth quintiles  wealth quintiles 

(1) (2) (3) (4) (5) (6) 

(in utero) above median (0.013) (0.015) (0.022) (0.019) (0.023) (0.031) 
age of child (months) − 0.001*** − 0.000 − 0.001*** − 0.000 0.000 − 0.001*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
salinity exposure x age of child    − 0.001** − 0.001* − 0.001*     

(0.000) (0.001) (0.001) 
Observations 7917 4924 2930 7917 4924 2930 
R-squared 0.138 0.194 0.294 0.139 0.194 0.295 
Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ 
Weather controls ✓ ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ 
District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 
Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 
District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 
District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients on a dummy variable that takes a value of one if the child had above median in utero salinity exposure, on the 
child’s age (in months), and on the interaction between these two variables. The dependent variable in all columns is a dummy variable that equals to 
one if it was reported, at the time of the survey, that the child had diarrhea during the past two weeks. In columns (1) and (4), we consider all 
households in our sample. In columns (2) and (5), we restrict the sample to households belonging to the lower wealth quintiles while in columns (3) 
and (6), only households belonging to the top two wealth quintiles are considered. The child, mother, household controls include the child’s age (in 
months) and gender, child birth order, mother’s age at first birth, a dummy variable that equals to one if the mother has no education, a dummy 
variable that equals to one if the father has no education, mother’s height, and the gender of the household head. Weather controls include minimum 
and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also 
control for the ocean’s pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. We consider 
the sub-sample of DHS clusters that are within 40 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A10 
The effects of salinity exposure on wealth   

Dependent Variable: 

Top Two Wealth Quintiles 

(1)  

Sample of DHS Coastal Clusters Within 40 km 
salinity exposure − 0.053*** 
(in utero) (0.007) 
Observations 7978 
R-squared 0.284 
Weather controls ✓ 
Ocean chemistry control (pH) ✓ 
District, year of birth, month of birth FE ✓ 
Year of birth x month of birth FE ✓ 
District x month of birth FE ✓ 
District x year of birth FE ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months 
prior to birth). The dependent variable in column (1) is a binary variable that equal to one if the 
household is in the top two wealth quintiles. Weather controls include minimum and maximum tem
perature, rainfall (in logs), the interaction between minimum and maximum temperature and log of 
rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and are 
weighted. Robust standard errors are clustered at the DHS cluster level. We consider the sub-sample of 
DHS clusters that are within 40 km of the ocean. ***p < 0.01, **p < 0.05, *p < 0.1.  
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Table A11 
The effects of salinity exposure on child health conditional on wealth quintiles   

Dependent Variables: 

HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely   

Stunted   Wasted   Underweight  

(HAZ <2 
SD) 

(HAZ <3 
SD)  

(WAH <2 
SD) 

(WAH <3 
SD)  

(WAZ <2 
SD) 

(WAZ <3 
SD) 

(1) (2) (3) (4) (5) (6) (7) (8) (9)  

Sample of DHS Coastal Clusters Within 40 km 

salinity exposure − 0.007 0.001 0.009** − 0.023* 0.006* 0.006** − 0.021* 0.006 0.003 
(in utero) (0.013) (0.004) (0.004) (0.012) (0.004) (0.002) (0.012) (0.005) (0.004) 
top two highest wealth 

quintiles 
0.438*** − 0.145*** − 0.098*** 0.135*** − 0.038*** − 0.010* 0.348*** − 0.121*** − 0.056***  

(0.042) (0.015) (0.011) (0.042) (0.011) (0.006) (0.041) (0.017) (0.010) 
Observations 7920 7920 7920 7920 7920 7920 7920 7920 7920 
R-squared 0.337 0.290 0.237 0.171 0.153 0.163 0.281 0.228 0.186  

Child, mother, 
household controls 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control 

(pH) 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, 
month of birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of 
birth FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth 
FE 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in 
columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. 
Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, 
while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, 
respectively. The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first birth, a 
dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother’s 
height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction 
between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and 
are weighted. Robust standard errors are clustered at the DHS cluster level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A12 
The impact of salinity on health investments, health-seeking behavior, and prenatal care, by wealth quintile   

(1) (2) (3) (4) (5) (6) (7)  

Panel A: Sample of DHS Coastal Clusters Within 40 km  
Early Investments in Child Health: Vaccination Received  

Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus  
Sample: in lower wealth quintiles 

salinity exposure − 0.009** − 0.013** − 0.004 − 0.006 − 0.013* − 0.018*** − 0.016** 
(in utero) (0.004) (0.006) (0.004) (0.005) (0.006) (0.006) (0.008)  

Sample: top two wealth quintiles 

salinity exposure 0.002 − 0.000 − 0.001 − 0.000 − 0.002 0.007 0.005 
(in utero) (0.004) (0.006) (0.005) (0.004) (0.006) (0.006) (0.011)  

Panel B: Sample of DHS Coastal Clusters Within 40 km  
Prenatal Care and At Birth Investments  

No. of antenatal visits Received iron tablet Prenatal care: Assistance at birth: Delivery: at home  
Doctor Nurse Doctor Nurse  

Sample: in lower wealth quintiles 

salinity exposure − 0.086*** − 0.017* − 0.012* − 0.009** − 0.002 − 0.004 0.007 
(in utero) (0.029) (0.010) (0.007) (0.003) (0.003) (0.004) (0.004)  

Sample: top two wealth quintiles 

salinity exposure − 0.170** − 0.002 − 0.007 − 0.013 0.004 − 0.005 0.011 
(in utero) (0.075) (0.015) (0.011) (0.008) (0.011) (0.011) (0.012) 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in 
separate regressions. The child, mother, household controls include the child’s age (in months) and gender, child birth order, mother’s age at first 
birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, 
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mother’s height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the 
interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions 
are OLS, are weighted, and include the same set of fixed-effects included in Eq. (1). Robust standard errors are clustered at the DHS cluster level. Panel 
A considers the sub-sample of DHS clusters that are within 40 km of the ocean, and the dependent variables are coded as 1 if the child has received the 
type of vaccination presented in each column. In Panel B, we consider the same sample of coastal communities, and the dependent variable is 
continuous in column (1) for the number of antenatal visits. The other outcome variables in columns (2) to (7) are binary variables that equal to one if 
the mother received iron tablet during pregnancy, prenatal care, assistance at birth, and if delivery happened at home, respectively. ***p < 0.01, **p 
< 0.05, *p < 0.1.  

Table A13 
The effects of salinity exposure on child’s gender   

Dependent Variable: Probability that the Child is Male 

(1) (2) (3) (4) (5)  

Sample of DHS Coastal Clusters Within 40 km 
salinity exposure − 0.001 − 0.003    
(in utero) (0.004) (0.006)    
salinity exposure  0.002  0.002  
(in month of conception)  (0.004)  (0.004)  
salinity exposure   − 0.001 − 0.003  
(2–9 months during gestation)   (0.004) (0.005)        

salinity exposure     0.018 
(in utero) second quartile     (0.028)       

salinity exposure     0.001 
(in utero) third quartile     (0.031)       

salinity exposure     − 0.024 
(in utero) fourth quartile     (0.040) 
Observations 7920 7920 7920 7920 7920 
R-squared 0.131 0.131 0.131 0.131 0.131 
Child, mother, household controls ✓ ✓ ✓ ✓ ✓ 
Weather controls ✓ ✓ ✓ ✓ ✓ 
Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ 
District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ 
Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ 
District x month of birth FE ✓ ✓ ✓ ✓ ✓ 
District x year of birth FE ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the impact of salinity on the probability that the child is male. The dependent variable is a dummy variable that equals to one 
if the child is male. The child, mother, household controls include the child’s age (in months), child birth order, mother’s age at first birth, a dummy 
variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother’s height, and the 
gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum 
and maximum temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and are weighted. 
Robust standard errors are clustered at the DHS cluster level. We use the sub-sample of DHS clusters that are within 40 km of the ocean.***p < 0.01, 
**p < 0.05, *p < 0.1.  

Table A14 
The Effects of Salinity Exposure on Parental Characteristics   

Dependent Variables: 

mother’s education mother’s height mother 
employed 

mother’s current age 

≤ 6 years ≤ 12 years 

(1) (2) (3) (4) (5) 

Panel A Sample of DHS Coastal Clusters Within 40 km 
salinity exposure 0.001 0.001 0.103* − 0.002 0.080 
(in utero) (0.006) (0.002) (0.061) (0.005) (0.053) 
Observations 7978 7978 7933 7978 7978 
R-squared 0.144 0.100 0.126 0.211 0.148 
Panel B (1) (2) (3) (4) (5)  

mother ’s age at 
delivery 

age difference with 
head 

gender of HH 
head 

age of HH head father’s education ( ≤ 12 
years)  

salinity exposure 0.057 0.028 0.001 0.108 0.005** 
(in utero) (0.049) (0.159) (0.004) (0.150) (0.002) 
Observations 7978 7978 7978 7978 7978 
R-squared 0.130 0.141 0.170 0.137 0.121 
Child, mother, household controls ⨯ ⨯ ⨯ ⨯ ⨯ 
Weather controls ✓ ✓ ✓ ✓ ✓ 

(continued on next page) 
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Table A14 (continued )  

Dependent Variables: 

mother’s education mother’s height mother 
employed 

mother’s current age 

≤ 6 years ≤ 12 years 

(1) (2) (3) (4) (5) 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ 
District, year of birth, month of 

birth FE 
✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ 
District x month of birth FE ✓ ✓ ✓ ✓ ✓ 
District x year of birth FE ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) on parental characteristics. In 
Panel A, the dependent variables in columns (1) and (2) are binary variables that equal to one if the mother has 6 and 12 years or less of education, 
respectively. The dependent variables in columns (3) and (5) are continuous. The dependent variable in column (4) is a binary variable that equals to 
one if the mother is currently working. In Panel B, the dependent variables in columns (1), (2), and (4) are continuous. In column 3, we use a dummy 
variable that equals to one if the household head is male, and in column (5), the dependent variable equals to one if the father has 12 years or less of 
education. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum 
temperature and log of rainfall, and humidity. We also control for the ocean’s pH levels. All regressions are OLS and are weighted. Robust standard 
errors are clustered at the DHS cluster level. We consider the sub-sample of DHS clusters that are within 40 km of the ocean. ***p < 0.01, **p < 0.05, 
*p < 0.1. 
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