
Bio-ORACLE v3.0. Pushing marine data layers to the CMIP6 Earth system 

models of climate change research 

Jorge Assis1,2*, Salvador Jesús Fernández Bejarano3, Vinícius W.  Salazar4, Lennert Schepers3, Lidiane 

Gouvêa1, Eliza Fragkopoulou1, Frederic Leclercq3, Bart Vanhoorne3, Lennert Tyberghein3, Ester A. 

Serrão1, Heroen Verbruggen5†, Olivier De Clerck6† 

 

1 Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Faro, Portugal 

2 Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway 

3 Flanders Marine Institute, Ostend, Belgium 

4 Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, 

Melbourne, Australia. 

5 School of BioSciences, University of Melbourne, Parkville, Australia 

6 Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium  

 

* Corresponding author (jorgemfa@gmail.com) 

† Shared senior authorship 

 

 

Acknowledgements 

This work was funded by (1) the Horizon Europe Framework Programme through project 

MPAEurope (HORIZON-CL6-2021-BIODIV-01-12), (2) the Portuguese National Funds from FCT - 

Foundation for Science and Technology through projects UIDB/04326/2020 

(DOI:10.54499/UIDB/04326/2020), UIDP/04326/2020 (DOI:10.54499/UIDP/04326/2020), 

LA/P/0101/2020 (DOI:10.54499/LA/P/0101/2020), PTDC/BIA-

CBI/6515/2020(DOI:10.54499/PTDC/BIA-CBI/6515/2020), the EU BiodivRestore-253 (FCT: 

DivRestore/0013/2020), the Individual Call to Scientific Employment Stimulus 

2022.00861.CEECIND/CP1729/CT0003 (DOI:10.54499/2022.00861.CEECIND/CP1729/CT0003) and 

the fellowship SFRH/BD/144878/2019, (3) the European Marine Biological Resource Centre Belgium 

(GOH3817N, I001621N]) and (4) the Research Foundation - Flanders (FWO) as part of the Belgian 

contribution to LifeWatch (I002021N) and EMBRC (I001621N). Additional support was received by 

the University of Melbourne and computational resources provided through the Melbourne 

Research Cloud. The authors acknowledge the Copernicus Marine Environment Monitoring Service 

(https://data.marine.copernicus.eu/products), GlobColour (http://globcolour.info; data developed, 



validated, and distributed by ACRI-ST, France) and the World Climate Research Programme’s 

Working Group on Coupled Modelling, which is responsible for CMIP. For CMIP, the U.S. 

Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides 

coordinating support and led development of software infrastructure in partnership with the Global 

Organization for Earth System Science Portals. 

 

Biosketch 

Jorge Assis is an associate researcher at the Centre of Marine Sciences, University of Algarve 

(Portugal), where he leads the Biodiversity Data Sciences research group. He is also a professor at 

Nord University (Norway). His research is focused on developing data science tools to well-inform 

biodiversity conservation and management. 

 

Data availability statement 

The layers are openly available at the ERDDAP instance hosted at the Flanders Marine Institute Data 

Centre (https://erddap.bio-oracle.org/erddap), through the Bio-ORACLE website (temporary link for 

peer-review: https://www.bio-oracle.org/downloads-to-email-v3.php) and the R and Python 

packages available in the permanent GitHub repository (https://github.com/bio-oracle). 

 

https://erddap.bio-oracle.org/erddap
https://github.com/bio-oracle


Abstract 1 

Motivation: Impacts of climate change on marine biodiversity are often projected with species 2 

distribution modelling, using standardized data layers representing physical, chemical and biological 3 

conditions. Yet, the available data layers (1) have not been updated to incorporate data of the Sixth 4 

Phase of the Coupled Model Intercomparison Project (CMIP6), which comprise the Shared 5 

Socioeconomic Pathway (SSP) scenarios; (2) consider a limited number of Earth System Models 6 

(ESMs); and (3) miss important variables expected to influence future biodiversity distributions. 7 

These limitations might undermine biodiversity impact assessments, by failing to integrate them 8 

within the context of the most up-to-date climate change projections, raising the uncertainty in 9 

estimates and misinterpreting the exposure of biodiversity to extreme conditions. Here, we provide 10 

a significant update of Bio-ORACLE, extending biologically relevant data layers from present-day 11 

conditions to the end of the 21st century Shared Socioeconomic Pathway scenarios based on a multi-12 

model ensemble with data from CMIP6. Alongside, we provide R and Python packages for seamless 13 

integration in modelling workflows. The data layers aim to enhance the understanding of the 14 

potential impacts of climate change on biodiversity and to support well-informed research, 15 

conservation and management. 16 

Main types of variable contained: Surface and benthic layers for, chlorophyll-a, diffuse attenuation 17 

coefficient, dissolved iron, dissolved oxygen, mixed layer depth, nitrate, ocean temperature, pH, 18 

phosphate, photosynthetic active radiation, total phytoplankton, total cloud fraction, salinity, 19 

silicate, sea-water direction, sea-water velocity, topographic slope, topographic aspect, terrain 20 

ruggedness index, topographic position index and bathymetry, and surface layers for air 21 

temperature, sea-ice cover and sea-ice thickness. 22 

 23 

Spatial location and grain: Global at 0.05º resolution. 24 

 25 

Time period and grain: Decadal from present-day to the end of the 21st century (2000-2100). 26 

 27 

Major taxa and level of measurement: Marine biodiversity associated with surface and epibenthic 28 

habitats. 29 

 30 

Software format: A package of functions developed for Python and R software. 31 

 32 

Introduction 33 



Research quantifying the impacts of climate change on biodiversity relies heavily on species 34 

distribution modelling (Peterson et al., 2011) using high-resolution data layers representing 35 

physical, chemical and biological conditions at the global scale (Tyberghein et al., 2012; Assis et al., 36 

2017b; Fick & Hijmans, 2017). Initiatives providing essential climate layers uniform in extent and 37 

resolution, like MERRAclim (Vega et al., 2017) and WorldClim (Fick & Hijmans, 2017) for terrestrial 38 

environments and the World Ocean Atlas (Levitus et al., 2013), Hexacoral (Fautin & Buddemeier, 39 

2008), Marspec (Sbrocco & Barber, 2013), Bio-ORACLE (Tyberghein et al., 2012; Assis et al., 2017b) 40 

and OCLE (de la Hoz et al., 2018) for marine environments, established solid standards to estimate 41 

future climate-induced pressures on the world’s ecosystems and associated ecosystem services 42 

(Assis et al., 2017a, 2022b; Gouvêa et al., 2020, 2022; Martins et al., 2021). But despite their 43 

relevance, current marine datasets have three main limitations that can preclude the development 44 

of well-informed conservation and management strategies (Arneth et al., 2020; Arafeh-Dalmau et 45 

al., 2021). 46 

First, current standardized climate layers have not been updated to incorporate data of the Sixth 47 

Phase of the Coupled Model Intercomparison Project (CMIP6), which serves as the core contribution 48 

to the latest Intergovernmental Panel on Climate Change Assessment Report (IPCC). The CMIP6 49 

dataset includes an updated set of variables (Séférian et al., 2020), which better capture the spatial 50 

and temporal variability of physical and biogeochemical properties of the global ocean (Séférian et 51 

al., 2020), and the Shared Socioeconomic Pathway (SSP) scenarios, a set of narratives on possible 52 

global change trajectories throughout the 21st century, with and without climate policy responses 53 

(Riahi et al., 2017; van Vuuren et al., 2017). Compared to the previous Representative 54 

Concentration Pathway scenarios (van Vuuren et al., 2011), despite producing similar forcing 55 

pathways, the SSPs use more up-to-date socioeconomic assumptions (Burgess et al., 2023) and 56 

encompass the Paris Agreement expectations, which allows estimating the biodiversity benefits of 57 

compliance to international climate policies (Sanderson et al., 2016; Martins et al., 2021). 58 

Second, current standardized climate layers projecting future conditions consider a limited number 59 

of Earth System Models (ESMs) (Schoeman et al., 2023).  These are intensive computer simulations 60 

tuned by specific parameters and conditions (e.g., greenhouse gas concentrations, solar forcing, 61 

land-use, as well as atmospheric and ocean dynamics (Mechoso & Arakawa, 2015)) that can resolve 62 

global atmospheric and oceanic conditions across different time scales. There are, however, inherent 63 

uncertainties of ESMs projections due to the complexity of the Earth's climate system, as well as the 64 

limited understanding and the challenges in incorporating particular processes in the models. 65 



Accordingly, the multi-model ensemble offers a straightforward approach in species distribution 66 

modelling (Araújo & New, 2007; Assis et al., 2017b; Gouvêa et al., 2022), yet at the cost of 67 

incorporating ESM that do not perform well in reproducing historical climates over time (please refer 68 

to the ‘hot model’ problem; Hausfather et al., 2022). The previous version of Bio-ORACLE (Assis 69 

et al., 2017b) was based on a multi-model ensemble, yet limited to two ESMs from the dozens 70 

available, limiting the breadth of projections of climate change impact. 71 

Third, current standardized climate layers miss projections of biologically meaningful variables 72 

beyond temperature, salinity and sea ice conditions (Tyberghein et al., 2012; Assis et al., 2017b). 73 

For instance, dissolved oxygen, primary productivity and pH (among other variables) are expected to 74 

change in the coming decades and are emerging as limiting factors for marine biodiversity 75 

(Krumhardt et al., 2017; Fragkopoulou et al., 2021; Martins et al., 2021; Shi et al., 2021). Failing 76 

to consider them in climate change projections might misinterpret biodiversity exposure to novel 77 

detrimental conditions. 78 

To address these gaps in the marine climate data space, we provide a substantial extension of Bio-79 

ORACLE, including a set of essential variables for bioclimatic modelling from present-day conditions 80 

to the end of the 21st century SSP scenarios, for both surface and benthic (i.e., along the seafloor) 81 

conditions. These were built by ensembling numerous ESMs provided by the CMIP6, from the higher 82 

(SSP1, in line with the Paris Agreement) to the lower mitigation (SSP5) trajectories of global change. 83 

These new layers are provided under the FAIR principle (Findability, Accessibility, Interoperability, 84 

and Reusability (Wilkinson et al., 2016)) with a finer spatial and temporal resolution (0.05° spatial 85 

resolution; decadal climatologies). Alongside the data layers, R and Python packages were developed 86 

for programmatic data access and easy integration in available bioclimatic modelling workflows 87 

(Thuiller et al., 2009; Naimi & Araújo, 2016). The extension of Bio-ORACLE aims to improve 88 

understanding of the potential impacts of climate change on marine organisms and support well-89 

informed research and management. 90 

 91 

Marine data layers 92 

The current data descriptor provides information on the approach used to generate a set of essential 93 

variables for bioclimatic modelling. This comprises the acquisition of physical, chemical, biological 94 

and topographic data and the techniques used to generate variables for present-day conditions and 95 

the SSP scenarios of future climate change. 96 



Data for present-day conditions (period 2000 to 2020) were acquired at a monthly basis from the 97 

Global Ocean Physics Reanalysis and Forecast and the Global Ocean Biogeochemistry Analysis and 98 

Forecast, two pre-processed re-analyses of Copernicus Marine Environment Monitoring Service 99 

(https://data.marine.copernicus.eu/products), provided at a 0.08º and 0.25º degree resolution with 100 

50 and 75 vertical levels, respectively. These integrate and assimilate a comprehensive range of 101 

satellite and in-situ data (Jean-Michel et al., 2021). Specifically for Photosynthetic Active Radiation 102 

and Diffuse Attenuation Coefficient, data were acquired as monthly averages from GlobColour 103 

(https://www.globcolour.info), a dataset at a ~0.04º resolution that merges MERIS, MODIS and 104 

SeaWiFS sensors (Maritorena et al., 2010). Data for the SSP1-1.9, SSP1-2.6, SSP2-4.6, SSP3-7.0 105 

and SSP5.8.5 scenarios (period 2000 to 2100) were acquired at the monthly basis from numerous 106 

ESMs provided by the CMIP phase 6 (Earth System Grid Federation), namely, ACCESS-ESM1-5 107 

(Australian Community Climate and Earth System Simulator; 1.875×1.25º resolution and 38 vertical 108 

levels), CanESM5 (Canadian Earth System; 1º resolution and 45 vertical levels), CESM2-WACCM 109 

(Community Earth System Model 2 – Whole Atmosphere Community Climate Model; ~0.88x0.56º 110 

resolution and 60 vertical levels), CNRM-ESM2-1 (Centre National de Recherches Météorologiques; 111 

0.25º resolution and 75 vertical levels), GFDL-ESM4 (Geophysical Fluid Dynamics Laboratory; 0.25º 112 

resolution and 75 vertical levels), GISS-E2-1-G (Goddard Institute for Space Studies; 1×1.25º 113 

resolution and 40 vertical levels), IPSL-CM6A-LR (Institut Pierre Simon Laplace; 1º resolution and 75 114 

vertical levels), MIROC-ES2L (Model for Interdisciplinary Research on Climate; 1º resolution and 63 115 

vertical levels), MPI-ESM1-2-LR (Max Plank Institute; 1.5º resolution and 40 vertical levels), MRI-116 

ESM2-0 (Meteorological Research Institute; 1º resolution and 63 vertical levels) and UKESM1-0-LL 117 

(United Kingdom Earth System Model; 1º resolution and 75 vertical levels). 118 

The monthly data of present-day and future conditions were used to generate six statistics per 119 

decade and variable: the average, maximum and minimum records of a given decade, long-term 120 

average of the yearly maxima and minima of a given decade (e.g., the average temperature of the 121 

warmest month in the period 2000-2010), and range, which represents the average absolute 122 

difference between the maximum and minimum records per year. These statistics were produced for 123 

air temperature, chlorophyll-a, diffuse attenuation coefficient, dissolved iron, dissolved oxygen, 124 

mixed layer depth, nitrate, ocean temperature, pH, phosphate, photosynthetically active radiation, 125 

primary productivity (total phytoplankton), total cloud fraction, salinity, silicate, sea-ice cover, sea-126 

ice thickness and sea-water direction and velocity (Table 1).  127 

To produce gridded layers with uniform spatial extent and resolution, the statistics generated for 128 

present-day conditions were interpolated to 0.05 degrees (approx. 5.5 km at the equator) with inverse 129 



distance weighting (IDW). This is a well-established algorithm in climate change research (Ozelkan 130 

et al., 2016; Assis et al., 2017b) and was chosen based on a performance and tuning test against 131 

the kriging algorithm (Supplement 1). The inverse distance weighting algorithm fitted the 8 nearest 132 

values of each focal cell with an inverse distance power of 2. For surface layers, the algorithm 133 

performed bilinear interpolation, considering the position of each cell (i.e., longitude and latitude) 134 

and the information comprised in the top vertical levels (i.e., defining the surface of the ocean) of 135 

each dataset (e.g., Copernicus) and variable. For benthic layers, the algorithm performed trilinear 136 

interpolation, by further considering the depth of each cell and the multiple vertical levels of each 137 

dataset and variable (Boavida et al., 2016; Assis et al., 2017b). To this end, the depth of each cell 138 

was extracted from the general bathymetric chart of the oceans (GEBCO_2023 Grid), a global terrain 139 

model providing elevation data at a 0.004 degrees resolution (GEBCO Bathymetric Compilation 140 

Group 2023, 2023). Because focal cells at 0.05º comprise a wide range of depth values, the benthic 141 

layers were developed for the minimum, average and maximum depth within focal cells, as in Bio-142 

ORACLE version 2.0 (Assis et al., 2017b). The process of interpolation does not add local detail in 143 

climate data, but rather smooths it across the generated layers. 144 

The layers projecting future conditions were produced with the change-factor method (also known 145 

as the delta change method). This involved adding the changes projected in climate by the ESMs (as 146 

interpolated anomalies, i.e., differences) to high-resolution climatologies representing present-day 147 

conditions (Assis et al., 2017b; Maraun et al., 2017; Schoeman et al., 2023). In detail, the method 148 

was based on (1) computing the climate change anomaly (i.e., difference) between the future and the 149 

historical conditions with data of each ESM, at their native spatial resolution, and for the period of 150 

2000-2014 (ESM projections start in the year 2015); (2) interpolating the climate change anomalies 151 

to the common 0.05º resolution with inverse distance weighting to be uniform in extent and 152 

resolution, as described for the present-day statistics; (3) averaging the interpolated climate change 153 

anomalies of the multiple ESM; and (4) applying the averaged downscaled anomalies to the 154 

downscaled layers defining the conditions of the present-day period. This approach, considering the 155 

magnitude of climate change (i.e., the change-factor), allowed removing mean state biases of the 156 

ESM (Schoeman et al., 2023), while providing a high confidence level in climate change projections 157 

(Hall & Hall, 2014), linking greenhouse gas emissions with global climate change with and without 158 

climate policy responses (Riahi et al., 2017). The change-factor approach was not used in diffuse 159 

attenuation and photosynthetically active radiation, as these variables are not provided by the CMIP. 160 

The standard deviation of the ESM projected data was also computed (Supplement 2). 161 



Additional topographic layers, namely, slope (expressing depth changes over distance), aspect 162 

(expressing the direction that slope faces), terrain ruggedness index (expressing depth changes 163 

between adjacent focal cells), topographic position index (comparing the depth of focal cells to the 164 

mean elevation of adjacent focal cells), as well as the minimum, average and maximum depth of each 165 

focal cell, were generated at 0.05 degrees resolution based on the general bathymetric chart of the 166 

oceans (GEBCO Bathymetric Compilation Group 2023, 2023). 167 

All layers were archived as NetCDF (network Common Data Form) and deposited into an ERDDAP 168 

(Environmental Research Division's Data Access Program) server to facilitate filtering and 169 

downloading of the layers in common data formats (Wilson et al., 2020). Additionally, Python 170 

(pyo_oracle) and R (biooracler) packages were developed for facilitated data retrieval and improved 171 

integration in available frameworks of bioclimatic modelling (Thuiller et al., 2009; Naimi & Araújo, 172 

2016). Such packages act as clients for ERDDAP’s REST API, an interoperable web protocol for data 173 

transfer, and thus can be used for integration into most generic web-based applications. 174 

 175 

Data Records 176 

The dataset (Assis, 2023) comprises: (1) decadal time series of six statistics for each of 19 essential 177 

physical, chemical and biological variables at the global scale, for surface and benthic conditions, at 178 

a spatial resolution of 0.05 degrees, and a temporal resolution of 10 decadal steps, from 2000 to 2100, 179 

under the scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and SSP5-8.5; (2) seven 180 

topographic layers at a spatial resolution of 0.05 degrees (Table 1). 181 

 182 

Technical Validation 183 

The reliability of data layers was estimated by means of cross-validation against quality-controlled 184 

data provided by the Global Ocean Data Analysis Project (GLODAP (Olsen et al., 2016; Lauvset et 185 

al., 2021)), for the variables available in this dataset (dissolved oxygen, nitrate, phosphate, salinity, 186 

silicate and temperature). Following additional applications (Davies & Guinotte, 2011; Assis et al., 187 

2015, 2017b, 2022a; Boavida et al., 2016), GLODAP records, which are in situ observations, were 188 

compared at every given location with the data used to develop the layers. To this end, the data was 189 

interpolated with inverse distance weighting, as previously described, to the locations reported on 190 

GLODAP (i.e., longitude, latitude and depth). Then, the paired records were statistically analyzed 191 

https://github.com/bio-oracle/pyo_oracle
https://github.com/bio-oracle/biooracler


with Pearson’s correlation coefficient, root mean square error, and mean absolute error. The 192 

difference between paired records was also mapped globally onto a 2.5 degrees grid (average of 193 

differences within grid cells (Davies & Guinotte, 2011; Assis et al., 2017b). 194 

 195 

Overall, the layers mirrored the climatic patterns of quality-controlled data, as verified elsewhere 196 

(Assis et al., 2017b, 2022a). All variables retrieved high correlation coefficients, ranging from 0.93 197 

to 0.99, and low error rates (Supplement 3). Nitrate, phosphate, salinity and temperature displayed 198 

discrete anomalies restricted to specific regions (e.g., the transition between the warm and cold 199 

temperate Northwest Atlantic and Pacific oceans), with no relationship with depth. The errors for 200 

dissolved molecular oxygen and silicate were mostly distributed in the Southern Ocean, also with no 201 

relationship with depth (Supplement 3). 202 

 203 

The marine data layers produced with information from the Global Ocean Physics Reanalysis and 204 

Forecast and the Global Ocean Biogeochemistry Analysis and Forecast from the Copernicus Marine 205 

Environment Monitoring Service, and the numerous ESMs from CMIP phase 6, have climate data in 206 

all gridded cells. However, 7.81 % of the cells of Photosynthetic Active Radiation and 4.22 % of the 207 

cells of Diffuse Attenuation Coefficient have missing information at latitudes above 70° N / S. This is 208 

due to missing satellite information from MERIS, MODIS and SeaWiFS sensors (Maritorena et al., 209 

2010) at such higher latitudes, as reported elsewhere (Tyberghein et al., 2012). 210 

  211 

 212 

Usage notes 213 

This major update of Bio-ORACLE presents twenty-six physical, chemical, biological and topographic 214 

marine data layers, with global coverage and uniform grid system. These layers, provided with 215 

improved 0.05º spatial resolution (to better capture geomorphological features; Supplement 4) and 216 

per decade, have numerous potential applications in biogeography, ecology, evolutionary biology 217 

and climate change research, which can enhance our understanding of anthropogenic impacts on 218 

biodiversity and support well-informed conservation and management strategies. In particular, the 219 

layers can be used in Species Distribution Modeling (SDM) (Peterson et al., 2011) to predict the 220 

distribution of species at the global scale (Chefaoui et al., 2015; Fragkopoulou et al., 2022), 221 

including non-native species (Assis et al., 2015), address niche-based questions (Lee-Yaw et al., 222 

2016; Hu et al., 2021; Song et al., 2021) and phylogeographic hypotheses (Neiva et al., 2014), 223 

identify biodiversity hotspots (Fragkopoulou et al., 2022) and support the conservation and 224 

management of marine biodiversity (Hobday et al., 2010; Boavida et al., 2016). In the scope of 225 



SDM, by letting users filter historical data into two time periods (decades 2000-2010 and 2010-2020), 226 

the current version allows generating independent data for temporal cross-validation, which can 227 

assist in evaluating model performance and prediction error (Ko et al., 2013). Moreover, the 228 

development of biologically meaningful variables for future climate change scenarios (e.g., dissolved 229 

oxygen, primary productivity and pH) allows more realistic estimates of the anthropogenic pressures 230 

that may lead to extinction and turnover of populations (Martins et al., 2021; Assis et al., 2022b; 231 

Gouvêa et al., 2022).  232 

The marine layers can be used in additional analyses beyond SDM, such as those based on univariate 233 

algorithms of climate velocity (Burrows et al., 2014) or multivariate algorithms of climate analogs 234 

(Mahony et al., 2017), to estimate biodiversity exposure to climate change (Mackintosh et al., 235 

2023), or identify climate connectivity corridors promoting future distribution range shifts (Garciá 236 

Molinos et al., 2016). In this scope, the availability of the Shared Socioeconomic Pathway scenarios, 237 

comprising the mitigation strategies of the Paris Agreement, coupled with the ensemble of multiple 238 

ESMs, allows supporting international climate policies and agendas (Martins et al., 2021). The 239 

increased interoperability via the ERDDAP data server (Wilson et al., 2020) opens the door for Bio-240 

Oracle to be used in digital twinning, such as the European Digital Twin of the Ocean, or private 241 

initiatives like the Microsoft Planetary Computer. This aligns with the United Nations Decade of 242 

Ocean Science for Sustainable Development, which aims to boost the development of Digital Twins 243 

of the Ocean for supporting blue growth and global governance. 244 

 245 
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Tables 265 

Table 1. Marine data layers and units, realm (surface layers, benthic layers, or both, where 266 

appropriate), accuracy assessed with in situ quality-control data (for the variables comprised in 267 

GLODAP (Olsen et al., 2016; Lauvset et al., 2021); MAE: mean absolute error; RMSE: root mean 268 

square error; Cor: Pearson’s correlation; additional estimates per depth in Supplement 3), number of 269 

quality-control records (n), range of values for present conditions, and change (anomaly) between 270 

the present (decade 2010-2020) and the future (decade 2090-2100) under contrasting scenarios 271 

SSP1-1.9 and SSP5-8.5. 272 



Layer Surface Benthic MAE RMSE Cor n Range 

Future 
change 

(SSP1-1.9; 
SSP5-8.5) 

Air 
temperature 
(ºC) 

X  
- - - - -57.96; 40.97 

0.72±1.08; 
4.67±3.53 

Chlorophyll-a 
concentration 
(mmol ⋅  m-3) 

X X 
- - - - 0; 21.95 

0±0.03; 
0.01±0.03 

Diffuse 
attenuation 
coefficient 
(m-1) 

X  

- - - - 0; 1.19 - 

Dissolved iron 
concentration 
(mmol ⋅  m-3) 

X X 
- - - - 0; 0.101 

-0.01±0.01; -
0.01±0.01 

Dissolved 
oxygen 
concentration 
(mmol ⋅  m-3) 

X X 

5.222 25.648 0.930 558,720 41.70; 456.98 
-1.26±4.93; -

14.33±11.33 

Mixed layer 
depth (m) 

X  
- - - - 0; 3728.89 

0.27±11.36; -
7.19±19.35 

Nitrate 
concentration 
(mmol ⋅  m-3) 

X X 
0.467 3.082 0.946 642,133 0; 303.75 

-0.38±0,91; -
1.11±1.29 

Ocean 
temperature 
(ºC) 

X X 
0.141 0.823 0.991 823,531 -1.94; 36.49 

0.38±0.40; 
2.97±0.98 

pH 
X X 

- - - - 7; 8.53 
-0.03±0.02; -

0.39±0.04 

Phosphate 
concentration 
(mmol ⋅  m-3) 

X X 
0.028 0.218 0.948 612,203 0; 4.38 

-0.03±0.09; -
0.10±0.11 

Photo. active 
radiation (E ⋅  
m-2 ⋅  yr-3) 

X  
- - - - 0; 69.13 - 

Total 
phytoplankto
n 
concentration 
(mmol ⋅  m-3) 

X X 

- - - - 0.02; 57.20 
-0.01±0.16; -

0.10±0.29 

Total cloud 
fraction 
(fraction) 

X  
- - - - 0; 1 

0.01±0.04; -
0.01±0.05 

Salinity 
X X 

0.012 0.217 0.974 824,173 0; 47.54 
-0.01±0.32; -

0.22±0.51 

Silicate 
concentration 
(mmol ⋅  m-3) 

X X 
1.762 9.484 0.929 645,495 0.23; 680.78 

-0.83±3.33; -
1.60±3.53 

Sea-Ice Cover 
(fraction) 

X  
- - - - 0; 1 

-0.02±0.05; -
0.09±0.20 

Sea-Ice 
Thickness (m) 

X  
- - - - 0; 7.87 

-0.13±0.37; -
0.28±0.68 

Sea-water 
direction (º) 

X X 
- - - - 0; 360 

0.45±40.66; 
2.59±45.39  

Sea-water 
velocity (m / 
s) 

X X 
- - - - 0; 3.05 

0.02±0.05; 
0.02±0.05 

Topographic 
slope 

 X 
- - - - 0; 30.71 - 

Topographic 
aspect 

 X 
- - - - 0; 360  

Terrain 
ruggedness 
index 

 X 
- - - - 0; 2512.92 - 



Topographic 
position index 

 X 
- - - - -1963; 2512 - 

Minimum 
depth (m) 

 X 
- - - - -10363; 0 - 

Average 
depth (m) 

 X 
- - - - -10699; 0 - 

Maximum 
depth (m) 

 X 
- - - - -10977; 0 - 

 273 

Table 2. List of R and Python functions to facilitate listing and extraction of data layers (refer to the 274 

permanent GitHub repository for additional information; https://github.com/bio-oracle). 275 

Function Language Description 

list_layers() R and Python Lists the data layers available in the Bio-ORACLE ERDDAP server, either as a 
list or a dataframe containing metadata. Users may subset layers based on 
attributes, such as variable or SSP scenario. 

download_layers() R and Python Downloads one or more data layers from the Bio-ORACLE ERDDAP server. 
Users may filter data using attributes, such as sets of coordinates or time 
periods, and select the data format to be downloaded*. 

list_local_data() R and Python Lists local data that has been downloaded by the Bio-ORACLE client. 

config R and Python Shows configuration values, i.e. the path to the local data directory and the 
address of the Bio-ORACLE server. 

* Refer to the ERDDAP server for the complete list of data formats (https://erddap.bio-276 

oracle.org/erddap/griddap/documentation.html#fileType). 277 

 278 

Additional information 279 

Supplementary information 1: Performance and tuning test between inverse distance weighting and 280 

kriging algorithms. 281 

Supplementary information 2: Standard deviation of the ensemble of Earth System Models. 282 

Supplementary information 3: Reliability of climate layers estimated with cross-validation. 283 

Supplementary information 4: Comparison between the current and the previous spatial resolution 284 

of Bio-ORACLE datasets (version 2.0 vs version 3.0). 285 

Supplementary information 5: Availability of Earth System Models per variable and shared 286 

socioeconomic pathway scenario. 287 

 288 
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