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A B S T R A C T   

Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the 
ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently 
recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects 
will be exacerbated by global processes such as climate change and synergies with other pollutants, like 
microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded 
due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative 
effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation 
and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance 
of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frame-
works are discussed, with emphasis on recommendations for improving marine ecosystem management.   

1. Introduction 

Per- and polyfluorinated alkyl substances (PFAS), colloquially 
known as "forever chemicals", have persisted in commercial production 
since the 1940s, mainly due to their water-resistant, stain-resistant, fire- 
resistant and anti-adherent properties. They are commonly used as stain 
repellents, nonstick cookware (Teflon®), food packaging, floor and ski 
wax, textile sealants (such as Gore-Tex®), firefighting foams, pesticides, 
pharmaceuticals, and building blocks in the chemical industry (Han 

et al., 2021). PFAS compounds can be found in many industrial facilities, 
commercial households and packaging products (DeLuca et al., 2021). 
However, considerable attention has been attracted by the alterations 
brought forward with the revised PFAS definition suggested by the Or-
ganization for Economic Co-operation and Development (OECD) (ENV/ 
CBC/MONO(2021)25, 2021), which drastically broadened the range of 
fluorochemicals that are now part of the PFAS marketable universe, 
encompassing compounds with vastly different applications as well as 
with distinct ecological footprints (EF) and environmental dynamics. 
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A synopsis of the PubMed entries reported over the last decade on 
PFAS (including perfluorooctanoic (PFOA) and perfluorooctanesulfonic 
acids (PFOS)) revealed an increasingly broader scope of research on this 
hot topic. As expected, most publications on PFAS (but also PFOA and 
PFOS) deal with exposure, toxicity, accumulation in various tissues 
(mainly protein-rich, such as liver and blood) and harmful effects on 
human, animal, and environmental health. However, a keyword search 
exposed areas with very few publications (studies and reviews), such as 
marine biodiversity and effects on marine organisms. The literature 
search results are shown in Supplementary information Figures FS1(A- 
D), in a graphical representation with the used keywords in the (x axis) 
and publications number in the (y axis) over the past one, five and ten 
years. 

It is quite clear that PFAS pollution is becoming a growing global 
issue and reason for concern due to their environmental persistence, 
lenghty half-lives, bioaccumulative nature, toxicity and environmental 
mobility (Abunada et al., 2020). Numerous harmful impacts on marine 
ecosystems reflect on their inhabitants at all trophic levels, through 
bioaccumulation and biomagnification, which particularly affects apex 
predators (Stockin et al., 2021; Boisvert et al., 2019). Although adverse 
effects on animal (Panieri et al., 2022; Death et al., 2021) and human 
(Lohmann et al., 2020; Pelch et al., 2019; Sunderland et al., 2019) health 
have been well documented in numerous reports in the last decade, 
recent studies in animal models (especially mammals) may indicate 
multiple negative consequences for marine birds and mammals, 
including the distribution and abundance of their populations. PFAS 
influence on microbiodiversity has already been demonstrated in studies 
of the gut microbiota animals and humans (Beale et al., 2022a; Beale 
et al., 2022b; Chiu et al., 2020) or microbiota inhabiting contaminated 
sites rich in PFAS (Senevirathna et al., 2022). However, the long-term 
effects of PFAS will certainly affect genetic biodiversity (via mutations 
and recombination), species biodiversity, as well as ecosystem biodi-
versity, through habitat loss caused by increasing contamination. PFAS 
pollution threatens the role of the ocean as the cradle and support of all 
life on Earth, showing even increased toxicity in interaction with 
microplastics (MP) (Dai et al., 2022; Scott et al., 2021). Finally, a 
healthy ocean is crucial not only for the health of ecosystems and its 
dwellers, but also for climate balance and the global economy. 

This comprehensive review provides an updated overview of legacy 
and newly defined PFAS on marine environment, focused on providing a 
clearer picture of their long-term and unpredictable effects on ocean 
ecosystems, wildlife and human health. It considers PFAS interactions 
with other emerging pollutants such as microplastics, climate change 
issues and bioremediation challenges. Also, this is one of the first reports 
that suggest mitigation approaches for the marine environment, as the 
literature on this is scarce or non-existent. Regulations and legal 
frameworks are still on its infancy and lack efficient implementation of 
effective actions to mitigate this emerging pollution problem. Therefore, 
future research and regulatory practices must concentrate on developing 
effective strategies to mitigate, even prevent, the harmfull effects of 
PFAS on the marine environment, as well as on ways to improve marine 
ecosystem management practices to cope with increasing pollution risks 
and with the rapidly growing PFAS market. 

Finally, this overview includes a debating PFAS regulations and legal 
frameworks, highlighting recommendations for improvement of marine 
ecosystems management. It was outlined to reach a broad audience and 
multiactors in the fields of marine biology, microbiology, climate 
change, blue biotechnology, bioremediation, environmental pollution, 
and chemistry. We hope to inspire innovative research approaches to 
reduce PFAS pollution by raising awareness of the harmful effects of 
PFAS pollution in the context of the One Health1 concept. 

2. The revised definition leads to a wider range of PFAS 

The definition of PFAS is at the epicenter of a productive discussion 
regarding which compounds should fall under its umbrella. The OECD 
has recently proposed a determination from the widely accepted 
conceptualization of PFAS as fluorine-saturated aliphatic carbon chains 
in favor of a more lenient, which embraces all chemical compounds with 
at least one perfluorinated moiety: “PFAS are defined as fluorinated 
substances that contain at least one fully fluorinated methyl or methy-
lene carbon atom (without any H/Cl/Br/I atom attached to it), i.e., with 
a few noted exceptions, any chemical with at least a perfluorinated 
methyl group (–CF3) or a perfluorinated methylene group (–CF2–)” 
(ENV/CBC/MONO(2021)25, 2021). 

The impetus towards a revised PFAS definition aimed to rebut the 
narrow spectrum of the previously applied criteria while resolving many 
of its inconsistencies concerning the classification of other relevant 
perfluorinated hydrocarbons (e.g., perfluoroaromatic compounds) 
(Wang et al., 2021). Furthermore, the changing landscape of the fluo-
roorganics market as shown by the increasing number of polyfluorinated 
compounds being introduced in the pharmaceutical and agrochemical 
industry (Alexandrino et al., 2022; Han et al., 2021), warrants a clear 
and reproducible definition capable of better serving regulatory pur-
poses (Wallington et al., 2021). 

In its traditional connotation, PFAS refer to aliphatic perfluorinated 
molecules and mainly consists of perfluoroalkyl(ether) acids, fluo-
ropolymers and perfluoropolyethers (Kwiatkowski et al., 2020). These 
PFAS have witnessed significant market traction for decades due to their 
unusual physical, thermal and chemical stabilities and water-repelling 
properties (Hamid et al., 2018). These favorable properties turned 
them into suitable templates for developing numerous fine chemicals 
and specialized polymers, which triggered their broad expansion and 
fomented a vibrant global market, pointing to annual sales of over USD 
2,000 million in the United States alone (Cunningham et al., 2020). 
PFOA and PFOS have been considered key representatives of this 
chemical class (Han et al., 2021), though they are being gradually 
phased out globally due to their persistence and confirmed human car-
cinogenicity and teratogenicity, and replaced by shorter-chain per-
fluorinated derivatives (Wallington et al., 2021). These smaller 
perfluorinated derivatives (e.g., perfluorobutanoic acid, per-
fluorobutanesulfonic acid or perfluorohexanoic acid) have acquired 
significant notability, more recently, due to their presumably safer toxic 
profile (Anderson et al., 2019; Luz et al., 2019) though their environ-
mental persistence remains a worrying issue (Wallington et al., 2021). 

The broadened spectrum pictured by the OECD revised definition of 
PFAS expands this chemical category by incorporating an array of 
different polyfluorinated compounds, most noticeably many pharma-
ceuticals and pesticides, which exhibit an incredible chemodiversity but 
also vastly different biological activities. Under this new rule, many of 
these newly defined PFAS have been on the market already for several 
decades. For instance, at least 14 of the most popular pesticides 
worldwide are classified as PFAS (Table 1) (McDougall, 2017; Maien-
fisch and Hall, 2004). While polyfluorination is a common feature in 
flagship pharmaceuticals, some trifluoromethylated high-grossing 
pharmaceuticals, such as fluoxetine or celecoxib, can also be encoun-
tered (Table 1) (Mykhailiuk, 2021; Ismail, 2002). 

Moreover, the refurbished interest in polyfluorinated compounds has 
also led to the introduction of many new bioactive molecules containing 
perfluorinated elements, exponentially increasing the selection of PFAS 
currently approved for use. This trend is quite noticeable in the agro-
chemical industry, where a surge of heavily fluorinated agrochemical 
ingredients has recently been observed. Between 2015 and 2020, when 
over 70% of the newly approved pesticides containing at least one 
fluorine heteroatom, a gamut of pesticides now classified as PFAS were 
proposed to be introduced in the market and are awaiting approval in 
the EU (Alexandrino et al., 2022). Noticeably, many of these new 
agrochemical formulae detached from common fluorination strategies 1 https://www.who.int/health-topics/one-health#tab=tab_1 
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Table 1 
Examples of top-selling pesticides and pharmaceuticals included in the new PFAS definition.  

Name Molecular structure Class Launch year Approval status in the EU 

Pesticides 

Haloxyfop Herbicide 1980 Not approved 

Pyroxsulam Herbicide 2007 Approved 

Picoxystrobin Fungicide 2001 Not approved 

Trifloxystrobin Fungicide 1999 Approved 

Fipronil Insecticide 1992 Not approved* 

Flubendiamide Insecticide 1979 Approved 

Pharmaceuticals 

Fluoxetine Antidepressant 1986 Approved 

Mefloquine Antimalarial 1980s Approved 

Halofantrine Antimalarial 1980s Approved 

Celecoxib Anti-inflammatory 1999 Approved 

Sitagliptin Antidiabetic 2006 Approved  

* Approved only in Belgium and the Netherlands 
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(e.g., incorporation of a single CF3 moiety), opting instead for ap-
proaches involving the incorporation of multiple perfluorinated moi-
eties in their chemical design. For instance, the pesticides 
pyrifluquinazon and broflanilide (Fig. 1) contain a heptafluoroisopropyl 
moiety, with the latter chemotype harboring an additional CF3 group 
and an arylic fluorine, totalizing 11 fluorine heteroatoms (El Qacemi 
et al., 2019). Another good example is the acaricide flupentiofenox 
(Fig. 1), introduced in 2020, which contains two perfluorinated groups 
bound to sulfur heteroatoms, namely a trifluoromethyl-sulfinyl moiety 
and another trifluoromethanethiolate functional group (Umetsu and 
Shirai, 2020). Likewise, during the second half of the last decade, fluo-
rinated pharmaceuticals also exhibited a significant representation (up 
to 50%) in the gross volume of pharmaceuticals approved for use (Inoue 
et al., 2020). Of these, about 20% corresponded to pharmaceuticals 
holding perfluorinated motifs (Inoue et al., 2020), now considered PFAS 
in light of the revised definition. Yet, in clear contrast with the fluori-
nation dynamics of agrochemicals, all these pharmaceuticals PFAS 
correspond to CF3-bearing compounds, differing only in the site where 
fluorination occurs. For instance, berotralstat (approved in 2021) or 
apalutamide (approved in 2018) exhibit CF3-substitution in heterocyclic 
moieties (Fig. 1), while esaxerenone (approved in 2019) and nirma-
trelvir (approved in 2021) reveal arylic and aliphatic CF3-fuctionaliza-
tions, respectively (Fig. 1) (Inoue et al., 2020; Yu et al., 2020). 

3. The ubiquity of PFAS in the marine environment: sources and 
consequences 

Awareness and knowledge of PFAS sources, accumulation and 
impact are key procedures to ensure environmental protection in 
terrestrial and sea/ocean ecosystems. Understanding these dynamics is 
particularly relevant for the marine environment as it constitutes to be 
the major environmental sink of legacy and newly defined PFAS (Zhang 
et al., 2019a). The various input sources of PFAS in the environment are 
mostly related to their production (e.g., fine chemistry industries), wide- 
scale utilization, and incorrect disposal (e.g., incomplete removal in 
wastewaters treatment plants, runoff of PFAS-containing leachates in 
landfills) (Brase et al., 2021). Since most of these PFAS sources are 
confined to inland activities, the introduction of these substances into 
the marine environment primarily happens through riverine discharges, 
while it is also known that volatile PFAS can be transported by the at-
mosphere (Zhang et al., 2019a). Despite the increasing reports on their 
harmful effects, there is still no adequate data on long-term monitoring 
or distribution of PFAS in marine ecosystems. 

Another problem is that wastewater treatment may generate even 
more PFAS in effluents than in influents due to the generation of poly-
fluorinated metabolites (Houtz et al., 2018; Eriksson et al., 2017). The 
issues of sustainable waste treatment are particularly complex in 

Fig. 1. Examples of pesticides and pharmaceuticals PFAS introduced in the market between 2015 and 2021.  
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emerging and developing countries, owing to poor or non-existing local 
management systems, widespread corruption, and a lack of interest in 
this subject by the governmental institutions. In addition, new com-
pounds used as an alternative to the ones proven hazardous, whose ef-
fects are insufficiently known and may arise in future generations, are 
inevitable concerns related to the PFAS topic. 

3.1. Climate change contributes to the marine distribution of PFAS 

The global climate change affects modifications in the spatial dis-
tribution of chemical pollutants in the oceans, endangering previously 
unaffected species and their populations. Consequently, given that 
permafrost tends to significantly deteriorate and thaw in response to 
global warming, the glaciers and permafrost in the polar areas may 
become crucial pools of airborne PFAS (Mahmoudnia et al., 2022). It has 
been reported that short-chain PFAS are more mobile and water-soluble 
(Li et al., 2020a), and even more persistent (Brendel et al., 2018) than 
long-chain ones, so the freeze-thaw process of the active layer leads to 
higher concentrations of short-chain PFAS in deeper parts of permafrost 
and closer to groundwater than long-chain PFAS. This will undoubtedly 
pose a long-term threat to environmental health, especially for northern 
marine ecosystems, as well as to public health in northern countries due 
to the predominant reliance on these water bodies for producing 
drinking water (Lohmann et al., 2020). 

PFAS compounds have been detected in numerous ecosystems and 
environmental compartments (Kurwadkar et al., 2022), including at 
high altitudes, in the snow and meltwater from Mt. Everest (Miner et al., 
2021), as well as from Arctic ice and soil (Mahmoudnia et al., 2022). In 
detail, from the 14 PFAS compounds analyzed from the Khumbu Glacier 
(Mt. Everest), PFOS, PFOA and perfluorohexanoic acid (PFHxA) were 
detected in samples from Everest Base Camp, Camp 1, Camp 2, and 
Everest Balcony, using solid-phase extraction (SPE) and liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) (Miner et al., 
2021). In addition to these atmospheric depositions, rivers are consid-
ered to be the primary inputs of PFAS into marine ecosystems, as 
recently confirmed by inverse solid correlations between salinity and 
concentrations of the majority of PFAS compounds in the coastal part of 
the Northwestern Atlantic, indicating that continental discharges con-
stitutes a significant source of marine pollution (Zhang et al., 2019a). 
Thus, PFAS compounds enter the oceans in significant quantities and, 
like other persistent chemicals, they are introduced in the marine food 
chain, ultimately reaching humans (Miranda et al., 2021a). 

The Atlantic Ocean is an example of a marine ecosystem highly 
impacted by PFAS, with these compounds showing a multilayered dis-
tribution stretching from the Atlantic atmosphere (Wang et al., 2015a) 
to the deeper layers of its water column (Miranda et al., 2021b). PFAS 
predominant occurrence and distribution has significant repercussions 
on its wildlife, from primary producers and consumers (i.e., plankton) 
(Zhang et al., 2019a) to apex predators (e.g., shearwaters or dolphins) 
(Escoruela et al., 2018; Houde et al., 2006). Perfluoroalkyl carboxylic 
acids (e.g., PFOA, PFOS) have been the principal target of the screening 
programs, with these compounds usually displaying background con-
centrations at the pg/L level (Miranda et al., 2021b), although a re-
ported study focused on the northern sector of the Atlantic Ocean 
reported concentrations of this subtype of PFAS reaching ng/L concen-
trations (Zhao et al., 2012). Likewise, several pesticide PFAS, such as 
trifluralin and λ-cyhalothrin, have also been detected in estuaries con-
necting to the Atlantic Ocean at ng/L concentrations (Cruzeiro et al., 
2017; Cruzeiro et al., 2016). 

3.2. PFAS bioaccumulation and biomagnification on marine ecosystems 

Upon arrival in the ocean, legacy and newly defined PFAS have a 
lasting effect on marine organisms across all trophic levels through 
bioaccumulation and biomagnification. These two processes are part of 
the same scenario of pollutant accumulation in marine biota, where 

bioaccumulation occurs at lower trophic levels due to direct uptake of 
PFAS from contaminated seawater and sediments (PFAS are mostly 
present in water or contaminated sediments), followed by bio-
magnifications that refers to an increase in the concentration of pollut-
ants in the tissues of organisms at successively higher trophic levels, 
primarily threatening apex predators. Many PFAS tend to be bio-
accumulative (Jahnke and Berger, 2009), with this bioaccumulation 
potential increasing with carbon chain length (Spaan et al., 2020). To 
illustrate this, PubMed search on key words "PFAS, bioaccumulation, 
marine" for the last five years resulted with 40 publications related to 
bioaccumulation in marine organisms, out of a total of 343 publications 
including different aquatic ecosystems (Suppl. Fig S1A). In addition to 
the legacy PFAS, whose ability to bioaccumulate has been well docu-
mented in numerous studies (Cara et al., 2022; Langberg et al., 2019; 
Martín et al., 2019), data for newly defined PFAS have been increasing 
in recent years (Munoz et al., 2022); e.g for GenX (HFPO-DA), the 
current-use alternative to PFOS and PFOA, it was recently reported to 
have equal or even greater toxicity and bioaccumulation capacity than 
PFOA (Yang et al., 2022). 

It has been reported that sediments, not water, are the primary 
source of PFAS in the benthic food webs in the lakes of the Canadian 
High Arctic (Lescord et al., 2015). Likewise, sediments are crucial for 
understanding the fate of PFAS in the Arctic, as they represent a key 
reservoir and, thus, the major input of PFAS for the benthic food web 
(Lin et al., 2020). The recently studied bioaccumulation dynamics of six 
selected PFASs in the sea urchin Holothuria tubulosa showed a higher 
concentration in its tissues (primarily in the intestines, then in the go-
nads) than in the surrounding sediment and seawater. Furthermore, due 
to the strong adsorption of these compounds on sediments, mean con-
centrations of selected PFAS were higher in sediments than in water. 
These studies provided a clear view of the fate and distribution of PFAS 
in the marine environment, emphasizing that the bioaccumulation at 
lower trophic levels is a potential source of contamination of organisms 
at higher trophic levels (Martín et al., 2019). 

One of the first studies about PFAS bioaccumulation in plankton 
samples from the oligotrophic global ocean, including tropical and 
subtropical Pacific, Atlantic and Indian Ocean, showed a selective 
fractionation of branched PFAS in the ocean surface, mediated by 
plankton (Casal et al., 2017). Namely, branched isomers of PFAS, 
formed as by-products of PFAS production by electrochemical fluori-
nation, in addition to the intended linear isomers, represent a large 
amount of PFAS load in the environment. Due to structural higher po-
larity, branched isomers remain in seawater, while linear PFAS bind to 
sediments. This fact may explain why most marine animals preferen-
tially accumulate the linear PFAS isomers (through the food web). At the 
same time, humans appear to preferentially accumulate the branched 
isomers (by consumption of the fish) as these are often found in human 
serum (Kurwadkar et al., 2022; Schulz et al., 2020). Also, the vertical 
transport of PFAS, due to their sorption to organic matter, results in a 
wide variability of PFAS incidence time on the ocean surface (Casal 
et al., 2017). These findings suggested potentially different toxic effects 
on pelagic, compared to bentopelagic and benthic fish populations, 
which may harm their consumers, including humans. Indeed, small 
pelagic fish are considered key components of marine ecosystems, 
affecting population dynamics, particularly in highly productive marine 
upwelling systems, but also making up to 25% of fish landings intended 
for human consumption (Queiros et al., 2019). 

In addition to bioaccumulation, predation is another mechanism that 
magnifies PFAS through the marine food web (Zhang et al., 2019a). 
Marine apex predators, such as sharks, tunas and marine mammals are 
particularly susceptible to bioaccumulation and biomagnification phe-
nomena (Houde et al., 2006), owing to their top position in the marine 
food chain and long lifespan (Sciancalepore et al., 2021). Due to their 
long-term incidence in some localities (high level of site fidelity) (Díaz 
López, 2019), dolphins, in particular, can serve as important sentinels of 
the health of coastal marine ecosystems (Wells et al., 2004). Twenty 
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years ago, it was proven that marine organisms, particularly seabirds 
and marine mammals, accumulate harmful concentrations of "forever 
chemicals" (Kannan et al., 2002). Over the last decade, special attention 
has been paid to the top of the food chain by studying the hazards posed 
by PFAS to sharks (Chynel et al., 2021; Zafeiraki et al., 2019) and marine 
mammals, as shown by an increasing number of recent ocean studies 
around the world (Barrett et al., 2021; Sciancalepore et al., 2021; 
Stockin et al., 2021; Ning et al., 2020; Lynch et al., 2019; Fujii et al., 
2018; Dassuncao et al., 2017; Galatius et al., 2013). Naturally, this trend 
has also extended to numerous fluorinated pollutants, now classified as 
PFAS, many of which are ubiquitous marine pollutants and highly 
involved in bioaccumulation/biomagnification occurrences (Alexan-
drino et al., 2022). For instance, several pyrethroids harboring per-
fluorinated elements (e.g., λ-cyhalothrin, bifenthrin) were found to 
accumulate in fish and dolphins, often corresponding to the most 
frequently detected pesticides in their corresponding screening panels 
(Clasen et al., 2018; Aznar-Alemany et al., 2017; Alonso et al., 2012). 

3.2.1. Health of marine wildlife associated with PFAS exposure 
Immune dysfunction was one of the first well-studied harmful effects 

of PFAS, mainly due to bioaccumulation and exposure to multiple 
persistent chemicals, such as PFOA and PFOS, reviewed by DeWitt et al. 
(DeWitt et al., 2011). This reported study, which included laboratory 
rodent models, wildlife (fish, reptiles, seabirds, marine mammals) and 
human samples, revealed the impact of PFOA and PFOS on the adaptive 
and innate immune response as on the inflammatory response through 
cytokines expression. Subsequent findings implied the PFOS capability 
for chronic immune activation in the bottlenose dolphin (Tursiops trun-
catus) due to increasing CD4+ and CD8+ T cell proliferation and pro-
motion of proinflammatory cytokine production such as interferon- 
gamma (IFNγ), but not immunoregulatory interleukin-4 in T-cells 
(Soloff et al., 2017). This adverse impact on dysregulation of the cellular 
immune system due to PFOS exposition has numerous consequences, 
such as hepatotoxicity, neurotoxicity and developmental disorders (Fair 
et al., 2013; Lau et al., 2007; Lau et al., 2004). Moreover, it has already 
been reported that the immune system appears particularly vulnerable 
to PFOS and other perfluoroalkyl acids (PFAA) exposure compared to 
other toxicological endpoints (Corsini et al., 2014; Dewitt et al., 2012). A 
recent evaluation of liver bioaccumulation of 17 targeted PFAS in bot-
tlenose dolphins from the northern Adriatic sea showed PFAS profiles 
composed mainly of the same five dominant compounds, with PFOS 
prevalence, followed by perfluoroundecanoic acid (PFUnA), per-
fluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and 
perfluorotridecanoic acid (PFTrDA). Notably, the authors of this study 
emphasize the relevant role of Environmental and Tissue Banks for 
retrospective analyses of emergent pollutants (Sciancalepore et al., 
2021), which could excellently support the monitoring of PFAS bio-
accumulation in marine mammals. Concerning immunotoxicity, it has 
been reported that high concentrations of PFOA in the liver of the 
southern sea otter (Enhydra lutris) from the California coast are associ-
ated with increased mortality from infectious diseases (Kannan et al., 
2006), but also gastrointestinal parasite infestation of different animal 
taxa, especially apex predators of the marine food chain (Carravieri 
et al., 2020). Surprisingly, immunotoxicity has also been highlighted as 
a common ecotoxicological endpoint of newly defined PFAS, particu-
larly PFAS pesticides and pharmaceuticals (Alexandrino et al., 2022). 
For instance, Mirghaed et al. (Taheri Mirghaed et al., 2020) have shown 
that the PFAS pesticides flonicamide and lunefuron trigger immuno-
suppression phenotypes in the common carp (Cyprinus carpio), primarily 
by causing oxidative stress via the impairment of antioxidant-related 
genes. As for pharmaceutical compounds harboring perfluorinated ele-
ments, fluoxetine has proven to be a representative example of these 
impacts, given the substantial reports of its immunotoxic potential to-
wards various marine organisms, particularly in the bivalves Mytilus 
edulis (Lacaze et al., 2015), Tegillarca granosa (Shi et al., 2019), or 
Venerupis philippinarum (Munari et al., 2014). 

The factors controlling the bioaccumulation and tissue distribution 
of different PFAS are not fully elucidated. However, many PFAS are 
ionic and, unlike neutral hydrophobic organic contaminants, they are 
thought to accumulate in phospholipids and protein-rich tissues, as 
shown in a study with the long-finned pilot whale (Globicephala melas) 
from North Atlantic (Dassuncao et al., 2019). For example, PFAA is 
anionic under certain environmental conditions and predominantly 
accumulate in blood and liver, as shown in wild animals and humans 
(Domingo et al., 2012; Lau et al., 2007). In the past decade, it was re-
ported the strong interaction of short-chain PFAA with human serum 
albumin (HSA). This major serum protein likely contributes to its tissue 
distribution and bioaccumulation patterns (Bischel et al., 2011). For-
sthuber et al. (Forsthuber et al., 2020) recently reported that HSA is the 
primary transport protein for PFOS, PFOA, perfluorononan-1-oic acid 
(PFNA), perfluorohexanesulfonic acid (PFHxS) and PFDA, as well as 
PFAA. The accumulation of these compounds in the albumin fraction of 
plasma implies that they have similar binding mechanisms and can be 
transported throughout the body in the same manner as fatty acids (van 
der Vusse, 2009). 

Furthermore, the liver fatty acid binding protein (L-FABP) efficiently 
binds PFAS. It shows a high affinity for binding long-chain fatty acids 
and their oxidation products (Zhang et al., 2013). Still, unlike other fatty 
acid-binding proteins, it can bind more than one molecule of long-chain 
fatty acids and a range of ligands (De Gerónimo et al., 2010). Due to its 
fatty acid-like structure, PFAA may efficiently compete with fatty acids 
and bind with these natural ligands for L-FABP. PFAA also interferes 
with the binding of fatty acids to their transporters, which can disrupt 
the regulation of lipid metabolism (Sheng et al., 2016). Therefore 
structural similarities between PFAS (particularly PFOS, PFOA, PFHxS, 
PFNA and PFDA) and fatty acids have become crucial in understanding 
their distribution and bioaccumulative potential (Forsthuber et al., 
2020). 

Although the brain is not a dominant tissue for PFAS accumulation 
compared to blood and liver, adverse effects on brain functions have 
been reported, including those associated with alternation in brain ste-
roid hormones concentrations in East Greenland polar bear (Ursus 
maritimus) (Pedersen et al., 2016). As steroid hormones play an essential 
role in brain plasticity and sex-specific behavior based on sexually 
dimorph brain function (Remage-Healey and Bass, 2007), such negative 
effects may soon be expected in other marine mammals. Importantly, 
U. maritimus is considered as one of the leading sentinel species, given its 
similar physiology to humans, as well as its long lifespan and thus long 
exposure to pollutants, like humans (Bossart, 2011). 

In a recent review, Cao and Ng (Cao and Ng, 2021) summarized their 
findings on two potential mechanisms of PFAS entering the brain: 
initiating blood–brain barrier (BBB) disassembly through disrupting 
tight junctions and relying on transporters located at the BBB. The BBB is 
a crucial immunological feature of the central nervous system (CNS), 
composed of brain endothelial cells connected by tight junctions, which 
protects neurons by maintaining brain homeostasis. Its dysfunction 
amplifies a neuroinflammation (Takata et al., 2021), which plays a 
significant role in the onset and progression of a wide range of human 
neurodegenerative disorders (Guzman-Martinez et al., 2019). Marine 
mammals, and even birds, could be exposed to such a scenario, where 
the relative abundance of PFAS in the brain significantly increases ac-
cording to carbon chain lengths, implying that long-chained PFAS, 
compared to the short-chained, may cross the BBB much more efficiently 
(Dassuncao et al., 2019). Additionally, several recent studies have 
shown that elevated PFAS levels in different parts of the U. maritimus 
brain affect the upregulation of oxidative stress mechanisms (Eggers 
Pedersen et al., 2015) and the rising serum C-reactive protein, implying 
that inflammation facilitates PFAS penetration across the BBB (Wang 
et al., 2018). 

A recent comprehensive review by Starnes et al. (Starnes et al., 2022) 
documents that exposure to long-chain PFAS in adult animal models 
may affect neurobehavioral functions, such as spatial learning and 
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memory, as well as motor activity and coordination. These neuro-
behavioral and cognitive effects, probably caused by changes in sex 
hormone levels, are more pronounced in adolescents than in the elderly 
(van Larebeke et al., 2022), opening numerous new questions and 
concerns in the behavioral biology of various marine animals. Kim et al. 
(Kim et al., 2020) showed that exposure to 8:8 perfluoroalkyl phosphinic 
acid (8:8 PFPiA) induces developmental neurotoxicity and alters 
epigenetic mechanisms in early life stage zebrafish Danio rerio, possibly 
due to disruption of thyroid hormones and inhibition of neuronal 
development. 

The transferring of organic contaminants into offspring during 
reproduction or gestation referred to as maternal offloading (Wood 
et al., 2021), has also been observed for PFAS. In endangered species of 
sea turtles on remote Pacific islands, which contained high levels of 
PFAS in their blood, the concentration of this pollutant in their eggs was 
recorded at levels harmful to birds (Wood et al., 2021). Additionally, a 
recent study provided valuable biochemical insight into the impacts that 
maternal offloading and bioaccumulated PFAS transference have on 
oviducal eggs of freshwater turtle (Emydura macquarii macquarii), where 
yolk comprised >90% of the bioaccumulated PFAS load (Beale et al., 
2022c). Here, multi-omics analysis of the dissected egg fractions showed 
elevated histidine metabolism, potentially associated with metabolic 
dysfunction and growth retardation (Moro et al., 2020), as well as 
significantly elevated purine metabolism, which has been observed in 
fertile chicken eggs infected with Salmonella Hessarek, probably linked 
to stress response during infection (Lin et al., 2021). Besides purine 
nucleotides are building blocks of DNA and RNA, energy sources and 
enzyme cofactors in metabolic pathways, they also play an important 
role in the cell survival and proliferation (Yin et al., 2018), in addition to 
the immune response and host-tumor interactions (Di Virgilio and 
Adinolfi, 2017). 

Furthermore, microbial community profiling of the E. macquarii 
macquarii feces, indicated a shift in the ratio of Bacillota (= Firmicutes 
corrig. Gibbons and Murray, 1978) to Bacteroidetes (B:B), which is known 
to be a significant biomarker of health in animal models and clinical 
studies (Beale et al., 2022a; Beale et al., 2022b). In contrast, the po-
tential correlation between PFAS-induced hepatotoxicity and gut bac-
terial community was recently reported for the black-spotted frog (Rana 
nigromaculata) (Lin et al., 2022). These health-related consequences of 
gut microbiota imbalance, or gut dysbiosis, which mainly affect im-
munity, metabolic and neurological functions (Balaguer-Trias et al., 
2022; Chiu et al., 2020) raise new challenges in ecotoxicology and the 
wildlife welfare and conservation. In addition to the adverse impact on 
microbial biodiversity, especially in contaminated sites (Senevirathna 
et al., 2022), the long-term effects of PFAS on (genetic, species, 
ecosystem and functional) biodiversity will be even more pronounced, 
with epigenetic modifications which lead to alteration in gene expres-
sion, reviewed by Kim et al., including mammalian and aquatic model 
organisms (Kim et al., 2021). 

3.2.2. Insights of PFAS effects on human health 
The consumption of seafood (Sunderland et al., 2019; Wang et al., 

2015b), marine mammals in northern communities (Tomy et al., 2004) 
and, in some cases, of drinking water (Li et al., 2022a; Hammarstrand 
et al., 2021; Domingo and Nadal, 2019) has been considered a major 
source of legacy PFAS exposure in humans. These compounds can enter 
the food chain directly by ingesting contaminated food or indirectly 
through food contact materials (FCM) (Ramírez Carnero et al., 2021). 
FCM, defined as materials intended to come in contact with food during its 
transport, storage, conservation, handling, or manufacture (EC Regulation, 
2011), are widely used in the food industry and household food storage, 
and include cutlery, crockery, dishes, containers, processing machines, 
cutting boards, etc. (Karamfilova, 2016). In terms of newly defined 
PFAS, human exposure to these compounds is most associated to the 
ingestion of crops treated with PFAS pesticides and to occupational 
exposure to these molecules (Alexandrino et al., 2022), as well as 

through the ingestion of seafood. For instance, pyrethroid pesticides 
harboring perfluorinated elements, such as λ-cyhalothrin, have been 
detected in human breast milk (Feo et al., 2012; Sereda et al., 2009), 
which has shown to manifest into a gamut of deleterious effects, 
particularly endocrine disruption and reproductive toxicity in children 
and adults (Orton et al., 2011; Oh et al., 2007). 

Due to the ability of PFAS to disrupt hormone metabolism by 
mimicking fatty acids, they are considered endocrine-disrupting chem-
icals (EDCs) (Gore et al., 2015). Their negative impact is primarily 
manifested in thyroid function (De Toni et al., 2022; Coperchini et al., 
2021), especially during pregnancy (Derakhshan et al., 2022; Jensen 
et al., 2022), whose hormones are crucial for numerous metabolic pro-
cesses but also normal brain development, including neurogenesis, 
synaptogenesis and myelination. PFAS exposure has harmful effects on 
reproductive health (Hærvig et al., 2022; Petersen et al., 2022; Rickard 
et al., 2022a; Hammarstrand et al., 2021) breastfeeding reducing 
(Criswell et al., 2020), decreasing infant birth weights (Shoaff et al., 
2018) with significant genotoxic potential that may result in congenital 
disabilities (e.g. anogenital distance in male newborns (Tian et al., 
2019)), as well as delayed development and developmental neurotox-
icity (Gaballah et al., 2020) with increased risk of autism spectrum 
disorder (ASD) (Oh et al., 2021). PFAS impact on alterations in the early- 
life gut microbiome development was recently reported for newborns 
(Naspolini et al., 2022) followed by decreases in gut microbiota richness 
in young children (Gardner et al., 2021). 

Numerous experimental studies highlighted the harmful impact of 
elevated PFAS levels, particularly PFAAs, on immune system suppres-
sion (von Holst et al., 2021; DeWitt et al., 2019), resulting in a decreased 
antibody response to vaccines (Grandjean et al., 2017) and infectious 
disease resistance (NTP, 2016). In addition to legacy PFAS, such as PFOS 
and PFOA, with proved immunotoxicity, a recent study showed that 
exposure to PFAS alternatives, such as chlorinated polyfluorinated ether 
sulfonic acids (Cl-PFESAs) and perfluorobutanoic acid (PFBA) was 
associated with lower hepatitis B antibodies (HBsAb) in adults (Zeng 
et al., 2020). It is also warned that PFAS could reduce the effectiveness 
of the new coronavirus vaccines, according to toxicological studies 
proving the connection between the exposure to PFAS and the devel-
opment of severe Covid-19 infections (Grandjean et al., 2021). In this 
case, the deterioration of clinical features could be explained by the fact 
that exposure to PFAS may lead to acute pulmonary toxicity due to in-
hibition of pulmonary surfactant function, followed by modulation of 
the pro-inflammatory response in bronchial epithelial cells (Sørli et al., 
2020). The number of studies on the impact of PFAS on the development 
of malignant neoplasms (Boyd et al., 2022; Li et al., 2022a; Messmer 
et al., 2022; Vieira et al., 2013), mainly reproductive organs (Hu et al., 
2022; Imir et al., 2021) and breast cancer (Wan et al., 2022; Itoh et al., 
2021), as well as resistance to platinum-based chemotherapy (Rickard 
et al., 2022b) has significantly increased over the past five years. Thus, 
PubMed search on key words “PFAS, cancer” resulted with 123 publi-
cations, of which 58 were listed in the past 12 months (Suppl. Fig S1B). 

Nevertheless, the most worrying issues are the possible interactions 
between environmental contaminants and/or pollutants, which can act 
simultaneously, even synergistically, in terms of their harmful effects on 
living organisms. In a comprehensive review, Chiu et al. (Chiu et al., 
2020) summarized current knowledge on major classes of environ-
mental chemicals, such as persistent organic pollutants, including PFAS, 
heavy metals, bisphenols, phthalates and pesticides and their effects on 
the human gut microbiome, including changes in microbial composi-
tion, gene expression, and impact on the host homeostasis. 

4. PFAS associated with microplastics: A new concern of a 
forever alliance 

Pollution of marine ecosystems by PFAS is of particular concern 
because these compounds survive for several decades in the ocean, can 
be transported over long distances (Garcia-Barrios et al., 2021), and act 

L. Lukić Bilela et al.                                                                                                                                                                                                                            



Marine Pollution Bulletin 194 (2023) 115309

8

in interactions with other pollutants, like MPs which are also a class of 
highly stable anthropogenic environmental pollutants commonly found 
in aquatic environments, wildlife, and humans. They also represent a 
diverse group of contaminants, and the synergistic effect of these pol-
lutants with PFAS is particularly concerning. Bakhshoodeh and Santos 
(Bakhshoodeh and Santos, 2022) analyzed the published scientific re-
cords from 1990 to 2020 intending to visualize changes in bibliometric 
and scientometric trends in these two hot topics. They noticed that, in 
recent years (starting in 2018), studied topics linked to MPs had sur-
passed those related to PFAS, resulting in a significant increase in the 
MPs/PFAS ratio from 0.2 in 2011 to more than 2.5 in 2020, as well as 
that PFAS research topics were more prevalent in countries with larger 
areas of water than land (Bakhshoodeh and Santos, 2022). 

4.1. Microplastics in marine environment: Deliberations and standing 
facts 

The problem of the profound negative impact of MPs on marine 
ecosystems is growing with macroplastics deposits in the sea, which will 
remain there for centuries (GESAMP, 2015) due to their meager 
biodegradability rate (Ügdüler et al., 2020; Raddadi and Fava, 2019) 
and accessible entrance into the food chain. The lack of proper waste 
management leads to the accumulation of up to 80% of plastic waste 
each year in the ocean, which, scattered by waves, currents, winds and 
UV light, transforms it into microplastics and nanoplastics (NPs), 
spreading across the ocean and coastal areas, resulting in serious social, 
health, economic and environmental consequences (Oliveira et al., 
2020, 2022; van Sebille et al., 2020). 

In 2019, 6.1 Mt of plastic waste leaked into the aquatic environments 
and 1.7 Mt flowed into the oceans2. Besides macroplastics (> 5 mm), 
marine litter also includes MPs (5 mm - 1 μm), and NPs (< 1 μm) (Hi-
dalgo-Ruz et al., 2012; da Silva et al., 2020) as an emerging pollutant 
(Park and Kim, 2019; Zhang et al., 2019b). For more information, see 
section SI1: Supplementary Information on Microplastics. 

4.2. The interaction of MPs and PFAS 

Different PFAS were detected and assessed, for the first time, from 
beached plastic debris and sediments collected in Greek coastal areas, 
with plastic pellets generally presenting a higher concentration of PFAS 
(in the range of 10 to 180 ng/kg) than sediments from the same sampling 
sites (Llorca et al., 2014). Additionally, MPs with adsorbed PFAS have 
been detected in other aquatic environments, such as river estuaries 
(Cheng et al., 2021) and lakes, where adsorption of PFAS by MPs is 
greatly enhanced by the presence of inorganic and/or organic matter 
and may present an environmental hazard for aquatic biota (Scott et al., 
2021). 

MPs’ ability to adsorb PFAS depends on many factors such as type of 
plastic, type of PFAS and its molecular structure, exposure duration and 
conditions (i.e., aqueous salinity, temperature, and pH). The main forces 
responsible for the interactions of MPs and PFAS are electrostatic and 
hydrophobic, with hydrogen and covalent bonds being less important 
(Joo et al., 2021; Gagliano et al., 2020; Du et al., 2014). PFAS adsorption 
to MPs has been experimentally tested by Llorca et al. (Llorca et al., 
2018) using a set of three types of common MPs, comprising of high- 
density polyethylene (HDPE), polystyrene (PS), polystyrene carbox-
ylate (PS-COOH), and 18 PFAS (including carboxylic acids, sulphonates 
and one sulphonamide) from the surrounding waters (freshwater and 
seawater). PFAS adsorption was greater to PS and PS-COOH than to 
HDPE. Furthermore, adsorption kinetics was higher for MPs of smaller 
diameters. In the aquatic environment, minor MPs can be more readily 
ingested by various organisms; hence MPs with smaller size can promote 

the transfer of MPs and PFASs to the marine food chain and eventually 
reaching humans (Llorca et al., 2018). 

Although PFAS adsorption to MPs has been detected in the aquatic 
environment and recreated in laboratory conditions (Hartmann et al., 
2019), the obtained results may be significantly underestimated since 
most of these studies were based on using intact/pure polymers from 
commercial suppliers. In this regard, Ateia et al. (Ateia et al., 2020) 
questioned whether pure polymers should be used as surrogates for 
commercial MPs in pollutant adsorption models and then experimen-
tally demonstrated that pure polymers (pure MPs) had lower uptake 
values than MPs with plasticizing agents, such as phthalates, in general. 
In contrast, the difference in commercial MPs samples was explained by 
surface roughness and/or the presence of fillers (e.g. talc and glass fiber) 
(Hartmann et al., 2019; Hartmann et al., 2017). Therefore, since MPs 
can form complexes or co-adsorb with natural organic matter and 
harboring microbial biofilms, further increasing the intake of micro-
pollutants (Scott et al., 2021; Amaral-Zettler et al., 2020), it has become 
apparent that the use of real MPs in research is crucial to obtain 
ecologically relevant results, and that the assessment of MPs sorption 
without natural organic matter may result in the underestimation of 
their actual values (Ateia et al., 2020). 

4.2.1. Harmful impact of synergy between MPs and PFAS on living 
organisms: Growing concern for aquatic biota 

Even though MPs and PFAS have each had their occurrence and fate 
extensively studied, little is known about how the two are connected and 
how they overlap. In 2023, Kang et al. (Kang et al., 2023) provided a 
thorough understanding of how MPs and PFAS interact, overlap, and 
have toxic effects when present in the environment. MPs and PFAS have 
co-sources like materials that come into contact with food and textiles 
with practical uses in daily life. Thus, it is crucial to control PFAS and 
MPs at the source because these are frequently found together in soil, 
air, and water bodies and are highly correlated with human activity and 
population density. PFAS can bind to MPs, through two main sorption 
mechanisms, electrostatic and hydrophobic interactions, which may be 
affected by the environmental conditions, and MP and PFAS properties. 
The presence of MPs may affect how PFAS are transported and degraded 
in the environment. Their global distribution may also be impacted by 
ecological factors like atmospheric deposition, rainwater drenching, 
runoff, wave currents, and tides, among others (Scott et al., 2021). 

Although data and estimates on the actual impact of MPs on the 
transfer of PFAS to the aquatic food chain are limited, it is known that 
MPs can serve as a vector for PFAS transfer to soil, boosting PFAS uptake 
by earthworms (Lumbricina) which results in increased toxicity (Sob-
hani et al., 2021). The same effect may be observed in marine organisms. 
In recent study, Islam et al. (Islam et al., 2021) showed that MPs act as a 
vector of PFOS in the clam Scrobicularia plana tissues, although PFOS 
accumulation is independent of MP size. Synergy between MPs and 
PFAS particularly affects fish (Savoca et al., 2021), and thus potentially 
human and wildlife health, as recently reviewed by several authors 
(Rodríguez et al., 2022; Aryal et al., 2020; Campanale et al., 2020; 
Sharma and Chatterjee, 2017). It is known that ingestion of (micro) 
plastics can be life-threatening due to intestinal obstruction, gastroin-
testinal inflammatory response and consequent reduction in nutrient 
absorption and this especially endangers sea turtles (Camedda et al., 
2022; Rodríguez et al., 2022; Choi et al., 2021), sea birds and mammals 
(Robuck et al., 2022; Senko et al., 2020). Moreover, a study by Tamargo 
et al. (Tamargo et al., 2022) on the alteration of human microbial 
colonic communities caused by ingestion of MPs, suggests that some 
members of the colonic microbiota could adhere to MPs surface, pro-
moting the formation of biofilms, which implies severe consequences for 
gastrointestinal health, increasing the risk of allergic reactions, type 2 
diabetes, (Patil et al., 2022), obesity (Zhao et al., 2022; Kannan and 
Vimalkumar, 2021) cancer (Kumar et al., 2022; Sharma et al., 2020; Yan 
et al., 2020), and even resistance to chemotherapy in gastric cancer (Kim 
et al., 2022). In addition to the detrimental effects on gut homeostasis, 

2 https://www.oecd.org/environment/plastic-pollution-is-growing-relentle 
ssly-as-waste-management-and-recycling-fall-short.htm 
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resulting in upregulated oxidative stress and increased inflammatory 
processes, the impact of PFAS on intestinal microbiota can be durable 
and carried over to the next generation, as shown on the fish marine 
medaka (Oryzias melastigma), which further increases concerns about 
the synergistic action of these two pollutants in the digestive tract (Chen 
et al., 2018). 

To date, approximately 4,028 species (1,924 publications) have been 
reported to be affected by marine debris, of which as much as 68% is 
littered with various plastic materials (https://litterbase.awi.de/intera 
ction_detail; date of access, 28 October 2022). The harmful effects of 
MPs in the marine environment are numerous and well documented 
(Nabi et al., 2022), while their hazardous impact on wildlife in associ-
ation with PFAS remain to be adequately elucidated. Sediments mixed 
with plastics show changes in heat transfer, resulting in lower residues, 
maximum temperatures and slower heating. These alterations could 
have many consequences for beach organisms, including those whose 
sex is determined by temperature, such as sea turtles and other reptiles’ 
eggs (Carson et al., 2011). In addition to recent studies on maternal 
offloading and bioaccumulated PFAS on oviducal eggs of marine and 
freshwater turtles (Beale et al., 2022c; Wood et al., 2021), these findings 
highlight the importance of adequate and effective management in 
marine protected areas (MPAs) to ensure the conservation of endan-
gered marine reptiles. 

In terms of the potential health impacts of MPs and unforeseen 
synergistic effects of these with PFAS, about which our knowledge is still 
scarce, a few recently published studies are particularly significant. 
Kwon et al. (Kwon et al., 2022) have shown that MPs, particularly those 
with a diameter of 2 μm or less, begin to accumulate in the brain within 
seven days of ingestion, causing apoptosis and changes in immunolog-
ical and inflammatory responses. Thus, it was shown in a mice model for 
the first time that MPs infiltrate blood-brain barrier (BBB), which offered 
new insights into its possible role in neurotoxicity. In a pioneer study 
performed by Leslie et al. (Leslie et al., 2022), four high-production 
volume polymers used in plastic materials were identified and quanti-
fied in the human blood of healthy donors. Also, for the first time, MPs 
were detected by Raman microspectroscopy in all human placental 
portions (maternal, fetal and amniochorial membranes) (Ragusa et al., 
2022; Ragusa et al., 2021), which may alter numerous molecular 
signaling pathways in the placenta and lead to adverse pregnancy out-
comes, including preeclampsia and fetal growth restriction (Ilekis et al., 
2016). The aforementioned studies were conducted on a mammalian 
model (mice) and humans, which directly indicates the possibility of a 
similar scenario in marine mammals and harmful effects due to the 
passage of MP through the BBB and the placental barrier. A new matter 
of concern is the possibility of MPs particles acting as vectors for PFAS 
transmission and faster expression of harmful effects on susceptible 
tissues, especially regarding the passage of BBB accompanied by 
increased neurotoxicity. We can assume that the numerous already 
known harmful effects of MPs and NPs will be even more expressed in 
synergy with PFAS and other persistent pollutants in the marine envi-
ronment, whereby all ocean dwellers can be exposed to such a scenario. 

5. (Bio)degradation of PFAS: recent discoveries, challenges of 
bioremediation and possible degradation pathways 

5.1. Biodegradation of legacy and newly defined PFAS 

Unlike many halogenated organic pollutants, the influence of envi-
ronmental microorganisms in the fate and dynamics of PFAS in marine 
ecosystems is expected to be minimal, given their refractory nature. 
While for legacy PFAS, this has been long recognized, as shown by their 
colloquial connotation as “forever chemicals”, newly defined PFAS are 
also not expected to be readily biodegradable. While the overall recal-
citrance of PFAS is a direct consequence of their high fluorination de-
gree, their resistance to biodegradation can also be attributed to the 
incredibly high fitness cost (i.e., the difficulty of microorganisms to draw 

energy from PFAS due to challenging thermodynamics) of their pro-
ductive microbial catabolism (Wackett and McMahon, 2021). 

5.1.1. High fitness cost of PFAS biodegradation 
The microbial consumption and transformation of PFAS demands a 

significant investment of energy and resources, representing a consid-
erable metabolic burden for potentially degrading microorganisms 
(Wackett and McMahon, 2021). Alongside their xenobiotic nature, 
environmental microorganisms cannot benefit from drawing energy 
from PFAS, as their typically low redox potential makes them not readily 
functionalized by microbial enzymes (Sun et al., 2021). As such, the 
emergence of suitable catabolic strategies based on the enrichment and 
selection of competent environmental microorganisms is expected to be 
a prolonged process, precluding the emergence of natural attenuation 
dynamics that could act as buffers to mitigate PFAS pollution in marine 
ecosystems. This has been clearly demonstrated by the many studies on 
the biodegradation of different PFAS, which almost consensually report 
inefficient catabolic processes, with many involving only a single 
degradation step (Zhang et al., 2022; Shahsavari et al., 2021). 

Furthermore, the degradation of PFAS is also associated with their 
unusual chemical features, namely their hydrophobicity, chemical 
complexity and large molecular sizes, which muster various physiolog-
ical challenges to microorganisms. On the one hand, the hydrophobicity 
and large molecular sizes of PFAS turn them into compounds with 
reduced bioavailability and whose cellular uptake demands the 
involvement of specialized active transport pathways (Wackett and 
McMahon, 2021). Not only these transmembrane apparatuses are 
narrowly distributed in most environmental microorganisms, but their 
recruitment also entails a significant investment of energy, further 
aggravating the energetic deficit associated with the microbial con-
sumption of PFAS. For polyfluorinated pesticides, for example, the 
involvement of specialized membrane transporters, such as TonB- 
dependent or tripartite ATP-independent transporters, have been high-
lighted as critical components of the global catabolic strategy of 
degrading microorganisms (Alexandrino et al., 2021). Accounting for 
the reduced water solubility of PFAS, the intervention of surfactants has 
also shown to be an essential factor improving their bioavailability and, 
concomitantly, their biodegradation in the ecosystems (Bolan et al., 
2021). On the other hand, the fluorination stoichiometry of PFAS sug-
gests that their eventual mineralization would lead to a surge of fluoride 
ions swarming the cytosolic environment of degrading microorganisms. 
Given the cytotoxic nature of fluoride (Johnston et al., 2020; Ji et al., 
2014) an increment of the cytosolic concentration of this anion would 
have to be matched by the expression of efficient efflux systems that 
could rapidly export fluoride to the extracellular environment. While 
several microbial fluoride export proteins have been characterized 
before (Berbasova et al., 2017; Ji et al., 2014; Li et al., 2013; Stockbridge 
et al., 2014), much is yet to know regarding their efficiency in assisting 
the microbial degradation of heavily fluorinated compounds. 

5.2. PFAS defluorination is unlikely, but microbially feasible 

The efficient cleavage of C-F bonds has long been recognized as a 
critical bottleneck in the biodegradation of fluoroorganic compounds, 
including PFAS (Zhang et al., 2022). Fluoride removal dismantles the 
prominent influence of this heteroatom on the chemical stability of an 
organic molecule, a direct result of its extreme electronegativity, while 
also improving the likelihood of the resulting metabolites being more 
readily degradable (Kiel and Engesser, 2015). For the case of bioactive 
PFAS, such as pharmaceuticals and pesticides, fluoride elimination has 
also been associated with the mitigation of their biological activities 
and, thus, a reduction of their potential ecotoxicity (Alexandrino et al., 
2021; Carvalho et al., 2016). As such, C-F cleavage is a pivotal catabolic 
reaction for the effective biodegradation of PFAS. However, these re-
actions are rare catabolic events during the microbial degradation of 
both legacy and newly defined PFAS, with most studies revealing their 
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various shortcomings. For instance, the intervention of microorganisms 
on the environmental breakdown of 8:2 fluorotelomer alcohol often 
leads to the production of smaller perfluorinated carbon chains 
conserving all its fluorinated elements (e.g., perfluorohexanoic acid) 
(Wang et al., 2009). Similarly, biodegradation studies focused on per-
fluoroalkyl acids or aromatic PFAS often report substantial removal ef-
ficiencies without fluoride release, suggesting that preferably minor 
polyfluorinated compounds result from these biotransformations (Li 
et al., 2020b; Henning et al., 2019; Beškoski et al., 2018; Uniyal et al., 
2016; Kwon et al., 2014). These typically inefficient biodegradation 
processes largely contribute to the release of fluorinated subproducts 
(Fig. 2), which may have significant environmental impacts. Howard 
and Muir (Howard and Muir, 2010) pioneered this chain of thought by 
highlighting hundreds of organic compounds and their metabolites, 
many qualifying as PFAS, that were not flagged as persistent in the 
appropriate regulatory frameworks, despite their prolonged environ-
mental half-live values. More recently, Nascimento et al. (Nascimento 
et al., 2018) showed how a perfluorinated herbicide (sulfluramid) posed 
a source of smaller PFAS in vicinal ecosystems on account of its poor 
biodegradability. 

The minor microbial defluorination of PFAS is also likely associated 
with the short evolutionary timespan available for microorganisms to 
evolve suitable catabolic strategies (Wackett and McMahon, 2021), 
especially when comparing with the more favorable dehalogenation 
outputs of polychlorinated molecules, to which there has been a 
biogenic selective pressure for millions of years (Mayer-Blackwell et al., 
2016). A more direct route for proficient PFAS biodegradation has been 
linked to strategies of metabolic activation, a series of initial catabolic 
steps targeting non-fluorinated moieties in PFAS that allow a more facile 
cleavage of existing C-F bonds (Wackett, 2022). Indeed, defluorination 
has been shown to preferentially occur when microorganisms attack 
fluoride-free carbon covalent bonds (e.g., C-S, C-O) of legacy PFAS or 
arylic carbons adjacent to perfluorinated moieties, as shown during the 
biodegradation of perfluoroalkyl acids, fluorotelomers or aromatic PFAS 
by aerobic (Pseudomonas, Gordonia or Bacillus) (Shaw et al., 2019; 
Chetverikov et al., 2017; Chen et al., 2015; Feng et al., 2012) and 
anaerobic bacteria (Acidimicrobium or Dehalobacter) (Yu et al., 2020; 
Huang and Jaffé, 2019). Still, efficient catabolic strategies capable of 
challenging the recalcitrance of PFAS are not widespread among envi-
ronmental microorganisms, as shown by the generalized lack of cata-
bolic talent to tackle these polyfluorinated structures successfully. 

5.3. (Bio)degradability of PFAS in the marine environment 

The (bio)degradation of PFAS in the marine environment is still very 
meagerly studied. As observed in other environmental compartments, 
PFAS transformation in this environment is more likely to occur abiot-
ically, albeit very slowly (Bolan et al., 2021; Xu et al., 2021). Yet, the 
ubiquitous distribution of PFAS in the marine environment observed 
since their widespread circulation (i.e., for about 80 years) is gradually 
turning into a scenario of legacy pollution, which has shown in the past 
to have driven the adaptation of environmental microorganisms towards 
desirable catabolic phenotypes (Wackett and McMahon, 2021; Zanaroli 
et al., 2015). It is, thus, possible that the decades-long exposure of the 
marine microbiome to these compounds eventually elicits the emer-
gence of suitable catabolic strategies capable of coping with PFAS 
pollution in the oceans. Considering that PFAS resist oxidative catabo-
lism and that their defluorination has been preferentially observed in 
anoxic environments with demanding redox conditions (Yu et al., 2020; 
Huang and Jaffé, 2019), deep-sea environments where such environ-
mental conditions are usually met and where PFAS tend to accumulate 
(Smith et al., 2016) may pose as a particular fascinating niches of mi-
croorganisms with higher capacity to adapt and respond to the presence 
of these xenobiotic pollutants. 

6. Methods for PFAS analysis and pollution mitigation 

6.1. PFAS identification and quantification analytical methods 

A wide variety of analytical procedures are available for the deter-
mination of PFAS in various matrices (Rehman et al., 2023; Androula-
kakis et al., 2022; Al Amin et al., 2020a; Gao et al., 2020; Rodriguez 
et al., 2020). In many cases PFAS analysis is performed by combination 
of solid phase extraction followed by liquid chromatography coupled 
with mass spectrometry (LC-MS/MS); this approach is both selective and 
quantitative with low detection limits in the low ppt range or even 
lower. In specific cases, gas chromatography (GC) can also be employed, 
e.g. for the analysis of neutral and volatile PFAS compounds; ionic PFAS 
compounds can also be determined by GC after derivatization (Gao 
et al., 2020). As mentioned above, preconcentration of PFAS from water 
matrices is usually based on the use of appropriate solid phase extraction 
(SPE) procedure. The standard SPE employs a cartridge containing the 
sorbent capable of adsorption of target analytes; after washing away 
undesired components the analytes are eluted with appropriate solvent 
(Andrade-Eiroa et al., 2016). Solid phase microextraction (SPME) is 
based on the partitioning of target analytes from the sample to the 
coating of a small fiber. After extraction for a prescribed time, analytes 
can be thermally desorbed from the fiber at the GC injector port or 
eluted with an appropriate solvent for further analysis (Pena-Pereira 
et al., 2021). Thin film SPE is a combined sampling and sample prepa-
ration technique enabling analysis in larger sample volumes employing 
larger adsorbent surface area (Pena-Pereira et al., 2021). Magnetic solid 
phase extraction (MSPE) employs magnetically responsive adsorbents 
that can be selectively, rapidly and efficiently separated from the 
analyzed samples using appropriate magnetic separators (Pena-Pereira 
et al., 2021; Safarikova and Safarik, 1999). Also stir bar sorptive 
extraction (SBSE) employing a magnetic stir bar having three essential 
parts (magnetic stirring rod, the thin glass jacket and a layer of appro-
priate adsorbent) can be used for the extraction of various analytes, 
including extracting PFAS from environmental and biological samples 
(Yao et al., 2018; Martín et al., 2016). 

Fast liquid chromatography techniques including ultra-high perfor-
mance liquid chromatography (UHPLC) are gradually replacing stan-
dard HPLC in PFAS analysis due to the long analysis time and relatively 
high LOD of HPLC. Columns with smaller particle size and narrower 
inner diameters in UHPLC enable fast separation and high resolution. 
The lower solvent and sample consumption of UHPLC in comparison to 
standard HPLC are also favorable from a green-chemistry and economy 
perspective (Selahle et al., 2022; Cielecka-Piontek et al., 2013). 

Nonetheless, also several other alternative analytical procedures can 
be successfully employed for PFAS analysis. Direct analysis in real time 
(DART) mass spectrometry enables the rapid analysis of solid, liquid and 
gaseous samples at atmospheric pressure without the need for specific 
sample preparation. During the DART ionization process, analytes can 
be desorbed at appropriate temperature directly from the studied sur-
faces (Cody and Maleknia, 2020). Smartphone based image analysis is a 
progressive low cost procedure employing specific applications for the 
image analysis of colored samples; usually parameters of several color 
spaces can be measured. The intensity of sample coloration is usually 
proportional to the analyte concentration in the tested sample; this 
process can be used especially as a pre-screening tool with a high level of 
sensitivity and selectivity (Al Amin et al., 2020b). Typical examples of 
the above-mentioned solid phase extraction and analytical procedures 
for PFAS analysis are presented in Table 2. 

6.2. Methods for PFAS pollutants extraction and removal 

Mitigation approaches for the PFAS pollution are in high demand 
and must be applied at the pollution sources and not after PFAS reaching 
the estuarine and marine ecosystems. Factories and industries that 
produce and use PFAS, as well as water treatment plants, must be 
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accountable for treating PFAS waste. 
Currently, there are several PFAS remediation techniques, among the 

most commonly used and recognized methods for PFAS pollution con-
trol are adsorption on natural and renewable material-based adsorbents, 
agricultural wastes, biochar, and many composite materials (Militao 
et al., 2021; Omo-Okoro et al., 2018). Other potential procedures for 
PFAS removal have been summarized in several reviews (Smaili and Ng, 
2023; Vu and Wu, 2022; Yadav et al., 2022; Boyer et al., 2021; Gagliano 
et al., 2020). In addition to PFAS listed as persistent organic pollutants, 
some new fluorinated organic compounds with similar structures were 
rapidly available on the market, such as sodium p-perfluorous non-
enoxybenzene sulfonate and perfluoro-2,5-dimethyl-3,6-dioxanonanoic 
acid, also causing water contamination, which needs removal for envi-
ronmental protection (Wang et al., 2022). 

In the near future, adsorption studies, including contaminated water 
on large scale must be performed. It may be helpful in case of extensive 
sea contamination due to the use of fire-fighting foams in fire accidents 
on oil platforms, ports, etc. Table 3 summarizes examples of PFAS 
removal procedures from contaminated water samples. 

The described remediation methods are more effective than micro-
bial biodegradation, bioremediation or potential microbial composting 
and can be used at industrial scale. 

7. The current trends and strategies in PFAS regulation 

7.1. Perfluoroalkoxy substrates market trends and forecast 

The PFAS global market is expected to reach USD 6.8 billion by 2024, 
driven mainly by increased demand for high-purity PFAS coating in 
critical fluid transport tubing applications and increased demand for 

ultra-high pure PFAS resin in the semiconductor industry3. The PFAS 
industry is very disciplinary and is one of the highly significant 
industrial-added value chains. Thus, in 2018 the downstream applica-
tion of fluoropolymers, where PFAS are widely used in the United States, 
was distributed mainly to the sectors of electronics (24 Kt), trans-
portation (19 Kt), chemical and industrial processes (12.5 Kt), consumer 
products (7.5 Kt), and energy (4 Kt). 

The USA industry, which was a net exporter in 2018, had sales of 
fluoropolymers in their basic form of USD 2 billion and 85 Kt of prod-
ucts, and the sales value of export exceeded USD 1 billion, with imports 
of USD 500 million. Indirectly, the industry is also estimated to have 
generated USD 150 million in R&D spillover effects with a further USD 
2.4 billion indirect and induced economic activity along with 15,000 
direct and indirect USA jobs (The Report Socio-Economic Assessment of 
the US Fluoropolymer Industry, 2020). In 2020, fluoropolymers had a 
market value of USD 7.6 billion and are projected to reach USD 10.2 
billion by 20274. The market is expected to record a total annual growth 
rate (CAGR) of 4.3% over the forecasted period. Also, the market volume 
was around 356.70 Kt in 2020, with an expected CAGR of 3.8%. Glob-
ally, the use of fluoropolymers in the automotive industry, construction 
and infrastructure development is growing steadily, while the afore-
mentioned five sectors cover almost 68% of the fluoropolymers market. 
Therefore, the fluoropolymers industry and market are accelerating the 
growth of PFAS production, which Asia dominates with continued 
growth in the global PFAS market. 

The Annex XV Restriction Report5 by ECHA identified the main uses 
of PFAS in which the largest amounts of PFAS are used and emitted, 

Fig. 2. Chemodiversity of polyfluorinated metabolites stemming from the incomplete biodegradation of some legacy (blue) and newly defined (purple) PFAS. Data 
was taken from (Li et al., 2020b; Henning et al., 2019; Uniyal et al., 2016; Howard and Muir, 2010; Wang et al., 2009). PFAS nomenclature: (a) 
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptane-1-sulfonyl fluoride; (b) perfluoroheptane; (c) 2,2,3,3,4,4,4-heptafluorobutanoyl fluoride; (d) 
3,3,4,4,5,5,6,6,7,7,8,8,8-tridecanofluorooctan-1-ol; (e) bifenthrin; (f) sitagliptin; (g) cyflumetofen; (a1) perfluoroheptanesulfonic acid; (b1) perfluoroheptanoic acid; 
(c1) perfluorobutanoic acid; (d1) perfluorohexanoic acid; (e1) (Z)-1-(3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropyl)ethenone; (f1) 3-(tri-
fluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine; (f2) 2,4,5-trifluorobenzoic acid; (g1) 2-(trifluoromethyl)benzamide; (g2) 2-(trifluoromethyl)ben-
zoic acid. 

3 https://www.researchandmarkets.com/reports/4833507/global-perfluoroa 
lkoxy-pfa-market-by-product  

4 https://www.researchandmarkets.com/reports/5411606/global-fluoropol 
ymers-market-by-type-etfe-pfa  

5 https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b 
49b9fd43aea 
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within 14 sectors and/or applications, subdivided in numerous sub-
sectors. For the EU, this resulted in an estimated 140 to 310 Kt of PFAS 
introduced into the market in 2020, which is likely to climb even more 
under the baseline scenario due to expected economic growth in various 
industries. The estimated mean PFAS tonnage in the EEA over a 30-year 
period is 49 000 Kt, resulting in emissions of approximately 4500 Kt 
during the manufacturing and usage phases if no action is taken. 
Emissions throughout the waste phase, which may be significant, are not 
included in this assessment and therefore it can be assumed that the 
emission estimates are seriously underestimated. 

7.2. The main European Union (EU) regulations relating PFAS 

Based on a proposal from the Swedish Chemicals Agency (KEMI) and 

the German Environment Agency (UBA), launched in 2017, the EU 
decided to ban several PFAS chemicals starting in February 20236. This 
restriction, also under Regulation (EC) No 1907/20067 – Registration, 
Evaluation, Authorization and Restriction of Chemicals (REACH) is 
covering six long-chained perfluorinated and polyfluorinated substances 
(molecules consisting of 9 to 14 fluorinated C atoms), and if any sub-
stance can degrade into one of these six substances, it is still valid. In 
practice, the restriction is expected to apply to approximately 200 PFAS. 
In recent years, scientists and various authorities have undertaken 

Table 2 
Examples of solid phase extraction and subsequent analytical procedures for PFAS analysis.  

Extraction 
type 

Analyzed samples Extraction system Elution Subsequent 
analysis 

Other details References 

SPE Artificial seawater Oasis® HLB 
Strata™-X 

Methanol HPLC-ESI-MS/MS The influence of type of sorbent, 
matrix pH, 
salinity and eluent on the 12 
PFAS compounds recovery 
investigated 

(Brumovský 
et al., 2018) 

SPE Marine water samples 
from the Saudi Arabian 
coastal waters of the 
Red Sea 

Waters Oasis® 500 mg HLB 
cartridges 

Methanol HPLC-MS/MS The highest PFAS levels have 
been found in Al-Arbaeen and Al- 
Shabab lagoons 

(Ali et al., 
2021) 

SPE Waters from Central 
and South Florida, USA 

Strata-XL AW cartridges 0.3% NH4OH in 
methanol 

HPLC-MS/MS PFAS were detected in all tap 
water (N=10) and surface water 
samples (N=38) with total 
concentrations up to 169 ng/L 

(Li et al., 
2022b) 

SPE Rivers and estuaries in 
Port Philip Bay, 
Victoria, Australia 

Oasis® WAX 0.1% NH4OH in 
methanol 

HPLC-MS/MS Examination of the occurrence of 
common PFAS in waters 

(Allinson 
et al., 2019) 

SPE Water from Pensacola 
Bay System, Florida, 
USA (45 different sites) 

Strata-X-AW Methanol followed by 
0.3% NH4OH in 
methanol 

UHPLC-MS/MS At all sites, at least eight or more 
PFAS were quantified 

(da Silva 
et al., 2022) 

SPE Tap water and 
rainwater 

Bamboo charcoal Methanol HPLC-ESI-MS LOD for PFOA was 0.2 ng/L. 
Good linearity (R2 =0.9995) 
over the range 1–1000 ng/L 
observed 

(Zhao et al., 
2008) 

In situ SPE Spiked water samples OASIS®WAX Methanol, ethyl 
acetate and 
dichloromethane 

GC-MS/MS An inter-laboratory trial to 
validate ISO 21675 method for 
the measurement of PFAS in 
water samples 

(Taniyasu 
et al., 2022) 

Fluoro-SPE Spiked tap water 
samples 

Fluoro-Gel Methanol Smartphone assay Smartphone-based image 
analysis due to the coloration of 
fluorosurfactants with ethyl 
violet 

(Al Amin 
et al., 2020b) 

SPME Tap water, lake water, 
bottled water and river 
water samples 

Hydrophilic-lipophilic balance- 
weak anion-exchange/ 
polyacrylo-nitrile fibers 

Methanol:water 
(80:20, v:v) adjusted 
to pH 10 with NH4OH 

UHPLC-MS/MS This method achieved LOQs up 
to 1 ng/L with satisfactory 
precision and accuracy values 
evaluated over a period of 5 days 

(Olomukoro 
et al., 2021) 

SPME PFAS-contaminated 
groundwater samples 
from Northern 
Queensland, Australia 

Octadecylamine coated Pyrex 
glass capillaries 

None Direct analysis in 
real time (DART) 
mass 
spectrometry 

Lowest detection of PFOA at 500 
parts-per quadrillion (ppq) in tap 
water 

(Cody and 
Maleknia, 
2020) 

Thin film 
SPME 

Seawater from North 
Myrtle Beach, South 
Carolina 

HLB-WAX/PAN thin films Methanol:water 
(80:20) with 2% 
ammonium formate 

UHPLC-MS/MS The use of thin films resulted in a 
twofold improvement in 
extraction efficiency compared 
to fibers, especially for the short- 
chain PFAS 

(Olomukoro 
et al., 2023) 

MSPE Drinking, river, snow 
and pond water 
samples (China) 

Magnetic covalent triazine-based 
frameworks 

Acetone LC–MS/MS Six PFAS compounds analyzed. 
LODs were in the range 
0.62–1.39 ng/L 

(Ren et al., 
2018) 

MSPE Environmental water 
samples 

Cetyltrimethylammonium 
bromide coated magnetite 
nanoparticles 

Acetonitrile HPLC-ESI-MS/MS Seven PFAS compounds 
analyzed. LODs were in the 
range 0.022-0.31 ng/L 

(Zhao et al., 
2011) 

SBSE Environmental water 
samples 

Poly(1-vinylimidazole- 
ethyleneglycol dimethacrylate) 
monolith-coated stir bars 

Methanol containing 
0.4% ammonia (v/v) 
under sonication 

HPLC-ESI-MS/MS Eleven PFAS compounds 
analyzed. LODs were in the 
range of 0.06–0.40 ng/L 

(Yao et al., 
2018) 

ESI – electrospray ion source; LOD – limit of detection; LOQ – limit of quantification; MSPE – magnetic solid phase extraction; SBSE – stir bar sorptive extraction; SPE – 
solid phase extraction; SPME – solid phase microextraction. 

6 https://www.ivl.se/projektwebbar/baltic-sea-pfas-network/pfas-informa 
tion.html  

7 https://www.informea.org/en/legislation/regulation-ec-no-19072006-euro 
pean-parliament-and-council-concerning-registration 
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campaigns to draw attention to the negative repercussions of the 
widespread use of PFAS in industry and daily life consumables. At the 
EU level8, PFOS have been restricted under the EU persistent organic 
pollutants (POPs) Regulation EU, 2019/10129) Regulation EU 2019/ 
1021 for more than ten years; while PFOA and PFOS are listed in 
Stockholm Convention10 (including 152 signatory countries) as sub-
stances that should be eliminated/banned in production and used as 
chemicals. For more details see section SI2: Supplementary Information 
on PFAS Regulations. 

Furthermore, PFAS policy is becoming one of the priorities in the EU 
Chemicals Strategy for Sustainability (CSS) presented on 14 October 
2020, which highlights the priority to eliminate endocrine disruptions 
caused by persistent and highly mobile chemicals, such as PFAS. Efforts 
to overcome significant barriers to effectively identifying and regulating 
the most dangerous chemicals seem crucial, as actual data on their 
presence is often very insufficient. While the REACH Regulation, driven 
by the motto no data, no market, requires industry to manage chemical 
hazards and publish safety information on compounds, companies in 
transition and developing countries operate unhindered in a no data, no 
problem manner instead of being penalized for it. 

7.3. Efforts and good practices aimed at reducing the impact of PFAS in 
marine environment 

7.3.1. Policy Area (PA) hazards - EU Strategy for the Baltic Sea Region 
(EUSBSR) 

The European Commission launched the EU Strategy for the Baltic 
Sea Region (EUSBSR) in 2009, which provided a framework for Baltic 
Sea-bordering Member States to collaborate on three broad objectives: i) 
to protect the sea; ii) increase prosperity; and iii) connect the region. 
Moreover, in the current revision of EUSBSR11, the main objectives were 
not significantly modified. EUSBSR Policy Area Hazards (PA Hazards) 
was coordinated by Sweden through the Sweden Environmental Pro-
tection Agency and guided by an international Steering Group 
comprised of national experts from relevant public bodies from all 
countries around the Baltic. Within the EUSBSR environmental objective 
“Save the Sea” and several sub-objectives such as “clear water in the sea”, 
“rich and healthy wildlife” and “better cooperation”, PA Hazards strived to 
reduce the use and impacts of hazardous substances. 

In 2017, PA Hazards commissioned the study”PFAS in the Baltic Sea 
Region: Inventory of awareness, actions and strategies related to highly 
fluorinated substances, PFAS, including PFOS” (Sahlin, 2017). This study 
was performed based on a questionnaire, which inventoried national 
strategy and data on firefighting foams, groundwater and drinking 
water, and contaminated soil in Sweden, Denmark, Germany, Finland, 
Poland, Lithuania, Latvia and Estonia. Based on the study results, in 
2018, PA Hazards International Steering Group considered the need for 
further work on PFAS in the Baltic Sea region and launched the Baltic 
Leadership Programme on PFAS (“PFASeout”)12 intending to raise 
knowledge among policy actors. The medium-term objective of the 
programme (2020-2030) is to improve PFAS data collection, regulation 
and public-private sector collaboration on their use in products and 
release to the environment; the long-term objective (2025+) of the 
programme is to significantly decrease the environmental release of 
PFAS into the Baltic Sea catchment area. The programme has the PFAS 
Reference Group (PFAS RG), which consists of the Swedish Environ-
mental Protection Agency, the Swedish Chemicals Agency, the Swedish 
Agency for Marine and Water Management, the Finish Environment 
Institute, the Swedish Institute and the Baltic Marine Environment 
Protection Commission HELCOM13. Currently, the Baltic Sea PFAS 
Network14 connects stakeholders, whose main goal is reducing envi-
ronmental pollution with PFAS. This platform also ensures knowledge 
sharing, experience transfer and networking for opportunities in PFAS 
usage and management, removal, environment impact, policy and 
regulations. 

Table 3 
Examples of adsorbents for PFAS compounds removal from contaminated water 
samples.  

Polluted samples Adsorbents Experimental details References 

PFAS contaminated 
water samples 

Biosolids derived 
biochar 

Biochar 
demonstrated >80% 
adsorption of long- 
chain PFAS and 
19–27% adsorption 
of short-chain PFAS 

(Kundu 
et al., 
2021) 

Contaminated 
water from a well 
in a factory 
producing water 
resistant clothing 

Coal derived 
activated carbon 

Activated carbon was 
efficient PFAS 
adsorbent. The 
Freundlich 
adsorption model 
followed. 

(Hansen 
et al., 
2010) 

Contaminated 
groundwater 

Surface modified 
organoclay, 
granular activated 
carbon and ion 
exchange resin 

Ion exchange resin 
exhibited the best 
PFAS adsorption 
(nearly four times 
higher than activated 
carbon and two times 
higher than 
organoclay) 

(Murray 
et al., 
2023) 

PFAS-contaminated 
groundwater 
samples from fire 
training areas, 
burn pits, and 
other water 
sources 

Metal− organic 
frameworks 

PFAS adsorption was 
dominated by 
electrostatic and 
acid− base 
interactions for 
anionic and non- 
ionic PFAS, 
respectively; 
preferred for long- 
over short-chain 
PFAS; strongly 
dependent on the 
nature of PFAS head 
group functionality 

(Li et al., 
2021a) 

PFAS-contaminated 
groundwater 
samples from U.S. 
Air Force bases 

Zirconium-based 
metal− organic 
framework 

PFAS removal rates 
of 75− 98% within 10 
min regardless of the 
presence of co- 
contaminants 

(Li et al., 
2021b) 

PFAS-contaminated 
water from the 
Xiaoqing River 
basin 

β-Lactoglobulin 
amyloid fibril 
membrane 

Membrane exhibits 
high efficiency for 
removing both high 
(>μg/L) and trace 
(ng/L) levels of the 
PFAS compounds 

(Jin et al., 
2021) 

Aqueous film- 
forming foams 
wastewater from 
a fire-fighting 
manufacturing 
company 
containing PFAS 

Magnetic 
fluorinated 
vermiculite 

Adsorbent exhibited 
very fast and 
selective adsorption 
of perfluorooctane 
sulphonate in the 
presence of other 
compounds. 
Regeneration with 
methanol. 

(Du et al., 
2017)  

8 https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas  
9 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:3 

2019R1021  
10 http://chm.pops.int/Countries/StatusofRatifications/PartiesandSignatoire 

s/tabid/4500/Default.aspx 

11 https://www.eusbsr.eu/  
12 https://klaipedaregion.lt/wp-content/uploads/2019/07/Baltic-Leadership 

-Programme-on-PFAS_Concept-for-Participants.pdf  
13 https://helcom.fi/  
14 https://www.ivl.se/english/ivl/project/baltic-sea-pfas-network.html 
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7.3.2. An example of good practice in reducing PFAS production – 
contribution to EUSBSR 

The Interreg project NonHazCity15 (2016-2019) enabled nine mu-
nicipalities across the Baltic Sea to develop their chemical action plans 
for hazardous substances entering the Baltic Sea and trained dozens of 
small businesses and households to reduce their emissions. The project 
results showed that companies are generally not concerned about 
problems with PFAS just because they are not aware that they are using 
hazardous substances. Although dangerous chemicals management is 
complex, simple and convincing strategies to improve hazardous ma-
terial awareness among enterprises are needed. There are many ways in 
which municipalities can motivate companies to reduce the use of 
hazardous substances: raising awareness, advising on the replacement of 
hazardous substances in the workplace, engaging with professional as-
sociations and trade organizations, as well as better considering the 
hazardous substances in the procurement process. The project clarified 
that municipalities, in particular, could help businesses to play a much 
better role than they currently do in reducing hazardous substances in 
homes, workplaces and the environment; they could also take the lead in 
facilitating collaboration between companies and raising awareness of 
the chemicals present in products and materials, and significantly 
reduce the impact of PFAS on human health and the local/regional 
environment (NOnHazCity Project Report, 2019). 

7.3.3. An example of good practice in reducing PFAS production – 
contribution to activities of the US Enviromental Protection Agency (EPA) 

Although there appear to be measured in place to monitor and 
reduce PFAS pollution, there should be a clear understanding that 
meaningful action is required not only to address remediation and clean- 
up of inherited contamination but also to mitigate current PFAS pro-
duction and use to limit the scope of future exposures (Cordner et al., 
2021). Thus, in the United States, eight major PFAS manufacturers 
voluntarily joined the Environmental Protection Agency's (EPA)16 PFOA 
Stewardship Program in 2006, committing to continuously invest more 
than 700 million USD in R&D, with the commitment to discontinue the 
production and use of PFOS and PFOA-related chemicals and the 
agreement to subject the new PFAS chemistry to enhanced regulatory 
revision before it is allowed on the market. The FluoroCouncil17 was 
established as part of the 2010/2015 PFOA Stewardship Program to i) 
maintain the transition from older fluorinated chemistries, commonly 
referred to as long-chain PFAS, to newer products that include short- 
chain PFAS, which, according to manufacturers, have significantly 
improved health and safety profiles; and ii) examine the science and 
society that addresses questions about the safety profile of these 
substances. 

7.4. Importance and multiple benefits of monitoring 

The World Health Organization (WHO) consistently warns that the 
monitoring and regulation related to PFAS are crucial and should be 
implemented not only at the national and regional level but also at the 
global level. The emergence of PFAS in water, its persistence in the 
environment and bioaccumulation in living organisms is becoming an 
increasingly widespread problem. According to a recent review by 
Baluyot et al. (Baluyot et al., 2021), temporal monitoring sampling 
strategies that provide trends and status of PFAS in the environment and 
population are already in place in the USA and the EU, while awareness 
of PFAS exposure in Asia is still in its infancy. In comparison to the USA, 
PFAS levels in South and Southeast Asia were just below the recom-
mended level. Still, the rise of PFAS in China in the last decade suggests 
that increased PFAS contamination in South and Southeast Asia may 

follow soon as these countries compete in the global economy (Baluyot 
et al., 2021). 

7.4.1. The case study “PFASs in the Nordic Environment” 
Nordic initiatives and studies on PFAS cover a wider area than just 

the Baltic Sea region. In 2019, two studies were launched at the Nordic 
Council of Ministers. The monitoring study “PFASs in the Nordic envi-
ronment. Screening of Poly- and Perfluoroalkyl Substances (PFASs) and 
Extractable Organic Fluorine (EOF) in the Nordic Environment” (Kärrman 
et al., 2019) was initiated in 2019, based on the results from 2004, when 
the Nordic region first started screening for PFOS, PFOA, PFHxA, per-
fluoroheptanoic acid (PFHpA), PFNA, PFHxS, perfluorodecanoic acid 
(PFDS) and perfluorooctane sulfonamide (PFOSA) in surface water, 
seawater, sediments, wastewater, sludge, fish, shellfish, molluscs, crus-
taceans (marine and freshwater species), marine mammals and seabirds; 
in which PFOS and PFOA were found in almost all samples. The rapid 
progress of analytical tools and quantification methods has increased the 
detection limit of PFAS and their conjugates over the last two decades. 
The aim of this study, conducted on behalf of the Nordic Screening 
Group, was to monitor for the first time an extensive list of legacy and 
newly PFAS in a wide range of ecological matrices from the Nordic 
countries and to compare the results with measured total extractable 
organic fluorine, to encompass all unknown fluoroorganic compounds. 
A total of 99 substances were analyzed, divided into the following cat-
egories: i) volatile PFAS (vPFAS); ii) ultra-short chain PFAS; iii) per-
fluoroalkyl carboxylic acids and sulfonic acids (PFCAs and PFSAs); iv) 
precursor PFASs; v) perfluoroalkyl phosphonic and phosphinic acids 
(PFPA/PFPiAs); and vi) novel PFAS. A total of 102 samples were 
analyzed, including bird eggs, fish, marine mammals, terrestrial mam-
mals, surface water, WWTP effluents and sludge, and air. Samples were 
collected by institutes from the participating countries and self- 
governing areas: Denmark, Faroe Islands, Finland, Greenland, Iceland, 
Norway, and Sweden, with most of the samples collected since 2017. 
The results of the study showed the need to include more classes of PFAS 
in environmental assessments. Short-chain PFAS with a C2-C4 chain 
length, frequently detected in surface water and WWTP effluents, are 
likely to be as persistent as their long-chain homologues, while their 
long-term effects on the environment and humans are still unknown. 
Precursor compounds were also frequently detected in many samples. 
The large proportion of unknown extractable fluoroorganics in most 
environmental samples in the Nordic environment also requires further 
studies and warranted monitoring. 

7.4.2. The case study: “The Cost of Inaction” 
Another study launched at the Nordic Council of Ministers was 

dedicated to the socio-economic aspects of the impact of PFAS - “The cost 
of inaction: A socio-economic analysis of environmental and health impacts 
linked to exposure to PFAS” (Goldenman et al., 2019) with the explicit 
aim of raising awareness of the long-term effects of PFAS on the envi-
ronment and human health, taking into account only socio-economic 
costs. The scope of this study concerned only C4-14 non-polymeric 
fluoro-surfactants in the European Economic Area (EEA). According to 
the report, PFAS contamination will remain on the planet for hundreds, 
or even thousands of years, human and environmental exposure will 
continue, and exposure mitigation efforts will lead to high socio- 
economic costs that will be borne mainly by governments and tax-
payers. The analyzed case studies showed that a large part of PFAS is 
released into the environment as a consequence of their production, use 
in the production of other products and through the use of products 
containing PFAS. According to the study, up to 20 facilities are currently 
producing fluorochemicals in Europe, including the Nordic region. 
These facilities are considered the main source of PFAS released into the 
environment, with worker exposure also being high. The costs of 
remediation, which often does not result in the complete removal of 
PFAS, in some cases range up to several million EUR, while the total 
costs at the European level can reach hundreds of millions of EUR. 

15 https://projects.interreg-baltic.eu/projects/nonhazcity-7.html  
16 https://www.epa.gov/  
17 https://fluorocouncil.com/ 
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However, disclosed results on health-related costs to society and related 
to environmental contamination highlighted the heavy costs that society 
will have to pay in the future if actions are not taken. Thus, the estimated 
annual health-related costs range due to PFAS exposure is 2.8 – 4.6 
billion EUR for the five Nordic countries and 52 – 84 billion EUR for all 
EEA countries. The actual prices are likely higher, as these calculations 
refer to only a few of the health effects associated with PFAS exposure. 
The total range of estimated environmental costs is 46 million –11 
billion EUR over the next 20 years for the Nordic countries, and for all 31 
EEA Member States and Switzerland, the range of costs for environ-
mental remediation is 821 million –170 billion EUR. Although this study 
does not directly address the impact on the marine environment, it does 
quantify the costs associated with the loss of ecosystem services. In this 
sense, on all four categories of coastal and marine ecosystem services, 
such as support (e.g. nutrient cycling), supply (fishing, seafood pro-
duction), regulation (carbon sequestration in the ocean), as well as 
coastal and marine cultural services (tourism, recreational, aesthetic and 
spiritual benefits) the "cost of inactivity" can be assessed. 

8. The legal framework for PFAS pollution control in marine 
management 

The EU Committees for Risk Assessment (RAC) and Socio-Economic 
Analysis (SEAC) on their meeting in December 202118, have supported 
Germany’s proposal to restrict the use of undecafluorohexanoic acid 
(11-PFHxA), its salts, and related substances, according to the European 
Chemicals Agency (ECHA)19, responsible for implementing EU chemical 
regulations. 11-PFHxAs, a subgroup of PFAS, are widely used in many 
sectors (e. g., paper and cardboard packaging, textiles, and fire-fighting 
foams) and are known as very persistent and mobile compounds. It is 
anticipated that short-chain perfluorinated compounds such as PFHxA 
(C6) are intended to replace long-chain (C8 to C14) perfluorinated 
substances (e.g. PFOA, PFCA) because many of these harmful substances 
are or will soon be prohibited (e.g. PFOA, PFCAs) due to their toxicity. 
Although this support seems very promising, the reasons offered for 
limiting the use of these substances to reduce further environmental and 
human exposure do not even mention the marine ecosystems or marine 
organisms. 

Furthermore, the International Convention for the Prevention of 
Pollution from Ships (MARPOL)20 is the primary international conven-
tion that regulates pollution from ships and other vessels, intending to 
prevent and/or minimize the pollution (operational or accidental) of the 
marine environment. In the six MARPOL annexes covering the pollution 
caused by several substances, including oil, noxious liquid substances, 
sewage, garbage and air pollution, PFAS are not mentioned. The po-
tential threat of PFAS to the marine environment was probably not 
recognized at the time of the adoption of the MARPOL Convention in 
November 1973. However, today it seems surprising that PFAS are still 
not listed as hazardous substances, especially given their lasting and 
recalcitrant effects on the marine environment and its biodiversity 
(Strodder, 2020). 

The Descriptor 8 of the Marine Strategy Framework Directive 
(MSFD) (Directive 2008/56/EC) regulates the protection of the pollution 
of marine water by chemical contaminants and is closely related to the 
Water Framework Directive (WFD) 2000/60/EU21 (Directive 2000/60/ 
EC), which covers freshwaters and some marine waters. According to the 

MSFD, monitoring is required to conduct an integrative assessment of 
the environmental state, with the scopes of the WFD and MSFD over-
lapping in terms of coastal waters (Fliedner et al., 2020). In contrast, 
recommended substances for monitoring in marine environments are 
initially selected under the WFD 2000/60/EU and 2013/39/EU22 

(Directive 2013/39/EU). In this regard, PFOA and PFOS are considered 
priority hazardous substances under the WFD 2000/60/EU, while PFOS 
and their derivatives are included as a priority hazardous substance 
under the Directive 2013/39/EU with a much lower Environmental 
Quality Standard (anual average; AA-EQS) limit value of 0.65 ng/L in 
inland surface waters and 0.13 ng/L in seawater. Thus, samples taken in 
2013 in Northern Europe exceeded this EQS in 27 % of river sites and 94 
% of Baltic Sea and Kattegat seawater (Nguyen et al., 2017). Ten years 
later, a comprehensive report on spatio-temporal trends, bio-
accumulation and compliance with the new EQS for PFAS has been 
published by the Swedish Marine Contaminant Monitoring Programme 
(Soerensen and Faxneld, 2023). PFAS analyzes were conducted on four 
fish species and three bird species, including 40 years of the longest time 
series monitoring and 26 monitoring stations, from the Bothnian Bay in 
the north to the Skagerrak on the west coast of Sweden (called the Great 
Baltic Sea). After the initial exponential increase in PFAS concentrations, 
there was a rapid response to the introduction of stricter regulations in 
the early 2000s, which resulted in the stabilization of PFAS concentra-
tions in the marine environment. With the exception of PFOA (C8) and 
PFNA (C9), which continue to show significant increasing trends at 
selected monitoring stations, PFAS concentrations have considerably 
declined at most monitoring stations over the last ten years (especially 
PFSA and PFCA with chain lengths longer than C9). Unfortunately, PFAS 
concentrations in biota are still 5-230 times higher than the threshold 
recommended in the PFAS EQS dossier (Soerensen and Faxneld, 2023). 

Specifically, Australia and New Zealand developed the PFAS Na-
tional Environmental Management Plan (NEMP)23, which provides na-
tionally agreed guidance on the management of PFAS contamination 
focused on ambient environmental monitoring to establish baseline data 
and identify temporal and spatial trends in the concentration and 
presence of specific PFAS. Fresh and marine surface waters, sediments 
(freshwater, estuarine, and coastal), biota (e.g. marine tissue samples), 
groundwater, air, and soil are among the environmental aspects that 
should be considered for inclusion in the environmental monitoring 
program. It is encouraging that despite each state and territory having 
its own legislation, NEMP shows how states and territories have a uni-
fied, unambiguous and consistent approach to PFAS environmental 
protection (HEPA, 2020). 

8.1. The future challenges and recommendations for marine and coastal 
management 

PFAS spills typically occur when the fire-fighting foam is used on 
tankers and oil rigs after accidents and reaches the marine environment. 
The most important legal issues related to PFAS as “forever chemicals” 
are their long-term danger and the possibility of future lawsuits. This 
means that the maritime industry and related companies whose em-
ployees have been exposed to PFAS may face expensive and unexpected 
claims in the future. Accordingly, the maritime industry must manage 
the potential of future long-term responsibility by adopting clear pol-
icies, procedures and plans on how to use, store, handle and dispose of 
PFAS following relevant national environmental regulatory legislation. 
Industries need to be well acquainted with regulations and ethics, 
Responsible Research, Innovation and Development concept, and 
complying with the UN Sustainable Development Goal 14, (UNSDG14) 

18 https://www.lisam.com/en-us/lisam/news/rac-and-seac-support-germa 
ny-s-proposal-to-restrict-the-pfas/  
19 https://echa.europa.eu/  
20 https://www.imo. 

org/en/About/Conventions/Pages/International-Convention-for-th 
e-Prevention-of-Pollution-from-Ships-(MARPOL).aspx  
21 https://www.eea.europa.eu/policy-documents/water-framework-directive 

-wfd-2000 

22 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:22 
6:0001:0017:en:PDF  
23 https://www.dcceew.gov.au/sites/default/files/documents/pfas-nemp-2. 

pdf 
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“Life below water”. This goal aims to conserve, sustainably manage, and 
protect marine and coastal ecosystems to avoid significant adverse im-
pacts due to human actions, reinforcing ecosystems strength, and act for 
their restoration to achieve healthy and productive oceans for the sus-
tainable use of its resources. In fact, the EU aims to protect and monitor 
30% of its seas by 2030, through the creation of marine protected areas 
(MPAs) and has declared zero-tolerance towards illegal practices and 
nonsustainable harvesting of marine resources (Schneider et al., 2022). 
In this context, Responsible Research and Innovation (RRI) enable us to 
meet societal needs considering ethics and sustainability, being the use 
of PFAS no exception to these premises (Schneider et al., 2022, 2023). 

In an era of rapid global biodiversity loss, a carefully planned ma-
rine/coastal management program with new monitoring tools can 
mitigate the pollution damage already done to marine living organisms. 
Social responsibility is highly essential in industrial production, which 
can be achieved through the development and implementation of 
technological advances, process improvements and the design of pro-
duction methods that increase productivity and reduce waste. Marine 
ecosystems and their dwellers have long faced the consequences of 
decades-long negligence and failure to take measures to reduce pollu-
tion. In addition, the challenges of sustainable waste management are 
particularly pronounced in developing and transition countries, mainly 
due to inefficient local management systems and low interest in gov-
erning structures in this issue. Indeed, current trends in marine/coastal 
management require an interdisciplinary approach followed by local 
and regional management planning, stable financial mechanisms and 
instruments to support the sustainable development of these environ-
ments. In the long run, the best solutions will be achieved by forming 
international consortia capable of implementing large-scale projects 
whose results will improve the protection of the marine environment 
and the preservation of certain regional seas, with a focus on marine 
protected areas. Moreover, these activities include improving existing 
capacities and, in particular, capacity building within transition coun-
tries to meet current trends in marine litter management, with the aim of 
biodiversity conservation. 

Therefore, it is generally accepted that the social dimensions of 
resource use, with strong local community involvement, should be 
supported by the government in improving management efficiency. 
Consequently, the focus should be on locally managed marine areas 
(LMMAs) with a vital role for the local community, whenever possible, 
which is particularly important in protecting the coastal regions and 
marine animals, such as sea turtles, and seabirds, among others. 

As highlighted in this review, further efforts to mitigate marine 
environmental pollution caused by PFAS are imperative and should 
consider the following aspects:  

1. Determining primary sources of legacy and newly defined PFAS 
contamination in the marine ecosystems and their main transport 
routes (based on spatial data);  

2. Increasing monitoring activities for MPAs and Marine Natura 2000 
sites as a valid addition to the marine mammals protection plan 
(MMPP) and a base for decisions by governmental bodies/political 
planners responsible for environmental protection management;  

3. Establishing standardized methods for sampling, analysis and 
reporting data, which could improve and advance research on PFAS 
monitoring and risk assessment;  

4. Investigating the biota and their role in the trophic transfer and PFAS 
bioaccumulation through the food web, as well as PFAS interactions 
with MPs, with a focus on i) benthic organisms, which are generally 
exposed to higher PFAS concentrations due to their closer proximity 
to sediments; and ii) seabirds and the longest-lived marine mammals 
that accumulate higher concentrations in their tissues such as liver 
and endocrine glands, which should therefore be subject to higher 
protection;  

5. Developing PFAS remediation technologies and fomenting their 
implementation in municipal and State practice for wastewater and 

leachate treatment, PFAS production facilities, and promoting sus-
tainable investment policies to reach these targets;  

6. Improve marine and coastal management in MPAs, particularly in 
vulnerable marine ecosystems such as marine and anchialine caves 
or habitats that are difficult to explore (e.g. deep sea). In the marine 
coastal areas, the focus should be on LMMAs with a key role for the 
local community in the protecting endangered sea turtles and 
seabirds. 

9. Conclusions 

Ocean pollution is a growing global issue that has a plethora of 
harmful repercussions for marine environments, wildlife and, ulti-
mately, human health. The problem of legacy and newly defined PFAS in 
the environment goes beyond identifying contamination sources and 
emphasizing the harmful effects on living organisms and their habitats. 
It is critical to contextualize the problematic of PFAS marine pollution in 
a larger framework, considering the synergistic effects of PFAS with 
other marine pollutants, particularly MPs and heavy metals, and un-
derstand how that potentially impacts the abundance of ecosystems 
services the oceans provide. 

Moreover, public health consideration often overlooks the critical 
importance of the ocean, whose health is becoming closely intertwined 
with our own, as advocated by the One Health concept. Regrettably, the 
same chemical properties that contribute to PFAS' commercial attrac-
tiveness are also responsible for their environmental persistence and, 
consequently, for long-term adverse impacts on living beings. Due to 
their behavior in the environment, PFAS pose a threat mainly to wildlife 
at higher trophic levels, by biomagnification, consequently affecting 
protein-rich tissues such as liver and blood. It is expected to be a serious 
threat to global biodiversity, habitat loss, oceans and human health in 
the years to come. 

Water bodies, especially the ocean, are considered the ultimate 
destination for PFAS and MP. Particular attention is drawn to the 
growing concern about the synergistic effects of PFAS with other pol-
lutants, including MP and heavy metals. Very worrisome is the fact that 
organisms consuming PFAS-sorbed MPs may result in and increased 
combination of toxic effects than when exposed to these pollutants 
alone. A new matter of concern is the possibility of MPs particles acting 
as vectors for PFAS transmission and faster expression of harmful effects 
on susceptible tissues, especially liver and blood. The possibility of 
passage the blood-brain barrier (BBB) is accompanied by increased 
neurotoxicity, changes in behavior and communication, which partic-
ularly endangers marine mammals. We can assume that the numerous 
already known harmful effects of MPs and NPs will be even more 
expressed in synergy with PFAS and other persistent pollutants in the 
marine environment, whereby all ocean dwellers may be exposed to 
such scenario. As the capacity of marine ecosystems to cope with current 
PFAS pollution levels is unknown, mitigation approaches should espe-
cially focus on the prevention of their influx to the oceans, essentially 
acting on the major sources of emission of these compounds, like in-
dustries and wastewater treatment plants. In addition, the updated 
definition of PFAS has welcomed a new layer of complexity to the 
already complex context of PFAS-related environmental management 
and regulation, which should be met with courageous regulatory efforts 
and unconventional management efforts. 

Overall, this review brings together data from several disciplines in 
an effort to fill existing knowledge gaps in the field, facilitating re-
searchers' selection of experimental techniques and approaches in the 
search for answers to the problem of PFAS contamination. 
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Beškoski, L.S., Inui, H., 2018. Defluorination of perfluoroalkyl acids is followed by 
production of monofluorinated fatty acids. Sci. Total Environ. 636, 355–359. 
https://doi.org/10.1016/j.scitotenv.2018.04.243. 

Bischel, H.N., MacManus-Spencer, L.A., Zhang, C., Luthy, R.G., 2011. Strong associations 
of short-chain perfluoroalkyl acids with serum albumin and investigation of binding 
mechanisms. Environ. Toxicol. Chem. 30 (11), 2423–2430. https://doi.org/ 
10.1002/etc.647. 

Boisvert, G., Sonne, C., Rigét, F.F., Dietz, R., Letcher, R.J., 2019. Bioaccumulation and 
biomagnification of perfluoroalkyl acids and Precursors in East Greenland polar 
bears and their ringed seal prey. Environ. Pollut. 252, 1335–1343. https://doi.org/ 
10.1016/j.envpol.2019.06.035. 

Bolan, N., Sarkar, B., Yan, Y., Li, Q., Wijesekara, H., Kannan, K., Tsang, D.C.W., 
Schauerte, M., Bosch, J., Noll, H., Ok, Y.S., Scheckel, K., Kumpiene, J., Gobindlal, K., 
Kah, M., Sperry, J., Kirkham, M.B., Wang, H., Tsang, Y.F., Hou, D., Rinklebe, J., 
2021. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils 
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L. Lukić Bilela et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.envres.2019.108648
https://doi.org/10.1016/j.foodchem.2012.06.054
https://doi.org/10.1016/j.foodchem.2012.06.054
https://doi.org/10.1016/j.jhazmat.2014.04.038
https://doi.org/10.1016/j.jhazmat.2014.04.038
https://doi.org/10.1021/acs.est.6b06540
https://doi.org/10.1016/j.envres.2015.01.015
https://doi.org/10.1016/j.envres.2015.01.015
https://doi.org/10.1016/b978-0-12-812733-9.00017-9
https://doi.org/10.1016/b978-0-12-812733-9.00017-9
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0950
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0950
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0950
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0950
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0950
https://doi.org/10.1016/j.jes.2017.05.004
https://doi.org/10.1016/j.jes.2017.05.004
https://doi.org/10.1016/j.marpolbul.2018.04.032
https://doi.org/10.1016/j.marpolbul.2018.04.032
https://doi.org/10.1002/etc.2122
https://doi.org/10.1021/jf3011307
https://doi.org/10.1016/j.envint.2011.08.008
https://doi.org/10.1186/s12302-020-00312-x
https://doi.org/10.1016/j.envint.2019.105324
https://doi.org/10.1016/j.envint.2019.105324
https://doi.org/10.1016/j.scitotenv.2017.10.033
https://doi.org/10.1016/j.scitotenv.2017.10.033
https://doi.org/10.1289/EHP5843
https://doi.org/10.1016/j.watres.2019.115381
https://doi.org/10.1007/s11356-013-1633-x
https://doi.org/10.1007/s11356-013-1633-x
https://doi.org/10.1016/j.trac.2020.116114
https://doi.org/10.1016/j.trac.2020.116114
https://doi.org/10.1016/j.ijheh.2021.113754
https://doi.org/10.1021/acs.estlett.0c00776
https://doi.org/10.1021/acs.estlett.0c00776
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0440
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0440
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0440
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0440
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0445
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0445
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0445
https://doi.org/10.1210/er.2015-1010
https://doi.org/10.1210/er.2015-1010
https://doi.org/10.1080/1547691X.2017.1360968
https://doi.org/10.1080/1547691X.2017.1360968
https://doi.org/10.1371/journal.pone.0244815
https://doi.org/10.1371/journal.pone.0244815
https://doi.org/10.3389/fphar.2019.01008
https://doi.org/10.1289/EHP10285
https://doi.org/10.1016/j.envpol.2017.12.030
https://doi.org/10.1016/j.envpol.2017.12.030
https://doi.org/10.1016/j.envint.2021.106819
https://doi.org/10.1016/j.envint.2021.106819
https://doi.org/10.1021/acs.chemrev.0c01263
https://doi.org/10.1021/acs.chemrev.0c01263
https://doi.org/10.1007/s11368-009-0172-z
https://doi.org/10.1002/ieam.1904
https://doi.org/10.1021/acs.est.8b05297
https://doi.org/10.1021/acs.est.8b05297
https://doi.org/10.1016/j.watres.2019.115034
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0505
http://refhub.elsevier.com/S0025-326X(23)00743-9/rf0505
https://doi.org/10.1021/es2031505
https://doi.org/10.1016/j.heliyon.2021.e08160
https://doi.org/10.1021/es060233b
https://doi.org/10.1021/acs.est.8b04028
https://doi.org/10.1021/acs.est.8b04028
https://doi.org/10.1021/es903383a


Marine Pollution Bulletin 194 (2023) 115309

20

cells. Biochem. Pharmacol. 197, 114902 https://doi.org/10.1016/j. 
bcp.2021.114902. 
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