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Abstract
Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse 
gas	 reduction	 and	 coastal	 resiliency	 goals.	 Numerous	 ‘blue	 carbon’	 studies	 have	
generated,	 or	 benefitted	 from,	 synthetic	 datasets.	However,	 the	 community	 those	
efforts inspired does not have a centralized, standardized database of disaggregated 
data	 used	 to	 estimate	 carbon	 stocks	 and	 fluxes.	 In	 this	 paper,	we	 describe	 a	 data	
structure designed to standardize data reporting, maximize reuse, and maintain 
a	 chain	 of	 credit	 from	 synthesis	 to	 original	 source.	We	 introduce	 version	 1.0.0.	 of	
the	Coastal	Carbon	Library,	a	global	database	of	6723	soil	profiles	representing	blue	
carbon-	storing	systems	including	marshes,	mangroves,	tidal	freshwater	forests,	and	
seagrasses.	We	also	present	the	Coastal	Carbon	Atlas,	an	R-	shiny	application	that	can	
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1  |  INTRODUC TION

Globally, wetland soils are estimated to contain 500–680 Petagrams 
of carbon (Poulter et al., 2021),	equivalent	to	60%–82%	of	all	carbon	
present in the atmosphere (Ciais et al., 2014). Coastal wetlands such 
as tidal marshes, tidal freshwater forests, referred to throughout as 
swamps,	mangroves,	and	seagrasses	are	known	to	sequester	carbon	
on decadal to millennial time scales (Chmura et al., 2003;	Howard	
et al., 2017; Mcleod et al., 2011;	 Ouyang	&	 Lee,	2014).	 So-	called	
blue carbon habitats have been garnering attention in recent years 
because of the capacity for management interventions to avoid 
greenhouse	 gas	 emissions	 by	 conserving	wetlands	 or	 re-	establish	
greenhouse gas removals by restoring them (Eagle et al., 2022; 
Kroeger et al., 2017;	Lovelock	&	Duarte,	2019;	Wylie	et	al.,	2016).

Coastal	wetland	soils	are	unique	in	that	they	store	carbon	in	situ	
as	a	dynamic	response	to	sea-	level	rise	(Morris	et	al.,	2002) via min-
eral trapping and organic soil mass production (Morris et al., 2002; 
Turner et al., 2006). These dynamics mean that factors such as rel-
ative	sea-	level	rise	(Rogers	et	al.,	2019), plant community (Doughty 
et al., 2015; Schile et al., 2017), and elevation (Callaway et al., 2012; 
Peck	 et	 al.,	2020b), are of great importance to predicting carbon 
stocks	and	burial	rates.	Given	the	fact	that	tidal	wetlands	were	un-
derrepresented	 in	 previous	 efforts	 (Holmquist	 et	 al.,	 2018b), the 
requirements	 of	 specialist	 and	 interdisciplinary	 knowledge	 repre-
sented in tidal wetland datasets, and their distinctness from terres-
trial	soils,	we	propose	that	soils	 from	blue	carbon	habitats	require	
their own dedicated synthesis effort for disaggregated data.

Data syntheses for coastal wetland ecosystems have been un-
dertaken	previously.	An	original	synthesis	by	Chmura	et	al.	 (2003) 

established	coastal	wetland	carbon	storage	as	a	major	carbon	sink.	
A	 subsequent	 expansion	 by	 Ouyang	 and	 Lee	 (2014) documented 
covariates associated with carbon burial. These foundational stud-
ies provided data reported or estimated from literature values but 
did not present original disaggregated information, original mea-
surements rather than summary statistics, limiting their reuse for 
other	 purposes.	 Later	 synthesis	 datasets	 greatly	 expanded	 the	
available	disaggregated	carbon	stocks	data	available	for	seagrasses	
(Fourqurean	et	al.,	2012),	tidal	marshes	(Holmquist	et	al.,	2018b), tidal 
swamps (Krauss et al., 2018), and mangroves (Donato et al., 2011; 
Sanderman, 2017). These studies have many elements that a com-
prehensive	database	would	require,	but	none	were	designed	to	be	a	
living resource for the communities they helped establish.

Sharing of disaggregated data is vital to discovery in coastal car-
bon studies. Morris et al. (2016) documented a relationship between 
soil organic content and density which limits vertical accretion ca-
pacity.	Holmquist	et	al.	(2018b) independently validated soil carbon 
stock	 mapping	 strategies,	 uncovering	 an	 overestimate	 in	 carbon	
stock	when	 relying	on	conventional	maps.	Rogers	et	 al.	 (2019) uti-
lized an earlier version of the database presented herein to show that 
the	geography	of	relative	sea-	level	rise	explained	variability	in	carbon	
density	at	a	global	scale.	All	of	these	important	studies	would	not	be	
possible without the sharing of disaggregated data from researcher 
to	 researcher.	However,	data	sharing	between	researchers	 is	much	
rarer in practice than is implied through data availability statements 
in	academic	peer-	reviewed	journal	articles	(Tedersoo	et	al.,	2021).

In	this	paper,	we	describe	the	creation	and	implementation	of	a	
set	 of	 standards	 and	 introduce	 the	Coastal	 Carbon	 Library	 v1.0.0.	
This	database	is	unique	from	previous	efforts	in	that	it	spans	multiple	

be	used	to	visualize,	query,	and	download	portions	of	the	Coastal	Carbon	Library.	The	
majority	(4815)	of	entries	in	the	database	can	be	used	for	carbon	stock	assessments	
without the need for interpolating missing soil variables, 533 are available for 
estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation 
models.	Organic	matter	density	significantly	varied	by	habitat	with	tidal	freshwater	
forests	 having	 the	highest	 density,	 and	 seagrasses	having	 the	 lowest.	 Future	work	
could	 involve	expansion	of	 the	 synthesis	 to	 include	more	deep	 stock	assessments,	
increasing the representation of data outside of the U.S., and increasing the amount 
of data available for mangroves and seagrasses, especially carbon burial rate data. 
We	present	proposed	best	practices	for	blue	carbon	data	including	an	emphasis	on	
disaggregation, data publication, dataset documentation, and use of standardized 
vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon 
Library	 and	 Atlas	 serve	 as	 a	 general	 example	 of	 a	 grassroots	 F.A.I.R.	 (Findable,	
Accessible,	 Interoperable,	 and	 Reusable)	 data	 effort	 demonstrating	 how	 data	
producers	can	coordinate	to	develop	tools	relevant	to	policy	and	decision-	making.

K E Y W O R D S
blue	carbon,	carbon	sequestration,	coastal	wetland,	open	data,	sea-	level	rise,	soil	organic	
carbon, synthesis
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habitats, pays special attention to gathering site characteristics and 
methodological	meta-	data	required	to	re-	interpret	data	for	new	uses,	
and it contains disaggregated data, rather than summary statistics. 
We	then	present	the	Coastal	Carbon	Atlas	(https:// shiny. si. edu/ coast 
al_ carbon_ atlas ),	a	web	tool	for	visualizing,	querying,	and	download-
ing	the	Coastal	Carbon	Library.	We	also	discuss	the	strengths	of	this	
database in the face of rapidly changing coastal ecosystems. Finally, 
we discuss potential future directions and proposed best practices.

2  |  METHODS

Belowground	carbon	studies	use	soil	depth	series	data	to	quantify	be-
lowground	 carbon	 stocks	 and	 estimate	 carbon	 burial	 rates	 (Chmura	
et al., 2003;	Needelman	et	al.,	2018;	Ouyang	&	Lee,	2014). Typically cores 
are	extracted	using	a	tube	or	auger,	and	sub-	sectioned	into	multiple	depth	
increments (Smeaton et al., 2020).	Organic	matter	density	or	carbon	den-
sity	is	usually	assessed	as	the	product	of	dry	bulk	density	(Blake,	1965), 
the	organic	matter	 fraction	using	 loss-	on-	ignition	 (Dean,	1974) and/or 
fraction organic carbon (Callaway et al., 2012; Craft et al., 1991;	Poppe	&	
Rybczyk,	2018). Multiple methods are also employed for creating models 
of	the	accumulation	or	accretion	rate	of	the	profile	 including	 lead-	210	
(210Pb;	 Appleby	 &	Oldfield,	 1978;	 DeLaune	 et	 al.,	 1987), radiocarbon  
(14C; Redfield, 1972), radiocesium (137Cs;	DeLaune	et	al.,	1978), as well as 
tying traces of pollution (Gerlach et al., 2017), pollen (Gerlach et al., 2017; 
Kearney	 &	Ward,	 1986),	 or	 sediment	 quality	 (Abbott,	 Elsey-	Quirk,	 &	
DeLaune,	2019; Drexler et al., 2019) to dated historical events.

2.1  |  Goals and scope

F.A.I.R.	(Findable,	Accessible,	Interoperable,	and	Reusable)	data	prin-
ciples	are	a	set	of	best	practices,	seeking	to	maximize	the	re-	usability	
of	data.	To	meet	goals	of	F.A.I.R.	data,	the	goals	of	the	data	structure	
were	four-	fold,	and	grounded	in	best	practices	for	data	management	
(Wilkinson	et	al.,	2016;	Wilson	et	al.,	2017). First, we preserved data 
in as much detail as is practical to maximize versatility. Second, we 
were transparent, relying on stable repositories. Third, we explic-
itly connect individual datasets within the synthesis to their original 
sources through one more associated citations. Fourth, we empha-
sized simplicity.

For	scope,	we	focused	on	vegetated	coastal	tidal	wetlands.	We	
focused on emergent vegetation (marsh), scrub/shrub, and forested 
wetlands	including	mangroves	and	tidal	swamps.	We	included	sea-
grasses	and	tidal	flats,	but	not	kelp	beds,	coral	reefs,	or	oyster	reefs	
(Howard	et	al.,	2017).	These	included	saltwater,	brackish,	and	fresh-
water	ecosystems	in	the	tidal	zone	and	subtidal	seagrasses.	In	addi-
tion to current tidal wetlands, we also included former tidal wetlands 
that	had	been	modified	by	human	impact	and	uplands	or	non-	tidal	
wetlands	if	that	comparison	was	a	key	aspect	of	the	original	study.	
Finally, while we did classify datasets based on their completeness 
or utility, we did not exclude any datasets based on methods used, 
origins,	or	lack	of	attributes	beyond	a	few	key	requirements	such	as	

basic positional and depth information, as well as at least one rele-
vant measured depth series attribute (Data S1).

2.2  |  Data structure

Coastal	Carbon	Library	data	formatting	(Holmquist	et	al.,	2023) follows 
practices	(Wilson	et	al.,	2017) for maximizing data reuse such as descrip-
tive	attribute	names,	 consistently	 formatted	 ‘no	data’	 values,	multiple	
quality	control	attributes	with	consistent	formatting,	and	multiple	places	
for explanatory comments written in prose. Data files are long rather 
than wide, designating each row as a single observation, each column 
as a single variable, and each table as a set of observations and variables 
(Wickham,	2014).	Data	files	are	‘flat’,	all	information	is	stored	as	simple,	
uniform, text. The structure consists of seven data tables (Figure 1):

1.		 Site:	contains	site-	level	information	(Table 1).
2.		 Cores:	contains	core-	level	information	(Table 2).
3.  Depth series: provides the disaggregated information collected 

across depth increments of each soil profile (Table 3).
4.  Methods: contains information about the methodology used 

for a collection of sampling and measurement events (Table 4).
5.  Species: provides the plant species observed proximal to the 

sampling location (Table 5).
6.		 Impacts:	provides	a	controlled	classification	of	anthropogenic	

impacts associated with the sampling location (Table 6).
7.  Bibliography: associated information of sources associated 

with datasets (Table 7).

All	 tables	 are	 relational	with	 common	 linking	 variables	 study_id,	
site_id, methods_id, core_id, and bibliography_id. The site, core, depth 
series, species, impacts, and methods tables are hierarchical. Depth 
increments are nested within cores. Cores are nested within sites. 
Species	and	 impacts	are	nested	within	cores,	or	within	sites,	 if	 site-	
level data are the highest resolution provided by the study (Figure 1). 
Categorical variables have defined vocabulary listed in Table 8.

2.3  |  Data sourcing

Data	entered	the	Coastal	Carbon	Library	through	two	tracks,	with	
and	 without	 curatorial	 assistance	 by	 Coastal	 Carbon	 Network	
personnel.	 If	 a	 data	 source	 was	 already	 available	 through	 a	 data	
publication then the original data and associated metadata were 
downloaded	 to	 the	 Library	 repository	 (Figure 2).	 Ingestion	 scripts	
were then written in R code (R Core Team, 2021) to reshape, and 
reformat so that datasets could be merged (Figure 2).

If	 a	 dataset	 was	 unpublished,	 Coastal	 Carbon	 Network	 per-
sonnel first assisted the data submitter in creating a data publica-
tion on Figshare (Figure 2). Data releases included a title, abstract, 
keywords,	 authors,	 associated	 publications,	 acknowledgment	 of	
funding	 sources,	 data	 files,	 and	 ecological	 meta-	data	 language	
(EML)-	style	 metadata,	 an	 HTML	 version	 of	 the	 metadata,	 and	 a	
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citable	 digital	 object	 identifier	 (DOI).	 We	 published	 27	 datasets	
in	 this	 way	 (Abbott,	 Quirk,	 &	 Delaune,	 2019;	 Allen	 et	 al.,	 2022; 
Arias-	Ortiz,	 Masqué,	 et	 al.,	 2021; Belshe et al., 2019b; Boyd 
et al., 2019; Breithaupt et al., 2019, 2020; Buffington et al., 2020; 
Callaway et al., 2019; Carlin et al., 2021; Doughty et al., 2019; 
Ensign et al., 2021; Fell et al., 2021; Kauffman et al., 2020b; Kemp 
et al., 2020; Keshta et al., 2020;	Lagomasino	et	al.,	2020; McTigue 
et al., 2020;	 Messerschmidt	 &	 Kirwan,	 2020;	 Nolte,	 2020;	 Peck	
et al., 2020a;	 Poppe	 &	 Rybczyk,	 2019;	 Sanbor	 &	 Darwyn,	 2020; 

St.	Laurent	et	al.,	2020b; Thom, 2019; Vaughn et al., 2021;	Weston	
et al., 2022).

2.4  |  Data quality control and quality assessment

Data	 were	 quality-	controlled	 using	 automated	 and	 visual	 checks.	
Automated	quality	tests	were	performed	at	both	the	individual	study	
and whole synthesis levels and included (but were not limited to):

F I G U R E  1 Relationships	between	the	tables	that	make	up	the	Coastal	Carbon	Library.	Attributes	tracked	in	each	table	are	listed.	Bold	
and italicized text indicates common attributes that can be used to join tables. The structure of the library is mostly hierarchical (a site 
contains	multiple	cores,	and	a	core	contains	multiple	depth	increments	in	a	series).	One	coring	location	can	also	have	multiple	anthropogenic	
impacts	and	plant	species	associated	with	it.	A	methods	table	links	directly	to	depth	increments	as	more	than	one	set	of	methods	may	be	
used to analyze depth increments within a core.
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•	 checking	 that	 the	 controlled	 attributes	 and	 variable	 names	
match guidelines.

•	 checking	for	the	presence	of	mandatory	and	conditionally	man-
datory attributes (Data S1).

•	 verifying	the	uniqueness	of	core	identifiers	for	a	site	and	study.
•	 verifying	the	uniqueness	of	core	locations	in	the	overall	database.
• verifying numeric attributes expressed as fractions were bound 

between 0 and 1.
• enforcing consistent spelling of taxonomic names using a global 
name	resolver	(Chamberlain	&	Szöcs,	2013).

During	 visual	 checks,	 Coastal	 Carbon	 Network	 personnel	
mapped the provided coordinates of sampling locations, the re-
lationship	 between	 dry	 bulk	 density	 and	 organic	 matter,	 organic	
matter and organic carbon (Callaway et al., 2012; Craft et al., 1991; 
Morris et al., 2016),	as	well	as	depth-	series	of	any	depth	profiles	of	
soil	measurements	or	radioisotope	values	(Arias-	Ortiz	et	al.,	2018).

2.5  |  Data post- processing

We	built	a	post-	processing	workflow	that	added	geography	attrib-
utes, detailed habitat classifications, and classified profiles based 

on	the	data's	utility,	completeness,	and	quality.	Following	initial	pro-
cessing, cores were assigned geographic units, using spatial joins in 
the	sf	package	(Pebesma,	2018) in R. Geographic units include coun-
tries	(ESRI	Data	and	Maps,	2015b), internationally recognized exclu-
sive	 economic	 zones	 (Flanders	Marine	 Institute,	2019)	 and	 level-	1	
administrative	districts	such	as	states	and	provinces	(ESRI	Data	and	
Maps, 2015a).

Explicit habitat classification was not a part of the initial ver-
sions of this database, only descriptions of vegetation type 
(emergent, scrub/shrub, and forested) and salinity, as is compati-
ble	 with	 the	 U.S.	 National	 Wetlands	 Inventory	 (FGDC	Wetlands	
Subcommittee, 2009).	 In	 response	 to	 community	 demand,	 we	
provided a consistent classification of coastal ecosystems (e.g., 
marshes,	 mangroves,	 swamps,	 seagrasses,	 and	 scrub-	shrub	 wet-
lands). This information was typically present but spread across mul-
tiple	linked	tables	such	as	the	core	and	species	table,	and	multiple	
attributes such as vegetation_class, salinity_class, core_id, or site_
id	within	 the	core	 table.	For	 the	version	of	 the	Library	presented	
herein, we improved the classification of blue carbon habitats by 
writing	a	decision-	making	workflow	to	classify	each	core	based	on	
contextual	 study-	specific	 information,	 salinity	 and	vegetation	de-
scriptions,	presence	of	indicator	species,	and	author-	provided	core	
and site descriptions:

TA B L E  1 Attribute	information	for	site	table.

Attribute name Definition Data type Unit

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	the	second	
author's family name or et al. if more than three, then publication year separated by underscores

Free text

site_id Site	identification	code	unique	to	each	study Free text

site_description Site description includes relevant study details and political geographic units. Some of these 
descriptions can be automated by the ingestion code.

Free text

site_latitude_max Maximum	latitude	defining	a	bounding	box	for	the	site	in	decimal	degree	World	Geodedic	
System	of	1984	(WGS84)

Numeric Degree

site_latitude_min Minimum	latitude	defining	a	bounding	box	for	the	site	in	decimal	degree	WGS84 Numeric Degree

site_longitude_max Maximum	longitude	defining	a	bounding	box	for	the	site	in	decimal	degree	WGS84 Numeric Degree

site_longitude_min Minimum	longitude	defining	a	bounding	box	for	the	site	in	decimal	degree	WGS84 Numeric Degree

site_boundaries As	an	alternative	to	submitting	or	automatically	generating	a	bounding	box,	submitters	can	
include	a	shapefile	(.shp)	or	keyhole	markup	language	(.kml)	documenting	the	geographic	
boundaries	of	the	site.	This	can	be	converted	to	and	stored	in	well-	known	text	format.

Free text

salinity_class Code based on submitter field observation or measurement indicating average annual salinity Categorical

salinity_method Indicate	whether	salinity_class	was	determined	using	a	field	observation	or	a	measurement Categorical

salinity_notes Any	relevant	submitter-	generated	notes	on	how	salinity_class	was	determined Free text

vegetation_class Code based on submitter field observations or measurements indicating dominant wetland 
vegetation type

Categorical

vegetation_method Indicate	whether	vegetation_class	was	determined	using	a	field	observation	or	a	measurement Categorical

vegetation_notes Any	relevant	submitter-	generated	notes	on	how	vegetation_class	and/or	dominant	species	
were determined

Free text

inundation_class Code based on submitter field observation or measurement indicating how often the coring 
location is inundated

Categorical

inundation_method Indicate	whether	inundation_class	was	determined	using	a	field	observation	or	a	
measurement

Categorical

inundation_notes Any	relevant	submitter-	generated	notes	on	how	inundation	was	determined Free text
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6 of 35  |     HOLMQUIST et al.

TA B L E  2 Attribute	information	for	the	core	table.

Attribute name Definition Data type Unit

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	
the second author's family name or et al. if more than three, then publication year 
separated by underscores

Free text

site_id Site	identification	code	unique	to	each	study Free text

core_id Core	identification	code	unique	to	each	site Free text

year Year of collection Numeric Numerical	year

month Numeric	month	of	year	of	collection Numeric Numerical	
month of 
year

day Numeric	day	of	month	of	collection Numeric Numerical	day	
of month

core_notes Any	other	relevant	submitter-	generated	notes	on	how	cores	were	collected. Free text

latitude Positional	latitude	of	the	core	in	decimal	degree	WGS84 Numeric Degree

longitude Positional	longitude	of	the	core	in	decimal	degree	WGS84 Numeric Degree

position_
accuracy

Accuracy	of	latitude	and	longitude	measurement,	if	determined	and	recorded Numeric Meter

position_method Code indicating how latitude and longitude were determined Categorical

position_notes Any	relevant	submitter	generated	notes	on	how	latitude	and	longitude	were	
determined

Free text

elevation Surface elevation of the core relative to defined datum Numeric Meter

elevation_datum The datum relative to which the core elevation was measured against (For a complete 
list	of	datum	names	and	aliases	please	refer	to	the	ISO	Geodedic	Registry_https:// 
iso. regis try. bespi re. eu/ regis ter/ geode tic/ Verti calDatum)

Categorical

elevation_
accuracy

Accuracy	of	elevation	measurement,	if	determined	and	recorded Numeric Meter

elevation_
method

Code indicating how elevation was determined Categorical

elevation_notes Any	relevant	submitter-	generated	notes	on	how	elevation	was	determined Free text

salinity_class Code based on submitter field observation or measurement indicating average annual 
salinity

Categorical

salinity_method Indicates	whether	salinity_class	was	determined	using	a	field	observation	or	a	
measurement

Categorical

salinity_notes Any	relevant	submitter-	generated	notes	on	how	salinity_class	was	determined Free text

vegetation_class Code based on submitter field observations or measurement indicating dominant 
wetland vegetation type

Categorical

vegetation_
method

Indicates	whether	vegetation_class	was	determined	using	a	field	observation	or	a	
measurement

Categorical

vegetation_
notes

Any	relevant	submitter-	generated	notes	on	how	vegetation_class	and/or	dominant	
species were determined

Free text

habitat Habitat	classification	of	the	sampled	location	based	on	description	or	dominant	
vegetation

Categorical

inundation_class Code based on submitter field observation or measurement indicating how often the 
coring location is inundated

Categorical

inundation_
method

Indicates	whether	inundation_class	was	determined	using	a	field	observation	or	a	
measurement

Categorical

inundation_
notes

Any	relevant	submitter-	generated	notes	on	how	inundation	was	determined Free text

core_length_flag Indicates	whether	or	not	the	coring	team	believes	they	recovered	a	full	sediment	
profile,	down	to	bedrock,	or	other	non-	marsh	interface

Categorical

stocks_qual_
code

Code	indicating	the	quality	of	information	present	for	a	core	containing	data	relevant	
for	carbon	stock	assessment

Categorical
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1.		We	 detected	 whether	 the	 entry	 originates	 from	 a	 habitat-	
specific synthesis for mangroves (Sanderman, 2017) or sea-
grasses	(Fourqurean	et	al.,	2012).

2.		Non-	forested	 wetlands	 were	 classified	 into	 marshes,	 sea-
grasses, or tidal flat based on vegetation_class.

3.		If	 the	 vegetation	 class	 was	 not	 descriptive,	 then	 we	 cross-	
referenced species present at the coring location with the 
USDA	Plants	database	(USDA,	NRCS,	2022) to determine the 
growth	 form	of	 the	 plant.	 If	multiple	 growth	 forms	were	 re-
ported for a species, then we classified it based on the tall-
est	 reported.	We	 used	 habitat-	specific	 lists	 of	 taxa	 (Larkum	
et al., 2006; Tomlinson, 2016) to determine whether or not a 
species had any special designation as seagrass or mangrove. 
Any	graminoids,	forbs,	or	ferns	not	otherwise	classified	as	sea-
grasses	were	 classified	 as	marshes.	 Any	 trees	 not	 otherwise	
classified as mangroves were classified as swamps.

4.		If	 previous	 steps	 were	 inconclusive,	 we	 used	 partial	 string	
matching to detect whether any descriptive language such as 
‘mangrove’	or	‘seagrass'	was	present	in	site_id	or	core_id.

5.		A	small	number	of	estuarine	forested	wetland	locations	from	the	
United	States	(Nahlik	&	Fennessy,	2016) could not be sorted into 
swamps and mangroves using the previously outlined methods, 
We	assumed	sites	were	mangrove	if	they	occurred	south	of	29.75°	
latitude, the maximum northern extent of mangroves observed 
on	 the	U.S.	Atlantic	 coast	 of	 the	U.S.	 (Cavanaugh	 et	 al.,	2014). 
Conversely, we assumed estuarine forested sites north of this 
threshold were tidal swamps.

We	developed	an	automated	workflow	 to	classify	 cores	based	
on	the	type	of	study	the	data	can	be	used	for,	including	carbon	stock	
assessments, calculation of carbon burial rates, and fitting of models 
of	 future	 carbon	 sequestration	 and	wetland	 resilience.	 If	 dry	 bulk	
density and either organic matter or organic carbon were present 
in-	depth	series,	 then	 the	core	meets	 the	minimal	 inclusion	criteria	
for	carbon	stocks	(C).	If	the	core	was	confirmed	to	reach	the	bottom	
of	the	profile	then	it	was	considered	a	high-	quality	core	(C1).	If	not,	
it	was	classified	as	of	lower	utility	(C2).	Here,	the	wetland	sediment	
profile is considered complete if the contact point between wetland 
sediment	and	bedrock	or	non-	wetland	sediment	is	reached.

If	any	profile	age-	related	or	disaggregated	data	associated	with	
these	techniques	were	present	in	a	core,	then	the	core	met	the	min-
imal	 inclusion	criteria	 for	calculating	carbon	burial	 rates	 (B).	 If	 any	

radioisotope	activity	levels	were	reported,	then	we	required	that	the	
associated instrument error be reported for dating information to be 
considered complete (B1). This included 137Cs, total 210Pb, excess 210
Pb, 14C, as well as any isotopes used to estimate supported 210Pb, 226
Ra via its proxies 214Bi and/or 214Pb	in	gamma	analysis.	If	the	depth	
of 137Cs	 peaks	 were	 reported,	 then	 we	 required	 a	 137Cs activity 
depth	profile	for	completeness.	 If	excess	210Pb was reported, then 
we	required	that	total	210Pb be reported as well for the dataset to 
be considered complete. For 14C ages, the material dated needed to 
be	specified	for	the	dataset	to	be	considered	complete.	Any	missing	
radioisotope errors or conditional attributes resulted in the dataset 
being classified as having incomplete data reporting (B2).

Cores	with	any	age-	depth	data	and	elevation	data	met	the	mini-
mum	inclusion	criteria	for	accretion	modeling	(A;	Schile	et	al.,	2014). 
We	differentiated	between	elevations	that	were	interpolated	from	
remotely sensed or spatially interpolated digital elevation models 
(A3)	and	those	that	were	directly	measured	using	precise	real-	time	
kinematic	GPS	data	or	better	(A1	or	A2),	which	typically	only	have	
errors of a few centimeters. Cores with both a full suite of dating in-
formation and precise elevation were classified as the highest utility 
for	data-	model	integration	(A1),	and	cores	with	precise	elevation	but	
some	missing	dating	information	were	graded	lower	(A2).

2.6  |  Versioning, data use policy, and citation

The version of the database presented herein is v.1.0.0. and cur-
rent	 as	 of	 January	 12,	 2023	 (Coastal	 Carbon	 Network,	 2023). 
Preliminary versions of this database were summarized in previous 
publications (Malhotra et al., 2019;	Todd-	Brown	et	al.,	2022).	New	
versions of this database will adopt standardized semantic version-
ing with the first digit indicating major changes to database struc-
ture, the second minor changes and additions of new datasets, and 
the	third,	backward-	compatible	changes.	We	anticipate	regular	up-
dates	to	the	Coastal	Carbon	Library	as	new	datasets	are	submitted,	
approximately	quarterly.	It	has	a	digital	object	identifier	and	a	web	
link	that	will	automatically	route	to	the	most	up-	to-	date	version.

The	Coastal	 Carbon	 Library	 is	 licensed	 under	CC-	BY-	4,	mean-
ing that it can be used without restriction other than attribution. 
Full	attribution	of	the	Coastal	Carbon	Library	requires	three	things,	
first, citing the original primary datasets, papers or data publications, 
when	they	are	reused	for	other	purposes.	In	cases	which	an	original	

Attribute name Definition Data type Unit

dates_qual_code Code	indicating	the	quality	of	information	present	for	a	core	containing	dated	
stratigraphy

Categorical

elevation_qual_
code

Code	indicating	the	quality	of	information	present	for	a	dated	core	that	contains	
elevation data

Categorical

max_depth Maximum depth of the sampled soil profile Numeric Centimeter

country Country in which data were collected Free text

admin_division Administrative	division	in	which	data	were	collected Free text

TA B L E  2 (Continued)
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8 of 35  |     HOLMQUIST et al.

TA B L E  3 Attribute	information	for	depth-	series	table.

Attribute name Definition Data type Unit

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	
the second author's family name or et al. if more than three, then publication year 
separated by underscores

Free text

site_id Site	identification	code	unique	to	each	study Free text

core_id Core	identification	code	unique	to	each	site Free text

method_id Unique	identification	code	used	to	distinguish	cores	or	sampling	intervals	that	were	
collected or processed using different methods

Free text

depth_min Minimum depth of a sampling increment Numeric Centimeter

depth_max Maximum depth of a sampling increment Numeric Centimeter

representative_
depth_min

Minimum depth of a soil horizon of which the sample is representative Numeric Centimeter

representative_
depth_max

Maximum depth of a soil horizon of which the sample is representative Numeric Centimeter

sample_id This	is	a	sample	identification	unique	to	the	core.	This	should	be	used	in	the	case	that	
there are relevant lab specific sample codes, or in the case that there are multiple 
replicate samples.

Free text

dry_bulk_density Dry	mass	per	unit	volume	of	a	soil	sample	This	does	not	include	ash-	free	bulk	density Numeric Grams per cubic 
centimeter

fraction_organic_
matter

This	is	the	mass	of	organic	matter	relative	to	sample	dry	mass.	Ash-	free	bulk	density	
should not be used here but should be expressed as a loss on ignition fraction.

Numeric Dimensionless

fraction_carbon Mass of carbon relative to sample dry mass Numeric Dimensionless

compaction_
fraction

Fraction of the sample depth interval reduced due to compaction Numeric Dimensionless

compaction_notes Any	submitter	generated	notes	on	compaction Free text

cs137_peak_age Age	of	documented	radiocesium	(137Cs)	peak Numeric Year

cs137_activity Radioactivity counts per unit dry weight for 137Cs Numeric Specified in 137cs unit

cs137_activity_se 1 standard error of uncertainty associated with cs137_activity Numeric Specified in 137cs unit

cs137_unit Reported unit for sample interval's 137Cs activity measurements Free text Specified in 137cs unit

excess_pb210_
activity

Excess radioactivity counts per unit dry weight for excess lead 210 (210Pb) Numeric Specified in 210pb unit

excess_pb210_
activity_se

1 standard error of uncertainty associated with excess_pb210_activity Numeric Specified in 210pb unit

total_pb210_
activity

Total radioactivity counts per unit dry weight for excess 210Pb Numeric Specified in 210pb unit

total_pb210_
activity_se

1 standard error of uncertainty associated with total_pb210_activity Numeric Specified in 210pb unit

pb210_unit Reported unit for sample interval's 210Pb activity measurements Free text

ra226_activity This	is	the	total	radioactivity	counts	per	unit	dry	weight	for	Radium-	226	(226Ra), also 
referred to as supported 210Pb.	This	can	be	measured	either	using	the	proxy	lead-	214	
(214Pb),	bismuth-	214	(214Bi),	or	the	two	of	them	averaged.	Authors	also	have	the	
option to report 214Pb and 214Bi in separately under pb214_activity and bi214_
activity respectively.

Numeric Specified in 226ra unit

ra226_activity_se 1 standard error of uncertainty associated with ra226_activity Numeric Specified in 226ra unit

ra226_unit Reported unit for sample interval's 226Ra activity measurements Free text Specified in 226ra unit

pb214_activity This	is	the	rdioactivity	counts	per	unit	dry	weight	for	lead-	214	(214Pb), a proxy for 
Radium-	226	(226Ra), also referred to as supported 210Pb. Radioactivity should 
be reported here, rather than ra226_activity, either if the author also measures 
bismuth-	214	and	ra226_activity	is	a	composite	of	the	two	measurements,	or	if	
they want to specify the proxy used for 226Ra.

Numeric Specified in 214pb unit

pb214_activity_se Estimated uncertainty in pb214_activity Numeric Specified in 214pb unit

pb214_unit Reported unit for sample interval's 214Pb activity measurements Free text
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    |  9 of 35HOLMQUIST et al.

source	entered	the	Coastal	Carbon	Library	via	another	synthesis	for	
example, Sanderman et al. (2018)	and	Fourqurean	et	al.	(2012), both 
the original source and synthesis should be cited. Second and third, 
the	Coastal	Carbon	Library	 itself	 (Coastal	Carbon	Network,	2023) 
and, this manuscript should be cited in addition to primary and 
synthesis	sources.	Importantly,	when	data	are	downloaded	and	an-
alyzed for new purposes, original primary sources need to always 
be cited to comply with the policy; citation of the Coastal Carbon 
Library	and	this	paper	alone	would	not	be	sufficient.

Because relationships between original data sources and the 
Coastal	Carbon	Library	 are	 complex,	we	 include	 a	 relational	 table	
connecting study_id's to bibliographic information (Figure 1). The 
Coastal	Carbon	Altas	(Figure 3), automatically formats bibliographic 
information based on the subset of datasets downloaded.

2.7  |  Quantification of data coverage

We	compared	the	makeup	of	cores	in	the	Coastal	Carbon	Library	to	
the global allocation of blue carbon area based on habitat and coun-
tries. For habitats, we reference literature for global area estimates 

for seagrasses, tidal marshes, and mangroves (Bunting et al., 2022; 
McKenzie et al., 2020; Murray et al., 2022; Table 9). For countries, 
we used a probabilistic map of intertidal area (Murray et al., 2022), 
counting	tidal	wetland	pixels	with	greater	than	a	50%	chance	of	being	
classified as tidal flat, tidal marsh, or mangrove in 1999. Country bor-
ders	 included	both	the	 land	borders	 (ESRI	Data	and	Maps,	2015b) 
and	exclusive	economic	zones	(Flanders	Marine	Institute,	2019).

3  |  ACCESSING DATA VIA THE COA STAL 
C ARBON ATL A S

The	 Coastal	 Carbon	 Atlas	 (https:// shiny. si. edu/ coast al_ carbon_ 
atlas ; Figure 3)	 is	 an	 R-	shiny	web	 application	 that	 interfaces	with	
the	Coastal	Carbon	Library	allowing	users	to	explore,	query,	and	di-
rectly download data. This tool has been adapted to suit user needs 
through	community	feedback.	The	Coastal	Carbon	Atlas	consists	of	
a map interface (Figure 3a) displaying sampling locations. The tabu-
lar view allows for a direct visual review of the site, core, and depth 
series tables (Figure 3b).	 The	Coastal	 Carbon	Atlas	 allows	 for	 the	
sub-	setting	of	datasets	by	habitat	type,	geography,	data	availability,	

Attribute name Definition Data type Unit

bi214_activity This	is	the	radioactivity	counts	per	unit	dry	weight	for	bismuth-	214	(214Bi), a proxy 
for	Radium-	226	(226Ra), also referred to as supported 210Pb. Radioactivity should 
be reported here, rather than ra226_activity, either if the author also measures 
lead-	214	and	ra226_activity	is	a	composite	of	the	two	measurements,	or	if	they	
want to specify the proxy used for 226Ra.

Numeric Specified in 214bi unit

bi214_activity_se Reported standard error for radioactivity counts per unit dry weight for 214Bi Numeric Specified in 214bi unit

bi214_unit Reported unit for sample interval's 214Bi activity measurements. Free text

c14_age Radiocarbon (14C)	age	as	estimated	from	AMS	measurements Numeric Radiocarbon year

c14_age_se Estimated uncertainty in c14_age Numeric Radiocarbon year

c14_material Description of the material selected for 14C dating Free text

c14_notes Any	relevant	submitter	generated	notes	on	14C dating process Free text

delta_c13 The isotopic signature of 13C, oftentimes measured along with 14C age and can be 
useful for analyzing carbon lability and provenance

Numeric Parts per million

be7_activity Radioactivity	counts	per	unit	dry	weight	for	beryllium-	7	(7Be) Numeric Specified in 7be unit

be7_activity_se Estimated uncertainty in be_7_activity Numeric Specified in 7be unit

be7_unit Reported unit for sample interval's 7Be activity measurements Free text

marker_date The	age	of	any	other	dated	depth	horizon	such	as	an	artificial	marker,	pollen	horizon,	
pollution horizon, etc.

Date Numerical	year

marker_date_se The standard error of the age of any other dated depth horizon such as an artificial 
marker,	pollen	horizon,	pollution	horizon,	etc.

Date

marker_type Code	indicating	the	type	of	marker Categorical

marker_notes Any	other	submitter-	generated	notes	about	the	origin	of	the	marker Free text

age Most	likely,	median,	or	mean	age	of	the	depth	interval	from	submitter	generated	
age-	depth	model

Numeric Numerical	year

age_min Minimum	age	of	the	depth	interval	from	submitter	generated	age-	depth	model Numeric Numerical	year

age_max Maximum	age	of	the	depth	interval	from	submitter	generated	age-	depth	model Numeric Numerical	year

age_se Standard	error	of	age	estimate	from	submitter	generated	age-	depth	model Numeric Numerical	year

depth_interval_
notes

Any	other	submitter-	generated	notes	specific	to	the	depth	interval Free text

TA B L E  3 (Continued)
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10 of 35  |     HOLMQUIST et al.

TA B L E  4 Attribute	information	for	methods	table.

Attribute name Definition Data type Unit

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	
well as the second author's family name or et al. if more than three, then 
publication year separated by underscores

Free text

method_id Unique	identification	code	used	to	distinguish	cores	or	sampling	intervals	
that were collected or processed using different methods

Free text

coring_method Code indicating what type of device was used to collect soil depth profiles Categorical

roots_flag Code indicating whether live roots were included or excluded from carbon 
assessments

Categorical

sediment_sieved_flag Code indicating whether or not sediment was sieved prior to carbon 
measurements

Categorical

sediment_sieve_size If	sediment	was	sieved,	the	size	of	sieve	used Numeric Millimeters

compaction_flag Code	indicating	how	the	authors	qualified	or	quantified	compaction	of	the	
core

Categorical

dry_bulk_density_
temperature

This	is	the	temperature	at	which	samples	were	dried	to	measure	dry	bulk	
density. This can include either samples that were freeze dried or oven 
dried.

Numeric Degree celsius

dry_bulk_density_time Time	over	which	samples	were	dried	to	measure	dry	bulk	density Numeric Hour

dry_bulk_density_sample_
volume

Sample	volume	used	for	bulk	density	measurements,	if	held	constant Numeric Cubic centimeter

dry_bulk_density_sample_
mass

Sample	mass	used	for	bulk	density	measurements,	if	held	constant Numeric Gram

dry_bulk_density_flag Any	notable	codes	regarding	how	the	authors	quantified	dry	bulk	density Categorical

loss_on_ignition_
temperature

Temperature at which samples were combusted to estimate fraction organic 
matter

Numeric Degree celsius

loss_on_ignition_time Time over which samples were combusted to estimate fraction organic 
matter

Numeric Hour

loss_on_ignition_sample_
volume

Sample volume used for loss on ignition, if held constant Numeric Cubic centimeter

loss_on_ignition_sample_
mass

Sample mass used for loss on ignition, if held constant Numeric Gram

loss_on_ignition_flag Common codes regarding loss on ignition methodology Categorical

carbonates_removed Whether	or	not	carbonates	were	removed	prior	to	calculating	fraction	
organic carbon

Categorical

carbonate_removal_method The method used to remove carbonates prior to measuring fraction carbon Categorical

fraction_carbon_method Code indicating the method for which fraction carbon was measured Categorical

fraction_carbon_type Code indicating whether fraction_carbon refers to organic or total carbon Categorical

carbon_profile_notes Any	other	submitter-	defined	notes	describing	methodologies	for	
determining	dry	bulk	density,	organic	matter	fraction,	and	carbon	
fraction

Free text

pb210_counting_method Code indicating the method used for determining lead 210 activity Categorical

excess_pb210_rate Code indicating the mass or accretion rate used in the 
excess_pb_210_model

Categorical

excess_pb210_model Code	indicating	the	model	used	to	estimate	accumulation	rates	and/or	age-	
depth chronologies

Categorical

ra226_assumption Code indicating the assumption used to estimate the core's supported 
radium-	226-	specific	activities

Categorical

c14_counting_method Code indicating the method used for determining radiocarbon activity Categorical

dating_notes Any	submitter	defined	notes	elaborating	on	the	process	of	dating	the	core	
not yet made clear by the coding

Free text

age_depth_model_reference Code	indicating	the	reference	or	0 year	of	the	age	depth	model Categorical

age_depth_model_notes Any	submitter	defined	notes	on	how	the	age	depth	model	was	created Free text
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core depth, study, human impacts, plant species present, and salin-
ity	descriptor.	Finally,	the	Coastal	Carbon	Atlas	provides	options	for	
limited	 post-	processing	 and	 for	 downloading	 the	 data	 (Figure 3c). 
The	user	can	specify	custom	depth	intervals	to	download	quantita-
tive	attributes	summarized	as	depth-	weighted	averages	of	the	depth	
increments specified.

Data downloads (Figure 3d) are accompanied by a bibliogra-
phy of original sources and associated publications, metadata, and 
a text file that outlines the data use policy. To facilitate data users 
in providing credit to original sources, bibliographic information is 
included in a text file with formatted citations, a BibTex file that can 
be	 imported	 into	 reference	management	 software,	 and	 a	 comma-	
separated value file with disaggregated reference information.

4  |  CURRENT STATE OF THE COA STAL 
C ARBON LIBR ARY

The	Coastal	Carbon	Library	synthesis	contained	6723	coastal	wetland	
soil profiles from around the globe. These represent 48,870 depth in-
crements, and 126,629 individual measurements, from 64 countries 
(Figures 3 and 4).	Overall	there	were	305	studies	represented	in	the	
database,	 related	 to	 299	bibliographic	 entities	 (Abbott,	 Elsey-	Quirk,	
&	 DeLaune,	 2019;	 Abbott,	 Quirk,	 &	 Delaune,	 2019;	 Abed-	Navandi	
&	Dworschak,	2005;	 Abino	 et	 al.,	2014;	 Adame	 et	 al.,	2013, 2015; 
Agawin	 et	 al.,	 1996;	 Ajonina	 et	 al.,	 2014;	 Allen	 et	 al.,	 2007, 2021, 
2022;	 Alongi,	 1996;	 Alongi	 et	 al.,	 1999, 2001, 2004, 2005;	 Alongi,	
Tirendi, Clough, 2000;	Alongi,	Tirendi,	Trott,	et	al.,	2000;	Alongi,	Trott,	
Rachmansyah, et al., 2008;	Alongi,	Trott,	Undu,	et	al.,	2008;	Al-	rousan	
et al., 2005;	Amon	&	Herndl,	1991;	Andreetta	et	al.,	2014, 2016;	Arias-	
Ortiz,	Masqué,	et	al.,	2021;	Arias-	Ortiz,	Oikawa,	et	al.,	2021;	Arriola	
&	 Cable,	 2017;	 Ashton	 &	 Macintosh,	 2002; Banerjee et al., 2012; 

Barrón et al., 2004;	Baustian,	Stagg,	Perry,	Moss,	&	Carruthers,	2021; 
Baustian, Stagg, Perry, Moss, Carruthers, et al., 2021; Belshe 
et al., 2019a, 2019b; Bernhardt et al., 2018; Borg et al., 2010;	Boschker	
et al., 2000; Bouillon et al., 2003; Boyd, 2012; Boyd et al., 2017, 2019; 
Boyd	&	Sommerfield,	2016; Breithaupt et al., 2014, 2017, 2019, 2020; 
Brunskill	et	al.,	2002, 2004; Buffington et al., 2020;	Bukoski	et	al.,	2017; 
Bulmer et al., 2016; Burden et al., 2018, 2019;	Burns	&	Swart,	1992; 
Buzzelli, 1998;	 Cahoon	 &	 Lynch,	 1997; Callaway et al., 1997, 
2012, 2019; Calleja et al., 2007; Campbell et al., 2014;	 Cardona	 &	
Botero, 1998; Carlin et al., 2021; Carruthers et al., 2005; Chambers 
et al., 2019; Chanda et al., 2013; Chen et al., 2010, 2012, 2014, 2016; 
Chen	&	 Twilley,	1999; Chmura et al., 2003; Coastal Protection and 
Restoration	Authority,	2015; Cochran et al., 1998; Cotner et al., 2004; 
Craft, 2007;	Crooks	et	al.,	2014; da Silva et al., 2009; Danovaro, 1996; 
Danovaro et al., 1994;	 Danovaro	 &	 Fabiano,	 1995;	 Danovaro	 &	
Gambi, 2002; De Falco et al., 2006;	de	 Iongh	et	al.,	1995; De Troch 
et al., 2006; DelVecchia et al., 2014; Devereux et al., 2011;	Dissanayake	
&	 Chandrasekara,	 2014; Donato et al., 2011, 2012; Doughty 
et al., 2015, 2019;	Drake	et	al.,	2015; Drexler et al., 2009, 2013, 2019; 
Dung et al., 2016; Dutta et al., 2013;	Elsey-	Quirk	et	al.,	2011; Ensign 
et al., 2015, 2021;	EPA,	2016a, 2016b;	Erftemeijer	&	Middelburg,	1993; 
Eyre	&	Ferguson,	2002; Ezcurra et al., 2016; Fell et al., 2021; Ferreira 
et al., 2007; Fonseca et al., 2011;	Fourqurean	et	al.,	2010, 2012; Fujimoto 
et al., 1999; Gacia et al., 2002; Gerlach et al., 2017; Giblin et al., 2018; 
Gillis et al., 2017;	Gleason	&	Ewel,	2002; Gomes et al., 2016; Gonneea 
et al., 2004, 2018; Grady, 1981; Grenz et al., 2003;	He	et	al.,	2002; 
Hebert	 et	 al.,	 2006;	 Hemminga	 et	 al.,	 1994;	 Hill	 &	 Anisfeld,	 2015; 
Holmer	et	al.,	2001, 2006, 2009;	Holmer	&	Duarte,	2003;	Holmer	&	
Frederiksen,	2007;	Holmquist	et	al.,	2018a;	Howe	et	al.,	2009;	Iacono	
et al., 2008;	 Isaksen	 &	 Finster,	 1996;	 Jennerjahn	 &	 Ittekkot,	 2002; 
Johnson et al., 2007; Jones et al., 2016, 2017;	Kairis	&	Rybczyk,	2010; 
Kamp-	Nielsen	et	al.,	2002; Kao et al., 2002; Kauffman et al., 2020a, 

TA B L E  5 Attribute	information	for	species	table.

Attribute name Definition Data type

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	the	second	
author's family name or et al. if more than three, then publication year separated by underscores

Free text

site_id Site	identification	code	unique	to	each	study Free text

core_id Core	identification	code	unique	to	each	site Free text

species_code Code associated with a species or a vegetation assemblage Free text

code_type Defines whether the code refers to a description, or level of plant taxonomy Categorical

habitat Habitat	classification	of	the	sampled	location	based	on	description	or	dominate	vegetation Categorical

TA B L E  6 Attribute	information	for	impacts	table.

Attribute name Definition Data type

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	the	second	
author's family name or et al. if more than three, then publication year separated by underscores

Free text

site_id Site	identification	code	unique	to	each	study Free text

core_id Core	identification	code	unique	to	each	site Free text

impact_class Code indicating any major anthropogenic impacts historically and currently affecting the coring 
location

Categorical
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2020b; Kemp et al., 2012, 2020; Kenig et al., 1990; Keshta et al., 2017, 
2020, 2021;	Keuskamp	et	al.,	2013;	Koch	&	Madden,	2001; Koepfler 
et al., 1993;	Krause-	Jensen	et	al.,	2011; Krauss et al., 2018; Kristensen 
et al., 1992, 2000; Kulawardhana et al., 2015;	 Lacerda	 et	 al.,	1995; 
Lagomasino	 et	 al.,	 2013, 2020;	 Lallier-	Verges	 et	 al.,	 1998;	 Lang	
et al., 2014;	Larned,	2003;	Leduc	&	Probert,	2010;	Lee	et	al.,	2005; 
Lee	&	Baker,	1972;	 Leopold	 et	 al.,	2013;	 Lewis	 et	 al.,	2007;	 Lillebø	
et al., 2006;	 Liu	 et	 al.,	2008, 2014;	 Livesley	&	Andrusiak,	2012;	 Loi	
&	Ni,	2015;	Lovelock	et	al.,	2010;	Luk	et	al.,	2020, 2021; MacKenzie 
et al., 2016;	Maher	&	Eyre,	2010; Mao et al., 2011, 2012; Marchand 
et al., 2003, 2004; Marchio et al., 2016; Mateo et al., 1997;	Mateo	&	
Romero, 1997;	Matsui	and	Naohiro,	1998; McClellan, 2021; McClellan 
et al., 2021; McFadden et al., 2016; McGlathery et al., 2012; McTigue 
et al., 2019, 2020; Mellors et al., 2002; Merrill, 1999; Messerschmidt 
&	Kirwan,	2020; Mfilinge et al., 2002; Middelburg et al., 1996; Miller 
et al., 2022; Miyajima et al., 1998; Murdiyarso et al., 2015;	 Nahlik	
&	 Fennessy,	 2016;	 Naidoo,	 1980;	 Naidoo	 &	 Raiman,	 1982;	 Nam	
et al., 2016;	Neubauer	et	al.,	2002;	Noe	et	al.,	2012, 2016;	Nolte,	2020; 
Nolte	 et	 al.,	 2013;	 Nsommbo	 et	 al.,	 2016;	 Nuttle,	 1996;	 Nyman	
et al., 1993;	Oakes	&	Connolly,	2004;	O'keefe	Suttles,	Eagle,	Mann,	
&	Kroeger,	2021;	O'keefe	 Suttles,	 Eagle,	Mann,	Moseman-	Valtierra,	
et al., 2021;	O'keefe	Suttles,	Eagle,	Mann,	Spivak,	et	al.,	2021;	O'keefe	
Suttles,	 Eagle,	 Mann,	Wang,	 et	 al.,	 2021;	 O'keefe	 Suttles,	Wigand,	
Eagle, Branoff, et al., 2021;	Ooi	et	al.,	2011;	Orem	et	al.,	1999;	Orson	&	
Simpson, 1990;	Osland,	2017;	Osland	et	al.,	2012;	Otero	et	al.,	2009; 

Pastore et al., 2017; Paula et al., 2001; Pazi et al., 2016;	Peck	et	al.,	2020a, 
2020b; Pedersen et al., 1997; Piazza et al., 2011; Poppe, 2015; Poppe 
&	 Rybczyk,	 2018, 2019, 2021, 2022; Prentice et al., 2020; Pulich 
Jr., 1987; Qu et al., 2006; Radabaugh et al., 2017; Rigollet, 2004; 
Rodriguez	 &	 Molly,	 2022; Rosenfeld, 1979; Sahu et al., 2016; 
Saintilan et al., 2013;	 Sanbor	 &	 Darwyn,	 2020; Sanderman, 2017; 
Sanders et al., 2008, 2014;	 Schile	 &	 Megonigal,	 2017;	 Sfriso	 &	
Marcomini, 1999; Smith, 2012; Smith et al., 2015;	Smoak	et	al.,	2013; 
Spivak,	2020;	 Spivak	 et	 al.,	2009; Spruzen et al., 2007;	 St.	 Laurent	
et al., 2020a, 2020b; Stoner et al., 1998; Stringer et al., 2015; Tam 
&	Wong,	1998; Thimdee et al., 2003; Thom, 1992, 2019; Thompson 
et al., 2014; Thorne et al., 2018;	Townsend	&	Fonseca,	1998; Trettin 
et al., 2017; Tue et al., 2014; Twilley et al., 1997; Unger et al., 2016;  
U.S. Geological Survey and Thorne, 2015; Van Engeland, 2010; 
Vasconcelos et al., 2014; Vaughn et al., 2020, 2021;	Vichkovitten	&	
Holmer,	2005;	Volkman	et	al.,	2008;	Wang	et	al.,	2013;	Ward,	2021; 
Ward	 et	 al.,	2021;	Watson	&	Byrne,	2013;	Weis	 et	 al.,	2001;	Weis	
&	Anthony,	1999;	Weston	 et	 al.,	2022;	White	 et	 al.,	2020;	Wigand	
et al., 2021;	Windham-	Myers	et	al.,	2010;	Woodroffe,	1985;	Wooller	
et al., 2003; Xia et al., 2015; Xu et al., 2012; Yamamuro et al., 1993; 
Yando et al., 2016; Yang et al., 2013;	Yarbro	&	Carlson,	2008; Zhang 
et al., 2012).

The	majority	of	soil	profiles	came	from	tidal	marsh	(43.7%),	fol-
lowed	by	mangrove	(29.5%),	and	seagrass	ecosystems	(11.7%).	Lower	
proportions	were	 from	unvegetated	 surfaces	 (8.5%),	 not	 specified	

TA B L E  7 Attribute	information	for	bibliography	table.

Attribute name Definition Data type

study_id Unique	identifier	for	the	study	made	up	of	the	first	author's	family	name,	as	well	as	the	second	
author's family name or et al. if more than three, then publication year separated by underscores

Free text

bibliography_id Bibliography	identification	code	unique	to	each	study Free text

publication_type Code indicating the type of publication the study originates from Categorical

bibtype BibTeX entry type Free text

title The	title	of	the	work Free text

author The author(s) of the publication Free text

school The school where the thesis was written Free text

doi Digital	object	identifier	associated	with	the	work Free text

url Permanent	web	address	where	the	work	can	be	located Free text

year The year of publication or, if unpublished, the year of creation Free text

month The month of publication (or, if unpublished, the month of creation) Free text

publisher The publisher's name Free text

volume The	volume	of	a	journal	or	multi-	volume	book Free text

number The	(issue)	number	of	a	journal,	magazine,	or	tech-	report,	if	applicable	(most	publications	have	a	
volume, but no number field)

Free text

pages Page	numbers,	separated	either	by	commas	or	double-	hyphens Free text

journal The	journal	or	magazine	the	work	was	published	in Free text

copyright The intellectual rights of the publication Free text

editor The name(s) of the editor(s) Free text

booktitle The	title	of	the	book,	if	only	part	of	it	is	being	cited Free text

institution The institution that was involved in the publishing, but not necessarily the publisher Free text

language The language a publication was written in Free text
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TA B L E  8 Definitions	of	controlled	vocabulary	for	attributes	with	categorical	data.

Attribute name Variable name Definition

corresponding_author TRUE The	author	should	be	contacted	with	any	further	questions.

corresponding_author FALSE The	author	should	not	be	contacted	with	any	further	questions.

publication_type Combined dataset and manuscript Primary dataset and associated manuscript are from the same source.

publication_type Primary dataset Primary published dataset

publication_type Associated	source Source associated with primary dataset

publication_type Synthesis dataset Published dataset associated with the data synthesis

publication_type Synthesis source Source associated with data synthesis contribution

coring_method Cryo core A	technique	involving	collecting	a	core	by	freezing	soil	using	liquid	nitrogen	to	a	
copper tube

coring_method Gouge auger A	half	cylinder	coring	device	in	which	the	coring	section	is	open,	not	sealed	off	
by a fin

coring_method Hargas	corer A	large	diameter	(>10 cm)	coring	device	consisting	of	a	tube,	piston,	and	a	
cutting head

coring_method Mcauley corer A	half	cylinder	coring	device	with	the	coring	section	sealed	off	by	a	fin	attached	
to a rotating pivot point

coring_method Mccaffrey peat cutter U-	shaped	blade	that	extracts	a	core	by	cutting	down	through	peat

coring_method None	specified No	coring	device	was	specified

coring_method Other	shallow	corer Any	other	type	of	coring	device	typically	taking	cores	shallower	than	30 cm

coring_method Piston corer A	device	that	extrudes	core	into	tube	upward	with	a	plunger

coring_method Push core Any	number	of	coring	types	involving	driving	a	tube	into	the	sediment	to	
recover a core

coring_method Pvc and hammer PVC pipe was driven into the sediment with a hammer to recover a core

coring_method Russian corer A	half	cylinder	coring	device	with	the	coring	section	sealed	off	by	a	fin	attached	
to a rotating pivot point

coring_method Vibracore A	technique	involving	collecting	a	core	by	sinking	a	continuous	pipe	into	
sediment attaching a source of vibration, then recovering using a winch and 
pulley

coring_method Surface sample A	technique	involving	collecting	a	core	shallower	than	~5 cm	using	a	circular	
metal cutter

coring_method Soil pit A	pit	is	dug	from	the	surface	of	the	soil	to	the	underlying	bedrock

roots_flag Roots and rhizomes included Roots	and	rhizomes	were	included	in	dry	bulk	density	and	or	organic	matter	and	
carbon measurements

roots_flag Roots and rhizomes separated Roots	and	rhizomes	were	separated	from	soil	before	dry	bulk	density	and	or	
organic matter and carbon measurements

sediment_sieved_flag Sediment sieved Sediment was sieved prior to analysis for organics

sediment_sieved_flag Sediment not sieved Sediment was not sieved prior to analysis for organics

compaction_flag Compaction	qualified Compaction	was	at	least	qualified	and	noted	by	the	authors

compaction_flag Compaction	quantified Compaction	was	quantified	and	corrected	for	in	core	based	measurements

compaction_flag Corer limits compaction Authors	specified	that	the	coring	device's	design	minimized	compaction

compaction_flag No	obvious	compaction Authors	observed	no	obvious	compaction

compaction_flag Not	specified Compaction was not specified

dry_bulk_density_flag Air	dried	to	constant	mass Methodology specified that samples were air dried to a constant mass

dry_bulk_density_flag Freeze dried Bulk	density	was	measured	on	freeze	dried	samples

dry_bulk_density_flag Not	specified No	additional	details	regarding	bulk	density	methodology	were	provided

dry_bulk_density_flag Removed non structural water Bulk	density	methodology	did	not	specify	drying	temperature	or	length,	only	
that	non-	strucural	water	was	removed

dry_bulk_density_flag Time approximate Bulk	density	time	recorded	herein	is	an	approximate	estimate

dry_bulk_density_flag To constant mass Bulk	density	methodology	did	not	specify	drying	temperature	or	length,	only	
that samples were dried to a constant mass

(Continues)
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Attribute name Variable name Definition

loss_on_ignition_flag Time approximate Loss	on	ignition	time	recorded	herein	is	an	approximate	estimate

loss_on_ignition_flag Not	specified No	additional	details	regarding	loss	on	ignition	methodology	or	time	were	
provided

carbonates_removed FALSE Carbonates were not removed before measuring organic carbon

carbonates_removed TRUE Carbonates were removed before measuring organic carbon

carbonate_removal_
method

Direct acid treatment Carbonates were removed using direct application of dilute acid

carbonate_removal_
method

Acid	fumigation Carbonates were removed by fumigating with concentrated acid

carbonate_removal_
method

Low	carbonate	soil Organic	carbon	fraction	was	measured	without	removing	carbonates	assuming	
carbonate content of the soil type was minimal

carbonate_removal_
method

Carbonates not removed Carbonates were not removed and low carbonate soil was not specified

carbonate_removal_
method

None	specified Carbonate removal methodology was not specified

fraction_carbon_
method

EA Each	sample	presented	was	measured	using	Elemental	Analysis

fraction_carbon_
method

Kjeldahl digestion Each	sample	was	measured	kjeldahl	digestion	method

fraction_carbon_
method

Not	specified No	additional	details	were	provided	regarding	fraction	carbon	methodologies

fraction_carbon_
method

Wet	oxidation Each sample was measured using a wet oxidation method

fraction_carbon_type Organic	carbon Author	specified	that	fraction	carbon	measurements	were	of	organic	carbon

fraction_carbon_type Total carbon Author	specified	that	fraction	carbon	measurements	were	of	total	carbon

pb210_counting_
method

Alpha Alpha	counting	method	was	used

pb210_counting_
method

Gamma Gamma counting method was used

excess_pb210_rate Mass accumulation Excess 210Pb modeled using mass accumulation rate

excess_pb210_rate Accretion Excess 210Pb modeled using vertical accretion rate

excess_pb210_rate Cumulative mass Model run as excess 210Pb against cumulative mass

excess_pb210_rate Depth Model run as excess 210Pb against depth

excess_pb210_model CRS Constant rate of supply model used to estimate mass and/or accretion rates 
from age profile or chronology

excess_pb210_model CIC Constant initial concentration model used

excess_pb210_model CFCS Constant flux constant sedimentation model used

ra226_assumption Each sample 226Ra was measured for each sample

ra226_assumption Total core 226Ra was measured for the total core

ra226_assumption At	asymptote 226Ra was measured at the asymptote of the 210Pb profile

ra226_assumption Selected samples 226Ra measured by spectrometry at selected samples along the soil profile

c14_counting_method AMS Accelerator	mass	spectroscopy	used

c14_counting_method Beta Beta counting used

age_depth_model_
reference

YBP Year	zero	is	defined	as	years	before	present,	1960 CE

age_depth_model_
reference

CE Year zero is set according to Common Era and Before Common Era standards

age_depth_model_
reference

Core collection date Year zero is set as the core's collection year

TA B L E  8 (Continued)
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Attribute name Variable name Definition

salinity_class Estuarine 0.5–35 ppt

salinity_class Brine >50 ppt

salinity_class Saline 30–50 ppt

salinity_class Brackish 0.5–30 ppt

salinity_class Fresh <0.5 ppt

salinity_class Mixoeuhaline 30–40 ppt

salinity_class Polyhaline 18–30 ppt

salinity_class Mesohaline 5–18 ppt

salinity_class Oligohaline 0.5–5 ppt

salinity_class Estuarine	C-	CAP 5–35 parts per thousand salinity (ppt) according to the coastal change analysis 
program

salinity_class Palustrine	C-	CAP <5 ppt	according	to	the	coastal	change	analysis	program

salinity_method Field observation Salinity inferred by field observation such as vegetation

salinity_method Measurement Salinity observed from local instrument

vegetation_class Emergent Describes wetlands dominated by persistent emergent vascular plants

vegetation_class Scrub shrub Describes wetlands dominated by woody vegetation <	or	equal	to	5 m	in	height

vegetation_class Forested Describes wetlands dominated by woody vegetation >5 m	in	height

vegetation_class Forested to shrub Dominated by forested to scrub/shrub biomass

vegetation_class Forested to emergent Dominated by forest and underlying marsh

vegetation_class Seagrass Describes tidal or subtidal communities dominated by rooted vascular plants

vegetation_method Field observation Vegetation inferred by field observation

vegetation_method Measurement Vegetation measured by counts or plots.

inundation_class High Study-	specific	definition	of	an	elevation	relatively	high	in	the	tidal	frame,	
typically defined by vegetation type

inundation_class Mid Study-	specific	definition	of	an	elevation	in	the	relative	middle	of	the	tidal	frame,	
typically defined by vegetation type

inundation_class Low Study-	specific	definition	of	an	elevation	in	relatively	low	in	the	tidal	frame,	
typically defined by vegetation type

inundation_class Levee Study-	specific	definition	of	a	relatively	high	elevation	zone	built	up	on	the	edge	
of	a	river,	creek,	or	channel

inundation_class Back Study-	specific	definition	of	a	relatively	low	elevation	zone	behind	a	levee

inundation_method Field observation Inundation	inferred	by	field	observation	such	as	vegetation

inundation_method Measurement Inundation	class	assessed	from	elevation	and	nearby	tide	gauge	or	other	similar	
method

position_method RTK Real-	time	kinematic	global	position	system	(GPS)

position_method Handheld Conventional	Commercially	available	hand-	held	GPS

position_method Other	high	resolution Any	other	technique	resulting	in	positional	error	<1 m

position_method Other	moderate	resolution Any	other	technique	resulting	in	positional	error	<30 m

position_method Other	low	resolution Any	other	technique	resulting	in	positional	error	>30 m

elevation_datum NAVD88 A	gravity-	based	geodetic	datum,	North	American	Vertical	Datum	of	1988

elevation_datum MSL A	tidal	datum,	Mean	Sea	Level	as	measured	against	a	local	tide	gauge

elevation_datum MTL A	tidal	datum,	Mean	Tidal	Level	as	measured	against	a	local	tide	gauge

elevation_datum MHW A	tidal	datum,	Mean	High	Water	as	measured	against	a	local	tide	gauge

elevation_datum MHHW A	tidal	datum,	Mean	Higher	High	Water	as	measured	against	a	local	tide	gauge

elevation_datum MHHWS A	tidal	datum,	Mean	Higher	High	Water	for	Spring	Tides	as	measured	against	a	
local tide gauge

elevation_datum MLW A	tidal	datum,	Mean	Low	Water	as	measured	against	a	local	tide	gauge

TA B L E  8 (Continued)

(Continues)
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16 of 35  |     HOLMQUIST et al.

Attribute name Variable name Definition

elevation_datum MLLW A	tidal	datum,	Mean	Lower	Low	Water	as	measured	against	a	local	tide	gauge

elevation_datum NHN Normaal	Amsterdams	Peil,	a	vertical	datum	used	in	many	areas	of	Western	
Europe

elevation_datum NAP Normalhoehennull,	a	vertical	datum	used	in	Germany	that	represents	height	
above mean sea level

elevation_method RTK Real-	time	kinematic	GPS

elevation_method Other	high	resolution Any	other	technique	resulting	in	positional	error	<5 cm	of	random	error

elevation_method LiDAR Handheld	GPS	matched	to	lidar-	based	digital	elevation	model

elevation_method DEM Handheld	GPS	matched	to	another	digital	elevation	model

elevation_method Other	low	resolution Any	other	technique	resulting	in	positional	error	>5 cm	of	random	error

core_length_flag Core depth limited by length of 
corer

The total depth of the core was limited by the length of the coring device

core_length_flag Core depth represents deposit 
depth

Authors	report	that	the	depth	of	the	core	represents	the	depth	of	the	wetland	
soil deposit.

core_length_flag Not	specified Authors	did	not	specify	whether	or	not	the	depth	of	the	core	represents	the	
depth of the wetland soil deposit

marker_type Artificial	horizon Horizon	was	added	to	the	surface	artificially	by	using	materials	such	as	feldspar,	
glitter, or rare earth elements

marker_type Pollen Pollen analysis was used to tie horizon to the timing of vegetation change such 
as the arrival of invasives, or the beginning of local agriculture

marker_type Pollution Chemical analysis was used to tie the horizon to the timing of a pollution event

marker_type Tsunami Sediment analysis was used to tie the horizon to the timing of a tsunami event

impact_class Tidally restricted Tidal	flow	is	muted	or	blocked	by	built	structures

impact_class Impounded Water	level	is	raised	artificially	by	a	tidal	restriction,	resulting	in	ponding	of	
water on the wetland and or upland surface

impact_class Salt impacted Wetland	has	been	salinized

impact_class Natural No	disturbance	or	management	has	occurred

impact_class Managed impounded Wetland	is	impounded	seasonally,	and	other	times	natural	or	semi	natural	
hydrology occurs

impact_class Ditched Tidal hydrology is altered because artificial ditches have been cut to promote 
tidal flooding and drainage

impact_class Diked	and	drained The	wetland	has	been	diked	and	drained,	with	or	without	flapper	gates,	
pumping, or other means

impact_class Farmed Managed impoundment or drainage in which wetland has been converted to 
agricultural land

impact_class Tidally restored Tidal flow has been restored by removing an artificial obstruction

impact_class Revegetated Wetland	vegetation	has	been	reintroduced	by	replanting	on	unvegetated	
surfaces

impact_class Restored Some method of restoration (potentially unspecified) has occurred

impact_class Invasive	plants	removed Natural	plant	communities	have	been	restored	by	the	active	removal	of	invasive	
plant species

impact_class Invasive	herbivores	removed Tidal wetland vegetation has been managed by the removal of invasive 
herbivores

impact_class Sediment added Elevation has been managed by artificially adding sediment to the site using 
techniques	such	as	thin	layering	or	sediment	diversion

impact_class Wetlands	built Constructed wetland using sediments such as dredge spoils or other sediment 
source

habitat Mangrove Tropical and dominated by specialized shrubs or trees

habitat Swamp Predominantly freshwater and dominated by trees

habitat Scrub/shrub Wetland	dominated	by	shrubs

TA B L E  8 (Continued)
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(2.8%),	or	 swamp	ecosystems	 (1.8%).	Algal	mat,	 scrub/shrub,	adja-
cent upland, and tidal flat ecosystems made up <1%	of	the	database.	
Also,	93.6%	of	cores	in	the	database	are	either	classified	as	‘natural’	
or do not specify any anthropogenic impacts.

The most common types of soils data for marsh, mangrove, sea-
grass,	 and	 swamp	 ecosystems	 included	 dry	 bulk	 density,	 fraction	
organic matter, and fraction carbon measurements (Figure 4). Soil 
cores	with	 a	 suite	 of	 basic	 soil	 carbon	 stock	 information	 included	
4815 profiles (Figure 5).	 However,	 90.4%	 were	 not	 confirmed	 to	
reach	 a	 contact	 point	 between	wetland	 sediment	 and	 bedrock	 or	

non-	wetland	 sediment.	Only	 19.5%	of	 cores	were	 greater	 than	 or	
equal	to	1 m	long,	the	target	depth	of	soil	maps	used	in	some	organic	
carbon	stock	assessments	(Holmquist	et	al.,	2018b).

Of	 the	marsh,	mangrove,	 seagrass,	 and	 swamp	cores	with	 suffi-
cient	data	to	calculate	carbon	stocks	(4815),	a	subset	of	those	had	data	
sufficient to calculate carbon accumulation rates (533, Figure 5).	Of	
these,	the	majority	(77.8%)	have	fully	transparent	age-	depth	informa-
tion	traceable	back	to	the	original	measurements	(Figure 5).	Of	these	
dated cores, 326 also have associated elevation data, with 317 having 
both	high-	quality	elevation	and	age-	depth	information	(Figure 5).

Attribute name Variable name Definition

habitat Marsh Wetland	dominated	by	emergent	vegetation,	gramminoids	or	forbs

habitat Seagrass Intertidal	to	subtidal	and	dominated	by	specialized	predominantly	submerged	
grasses

habitat Algal	mat Dominated by algae

habitat Unvegetated Unvegetated

habitat Tidal flat Describes unvegetated areas exposed and flooded by the tides

habitat Upland Predominately above sea level and dominated by trees

code_type Description Cover description not related to plant taxonomy

code_type Family Refers to taxonomic family without indicating a genus or species

code_type Genus Refers to a taxonomic genus without indicating a species

code_type Genus species Refers to taxonomic Genus and species

stocks_qual_code C2 Carbon	stock	data	complete,	not	confirmed	to	be	a	complete	profile

stocks_qual_code C1 Carbon	stock	data	complete,	confirmed	to	be	a	complete	profile

dates_qual_code B2 Dating information present, but not complete

dates_qual_code B1 Dating information present and complete

elevation_qual_code A3 Elevation	data	present	but	of	low	quality,	dating	info	present

elevation_qual_code A2 Elevation	data	are	of	high	quality,	and	dating	info	present	but	incomplete

elevation_qual_code A1 Elevation	data	are	of	high	quality,	and	dating	info	is	complete

TA B L E  8 (Continued)

F I G U R E  2 A	flowchart	shows	the	
interactions between people (data 
creators, project personnel, and data 
users), products (data publications, the 
Coastal	Carbon	Library,	and	Coastal	
Carbon	Atlas),	and	processes,	outlined	
in this manuscript. Data creators can 
publish their data independently or 
through	Coastal	Carbon	Network.	Public	
data	enters	the	Coastal	Carbon	Library,	a	
centralized data synthesis, after multiple 
stages	of	data	reshaping	and	quality	
control. Data users can access the library 
directly or through the Coastal Carbon 
Atlas.
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When	 subsetting	 the	 major	 three	 habitats,	 marsh,	 mangrove,	
and seagrasses, and comparing to global estimates of area, it is clear 
that	the	current	database	over-	represents	tidal	marshes	and	under-	
represents	mangroves	 and	 seagrasses	 for	 carbon	 stock,	 but	 espe-
cially for carbon burial rate data (Table 9). Depending on the area 
estimate	used,	tidal	marshes	may	represent	between	17	and	32%	of	
intertidal area, but tidal marshes dominate ecosystem representation 

in	the	database,	at	61.3%	of	the	carbon	stock	data	and	92.9%	of	the	
carbon	burial	data.	Seagrass	and	mangrove	area	are	at	least	equal	to,	
and	very	likely	greater	than,	tidal	marsh	area	(Table 9).

Data	 in	 the	Coastal	Carbon	Library	originated	 from	64	coastal	
countries,	but	the	majority	(59.9%)	were	from	the	United	States	de-
spite	the	fact	that	the	United	States	represented	8.6%	of	global	tidal	
ecosystem extent (Murray et al., 2022; Figure 6). Countries such as 

F I G U R E  3 The	Coastal	Carbon	Atlas:	(a)	Shows	the	map	view	with	warmer	colors	indicating	denser	clusters	of	data.	Clusters	change	
and	become	more	detailed	as	a	user	zooms	in	on	a	particular	region	or	location.	When	zoomed	all	the	way	in	users	can	identify	individual	
coring	locations.	(b)	An	example	of	the	Atlas's	tabular	view,	which	allows	users	to	browse	the	raw	data	stored	in	the	Coastal	Carbon	Library	
and	accessible	for	download.	(c)	Shows	the	download	screen	including	summary	statistics	of	a	query	and	options	of	post-	processing	depth	
series	to	output	as	depth	weighted	averages.	(d)	Shows	a	file	tree	of	downloads	including	file	summary	in	‘readMe’,	attribute	and	variable	
definitions	in	the	‘data	dictionary’	file,	the	bibliographic	information	in	three	file	formats,	the	site,	core,	depth	series,	methods,	impacts,	and	
species	table,	as	well	as	the	derived	normalized	weighted	averages	depth	series	table	in	the	‘standardized	depth	series'	table.	The	interactive	
application is available online (https:// shiny. si. edu/ coast al_ carbon_ atlas ). Map lines do not necessarily depict accepted national boundaries.

TA B L E  9 We	compared	global	area	estimates	for	three	major	blue	carbon	ecosystems,	tidal	marshes,	mangroves,	and	seagrasses,	
compared	with	the	representativeness	of	data	appropriate	for	carbon	stock	assessments	and	burial	rates	when	only	the	subset	of	those	
habitats is considered. Multiple estimates were found, so we present ranges based on the maximal scenario for mangroves and minimal for 
marshes, as well as maximal for marshes and minimal for mangroves. Despite variation in estimates of areas based on source, the current 
iteration	of	the	Coastal	Carbon	Library	clearly	overrepresents	marshes.

Habitat

Global area Coastal carbon library representation

Source Area estimate (km2) Area (%) Carbon stocks (%) Carbon burial rate (%)

Marsh a ,b  90,800–152,361 17.0–32.7 61.3 92.9

Mangrove a ,c  152,604–284,803 32.8–53.1 25.2 4.98

Seagrass a  160,387 30.0–34.5 7.04 2.11

aMcKenzie et al. (2020).
bMurray et al. (2022).
cBunting et al. (2022).
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Indonesia,	Canada,	Brazil,	and	Papua	New	Guinea	were	undersam-
pled despite having relatively large areas (Figure 6).

Median organic matter density was highest in swamps and 
marshes, lower in mangroves, and lowest in seagrasses (Table 10). 

Dry	bulk	density,	organic	matter	fraction,	and	their	products,	organic	
matter	density,	were	non-	normally	distributed	(Figure 7).	All	varied	
significantly	 based	 on	 habitat	 type	 according	 to	 a	 non-	parametric	
Kruskal–Wallis	rank-	sum	test	(p < 2.2e-	16).

5  |  DISCUSSION

5.1  |  Strengths of current effort

The	 Coastal	 Carbon	 Library	 and	 Atlas's	 strengths	 are	 in	 provid-
ing	 an	 example	 of	 how	 to	 build	 F.A.I.R.	 data	 in	 the	 earth	 and	 en-
vironmental	sciences	 (Wilkinson	et	al.,	2016). Providing support in 
issuing	 persistent	 digital	 object	 identifiers	 helps	 make	 data	 more	
findable.	Accessibility	was	increased	by	preparing	new	data	releases	
and	distributing	the	Coastal	Carbon	Library	all	under	creative	com-
mons	open	 source	 licenses.	Accessibility	was	 further	 improved	by	
creating	the	Coastal	Carbon	Atlas	so	that	data	could	be	queried	by	
those	without	specialized	data	management	and	coding	skills.	The	
data were made interoperable by the creation and adoption of a 
controlled data structure and vocabulary. The data were made reus-
able by providing them in a highly disaggregated form. For exam-
ple, for profiles available for calculating accretion rates and carbon 
burial rates, the majority of these data are fully reported, meaning 
that these metrics can be derived using existing publicly available 
age-	depth	modeling	software	(Aquino-	López	et	al.,	2018;	Blaauw	&	
Christen, 2011).

Beyond	 enacting	 F.A.I.R.	 data	 principles,	 the	 strengths	 of	 the	
Coastal	 Carbon	 Library	 and	 Atlas	 are	 in	 enhancing	 transparency.	

F I G U R E  4 Summary	of	the	count	of	cores	with	key	measured	
attributes	associated	with	them.	Dry	bulk	density,	fraction	organic	
matter, and fraction carbon were most commonly measured. Data 
associated with core elevation and stratigraphic dating were less 
common.

F I G U R E  5 Summary	of	data	quality	and	completeness	for	three	different	purposes:	carbon	stock	assessments,	estimating	carbon	burial	
rates,	and	parameterizing	models	of	future	carbon	sequestration.	We	define	sediment	profiles	as	complete	if	reaching	the	contact	point	
between	wetland	sediment	and	bedrock	or	lower	non-	wetland	sediment.
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20 of 35  |     HOLMQUIST et al.

The ability to independently replicate derivative calculations and 
link	measurements	to	original	studies	are	both	important	to	the	va-
lidity	of	greenhouse	gas	inventories	(Crooks	et	al.,	2018) and carbon 
market	verification	(Needelman	et	al.,	2018).

When	collating	data	for	use	by	a	broad	swathe	of	researchers	
and managers, the importance of grassroots approaches cannot 
be	 understated.	 The	 fact	 that	 this	 was	 a	 domain-	specific	 effort	
allowed us to grow the database by leveraging professional net-
works,	 generate	 enthusiasm	 with	 a	 community	 that	 understood	
the immediate utility of the synthesis, and build trust based on re-
lationships.	Building	trust	took	an	understanding	of	both	academic	
incentives around sharing data and the personal nature of many 
datasets.	 In	 shifting	 the	burden	of	 curation	 from	data	producers	

to dedicated staff this effort has helped data creators comply with 
open data standards (Tedersoo et al., 2021), and rescued data 
that	otherwise	would	have	never	been	made	public	(Todd-	Brown	
et al., 2022).	Our	ambition	is	to	continue	providing	some	data	cu-
ratorial services depending on the availability of funding through 
new projects.

5.2  |  Future improvements

While	there	are	myriad	strengths	to	the	current	effort,	there	are	also	
limitations	to	estimating	deep	carbon	stocks	and	assessing	carbon	
burial rates outside of marsh ecosystems. Most of the dated or deep 

F I G U R E  6 (a)	Points	show	country	by	country,	the	makeup	of	the	Coastal	Carbon	Library	as	percentages,	with	respect	to	the	global	area	
of tidal ecosystems (Murray et al., 2022).	Countries	in	the	top	6	of	database	representation	and/or	tidal	area	are	labeled.	The	black	line	
represents	an	idealized	one-	to-	one	relationship	with	countries	above	the	line	being	over-	sampled	and	those	below,	under-	sampled.	Note	
the	log-	10	scale.	Countries	with	no	representation	in	the	Coastal	Carbon	Library	are	plotted	at	the	bottom	of	the	y-	axis.	The	United	States	
is	over-	represented,	while	Indonesia,	Brazil,	Papua	New	Guinea,	and	Canada	were	underrepresented.	(b)	Maps	show	same	information	as	(a),	
with	colors	visualizing	the	degree	of	over-		or	under-	representativeness.	Here	we	define	over-		or	under-	representation	as	actual	minus	ideal	
representation.	Ideal	representation	is	based	on	based	on	tidal	habitat	coverage	(x-	axis	of	a),	actual	on	database	representation	(y-	axis	of	a).	
Map lines do not necessarily depict accepted national boundaries.
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cores	 in	 the	Coastal	Carbon	 Library	were	 from	 tidal	marshes.	 For	
carbon	stocks,	we	showed	that	the	majority	of	datasets	did	not	rep-
resent full profiles, reaching a contact point between wetland and 
deeper	non-	wetland	layer,	and	in	most	cases,	soils	datasets	were	lim-
ited by the depth of the coring device. So, while the characterization 
of	shallow	carbon	stock	is	the	most	widely	available	application	of	
the	data,	future	work	could	quantify	the	effect	that	profile	depth	has	
on	 total	 carbon	 stock	 assessments,	 how	 spatially	 predictable	 that	

contact point is from existing data, and how predictable deeper car-
bon	stocks	are	from	shallower	ones.

Future efforts could also focus on improving the representative-
ness of data in the repository. The majority of the data were from 
the U.S. and future efforts could improve the representation of 
tropical	 and	developing	countries	 (Wylie	et	al.,	2016). Poor repre-
sentation	in	some	cases	is	due	to	lack	of	data,	and	other	times	due	to	
the	fact	that	data	has	not	yet	been	integrated.	Efforts	like	this	allow	

TA B L E  1 0 Summary	statistics	of	organic	matter	fraction,	dry	bulk	density	(g cm−3),	and	organic	matter	density	(g cm−3). Summary 
statistics	include	mean,	median,	lower	and	upper	95%	quantile,	standard	deviation	(SD)	and	data	point	count	(n).

Variable Habitat Lower 95% Median Mean Upper 95% SD n

Fraction organic matter Marsh 0.02 0.15 0.2 0.66 0.17 12,746

Mangrove 0 0.06 0.18 0.67 0.22 1433

Swamp 0.03 0.27 0.36 0.91 0.27 594

Seagrass 0 0.02 0.02 0.12 0.04 2805

Dry	bulk	density Marsh 0.09 0.48 0.56 1.47 0.37 12,746

Mangrove 0.13 0.75 0.75 1.61 0.46 1433

Swamp 0.06 0.31 0.45 1.4 0.39 594

Seagrass 0.31 0.99 1.06 1.93 0.45 2805

Organic	matter	density Marsh 0.01 0.06 0.07 0.19 0.04 12,746

Mangrove 0 0.05 0.06 0.13 0.04 1433

Swamp 0.03 0.08 0.08 0.19 0.04 594

Seagrass 0 0.02 0.02 0.07 0.02 2805

F I G U R E  7 Summary	of	global	blue	
carbon	data	shown	as	the	frequency	
distribution	of	dry	bulk	density	(g cm−3), 
fraction organic matter, and organic 
matter	density	(g cm−3).	Note,	the	y-	axes	
are different for each type of ecosystem 
in the rows.
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the	community	to	take	stock	of	what	data	are	already	available	and	
focus on new data collection and synthesis where it would be most 
impactful.

Further, future efforts could include increasing the representa-
tion of mangroves, and seagrasses, especially for carbon burial data. 
Finally, future efforts could analyze whether the Coastal Carbon 
Library	is	biased	towards	pristine	wetlands	and	underrepresents	de-
graded or restored wetlands.

5.3  |  Proposed best practices for blue carbon data 
dissemination and reuse

This data synthesis effort has resulted in proposed guidelines for 
both individual research groups as well as journal editors, review-
ers,	and	funders.	We	suggest	that	best	practices	for	reporting	blue	
carbon soils data should include distributing disaggregated data as-
sociated with the summary statistics presented in journal articles and 
reports.	We	propose	reporting	at	the	level	of	original	measurements,	
for	example,	loss-	on-	ignition	and	dry	bulk	density	measurements	re-
ported for individual depth increments, and individual radioisotope 
measurements determining supported and unsupported 210Pb activ-
ity	profiles	in	addition	to	derived	age-	depth	models.	We	propose	that	
positional information, elevation, wetland management history, salin-
ity, and vegetation composition are all vital to data reinterpretation; 
we provide multiple ways for coding data resolution and methodol-
ogy (Tables 1 and 2) in order to represent the original studies with fi-
delity.	We	propose	that	data	producers	should	provide	separate	files	
for original measurements and derivative calculations, ideally with an 
open-	source	 scripting	 workflow	 documenting	 how	 derivations	 are	
made.	We	propose	utilizing	dataset	templates	and	consistent	vocabu-
lary whenever possible, such as those provided as Data S1	(Holmquist	
et al., 2023). The templates we provide can be modified and added 
to.	We	propose	metadata	accompanying	data	releases	should	define	
attributes, specify units, and detail study methods.

We	 also	 propose	 best	 practices	 for	 data	 producers	 include	
making	data	freely	available	 in	public	data	repositories	with	open-	
source	Creative	Commons	 licenses.	We	encourage	 journal	 editors	
and	 funders	 to	 require	data	publication	as	part	of	publication	and	
end-	of-	project	reporting,	and	for	reviewers	to	ensure	data	releases	
are	analysis-	ready	and	well-	documented.	Funders	have	a	role	in	sup-
porting	both	project-	specific	data	curation,	as	well	 as	community-	
wide aggregation efforts. This effort shows the value of dedicated 
staff in helping data producers meet their open data ambitions.

Having	a	synthetic	dataset	can	allow	researchers	 to	develop	addi-
tional best practices, and disentangle the effect different methodolog-
ical	choices	have	on	carbon	burial	and	accretion	estimates	 (Holmquist	
et al., 2021). Fusing data with soil formation models (Morris et al., 2002; 
Schile et al., 2014) could allow for more standardization surrounding con-
cepts	such	as	accretion,	burial,	accumulation,	and	sequestration.

The adoption of open data policies has the potential to im-
prove	equity	 for	 researchers	 and	 communities	 in	 the	global	 south	
(Serwadda et al., 2018).	 Although	 adopting	 open	 data	 is	 not	 free	

from	ethical	risks	on	its	own,	the	protocol	we	propose	does	provide	
a	way	to	avoid	‘parachute	science’,	in	which	data	are	collected	from	a	
middle-	income	or	developing	country,	but	not	made	available	to	the	
communities from which it came. Data and journal publications offer 
an avenue for credit towards researchers from the global south by 
recognizing a taxonomy of roles, including for local people who con-
sulted	and	physically	collected	the	data	(Allen	et	al.,	2014; Serwadda 
et al., 2018).

We	finally	propose	some	best	practices	 for	 those	 reusing	data	
for	new	purposes.	Although	the	CC-	BY	4.0	open	data	allows	unre-
stricted use with attribution, we encourage data users to interact 
with	the	Coastal	Carbon	Library	and	Atlas	products	not	only	as	a	da-
tabase but also as the community that built it. This could also include 
reaching	out	to	original	data	producers	when	local	knowledge	is	war-
ranted	 for	data	 interpretation.	Data	users	can	offer	 co-	authorship	
when	 consultations	 result	 in	more	 substantial	 contributions	 (Allen	
et al., 2014), or recommend data providers as reviewers, notify them 
of	open-	peer	review	periods,	notify	them	of	preprints,	and	provide	
copies of journal articles when a dataset they provided is vital to a 
new study.

Our	hope	is	that	by	providing	a	centralized	open	database,	build-
ing the practice of data publication, and implementing a data reuse 
policy that centers original data producers, we will contribute to-
wards democratizing the development of coastal ecosystem service 
science.

6  |  CONCLUSIONS

We	present	the	Coastal	Carbon	Library,	an	open-	source	database	for	
disaggregated	global	tidal	wetland	soil	carbon	stock,	and	accumula-
tion	rate	data.	It	is	made	up	of	6723	soil	profiles,	from	64	countries.	
In	addition	to	the	data	itself,	the	vocabulary,	structures,	and	meta-
data are all discussed in depth. The strength of these data products 
lies	in	their	commitment	to	F.A.I.R.	data	principles	and	their	trans-
parency.	 The	 addition	 of	 the	 Coastal	 Carbon	 Atlas,	 which	 allows	
for	 data	 visualization,	 subsetting,	 and	 limited	 post-	processing,	 in-
creases	the	accessibility	of	the	data	for	non-	specialists.	Future	work	
is	needed	especially	 to	 increase	 the	amount	of	deep	carbon	stock	
data across wetlands and calculate carbon burial rates consistently. 
While	the	database	is	global,	new	efforts	are	needed	to	increase	the	
representation	of	countries	outside	the	U.S.	To	conclude,	we	think	
that any scientific synthesis effort can learn important lessons from 
the	grassroots	nature	of	the	Coastal	Carbon	Library.	Data	produc-
ers were incentivized to be involved by providing data templates, 
shifting the burden of curation from data producers to dedicated 
staff, and generating trust through a data use policy that rewards 
data producers through citation of primary material.
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