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A B S T R A C T   

Accurate representation of global coastal topography is essential for numerous scientific disciplines, coastal 
management, and disaster risk assessment. Even with recent improvements to existing global digital elevation 
models (DEMs), high and persistent errors in these DEMs result in significant uncertainty when analyzing coastal 
processes. This results in low confidence for current sea level rise inundation risk assessments. We present 
DiluviumDEM, the first global DEM appropriate (i.e., the root mean square error (RMSE) is half the total water 
elevation in 2100 under a specific scenario) for mapping sea level rise inundation under the IPCC SSP2–4.5 and 
SSP5–8.5 scenarios, with an estimated RMSE of 1.13 m for coastal areas with elevations less than 2 m above 
mean sea level. Out of ten countries used for validation, DiluviumDEM has the lowest RMSE compared to three 
other DEMs analyzed, the lowest mean absolute error (MAE) for eight, and the mean error (ME) closest to zero 
for six. By reducing the error of the European Space Agency’s Copernicus DEM using a gradient boosted decision 
tree model, we have created a new global coastal DEM with up to twice the accuracy compared to other global 
DEMs.   

1. Introduction 

Global coastal digital elevation models (DEMs) are crucial in a wide 
range of applications, including hydrological modeling, hazard risk 
assessment, and land use planning. One important application for 
coastal DEMs is sea level rise inundation mapping. Accurate projections 
of land inundated due to sea level rise are necessary for adaptation and 
risk management planning. However, despite significant advancements 
in processing techniques, errors inherent in DEMs persist and can 
significantly impact the reliability and accuracy of derived analyses and 
decision-making processes. Root mean square error (RMSE) is a common 
metric for assessing the accuracy of DEMs and represents the distribu
tion of errors within a DEM (Gesch, 2018). Technology such as Light 
Detection and Ranging (LiDAR) can generate DEMs with extremely low 
errors, generally between 15 cm and 50 cm RMSE (ICSM, 2008). While 
using DEMs derived from LiDAR is optimal, such DEMs are not available 
globally due to the high costs associated with taking LiDAR surveys and 
because many governments do not make LiDAR DEMs publicly avail
able. Private sector involvement, such as the insurance sector, in 
creating a global LiDAR dataset would be ideal given the importance of 
elevation data in flood insurance contexts. Continental and global 

analyses must rely on satellite-derived DEMs such as the Shuttle Radar 
Topography Mission (SRTM) (Rabus et al., 2003), NASADEM (Crippen 
et al., 2016), ALOS World 3D – 30 m (AW3D30) (Tadono et al., 2014), 
and Copernicus DEM (referred to as COP30DEM) (ESA, 2021). The er
rors associated with these DEMs vary across data products and spatially. 
SRTM, a highly popular global DEM due to its accessibility, has a RMSE 
of 7.16 m and AW3D30 has a RMSE of 6.82 m among elevations lower 
than 20 m in Hispaniola (Zhang et al., 2019). In Massachusetts, USA, 
SRTM has a RMSE of almost 10 m (Farr et al., 2007). A comparison 
completed in the Philippines showed AW3D30 to be considerably more 
accurate than SRTM with respective RMSEs of 5.68 m and 8.28 m 
(Santillan and Makinano-Santillan, 2016). One of the more recently 
released global DEMs, COP30DEM, shows greater accuracy compared to 
older DEMs. Guth and Geoffroy (2021) found that COP30DEM repre
sented terrain elevations better than SRTM, NASADEM, and AW3D30. 
Gesch (2018) found that in areas less than or equal to 10-m elevation for 
the continental United States, NASADEM and AW3D30 have a RMSE of 
3.10 and 3.12 m, respectively, which outperform SRTM which has a 
RMSE of 4.55 m. The Forest And Buildings removed DEM (FABDEM) has 
been shown to be the most accurate DEM in the continental coastal zone 
of the United States with a RMSE of 1.23 m (Gesch, 2023). 
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Such high errors have important implications for sea level rise 
studies and planning because the RMSE of DEMs is often double or tri
ple, if not more, the amount of sea level rise anticipated by 2100. The 
high uncertainty surrounding the sea level rise inundation extent maps 
is a serious limitation that hampers policy making decisions in areas 
where LiDAR data is not available. Various users from scientists to 
geospatial analysts are forced to use low-confidence sea level rise 
inundation risk data which can bias estimates of population exposure to 
coastal flooding. Many previous analyses have worked to correct DEM 
errors originating from, for example, dense tree canopies (satellite radar 
generally cannot fully penetrate vegetation and reach the ground), 
building height (satellite sensors generally capture the elevation of the 
top of the building rather than the ground), slope (higher slope is 
correlated with higher errors), and instrument alignment (Hawker et al., 
2019; Hawker et al., 2022; Khasanov, 2020; Li et al., 2022). Work by 
Kulp and Strauss (2018, 2021) resulted in CoastalDEMV2.1, a DEM 
focused on coastal areas whereby a neural network was used to globally 
correct NASADEM. The most recent advance has been from Hawker 
et al. (2022) where a correction algorithm was used to globally correct 
the COP30DEM for building and forest elevation errors resulting in 
FABDEM. 

Here, we present a next generation global coastal DEM, Dilu
viumDEM (Latin for ‘flood’), with reduced vertical error that can be used 
for a variety of applications including flood modeling, sea level rise 
inundation mapping, and other coastal processes. Elevation error is 
reduced by using a gradient boosted decision tree model to correct 
COP30DEM. 

2. Methods 

DiluviumDEM is a global DEM for coastal areas and is publicly 
available for any use. DiluviumDEM was created by estimating the 
elevation error in COP30DEM for each pixel using the gradient boosted 
decision trees regression model, LightGBM, and then subtracting the 
predicted error from COP30DEM (ESA, 2021; Ke et al., 2017). Other 
well-known implementations of gradient boosted decision trees are 
XGBoost and pGBRT (Chen and Guestrin, 2016; Tyree et al., 2011). 
LightGBM was chosen due to two improvements in the algorithm: 
Gradient-based One-Side Sampling and Exclusive Feature Bundling. 
These refinements allow LightGBM to achieve very similar accuracies as 
traditional gradient boosted decision trees but with a significant 
decrease in computation time (Ke et al., 2017). To the best of our 
knowledge, this is the first use case of LightGBM to correct vertical errors 
in a DEM. LightGBM, a popular machine learning algorithm, holds some 
similarities to Random Forest models which are widely utilized in 
remote sensing applications (Belgiu and Drăguţ, 2016). However, there 
are key differences between the two:  

1) The model architecture differs in that LightGBM uses an ensemble of 
weak decision trees built sequentially, enhancing the correction of 
errors made by the previous trees. LightGBM focuses on the nodes 
that obtain the greatest loss reduction using a leaf-wise tree growth 
framework. Random Forests create an ensemble of independent de
cision trees using a random subset of training features and samples 
and then aggregating the final predictions of all trees. 

2) The gradient boosting approach of LightGBM optimizes a loss func
tion by tuning model parameters during training. Random Forests 
train each tree independently with random training samples.  

3) Random Forests are usually slower than LightGBM because 
LightGBM uses a leaf-growth strategy and histogram-binning method 
while Random Forests creates each tree independently which in
creases computation time. 

4) Random Forests have better interpretability because feature impor
tance can be understood through individual decision trees while 
LightGBM’s sequential tree construction adds complexity when 
analyzing feature importance. 

LightGBM lends itself to global DEM correction due to the large 
datasets utilized. Initial testing against a neural network revealed that 
LightGBM was superior in reducing DEM vertical error. Due to limited 
time available for model testing, a Random Forest model was evaluated. 
Although it is beyond the scope of this study to determine the preferable 
model architecture for corrected DEMs, LightGBM’s regression frame
work demonstrates strong applicability for remote sensing use cases 
(Pham et al., 2020). 

COP30DEM was chosen because (1) it is licensed for any use, (2) does 
not suffer from the stripe noise that is common in SRTM data, (3) has 
been smoothed for noise which enhances the elevation signal, (4) the 
data was gathered from 2011 to 2015; more recent than the SRTM data 
from 2000, and (5) COP30DEM uses the geoid EGM2008 as the vertical 
datum which is three to six times as accurate as EGM96, the geoid and 
datum for SRTM/NASADEM (Fahrland et al., 2022; Gallant and Read, 
2009; Pavlis et al., 2012). Two DEMs were used as the ground truth 
elevations to train the model and evaluate performance. The first is the 
NOAA Sea Level Rise Viewer DEM (available at https://coast.noaa. 
gov/htdata/raster2/elevation/SLR_viewer_DEM_6230/). DEMs for all 
coastal states of the continental United States were used. The LiDAR 
used to create the NOAA DEMs were acquired between 1996 and 2016 
with most being acquired in the 21st century. Most of the NOAA SLR 
DEMs have a RMSE less than 20 cm (NOAA, 2012). The second DEM 
used for training is the Actueel Hoogtebestand Nederland Version 2 
(AHN2) (https://www.ahn.nl/). The LiDAR data used to create the 
AHN2 was taken between 2007 and 2012 and the AHN2 has a RMSE of 
10 cm. All data points in NOAA DEMs and the AHN2 DEM were used for 
either training or validation. The NOAA DEM data was converted from 
NAVD88 to EGM2008 using the NOAA VDatum software. The AHN2 
data was converted from the vertical datum NAP to EGM2008 using the 
RDNAPTRANS2018 parameters (https://www.nsgi.nl/rdnaptrans) 
(Lesparre et al., 2020). The ground-truth data was split 70% for training 
and 30% for validation. This resulted in approximately 252 million 
pixels used for training and 108 million pixels used for validation in the 
continental United States. In the Netherlands, approximately 39 million 
pixels and 16 million pixels were used for training and validation, 
respectively. The training and validation data are first separated by 
converting from Geotiffs to randomly shuffled TFRecord files each 
containing data for 10,000 pixels. The TFRecord files are then randomly 
shuffled before model training begins. This two-step data shuffling 
process promotes model generalization and allows for a randomly 
spatially distributed training and validation dataset instead of training 
and validating on specific regions. 

The error between COP30DEM and the LiDAR-derived DEMs is 
calculated for each pixel and then used as the ground truth data for 
LightGBM. All pixels between the elevation band of − 10 and 80 m were 
selected for correction and any pixels marked as water by the COP30
DEM water mask were removed from the selection. Pixels in this 
elevation range were chosen for several reasons. First, the model’s focus 
was primarily on coastal areas, which justified prioritizing elevations in 
that range. Second, incorporating negative elevations down to − 10 m 
helped address any potential negative biases present in the COP30DEM 
data. Third, an upper bound of 80 m was set to rectify significant posi
tive biases that could arise from tall buildings. However, it’s important 
to note that due to this upper range limitation, there might be a 
noticeable step change of a few meters at the 80-m elevation threshold 
when comparing DiluviumDEM to COP30DEM. DiluviumDEM is meant 
for coastal applications; for use cases focusing in areas with elevations 
greater than 80 m, i.e., not on sea level rise, we suggest utilizing other 
DEMs. 

To deal with potential errors in DiliuviumDEM arising from the tidal 
extent ranging across the explanatory variables’ collection time periods, 
we use the COP30DEM water body mask, which is based on data from 
WorldDEM, that represents the high-water mark globally (Fahrland 
et al., 2022; Airbus, 2018). Therefore, the greatest permanent water 
extent has been considered when applying a final water mask to 
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DiluviumDEM. Also, we use the Dynamic World Flooded Vegetation 
Areas dataset as an input variable into the model to account for pixels 
that are temporarily flooded by tides. This would allow the model to 
recognize wetland areas during training. 

The Google Earth Engine platform was used to combine and export 
all training and prediction data (Gorelick et al., 2017). A total of 52 
explanatory variables were used to predict the COP30DEM error. They 
include vegetation cover, canopy height, satellite LiDAR, population 
density, land and cover. A complete inventory of variables used to 
develop DiluviumDEM is presented in the supplemental materials. All 
input variables were resampled at a 30-m resolution and aligned to the 
COP30DEM grid in Google Earth Engine to compute the pixel-by-pixel 
error. Similar resampling and georeferencing was done for creating 
CoastalDEM and FABDEM (Hawker et al., 2022; Kulp and Strauss, 
2018). A small selection of pixels in the elevation band − 10 m to 80 m 
were not corrected because either Landsat or Sentinel 2 data was not 
available. The areas where pixels were not corrected is largely limited to 
coastal areas with steep topography such as northern Chile where 
inundation risk is negligible. 

To show the accuracy of DiluviumDEM, we compare the RMSE, mean 
absolute error (MAE), and the mean error (ME) of the elevation model to 
FABDEM, COP30DEM, and CoastalDEMV2.1. While FABDEM and 
COP30DEM are not coastal DEMs, they are recent advances in global 
DEMs and are valuable comparisons to DiluviumDEM. Data from eight 
countries (USA, the Netherlands, Australia, England, Poland, Japan, 
France, Mexico, Latvia, and Denmark) with LiDAR-based DEMs was 
used as validation. All LiDAR-based DEMs have a RMSE of 30 cm or less. 
All country LiDAR datasets were converted from their respective datums 
to EGM2008 using geoids for each country and dataset. Additional 
validation of DiluviumDEM was completed with the ATLAs/ICESat2 
L3A Land and Vegetation Height, Version 5 (ATL08) ground elevation 
points from October 14, 2018 to December 22, 2021. The preprocessing 
steps to clean the ground track data and convert the elevation values to 
the EGM08 datum were taken from Vernimmen et al. (2020). 

In order to determine the value of using DiluviumDEM versus other 
DEMs for inundation mapping and modeling, error metrics (e.g., RMSE) 
must be translated to a confidence level for a particular water elevation. 
Another way to describe the confidence level is the degree to which the 
areas estimated as inundated are accuracy mapped as such. Gesch 
(2018) describes this method in detail and derives the confidence in
terval from the standard deviation of the errors of a normal distribution 
assuming a mean value of zero (also known as an unbiased normal 
distribution). Assuming the DEMs are unbiased (e.g., a mean error of 
zero), we can then substitute the standard deviation used for calculating 
the confidence interval for the RMSE (Woodruff and BenDor, 2018). 
NOAA (2010) describes a DEM as appropriate for a particular water 
elevation if the RMSE of the DEM is half of the water elevation. In the 
methodology of Gesch (2018), a RMSE that is half of the water level 
would be a confidence level of 68% and we apply this definition here. 
This method assumes the use of a bathtub inundation model. We note 
that the criteria for appropriateness would change if a more advanced 
hydrodynamic model is implemented as this would also change the 
extent of inundation. We use the bathtub model assumption because 
determining hydrologic connectivity is computationally expensive at 
this geographic scale and the bathtub model is a conservative estimate of 
areas vulnerable to sea level rise inundation. The vertical reference for 
CoastalDEMV2.1 was converted to EGM2008 using the EGM96 and 
EGM2008 geoids from Agisoft (https://www.agisoft.com/download 
s/geoids/). 

For any country-level spatial aggregation completed, the Exclusive 
Economic Zones (EEZ) from Flanders Marine Institute (2020) were used 
as administrative boundaries rather than country polygons because the 
boundaries representing the coastlines are often imperfect. For spatial 
aggregations at the Level 1 administrative unit scale (e.g., provinces and 
states), the GADM (Database of Global Administrative Areas) dataset is 
used (https://gadm.org). 

3. Results 

3.1. Statistical comparison 

DiluviumDEM is the best-in-class global coastal DEM since it shows 
the greatest accuracy across most metrics. In the instances where other 
DEMs have lower errors, DiluviumDEM has very similar error magni
tudes, usually a difference of less than 10 cm relative to 0.77 m of sea 
level rise by 2100 under the SSP5–8.5 Medium Confidence scenario. Out 
of the 90 individual comparisons (across countries, elevation thresholds, 
and error metrics), DiluviumDEM shows the lowest error for 70, FAB
DEM for 14, and CoastalDEMV2.1 for 6. Tables 1, 2, and 3 show the 
RMSE, MAE, and ME, respectively, for each DEM. While ME is useful for 
understanding the overall bias of a DEM, large positive and negative 
errors can cancel out leading to a low ME but would also result in a high 
RMSE. Therefore, it is important to compare DEMs holistically across 
metrics and not in isolation to avoid misinterpreting a DEM’s accuracy. 
The statistics shown for the USA and the Netherlands only include pixels 
that were used for validation, not training. We focus on the elevation 
thresholds of 2 and 5 m because these are the coastal regions that will be 
impacted by sea level rise through 2100. We also include the elevation 
threshold of 10 m as these areas are vulnerable to storm surge. 

DiluviumDEM maintains the lowest MAE and RMSE across all 
countries compared to the other DEMs except for the MAE value of 
Denmark and England. DiluviumDEM exhibits the ME closest to zero for 
most countries. For those four countries where DiluviumDEM is not 
superior – having error metrics closest to zero for 2 or more of the 
elevation thresholds – the ME of DilviumDEM is only, on average, 8 cm 
further from zero than the leading DEM. We emphasize that the ME of 
DiluviumDEM is more consistently close to zero across the countries 
compared to the other global DEMs. Moreover, the improvement 
compared to other DEMs is significant. The RMSE of DiluviumDEM is 
below 2 m for all countries and less than 1.5 m for eight out of the ten 
nations analyzed. DiluviumDEM has an RMSE that is more than half a 
meter less than the FABDEM’s RMSE for seven out of the ten countries. 
Skill relative to CoastalDEMV2.1 is even better—DiluviumDEM’s RMSE 
is more than a meter less than CoastalDEMV2.1’s for 6 countries and 
more than half a meter less for all countries. Not only does Dilu
viumDEM consistently show the lowest composite error metrics for all 
regions, but DiluviumDEM provides a substantial improvement in esti
mating coastal elevations over other publicly available global DEMs. 

Both FABDEM and DiluviumDEM were trained with Netherlands 
LiDAR data, yet DiluviumDEM has lower out-of-sample error metrics 
than FABDEM in this region. Only FABDEM was trained with data from 
Latvia and Australia yet DiluviumDEM outperforms FABDEM in both 
countries in the coastal lowlands. This out-of-sample superiority un
derscores the ability to use DiluviumDEM in locations where training 
data was not used. An additional finding is that, based on the RMSE and 
MAE metrics, FABDEM is superior to CoastalDEMV2.1 in seven of the 
countries analyzed even though CoastalDEMV2.1 was designed for 
coastal areas. 

To determine how DiluviumDEM performs for different land covers 
and provide guidance for users, we calculated RMSE, MAE, and ME for 
the built area and tree land covers using the ESRI 2020 Global Land Use 
Land Cover from Sentinel-2 (Karra et al., 2021). Tables 3 and 4 show the 
error metrics across countries for the built area and tree land covers, 
respectively. Within the built area, DilivumDEM also outperforms the 
other global DEMs. For 7 out of the 10 countries assessed, DilivumDEM 
shows higher accuracy for all three metrics. In England, FABDEM con
tains the ME and MAE closest to zero while DiluviumDEM has the lowest 
RMSE. FABDEM also shows the lowest MAE in Denmark and ME closest 
to zero in Japan with DilivumDEM having the values closest to zero for 
the other two metrics for the respective countries. DilivumDEM per
forms similarly in the tree land cover. DiliviumDEM maintains the su
perior ME, RMSE, and MAE in all countries except for the ME in 
Denmark, Latvia, Mexico, England, and USA where CoastalDEMV2.1 is 
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Table 1 
RMSE in meters for different global DEMs using an airborne LiDAR-based DEM as the reference dataset. Only pixels with elevations greater than zero and less than the 
elevation threshold, according to both the LiDAR or the global DEM, were used. The value closest to zero of each row is in bold. Country abbreviations are USA: 
Continental United States, NLD: the Netherlands, AUS: Australia.  

Country Elevation Threshold (m) DiluviumDEM FABDEM COP30DEM CoastalDEMV2.1 (90 m) 

USA 2 0.85 2.58 5.92 1.96  
5 1.03 2.85 6.56 2.25  
10 1.15 3.00 6.81 2.50 

NLD 2 0.68 0.96 2.14 1.28  
5 0.74 1.10 1.04 1.44  
10 0.77 1.17 3.35 1.56 

AUS 2 1.60 2.57 4.41 3.35  
5 1.61 2.32 4.25 3.12  
10 1.78 2.34 4.45 3.56 

England 2 0.95 1.20 1.46 2.21  
5 1.03 1.36 1.83 2.43  
10 1.16 1.54 2.25 2.54 

Poland 2 0.97 1.74 4.34 1.36  
5 1.20 2.00 5.09 1.74  
10 1.44 2.25 5.82 2.07 

Japan 2 1.66 2.48 2.45 5.15  
5 1.67 2.33 2.83 5.04  
10 1.87 2.49 3.14 5.36 

France 2 0.99 1.70 2.09 2.31  
5 1.13 1.85 2.63 2.58  
10 1.34 2.05 3.11 2.81 

Mexico 2 1.03 1.50 2.66 1.75  
5 1.12 1.66 2.79 2.03  
10 1.21 1.81 3.06 2.26 

Latvia 2 1.38 1.74 5.28 1.59  
5 1.65 2.46 7.95 2.06  
10 1.79 2.55 8.97 2.41 

Denmark 2 1.13 1.21 2.29 1.65  
5 1.31 1.48 3.05 1.86  
10 1.39 1.63 3.41 1.99  

Table 2 
MAE in meters for different global DEMs using an airborne LiDAR-based DEM as the reference dataset. Only pixels with elevations greater than zero and less than the 
elevation threshold, according to both the LiDAR or the global DEM, were used. The value closest to zero of each row is in bold. Country abbreviations are USA: 
Continental United States, NLD: the Netherlands, AUS: Australia.  

Country Elevation Threshold (m) DiluviumDEM FABDEM COP30DEM CoastalDEMV2.1 (90 m) 

USA 2 0.51 1.37 3.21 1.24  
5 0.63 1.57 3.85 1.44  
10 0.70 1.67 4.16 1.62 

NLD 2 0.41 0.51 1.07 0.91  
5 0.44 0.57 1.36 0.99  
10 0.46 0.59 1.65 1.07 

AUS 2 0.95 1.43 2.30 2.04  
5 0.97 1.33 2.29 1.91  
10 1.04 1.33 2.40 2.25 

England 2 0.60 0.48 0.64 1.04  
5 0.61 0.55 0.79 1.20  
10 0.65 0.64 0.96 1.33 

Poland 2 0.61 0.82 1.92 0.81  
5 0.68 0.97 2.41 1.02  
10 0.78 1.12 2.85 1.26 

Japan 2 0.75 0.85 1.12 2.21  
5 0.81 0.90 1.41 2.31  
10 0.89 1.01 1.53 2.59 

France 2 0.50 0.57 0.83 1.00  
5 0.57 0.72 1.15 1.21  
10 0.68 0.88 1.44 1.41 

Mexico 2 0.68 0.98 1.45 1.34  
5 0.74 1.10 1.62 1.47  
10 0.79 1.19 1.85 1.57 

Latvia 2 0.86 0.95 2.57 1.11  
5 1.04 1.38 4.61 1.45  
10 1.16 1.51 5.70 1.75 

Denmark 2 0.71 0.57 0.94 0.94  
5 0.82 0.69 1.29 1.09  
10 0.86 0.78 1.48 1.22  
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closest to zero. 
Additional validation in the form of the error histogram is provided 

in Fig. 1. Histograms of the error for DiluviumDEM, FABDEM, 

COP30DEM, CoastalDEMV2.1 against the validation data (not training 
data) with an elevation threshold of 10 m. A random sample of 4893 
pixels were selected (the same pixels for all DEMs) across all validation 

Table 3 
ME in meters for different global DEMs using an airborne LiDAR-based DEM as the reference dataset. Only pixels with elevations greater than zero and less than the 
elevation threshold, according to both the LiDAR or the global DEM, were used. The value closet to zero of each row is in bold. Country abbreviations are USA: 
Continental United States, NLD: the Netherlands, AUS: Australia.  

Country Elevation Threshold (m) DiluviumDEM FABDEM COP30DEM CoastalDEMV2.1 (90 m) 

USA 2 0.08 0.67 2.94 0.38  
5 0.06 0.82 3.64 0.05  
10 0.03 0.87 3.97 − 0.18 

NLD 2 0.01 0.05 0.74 − 0.45  
5 ¡0.01 0.10 1.04 − 0.52  
10 ¡0.02 0.13 1.33 − 0.59 

AUS 2 0.16 0.82 1.67 0.35  
5 0.12 0.67 1.71 − 0.27  
10 0.11 0.62 1.88 − 0.82 

England 2 0.06 ¡0.01 0.15 − 0.62  
5 0.01 0.05 0.33 − 0.90  
10 ¡0.01 0.14 0.53 − 0.84 

Poland 2 0.30 0.69 1.82 ¡0.09  
5 0.22 0.81 2.30 ¡0.16  
10 0.16 0.90 2.73 − 0.29 

Japan 2 − 0.21 0.01 0.59 − 1.01  
5 − 0.17 0.11 0.96 − 1.45  
10 − 0.20 0.15 1.07 − 1.77 

France 2 0.19 0.24 0.50 − 0.61  
5 0.17 0.35 0.84 − 0.66  
10 0.14 0.43 1.12 − 0.70 

Mexico 2 0.24 0.76 1.20 0.71  
5 0.21 0.84 1.35 0.43  
10 0.18 0.89 1.59 0.08 

Latvia 2 − 0.32 0.29 2.26 − 0.50  
5 − 0.39 0.75 4.37 ¡0.32  
10 − 0.48 0.91 5.51 ¡0.33 

Denmark 2 − 0.21 0.18 0.53 − 0.22  
5 − 0.32 0.28 0.90 − 0.27  
10 − 0.37 0.28 1.08 − 0.31  

Table 4 
RMSE, MAE, and ME for built area land covers. Only pixels with elevations greater than zero and less than 10 m, according to both the LiDAR or the global DEM, were 
used. The closest to zero of each row is in bold. Country abbreviations are USA: Continental United States, NLD: the Netherlands, AUS: Australia.  

Country Error Metric DiluviumDEM FABDEM COP30DEM CoastalDEMV2.1 (90 m) 

USA ME 0.03 0.88 2.66 − 0.38  
MAE 0.76 1.21 2.82 1.55  
RMSE 1.15 1.98 4.32 2.32 

NLD ME ¡0.03 0.17 1.87 − 0.42  
MAE 0.66 0.76 2.06 1.11  
RMSE 0.97 1.20 2.98 1.62 

AUS ME 0.04 0.61 1.75 − 1.12  
MAE 0.98 1.17 2.04 2.42  
RMSE 1.52 1.91 3.16 3.70 

England ME − 0.25 0.14 1.38 − 1.28  
MAE 0.92 0.88 1.64 1.72  
RMSE 1.42 1.54 2.60 2.76 

Poland ME 0.13 0.54 1.73 − 0.70  
MAE 0.75 0.91 1.85 1.33  
RMSE 1.13 1.48 2.95 2.12 

Japan ME − 0.18 ¡0.02 1.36 − 1.25  
MAE 0.89 0.91 1.67 2.16  
RMSE 1.47 1.73 2.83 3.61 

France ME 0.12 0.61 1.52 − 1.06  
MAE 0.85 1.03 1.76 1.79  
RMSE 1.37 1.67 2.74 3.08 

Mexico ME ¡0.06 0.71 1.92 − 0.37  
MAE 0.86 1.28 2.11 1.59  
RMSE 1.22 1.81 3.02 2.49 

Latvia ME ¡0.07 0.41 2.06 − 0.80  
MAE 0.83 0.84 2.22 1.41  
RMSE 1.22 1.30 3.56 1.92 

Denmark ME ¡0.26 0.46 1.57 − 0.46  
MAE 0.95 0.91 1.79 1.33  
RMSE 1.38 1.40 2.68 2.12  
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Fig. 1. Histogram comparing DiluviumDEM, FABDEM, COP30DEM, CoastalDEMV2.1 against the validation data (not training data). A random sample of 4893 pixels 
were selected (the same pixels for all DEMs) across all validation areas with an elevation threshold of 10 m. 

Table 5 
RMSE, MAE, and ME for tree land covers. Only pixels with elevations greater than zero and less than 10 m, according to both the LiDAR or the global DEM, were used. 
The value closest to zero of each row is in bold. Country abbreviations are USA: Continental United States, NLD: the Netherlands, AUS: Australia.  

Country Error Metric DiluviumDEM FABDEM COP30DEM CoastalDEMV2.1 (90 m) 

USA ME 0.07 1.20 7.80 0.06  
MAE 0.99 2.64 7.84 2.10  
RMSE 1.47 3.82 9.92 3.01 

NLD ME 0.02 1.47 7.95 0.02  
MAE 1.03 1.92 8.01 1.76  
RMSE 1.45 2.77 9.61 2.33 

AUS ME 0.70 1.74 5.37 − 0.37  
MAE 1.85 2.45 5.51 2.87  
RMSE 2.76 3.52 7.62 4.51 

England ME 0.80 2.87 6.08 ¡0.16  
MAE 1.87 3.14 6.26 2.78  
RMSE 2.70 3.14 8.29 5.04 

Poland ME 0.03 2.64 9.19 − 0.22  
MAE 1.74 2.93 9.22 2.08  
RMSE 2.54 4.10 11.38 3.01 

Japan ME ¡0.19 2.07 4.85 − 9.04  
MAE 3.08 3.87 6.07 10.22  
RMSE 5.34 6.53 8.75 16.03 

France ME 0.44 0.83 4.94 − 0.88  
MAE 1.55 2.15 5.06 2.46  
RMSE 2.39 3.38 7.02 4.18 

Mexico ME 0.38 1.81 3.93 0.06  
MAE 1.26 2.07 4.01 1.95  
RMSE 1.76 2.67 5.09 2.63 

Latvia ME − 0.77 1.58 9.75 ¡0.21  
MAE 1.65 2.34 9.83 2.25  
RMSE 2.25 3.33 12.09 2.87 

Denmark ME − 0.44 1.78 6.14 ¡0.26  
MAE 1.79 2.27 6.24 1.95  
RMSE 2.52 3.66 8.61 2.84  
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areas. All DEMs are centered close to zero; however, DiluviumDEM 
shows the greatest area under the curve close to zero. The distributions 
FABDEM and DiluviumDEM have similar peaks, but the FABDEM dis
tribution is flatter as FABDEM contains more positive errors. A compa
rable assessment applies to COP30DEM but with an even flatter 
distribution than FABDEM. Finally, the CoastalDEMV2.1 has a similar 
shape to COP30DEM but is shifted to the left confirming a negative bias 
in the DEM as shown in Table 3. 

The statistics presented in Tables 1 through 5 only account for the 
elevation uncertainty due to measurement errors. Uncertainty sur
rounding the vertical datum transformations between the training data 
datum and the global DEM datum must be accounted for to understand 
the total error. Since the ICESat2 training elevation data for Coast
alDEMV2.1 was transformed from WGS84 to EGM96, the standard de
viation included in that conversion is 0.92 m according to VDatum (Kulp 
and Strauss, 2021; Myers et al., 2007; NOAA, 2021). This is much higher 
than the standard deviation 0.16 m for converting training elevation 
data to EGM2008 from NAVD88 which was done for DiluviumDEM 
(NOAA, 2021). Therefore, the CoastalDEMV2.1 error metrics inherently 
contain even greater errors. 

3.2. Visual comparison 

A visual comparison of DEMs also reveals that DiluviumDEM has the 
lowest errors compared to a reference LiDAR DEM for Tokyo, Japan, 
Louisiana, USA, and Tabasco, Mexico. In Figs. 2 and 3 we can see the 
improvements that DiluviumDEM provides in the coastal zone. Fig. 2 
shows the elevation range from zero to twenty meters for DiluviumDEM, 
FABDEM, and the reference LiDAR DEM and Fig. 3 depicts the difference 
between the global DEMs and the reference LiDAR DEM. In all three 

areas, DiluviumDEM elevations are very similar to the LiDAR DEM while 
FABDEM deviates and is mostly greater than the LiDAR elevations. The 
quality of DiluviumDEM is most pronounced when looking at data in 
Tabasco, Mexico and Louisiana, USA. Here the DiluviumDEM error is 
much lower than FABDEM as shown in Fig. 3. To quantify the differ
ences in Fig. 3, the RMSE of DiluviumDEM in Tokyo, Tabasco, and 
Louisiana is 2.00 m, 0.91 m and 0.60 m, respectively while the RMSE of 
FABDEM in Tokyo, Tabasco, and Louisiana is 2.42 m, 1.32 m, 2.4 m, 
respectively for areas less than 2 m above mean sea level. Large portions 
of those two regions show FABDEM overestimating elevations in the 
lowlands. FABDEM has pixels in Tabasco and Louisiana that appear 
close to 20 m within the lowlands area and are largely absent in Dilu
viumDEM. The differences between DiluviumDEM and the LiDAR DEM 
are difficult to identify as DiluviumDEM closely resembles the airborne 
LiDAR data. 

The differences between DiluviumDEM and FABDEM are less 
noticeable in Tokyo, Japan but DiluviumDEM represents elevations that 
are closer to the reference LiDAR DEM across the coastal lowland as 
shown in Fig. 3. For many areas in Tokyo, DiluviumDEM is one to two 
meters less than FABDEM, especially in the northern half of the map. 
Other parts of the city have even clearer differences such as in the 
southwest quadrant where a portion of the coastal floodplain is close to 
zero elevation in the LiDAR DEM, but shows as 5 to 10 m in Dilu
viumDEM and even higher still in FABDEM. One pattern for Dili
viumDEM in Tokyo is slight underestimations of elevation especially in 
the northern part of the map. 

While the low errors of DiluviumDEM in Louisiana are influenced by 
the machine learning model trained on USA LiDAR data, the low Dilu
viumDEM errors in Mexico and Japan are an indication of the applica
bility of DiluviumDEM in areas where the model was not trained. The 

Fig. 2. Comparison of elevations in meters between FABDEM (top row), DiluviumDEM (middle row), and LiDAR-based DEM (bottom row) for three locations: Tokyo, 
Japan (left column), Tabasco, Mexico (center column), and southern Louisiana, USA (right column). Water pixels and areas with no LiDAR data are shown in gray. 
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results presented show that DiluviumDEM is generalizable across ge
ographies and the globe. 

3.3. Global validation 

To estimate a global picture of the accuracy of DiluviumDEM and 
other commonly used coastal global DEMs, satellite LiDAR data from 
ICESat2 was used as reference data to calculate the RMSE and MAE of 
DiluviumDEM, FABDEM, and CoastalDEMV2.1 globally as shown in 
Table 6. ICESat2 data from June 1, 2021 to December 22, 2021 was used 
for this validation analysis. This time period of ICESat2 data is shorter 
than what was used for the ICESat2 input variable because there were 
approximately 2.4 million data points used from the June to December 
2021 timeframe for validation. For all elevation thresholds, Dilu
viumDEM outperforms the other two DEMs using the RMSE and MAE 
metrics. This is consistent with the analysis with airborne LiDAR-derived 
DEMs. Additionally, this is a significant finding given that ICESat2 

LiDAR data was used to train a machine learning model to create 
CoastalDEMV2.1. CoastalDEMV2.1 has an ME closer to zero than Dilu
viumDEM and FABDEM; however, the magnitude difference between 
the ME of DiluviumDEM and CoastalDEMV2.1 range from 2 to 25 cm. It 
is appropriate then that CoastalDEMV2.1 shows slightly lower error 
metrics than FABDEM when using ICESat2 data as the reference dataset 
since CoastalDEMV2.1 was trained on ICESat2 data and FABDEM was 
trained on airborne LiDAR-derived DEMs. The distribution of errors 
globally can be seen in Fig. 4 for all three DEMs. There are more points in 
the CoastalDEM map because the number of points that are used for each 
map is dependent on the DEM. We use an elevation threshold of 5 m and 
pixels are selected for calculation of the error metric if the DEM or the 
ICESat2 data shows the pixel is below 5 m. Therefore, because Coast
alDEM is biased low, as shown in Table 3, there are more pixels that fall 
under the 5-m threshold and are then used in the creation of the map. 

CoastalDEMV2.1 performs well throughout Asia, but is less suc
cessful in Oceania, the Amazon River delta, and the Atlantic coastline of 
the United States. FABDEM has similar spatial patterns as Coast
alDEMV2.1, but shows lower errors in western Asia and greater errors in 
the Amazon River delta. DiluviumDEM has the lowest RMSE across all 
regions with the most notable improvements in the eastern seaboard of 
the United States, the Gulf of Mexico, the Caribbean, and throughout 
Oceania. All DEMs show high errors along coastlines with steep slopes. 
For example, throughout Chile and Alaska all DEMs show errors mostly 
above 3 m. 

4. Discussion 

DiluviumDEM is the most accurate and precise coastal 30-m global 
DEM available to the public. Not only does it outperform other DEMs in 
areas where the machine learning model was trained, but more impor
tantly, the ME, MAE, and RMSE of DiluviumDEM are significantly closer 
to zero for countries where no training data was utilized. This demon
strates the generalizability of DiluviumDEM across various regions of 
the world and the advantage of using DiluviumDEM compared to other 
coastal global DEMs. Additionally, as geodesic methods improve and 

Fig. 3. The difference of elevation in meters between the global DEM and reference LiDAR DEM for FABDEM (top row) and DiluviumDEM (bottom row) for three 
locations: Tokyo, Japan (left column), Tabasco, Mexico (center column), and southern Louisiana, USA (right column). Water pixels, areas with no LiDAR data, and 
elevations greater than 20 m according to the LiDAR DEM are shown in gray. 

Table 6 
RMSE and MAE in meters for different global DEMs using global ICESat2 data as 
the reference dataset. Only pixels with elevations greater than zero and less than 
the elevation threshold, according to both the LiDAR or the global DEM, were 
used. The value closest to zero of each row is in bold.  

RMSE 

Elevation Threshold (m) DiluviumDEM FABDEM CoastalDEMV2.1 

2 1.77 2.65 2.11 
5 1.74 2.46 2.24 
10 1.76 2.45 2.38 
MAE 
Elevation Threshold (m) DiluviumDEM FABDEM CoastalDEMV2.1 
2 0.89 1.28 1.38 
5 0.89 1.20 1.43 
10 0.91 1.18 1.52 
ME 
Elevation Threshold (m) DiluviumDEM FABDEM CoastalDEMV2.1 
2 0.32 0.87 0.29 
5 0.27 0.74 0.02 
10 0.27 0.69 ¡0.15  
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geoids with greater precision are developed, the uncertainties due to 
transformations between vertical reference systems will diminish. The 
EGM96 geoid, used by several global DEMs such as CoastalDEMV2.1, is 
much less accurate than the EGM2008 geoid, used by DiluviumDEM and 
FABDEM. Transforming from and to EGM96 introduces more uncer
tainty into a DEM and consequently any inundation mapping utilizing 
that DEM. 

While it is important to obtain a global picture of error for DEMs 
using ICESat2 LiDAR data, the analysis should be caveated by the fact 
that ICESat2 LiDAR data contains errors that reduce the efficacy of the 
ICESat2 data as a reference dataset. For example, it was found that in 
northern Australia the ICESat2 ground elevations contain a mean error 
of 0.28 m and a RMSE of 0.96 m when compared to an airborne LiDAR 
DEM (Yu et al., 2021). 

Fig. 4. Global distribution of RMSE using ICESat2 data as the reference DEM for CoastalDEMV2.1 (A), FABDEM (B), and DiluviumDEM (C). Each point represents a 
5-degree cell and is represented 2-dimensionally: the size identifies how many 30-m pixels were used in the calculation and the color represents the RMSE in meters. 
Only pixels with elevations greater than zero and less than 5 m, according to both the ICESat2 data or the global DEM, were used. 
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Using the appropriateness framework described in the methods 
section, we describe the confidence level of the three DEMs previously 
analyzed that were most unbiased (e.g., a mean error of zero), Dilu
viumDEM, FABDEM, and CoastalDEMV2.1, for sea level rise in 2100 in 
Table 7 using the RMSE of the different country DEMs for elevations less 
than 2 m from Table 1. We combine the estimated sea level rise from the 
Intergovernmental Panel on Climate Change (IPCC) 6th Assessment 
Report (AR6)’s SSP5–8.5 Medium Confidence 50th percentile scenario 
(hereafter referred to as M-50) and the water level calculated as the 1- 
year return period from the CoDEC dataset (Muis et al., 2020; Fox- 
Kemper et al., 2021). Since the CoDEC dataset is referenced to mean sea 
level and DiluviumDEM is referenced to EGM2008, CoDEC 1-year water 
levels were converted to the EGM2008 geoid using the DTU10 Mean 
Dynamic Ocean Topography (MDOT) (Andersen and Knudsen, 2009), 
similar to the methodology presented in Kirezci et al. (2020) and Muis 
et al. (2017). We use the DTU10 MDOT dataset as the geoid used to 
calculate the MDOT was EGM2008. We take the average of all CoDEC 
points along a country’s coastline using the EEZ as boundaries. The AR6 
sea level rise projections use 1995–2014 as the baseline time period 
which contains the majority of the years that the data for COP30DEM 
was taken (i.e., 2011–2015). Therefore, DiluviumDEM and AR6 align 
well in terms of baseline time periods and elevation measurements and 
are well suited to be utilized in tandem. 

We focus on the SSP-8.5 scenario for several reasons. The first is that 
historical total cumulative carbon dioxide emissions closely agreed with 
those from Representative Concentration Pathway 8.5 (RCP8.5, the 
predecessor of SSP5–8.5) (Schwalm et al., 2020). Secondly, while the 
particular drivers of projected emissions under SSP5–8.5 (e.g., coal use) 
may not align with future policies, the emissions themselves that will 
drive the climate forcing may come from other sources. Thirdly, un
certainties in climate models due to climate sensitivity and climate 
feedback loops are still significant (e.g., permafrost processes are largely 
ignored in climate models) and their contributions to future warming is 
underrepresented. Fourth, sea level rise estimates have been trending 

upward as our knowledge on sea level rise processes has grown which 
supports the selection of a high warming scenario (Garner et al., 2018). 
For example, the IPCC’s 5th Assessment Report (AR5), published in 
2013, estimated global mean sea level would rise by a median amount of 
0.71 m by 2100 relative to the 1995–2014 global mean sea level under 
the RCP8.5 scenario while the more recent AR6 projects a rise of 0.77 m 
by 2100 under SSP5–8.5 (Fox-Kemper et al., 2021). Finally, the scien
tific community’s understanding of Antarctica’s contribution to sea level 
rise is not robust enough to meaningfully differentiate between sea level 
rise projections of SSP5–8.5 and other scenarios except for SSP1–2.6 
(van de Wal et al., 2022). Yet, there is only a 0.1% chance that we will 
follow the SSP1–2.6 scenario, a representation of keeping global average 
warming to 1.5 ◦C also known as the Paris Agreement (Vargas Zeppe
tello et al., 2022). 

In addition to the M-50 values, we also use the 83rd percentile sea 
level rise values from the SSP5–8.5 Low Confidence scenario (hereafter 
referred to as L-83) which incorporates low likelihood-high impact 
(LLHI) ice sheet processes. We focus on the 83rd percentile because the 
global sea level rise amounts associated with the 83rd percentile is the 
upper-end estimate of the high-end sea level rise estimates generated by 
van de Wal et al. (2022) which aimed to create actionable high-end 
estimates for adaptation managers. The possibility of 2-m global mean 
sea level rise by 2100 under SSP-8.5 cannot be ruled out as the estimate 
is within the 90% uncertainty bound for RCP8.5 (SSP5–8.5) (Bamber 
et al., 2019). To provide users with greater guidance on when Dilu
viumDEM is appropriate for lower sea level rise scenarios, we also 
provide the confidence interval for SSP2–4.5 50th percentile Medium 
Confidence scenario (hereafter referred to as SSP2). 

For M-50 and SSP2, DiluviumDEM is appropriate for five out of the 
ten countries, FABDEM is appropriate for two countries, and Coast
alDEMV2.1 is appropriate for just one country. Under L-83, Dilu
viumDEM is appropriate for nine countries, FABDEM is appropriate for 
four countries, and CoastalDEMV2.1 is appropriate for one country. 
Table 7 clearly shows that the greatest confidence for inundation 

Table 7 
Water level above mean sea level for respective sea level rise scenarios (i.e., M-50, L-83, and SSP2), different countries, and the confidence interval for each country and 
respective water level. Confidence intervals that are 68% and above are in bold to represent appropriate use of the DEM in that region.  

Country SLR Scenario Water Level % Confidence DiluviumDEM % Confidence FABDEM % Confidence 
CoastalDEMV2.1 (90 m) 

USA M-50 2.11 79% 32% 41%  
L-83 2.88 91% 42% 54%  
SSP2 1.90 74% 29% 37% 

NLD M-50 3.49 99% 93% 83%  
L-83 4.03 100% 96% 88%  
SSP2 3.28 98% 91% 80% 

AUS M-50 2.92 64% 43% 34%  
L-83 3.80 76% 54% 43%  
SSP2 2.71 60% 40% 31% 

England M-50 3.55 94% 86% 58%  
L-83 4.07 97% 91% 64%  
SSP2 3.37 92% 84% 55% 

Poland M-50 1.85 66% 40% 50%  
L-83 2.40 78% 51% 62%  
SSP2 1.63 60% 36% 45% 

Japan M-50 2.49 55% 38% 19%  
L-83 3.48 71% 52% 26%  
SSP2 2.23 50% 35% 17% 

France M-50 3.29 90% 67% 52%  
L-83 3.88 95% 75% 60%  
SSP2 3.10 88% 64% 50% 

Mexico M-50 2.38 75% 57% 50%  
L-83 3.26 89% 72% 65%  
SSP2 2.18 71% 53% 47% 

Latvia M-50 1.98 53% 43% 47%  
L-83 2.53 64% 53% 57%  
SSP2 1.77 48% 39% 42% 

Denmark M-50 1.82 58% 55% 42%  
L-83 2.35 70% 67% 52%  
SSP2 1.61 52% 49% 37%  
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mapping is always with DiluviumDEM and if a water level is not 
appropriate for mapping with DiluviumDEM, then it is not appropriate 
for other global DEMs. 

Confidence levels also can vary within countries across Level 1 
administrative units as shown in Figs. 5 and 6 for the M-50 and L-83 
scenarios, respectively, for DiluviumDEM. In France there is greater 
confidence on the Atlantic coast compared to the Mediterranean coast 
which is largely a function of the 1-year water level height being higher 
on the Atlantic side. In the United States, confidence levels are higher in 
the south east and Gulf of Mexico coasts than in the Northeast due to 
DiluviumDEM errors being lower in the southern half of the country. It is 
also worth noting that while most of the states/provinces in a country 
can have high confidence levels, the country-wide confidence level may 
below the appropriateness threshold because most of the elevation 
values are contained in a single state or province. A good example of this 
is Australia where almost all the states have confidence levels of 68% or 
above yet the confidence level of New South Wales at 52% prevents the 
country-wide confidence level from reaching the appropriateness 
threshold of 68% for M-50. 

Given the generality shown for low errors of DiluviumDEM in re
gions where no training data was used, we extend that assumption to 
flood mapping and the confidence level estimates. The practice of using 
global DEMs for inundation modeling in regions where global DEMs 
were not trained with local data and assuming error metrics from other 
regions where validation did occur is common (Restrepo-Ángel et al., 
2021; Hoballah Jalloul et al., 2022). Still, a global measure of the con
fidence level for using DiluviumDEM in sea level rise inundation analysis 
is useful. Rather than use the error metrics based on ICESat2 reference 

data, we average the RMSE values in Table 1 for the ten countries 
because of the high relative errors for ICESat2 LiDAR measurements (Yu 
et al., 2021). Across the ten countries, the RMSE average is 1.13 m while 
the global coastal average for the M-50 scenario in addition to the 1-year 
water level is 2.39 m above the EGM2008 geoid, 2.20 m above the geoid 
for SSP2, and 3.16 m above the geoid for the L-83 percentile. These 
water levels correspond to a 71% confidence interval for the M-50 sce
nario, 67% for the SSP2 scenario, and an 84% confidence interval for the 
L-83 scenario. While FABDEM, the second most accurate DEM behind 
DiluviumDEM, is not appropriate even for the L-83 scenario with a 
confidence level of 63%. 

While DiluviumDEM is appropriate use under the SSP5–8.5 scenario, 
we also argue that DiluviumDEM is appropriate for the SSP2–4.5 sce
nario as well given that the global average RMSE estimate is only 1 
percentage point off the 68% confidence level for the 50th percentile of 
sea level rise. IPCC sea level rise estimates are often considered un
derestimates. Due to limited observational data, an incomplete under
standing of ice sheet dynamics, and coarse representation of ice-ocean 
processes, there are significant uncertainties in how ice sheets will 
contribute to global sea level rise; and future estimates, including those 
of AR6, are likely too low (Siegert et al., 2020). Recent research has 
shown that sea level rise projections are largely underestimates because 
ice sheet models do not incorporate realistic and localized representa
tions of ice-ocean interactions resulting in underestimating Greenland 
glacier mass loss by more than a factor of two (Wood et al., 2021). The 
committed sea-level rise contribution from Greenland is estimated to be 
0.27 ± 0.68 m by 2100, equivalent to the LLHI SSP5–8.5 estimate for 
Greenland from van de Wal et al. (2022) for 2100 (Box et al., 2022). 

Fig. 5. DiluviumDEM M-50 scenario confidence levels for the Level 1 administrative units in (A) Europe, (B) Japan, (C) Australia, (D) North America for elevations 
less than 2 m above the EGM08 geoid. Administrative units in gray have either no local DEM data, no elevations below the 2-m threshold, or have no coastline. 
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Furthermore, sea level rise projections exclude contributions from 
exposed rebounding bedrock under the West Antarctic Ice Sheet and 
subsequent meltwater pushed oceanward increases global mean sea 
level by 0.01 m through 2100 (Pan et al., 2021). Additionally, new 
observational work on the Thwaites Glacier in West Antarctica has 
shown that the glacier is melting at an accelerating rate and the 
Thwaites Eastern Ice Shelf will likely destabilize within a few decades 
which increases the probability of LLHI sea level rise scenarios (Alley 
et al., 2021; Dos Santos et al., 2021; Wåhlin et al., 2021; Wild et al., 
2022). Omitting climate variability in ice sheet model climate forcing 
underestimates Antarctic contribution to sea level rise by 0.07 to 0.11 m 
by 2100 (Tsai et al., 2020). Even the IPCC’s consensus-based approach 
often results in lower estimates to remain conservative (Garner et al., 
2018). Only one model in the AR6 sea level rise projections incorporates 
the Marine Ice Cliff Instability mechanism, a hypothesis that could in
crease sea level rise projections by decimeters (DeConto and Pollard, 
2016; Edwards et al., 2021). The AR6 report acknowledges that sea level 
rise could reach 2.3 m by 2100 through a combination of the afore
mentioned processes (Fox-Kemper et al., 2021). 

Due to these underestimates in the IPCC’s sea level rise projections, 
global sea level rise by 2100 is higher than projected under SSP2 and 
would allow for DiluviumDEM to meet the appropriate use threshold of 
68% for inundation mapping. Therefore, we present DiluviumDEM as 
not only a significant advancement in global coastal elevation data, but 
the first 30-m global DEM appropriate for sea level rise assessment 
through 2100 using the IPCC scenarios SSP2–4.5 and SSP5–8.5. Addi
tionally, the use of DiluviumDEM to analyze water levels with return 
periods greater than 1-year would increase the confidence levels. 

We caution against using DiluviumDEM for terrain analysis (such as 
producing a stream network) because pixels with elevations greater than 
80 m in DiluviumDEM are masked. Unless the terrain analysis is coastal 
focused, other DEMs with higher elevation coverage are better suited for 
such analyses. DEMs that provide data further inland are more appro
priate for terrain analysis. Further improvements to DiluviumDEM will 
continue as satellite data representing vegetation and building heights 
increase in resolution and accuracy. In Japan and England, the 
LightGBM model struggles in urbanized areas where building density is 
especially high. This is likely because commercial centers are not 
necessarily areas of high population density, one of the input variables, 
and therefore the model does not identify certain pixels that contain tall 
buildings and correct for this error. Additional datasets that are more 
representative of building height would assist in reducing the error of 
COP30DEM even further. High errors also persist in densely forested 
areas, such as in Poland, suggesting that greater fidelity is needed in 
forest canopy height datasets. Training the model on a greater number of 
LiDAR DEMs such as in Spain, New Zealand, and Argentina would also 
likely promote further model generalization. The constant development 
of new machine learning techniques will allow for further reduction in 
the error statistics of DiluviumDEM. Future work with DiluviumDEM 
will include investigating other machine learning models for elevation 
correction, additional accuracy metrics specific to inundation mapping, 
and mapping inundation extent for sea level rise globally. 

5. Conclusion 

As global DEMs are crucial for environmental and social analyses, 

Fig. 6. DiluviumDEM L-83 scenario confidence levels for the Level 1 administrative units in (A) Europe, (B) Japan, (C) Australia, (D) North America for elevations 
less than 2 m above the EGM08 geoid. Administrative units in gray have either no local DEM data, no elevations below the 2-m threshold, or have no coastline. 
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improving their accuracy is paramount as climate change progresses. 
For the foreseeable future, global DEMs will need to be corrected for 
coastal flood assessment given the lack of airborne LiDAR data for many 
parts of the world and that several global DEMs reference surface 
elevation, which includes tree canopies and building rooftops, not the 
underlying terrain elevation. Even the recent 2-m resolution global 
EarthDEM (https://www.pgc.umn.edu/data/earthdem/) is a digital 
surface model so the terrain is not represented. 

We have presented a new global coastal DEM, DiliuviumDEM, that 
was created using a LightGBM regression model. Using LiDAR-based 
DEMs as the training dataset and 52 explanatory variables, Dilu
viumDEM represents an improved version of the COP30DEM dataset. 
DiluviumDEM shows superior accuracy across various regions, metrics, 
and land covers compared to other leading global DEMs. From the 90 
individual comparisons (across countries, elevation thresholds, and 
error metrics), DiluviumDEM shows the lowest error for 70, FABDEM for 
14, and CoastalDEMV2.1 for 6. In a comparison of distributions across 
DEMs, DiluviumDEM shows the greatest area under the curve closest to 
zero, emphasizing how DiluviumDEM contains the lowest errors. 

The superiority of DiluviuDEM across error metrics also extends into 
comparing DEMs for appropriateness for sea level rise inundation 
mapping. Using the 68% confidence threshold as the definition for 
appropriate, we find that DiluviumDEM is appropriate for 50% of the 
countries analyzed, FABDEM is appropriate for 20%, and Coast
alDEMV2.1 is appropriate for just 1% using IPCC scenarios SSP2–4.5 and 
SSP5–8.5. Under a low-likelihood high impact scenario, DiluviumDEM 
is appropriate for 90% of the countries, FABDEM is appropriate for 40%, 
and CoastalDEMV2.1 is appropriate for 1%. Using the composite RMSE 
of the assessed countries, we find that DiluviumDEM is appropriate for 
use globally under the SSP2–4.5 and SSP5–8.5 scenarios. 
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Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowicki, S., 
Nurhati, I.S., Ruiz, L., Sallée, J.-B., Slangen, A.B.A., Yu, Y., 2021. Ocean, cryosphere 
and sea level change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., 
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